Esper Reference

Version 4.10.0

by Esper Team and EsperTech Inc. [http://esper.codehaus.org]

Copyright 2006 - 2013 by EsperTech Inc.

http://esper.codehaus.org
http://esper.codehaus.org

|2 (=] = o1 <Y XiX

I = Tod g o] [Yo |V @ A =T VT 1
1.1. Introduction to CEP and event stream analySiScoeeevuiiiieiiiiniiiiiiieeeeieeeeeenn 1
1.2. CEP and relational databasesc.uoiiiiiiiiiiiiiiiiie e 1
1.3. The Esper engine for CEP ... 2
1.4. Required 3rd Party LIDrariesccoooouiiiiiiii e 2

2. EVENt REPIESENTALIONS ...uiiiiii et 3
2.1. Event Underlying Java ODJECLSiiiiiiiii et 3
2.2, EVENE PrOPEITIES ..ottt ettt et e e ettt e e e e eeeab e 4

2.2.1. ESCAPE CharaCtEIScivviiiiii et e e e e e e e e 5
2.2.2. Expression as Key or Index Valuecoooiiiiiiiiiniiiii e 6
2.3. DyNamic EVENL PrOPEILIESccuuiiiiiiiie et e e e e aaa s 7
2.4. Fragment and Fragment TYPE ...cooouiiiiiiiii i 9
2.5. Plain-0Old Java ODbJECt EVENLSuuiiiiiiiiiii e e e e e 9
2.5.1. Java Object EVent Propertiesocoeuuiiiiiiiiieiiiii e 10
2.5.2. Property NAMESocuiiiiiiiiiie e 11
2.5.3. Parameterized TYPES ..coeeriieiiiii ettt 12
2.5.4. Setter Methods for Indexed and Mapped Propertiescccoeevveveviineennnnnns 12
2.5.5. KNOWN LIMITAtIONSuniieiiiiiiee e e e ea e 13
2.6. Java.Uti.Map EVENEScoouiiiiiii e e 13
DA T T @ =T VT PP 13
T V- Vo T o (o] 1= 4 (1= 14
2.6.3. MAP SUPEITYPES ..oeiieiieiiii ettt ettt et e e 15
2.6.4. Advanced Map Property TYPES ...cccuuieiiiieiiii e eee e e e e 16
2.7. Object-array (ODbJect[]) EVENLSccoouuiiiiiiiiieeie e e 18
A 8 T O Y= V= PSP 18
2.7.2. ObJeCt-Array PropPertie€Scoouuiiiiiiiiiieiiiii e 19
2.7.3. ODJECt-AIray SUPEIMYPE ...civiiiii e e e e e e aaees 20
2.7.4. Advanced Object-Array Property TYPESvveiiiiiieiiiiiieeeeiiiee e 21
2.8. org.w3c.dom.NOde XML EVENLSc.uiiiiiiiiiiiii e e e 23
2.8.1. Schema-Provided XML EVENLSooiiuiiiiiiiiiiiciie e e e e 25
2.8.2. No-Schema-Provided XML EVENLScocuviiiiiiiiiiiiiiii e 30
2.8.3. Explicitly-Configured Propertiesooveeuiiiiiiiiiieiiiece e 30
2.9. Additional Event RepresSentationsc..oviiiuiiiiiiiiiii i ee e e e e e 32
2.10. Updating, Merging and Versioning EVentsccccooviiiiiiiiii e 33
2.11. Coarse-GraiNed EVENISiiiiiiiiiieiiiii et e e e e e e e e e enenas 33
2.12. Event Objects Instantiated and Populated by Insert INtoccooveeeiiiiiiiiiinnnnes 34
2.13. Comparing Event REpresentationscvvviuiiiiiiieiiiieeiii e e e 35

3. Processing MOEIiiiiiiei e e e 37
0 I 1 1 (o To 11 T3 1o) o IR PP 37
3.2, INSEIT STIEAM ..enitiit et e ettt e et e e e e e e e e e aeen 37
3.3. Insert and REMOVE SIrEAMiiiiuiiiiiiiii et e r et e e eeaen s 38
3.4, Filters and WRNEIE-ClAUSESccuuuiiiiieiiieii e e e e aas 40
ST T L=V T (o 1 PP 42

Esper Reference

3.5.1. TIME WINAOW ...oiiiiiiiieie et e e et e e e e e 42
3.5.2. TIME BAICH .oiiiiiiiiiii e 43

T T = -1 o] I VAT Vo [1T 44
3.7. Aggregation and GrOUPINGccuuieiuiieeiiie et e e e e e e e e s e s e et e e et e e eaneeatnes 45
3.7.1. Insert and REMOVE StrEamMcccuiiiiiiiiiiieii e e e e e eens 45
3.7.2. Output for Aggregation and Group-BYcccoeeiiiiiiiiiiiiiiecin e, 46

3.8. Event Visibility and CUrrent TiMeooiiiiiiiiiiiiiieeee e 48
4. Context and Context PartitioNSviiiiiiiiiiiir e 49
s O 1 1 Yo [o 1o o PP 49
4.2, CoNteXt DECIAIALIONiiiiiiii e 50
4.2.1. Context-Provided Propertiesooveiiiiiiiiiiiiiieeei e 51
4.2.2. Keyed Segmented CONEXEcvuuiiiiiiiiiiie e e e e 51
4.2.3. Hash Segmented CONEXEuiiiiiinieiiiii e 55
4.2.4. Category Segmented CONEXEcvvviiiiiiiiie e 59
4.2.5. Non-Overlapping CONEXTcveuuiiiiiii et 60
4.2.6. OVerlapping CONEXLuiiiiiiiii e e e e e et e e e ees 62
4.2.7. Context CONAItIONS ...euuiiieiiiii e e e e e e e aaes 65

O T 0] o1 (=) A N LTS3 1] o 68
4.3.1. Built-In Nested Context Propertiescoouuiieiiiiiiieiiiiieeeei e 70

4.4, Partitioning Without Context Declarationccooeiiiiiiiiiiii e 70
4.5. Output When Context Partition Endscoouuiiiiiiiiiii e 71
4.6. Context and Named WINAOWoiiiiiiiiiiiiiine e eai e eeens 73
4.7. Operations on Specific Context Partitionscoooeiiiiiiiiiiiin e 74
5. EPL REfErenNCe: ClAUSES ...uuiiiiiiiiieiiiiii ettt ettt e et e e et s e e e eat e e e eeaanneeeee 77
L0 o I 1) To 11 o3 1T o P 77
L o I o | = PP 78
5.2.1. Specifying Time Periodsoooiiiiiiiiiiiie e 79
5.2.2. USING COMMENTS ...uiiiiiiiiieiii e et e e e e e e e e e et e e e et e e et e e ean s 79
5.2.3. ReSErved KEYWOITSuiiiiiiiiieiiii ettt ettt et eena e e e 80
5.2.4. ESCAPING SIHNGS ©.uiiiniiiiieiiii e e e e e e e e e e e e et s eeaeeeanees 81
5.2.5. DAl TYPBS ittt 81
5.2.6. Using Constants and ENUM TYPEScccuuviiiiieiiiieeiiieeciieeeiie e e et e e ean 84
LI R A g T] = 11T o 85
5.2.8. EXPression DeCIarationc.ccuiieiiiiiiiiiicii e e 90
5.2.9. SCript DECIArationcoouuuiiiiiiiii e 92
5.2.10. Referring t0 @ CONEXEiiiuuieiii e e e e e e eaes 92

5.3. Choosing Event Properties And Events: the Select Clausecccoovvevivinennnnn. 93
5.3.1. Choosing all event properties: Select *ccooviviiiiiiiiii e, 93
5.3.2. Choosing specific event Propertiescoveeeeuiieeeiiiiieiiieeeee e 94
LR TR T o 'd o] {11 1] o 1P 95
5.3.4. Renaming eVent ProPertieScoouuuieiiiiiiieiiii e e e 95
5.3.5. Choosing event properties and events in @ joincoovevieeviiieeiineeiineeenn, 95
5.3.6. Choosing event properties and events from a patterncc..ccoeveeens 97
5.3.7. Selecting insert and remove stream eVENLSccocevveiiiiieiiiieeiiieeieeeannne, 98

5.3.8. Qualifying property names and stream Namesccoovvveiveeeiieiiineeenneennns 98

5.3.9. SeIECE DISHINCE .ouvuiiiiii e e 99
5.3.10. Transposing an Expression Result to a Streamccoovvviviiiineennnnen. 100
5.3.11. Selecting EventBean instead of Underlying Eventc..ccoovevin. 100
5.4. Specifying Event Streams: the From Clausecooooveiiiiiiiiiinnicc e, 101
5.4.1. Filter-based EVENt SIreamScccuuuiiiiiiiiiieiiiiiie e 101
5.4.2. Pattern-based EVENt Streamsooviviiiiiiiii i e 105
5.4.3. SPECIYING VIBWS ...uuiiiiiiiii e e e e e eane e 106
5.4.4. Multiple Data WINAOW VIEWScccuuuiiiiiiiiiiiiii et 107
5.4.5. Using the Stream NaMEccccoiiiiiiiiiiiie e 108
5.5. Specifying Search Conditions: the Where Clauseccccooviiiiiiiiiiiiciineciee 110
5.6. Aggregates and grouping: the Group-by Clause and the Having Clause 110
5.6.1. Using aggregate fuNCHONSoviiiiiiiiiiiii e e 110
5.6.2. Organizing statement results into groups: the Group-by clause 111
5.6.3. Selecting groups of events: the Having clausec.occoeviiiiiiiineiinnes 114
5.6.4. How the stream filter, Where, Group By and Having clauses interact 115
5.6.5. Comparing Keyed Segmented Context, the Group By clause and the
LS (0 Be | £0 10T 01171 TV = P 116
5.7. Stabilizing and Controlling Output: the Output Clausec.ccooeveiviiieiiiinnenenn. 117
5.7.1. Output Clause OPLIONSccevuieiiiieiiii e e e e e e e e e 117
5.7.2. Aggregation, Group By, Having and Output clause interaction 123
5.7.3. RUNtime CoNSIAErationsoooivvuiiieiiiiiiiee it e e e e et e e e et e eeeeienaeeees 124
5.8. Sorting Output: the Order By CIAaUSEc.uuiiiiiiiiiiiiiii e 124
5.9. Limiting Row Count: the Limit ClauSecciiiiiiiiiiii e, 125
5.10. Merging Streams and Continuous Insertion: the Insert Into Clause 126
5.10.1. Transposing a Property TO @ Streamccooevviieiiiiiiiiiieiiie e ee e 128
5.10.2. Merging Streams By EVENt TYPEcoouviiiiiiiieiiiii e 129
5.10.3. Merging Disparate Types of Events: Variant Streamscccceceunnees 130
5.10.4. Decorated BEVENIScoouiiiiieii e 131
5.10.5. EVENE @S @ PrOPEITY ..ouiiiiiiiii et 131
5.10.6. Instantiating and Populating an Underlying Event Object 132
5.10.7. Transposing an EXpression ReSUltccocoiviiiiiiiiiicciieceee e, 132
5.10.8. Select-Clause Expression And Inserted-Into Column Event Type 132
LN YW o T 81T 1= P 133
5.11.1. The 'eXiStS' KEYWOIdccoouuiiiiiiiiiieiiii e 136
5.11.2. The 'in' and Mot in' KEYWOIdScocviiiiiiiiiiiieeie e 137
5.11.3. The 'any' and 'some’ KEeYWOrdScoeuuuiieiiiiiiieiiiiiieeeii et 137
5.11.4. The 'all' KEYWOIdciviiiiiiiei e aaas 138
5.11.5. Multi-Column SeIeCHiONcevuuiiiiiiiiee e 139
5.11.6. MUlti-ROW SEIECHIONciieiiieiiiii e 140
5.11.7. Hints Related to SUDQUENIESc.euiiiiiiii e 141
5.12. JOINING EVENE SIrEAMSuuiiiiiii i e e e e e e e e e et e e ea e ees 142
5.12.1. INtroduCiNg JOINSccieiiiieiiii et e s 142
5.12.2. Inner (Default) JOINScc.uiiiiiiiiiiii e 144

Esper Reference

5.13.

5.14.

5.15.

5.16.

5.17.
5.18.

5.12.3. Outer, Left and Right JOINScoiiiiiiiiii e 145
5.12.4. Unidirectional JOINSoiiiiiiiiiieiiiiie et e e e et e et e e 147
5.12.5. Hints Related t0 JOINSocuuiiiiiiiiiicie et 148
Accessing Relational Data via SQLoovviiiiiiiiiiiieci e 149
5.13.1. Joining SQL QUErY RESUILScceviiiiiiiiiiieiii e 150
5.13.2. SQL Query and the EPL Where Clausec.cccoivviiiieiiiieiiiieciceeeieen, 152
5.13.3. Outer Joins With SQL QUETIESoiivuiiiieiiieei e 153
5.13.4. Using Patterns to Request (Poll) Datacccoeevviieiiiiiiiiiicii e 154
5.13.5. Polling SQL Queries via Iteratorccoveviiieiiiieii e 154
5.13.6. JDBC Implementation OVEIVIEWcccuuviiiiieiiieeiiiieeiiieeeneeeieeeaneenens 155
5.13.7. Oracle Drivers and No-Metadata Workaroundccoovvviieiiineninnns 155
5.13.8. SQL Input Parameter and Column Output Conversionccceeeeen... 156
5.13.9. SQL ROW POJO CONVEISION ...eeuiiiiiiieeiieeiiiieeeieeeiaeeeieeeaeeeinaesaneeenaees 156
Accessing Non-Relational Data via Method Invocationccccccoeviviiiieinnnn, 157
5.14.1. Joining Method Invocation RESUILScoeeiiiiiiiiiiiiiiiciii e 157
5.14.2. Polling Method Invocation Results via Iteratorcccoceeeeiiieiiineennn... 158
5.14.3. Providing the Methodcooiiiiiiii e 159
5.14.4. Using a Map REtUIMN TYPE ..iiuniiiiiiiiii e 160
Creating and Using Named WINAOWSc..iiiiiiiiiiiiiiieeiii e 161
5.15.1. Creating Named Windows: the Create Window clause 162
5.15.2. Inserting Into Named WINAOWScccuiiiiiiiiiiiiiiii e 165
5.15.3. Inserting Into Named Windows Using Fire-And-Forget Queries 168
5.15.4. Selecting From Named WIiNdOWScccouiiiiiiiiiieiiiiieccii e 168
5.15.5. Triggered Select on Named Windows: the On Select clause 170
5.15.6. Triggered Select+Delete on Named Windows: the On Select Delete

ol - 10 L] SO 173
5.15.7. Populating a Named Window from an Existing Named Window 174
5.15.8. Updating Named Windows: the On Update clausec...ccoeeevvnnennnn. 174
5.15.9. Updating Named Windows Using Fire-And-Forget Queries 177
5.15.10. Deleting From Named Windows: the On Delete clause 178
5.15.11. Deleting From Named Windows Using Fire-And-Forget Queries 180
5.15.12. Triggered Upsert using the On-Merge Clausecccoeevviieiiiieviineennnn. 181
5.15.13. Explicitly Indexing Named WIiNdOWSc.coiviiiiiiiiiiiiinieciieeceie 185
5.15.14. Versioning and Revision Event Type Use with Named Windows 187
Declaring an Event Type: Create ScChemac.ooovviiiiiiiiiiiiiiii e 189
5.16.1. Declare an Event Type by Providing Names and Typescccoeevvvnenee. 189
5.16.2. Declare an Event Type by Providing a Class Namecccccoveeeivnnnn. 193
5.16.3. Declare a Variant Stre@mccccceeueiiiiiiiiiieeiiiee e 193
Splitting and Duplicating StreamsScoouuiiiiiiiiii e 194
Variables and CONSLANESociiiiiiiiiiiii e 196
5.18.1. Creating Variables: the Create Variable clausec...ccoovvviiievinennnnn. 196
5.18.2. Setting Variable Values: the On Set clausecccovevviiiviiiiiiiieennnns 198
5.18.3. USING Variablesoiiiiiiiiiiii e 200
5.18.4. Object-Type Variablesc.oiiiiiiiiii e 200

Vi

5.18.5. Class and Event-Type Variablescoooiiiiiiiiiiiiiiii e 201

5.19. Declaring Global Expressions And Scripts: Create EXpressionc.c..c.eee. 202
5.19.1. Declaring a Global EXPressioncoocoeeuiiiiiiinieiiiiieeceei e 202
5.19.2. Declaring a Global SCrPLccuuviiiiiiiiiee e 203

5.20. Contained-Event Selectionoiviiiiiiiiii e 204
5.20.1. Select-Clause in a Contained-Event Selectionc.oooeviiiiviiinneneen. 207
5.20.2. Where Clause in a Contained-Event Selectioncccoceeviviiniiinnenenn, 209
5.20.3. Contained-Event Selection and JOINSccooevvviiieiiiiiiieeiii e 209
5.20.4. Sentence and Word EXample ..o 211
5.20.5. MOre EXAmMPIEScouiiiiiiiii e 212
5.20.6. Contained-Event LIimitationsooouiiiiiiiiiiiieiie e 213

5.21. Updating an Insert Stream: the Update IStream Clauseccooeevveeinnnnn. 213
5.21.1. Immutability and Updatesoooeeuiiiiiiiiiiiiiii e 216

5.22. Controlling Event Delivery : The FOr Clauseccoooviieiiiiiiiiiciecii e 216

6. EPL ReferencCe: PatterNS ..ouuiiiii it e e e e e eees 219

6.1. EVENt PatterN OVEIVIEWcciiiiieiiiiii ettt e e e et e e et e e et s e e eeae s e e eeaeaeaeees 219

6.2. HOW 10 USE PAIEIMS ...ttt e e e en e 220
6.2.1. PAtterN SYNTAX ..ivuiiiiiiiiiie e 220
6.2.2. Patterns in EPL ... 221
6.2.3. Subscribing to Pattern EVENLSooviiiiiiiii e 221
6.2.4. Pulling Data from Patternsccoeuuiiiiiiiiieiiiecei e 222
6.2.5. Pattern Error REPOIINGcouuiiiiieiii e e e eaas 223

6.3. OPErator PreCEUBINCEcouuuiiiiiii et et 223

6.4. Filter EXpressions IN Patternscooiuiiiiiiiiei e e e 224
6.4.1. Controlling Event CONSUMPLIONccuuiiiiiiiieiiiineeeii e 226

6.5, Pattern OPEIalirSiuiiiiiiiiiiiiie ittt e e 227
B.5. L. BV it 227
6.5.2. EVEIY-DISHNCE ...ciiiiiiiii i e 232
6.5.3. REPEALiitiiiiii e 234
6.5.4. Repeat-Untilcooiiiiiiiii e 236
B.5.5. AN oot e 239
L 70 T PP 241
B.5. 7. INOL L.t 241
6.5.8. FOIOWEA-DYcovii 242
6.5.9. PAttern GUAIASoveiiiiiiiii et 244

6.6. PAterN ALOIMS ...ooiiiii e et ees 248
LS T 11 =T Y (] 1 1 249
6.6.2. Time-based ODSErVEr AtOMScocuuiiiiiiiiieeieiie e 249

7. EPL Reference: MatCh RECOGNIZEcoovvuiiiiiiii e 253

A T O Y= o T PSPPI 253

7.2. Comparison of Match Recognize and EPL Patternsccccvvviviinnnieeneeennnnns 253

A TS)Y] 7= O ST PRT 254
7.3.1. Syntax EXamPIEoiiiiiie 255

7.4. Pattern and Pattern OPEIatOrSccuviiunieiiiieiiieeiiee e e e e e e e e eanes 257

Vii

Esper Reference

7.4.1. Operator PreCEIBNCEcoiiutiiiiiiii et eens 257
A o] g [ox= 1 (=] g - L1 T ISP 257
A T A\ | (=1 ¢ T- 11T o 258
7.4.4. QUANLITIEIS OVEIVIEWiiiiiiiii i e e e e saae s 258
7.4.5. Variables Can be Singleton or Groupcovevevinieiiiiinneceii e 259
7.4.6. Eliminating Duplicate MatChesccooeviiiiiiiiici e, 259
7.4.7. Greedy Or RelUCTANToiiiiiiiiiiii e e 260
7.4.8. Quantifier - One Or More (+ and +?)ceiiiiiiiiii e, 261
7.4.9. Quantifier - Zero Or More (* and *?)ooeeuiiieiiiiiineeee e 262
7.4.10. Quantifier - Zero Or One (? and 2?) .o.coveiiiiiii e 263

7.5. DEfiNE ClAUSEuiieeiieiii et e e e e e e e 263
7.5.1. The PreV OPEratOriiiieieiii i e e e e e e e e e e et e e et e e e e e eanees 264

7.6, MEASUIE CIAUSEeeeiiiiieiei et e e e et e e e e e e e e e e et e e ean e eeen s 265
7.7. DatawindoW-BOUNGuuiiiiiiiiii e e 265
4= T 121 (=T Y | S 266
7.9. Use with Different EVENE TYPES ..cvvviiiiiiiii i e e 267
208 O T I T 7= L1 o 1P 268
8. EPL ReferenCe: OPEratirS ..oiuiiiiiiiiei ettt e e e e e e e e e eaaaens 269
8.1. ArithMeEtiC OPEIALOIS .. .ceuuiiiiiii et e e e e 269
8.2. Logical And Comparison OPEratOrSccuuieviiieiiiieeiiieeeiiee e eeee s e e eaaeeaens 269
8.2.1. Null-Value ComparisSon OPEratorsoveeieuuinieeeiineeeeiineeeeiineeeennnns 269

8.3. Concatenation OPEIALONScccuueieiieiieeiiiie e e e e e e e e e e e e e et e e aaneeeeas 270
8.4, BINAIY OPEIALOISuuiiiiitii ettt e et e e ettt e e e et e e e et e e e eat e reeeera e eaeee 270
8.5. Array Definition OPEIatOrociuuiiiiii e e e e e e e e e e e e ees 271
8.6. DOt OPEIALOL ...cvuiiiiteeitee ettt ettt e e et e e e e e e 271
ST 0 T I 10 o 1Y/ o1 o 272

8.7. The "IN' KEYWOI .. .ooviiiiiii e 273
8.7.1. 'In' for RANge SEIECHONciiiiiiiiiie e 274

8.8. The 'hetween’ KEYWOIMiiiiiiii ittt 275
8.9. The "lIKE" KEYWOITuuiiiiiiii e e e e e e aaas 276
8.10. The 'regeXp' KEYWOIToi it 277
8.11. The 'any' and 'SOME" KEYWOIUScceuuieiiiiiiiiieeeiieeci e ee e e e e e e e e eaneees 277
8.12. The "all' KEYWOITcouuiiiiiii ettt 278
8.13. The "NEW' KEYWOIcoiiiiiiiiieiii e e e e e e e e e e e eeen 279
9. EPL Reference: FUNCLIONSiiiiiiiii et e e e e e e e e e e eees 281
9.1. Single-row FUNCtion REFEIENCEuuiiiiiiiiiii e 281
9.1.1. The Case Control FIOW FUNCHONcccuiiiiiiiiiiiieie e 283
9.1.2. The Cast FUNCLONiiiiiiii e eaees 283
9.1.3. The CoaleSCe FUNCHONviieiieiiiiee e 284
9.1.4. The Current_Timestamp FUNCHONcoiiiiiiiiiiie e 285
9.1.5. The EXIStS FUNCHONuuiiiiiieiiiei e e e e e 285
9.1.6. The Instance-Of FUNCLONcooiiiiiiiiiiii e 285
9.1.7. The Istream FUNCHIONoouiiiiiiii e e 286
9.1.8. The Min and Max FUNCHONScoouuiiiiiiiiiiieeiiis e 287

viii

9.1.9. The Previous FUNCLONeieiie et ea s 287

9.1.10. The Previous-Tail FUNCLONcoviiiiiiiiieiiieec e 289
9.1.11. The Previous-WIindow FUNCHONccooviiiiiiiiiei e 291
9.1.12. The Previous-Count FUNCHONoiiiiiiiiiieiiiiiineceiin e 293
9.1.13. The Prior FUNCHONiiiiiiiiee e e e e e 293
9.1.14. The Type-Of FUNCHONcoiiiiiii e e eae s 294

9.2. AJQregation FUNCHONSc.uuuiiiiiiieieii et e eaaans 296
9.2.1. SQL-Standard FUNCLONSccouiiiiiiiiiiii e e e e e e 296
9.2.2. Event Aggregation FUNCLIONScoouuiiiiiiiiiiieiiii e e 298
9.2.3. Additional Aggregation FUNCLIONScccocoiiiiiiieiiic e 305

9.3. User-Defined FUNCLIONSoiiuiiiiiiii e e e s 308
9.4, Select-Clause transpoSse FUNCHONccuuviiiiiiiii e e e e 312
9.4.1. Transpose With INSErt-INt0ocoouuiiiiiii e 312

10. EPL Reference: Enumeration Methodsooooviiiiiiiiiiiiiiiiiiecc e 315
O @ Y= V1= PR 315
10.2. EXAMPIE EVENLSoviiiiii e e e e 319
O TR T o o T (o T U L PP 320
O T S | = PSP 320
10.3.2. Introductory EXamplescoooouuiiiiiiiiiieiii e 321
10.3.3. Input, Output and Limitationsccoieeiiiiiiiiieeii e e 322
FO.4. INPUES ettt et 322
10.4.1. SUBQUErY RESUILScevniiiiiciiie e e 323
10.4.2. Named WINAOWoviuniiiieiii e e e e e et e e eeees 324
10.4.3. EVENE PrOPeITY vttt 325
10.4.4. Event Aggregation FUNCHONc.iviiiiiiiiiiiiecce e 326
10.4.5. prev, prevwindow and prevtail Single-Row Functions as Input 327
10.4.6. Single-Row Function, User-Defined Function and Enum Types 327
10.4.7. Declared EXPreSSIONc...iiiiuieiiii i e e e e e e e 329
O S Y T =] 329
10.5. EXAMPIE ..eiiiiiici e e 330
O G T = 1= =T o - P 331
JO.6. 1. AQOIEOALE ...uiiiiiiiii it 331
10.6.2. Al Lo e e 332
10.6.3. ANY O L e aaae 332
F0.6.4. AVEIAGE ..ouiiiiiei ettt ettt e 333
10.6.5. COUNTOT ..ttt e e e e e s 333
F0.6.6. EXCEPL ovnieiieii et 334
10.6.7. FIrStOf oot 334
10.6.8. GIOUPBY ...ttt et 335
O e T [11T £ =T of AP P 336
10.6.10. LaStOf .iuuiiiiiiii it 336
J10.6.11. LeastFreqUENTouuiii e 337
L0.6.12. IMBX tevuniiiiiiie et et e et e e e a e 338
10.6.13. MABXBY ...uiiiiiiieiiiie et 338

Esper Reference

I 0 S Y 1 o TSN 339
L10.6.15. MINBY ..uiiiiiiiieiiii et 339
10.6.16. MOSIFIEQUENToeiieiiii ettt e e e 340
10.6.17. OrderBy and OrderBYDESCcccuuiiiiieiiiieiiiieeiieee e e e e e e 341
J0.6.18. REVEISE ..ueuiiiiiiei e e e e e e e e e aas 341
10.6.19. SEIECIFIOM ...ovuiiii e e e e e e e 342
10.6.20. SEQUENCEEQUALcovvniiiiiii e 342
10.6.21. SUMOI L.ttt e e et e e e et e et a e 343

O T - | SRR 343
10.6.23. TAKELASE ..uciiiiiii e e e 344
10.6.24. TAKEWNIIEceiiiiicieii e e e e 344
10.6.25. TAKEWHIIELAST .. ccvniiiiici e 345
10.6.26. TOMAEP .ovvvniieiiiiiee et e et e et e e e e e e et e e e ettt e e e et reeeaataeeeaatnaaaaes 346
0N T2 R U 1o 1o T o PPN 346
10.6.28. WEBIE .ouiiiiiii ettt 347

11. EPL Reference: Date-Time Methodscc.oiiiiiiiiii e 349
R @ V=T VT PP 349
O 0T (0 T T 352
O T | - VP 352
11.3. Calendar and Formatting Referenceccocoeiiiiiiiiiii i 354
TG TR A = 1 A1 = PPt 354

T2, 3.2, FOIMMAL i 355
11.3.3. Get (BY Field) ..coovvniiiii e 355
11.3.4. Get (BY NAIME) ..uuiiiiieiiiiiiii e e e e e e e e e e aaens 355
L11.3.5. IMINUS ©ouiiiiii e e e e e et e e e e e e e et e e e eaa et aaan 356
L1308, PIUS it 356
11.3.7. ROUNACEIING .oevvniiiiiiieee e e 356
0 3 S TR = o 101 o | Yo N 357
11.3.9. ROUNAHAIf ... 357
11.3.10. Set (BY FIelt) ..uuieiiiiiieiiii e 357
I T I V1 o1 7 (P 358
e T B V11 1 - b PSP 358
11,313, WIRIVIN oot e e e e et e e e e e e e 359
IO T B V11 o T PPN 359
I T T o O 1 1= o = | PRSP 359
I 0 G T o] B - = PP 359
11.3.27. TOMIIISEC ..cvniiii e 360
11.4. Interval Algebra REfEIrENCEcoivviiiii i 360
L1141, EXAMPIES oot e 360
11.4.2. Interval Algebra Parametersccocvviiiiiiiiiiiieeie e 361
11.4.3. PeIfOIMANCE ...ouiiiiiii e e e e e e e e 361
5 01 - o] PN 362
O N (= PP 362
L11.4.6. BeIOIE ..oeeeiii e 363

I O R o 11 1o [0 [364

IR 5 T B 1H 1 oV TSP 365
11.4.9. FINISNES e e 366
11.4.10. FiNISNEA BY ..ciiiiiiieiiiii e 367

B e O T o W T [P 368
L1412, IMBELS iiiiiieieiii et e et et e a e et e aene 369
O T Y = = PPN 370
I B @ 1= 4 - o 1P 370
11.4.15. OVErIapPed BYooeiiiiiiiiiiiii e 371
I G TS = Ly £ PPN 372
11.4.17. SEAMEA BY .ooiiiiiiiii et 373

12. EPL REfEIrENCE: VIBWS ..uuiiiiiiiieiiiie ettt e et e e et e e e et e e e et e e eenens 375
12.1. A Note 0N VIEW Parameterscocuiiiiiiiiiiiee e e e e e e e e e 378
12.2. Data WINAOW VIBWSiiiiiiieiiiiie ettt e et e et e e e et e e e era e e eennnns 379
12.2.1. Length window (Win:length)coooiiiiiiiii e 379
12.2.2. Length batch window (win:length_batch)ccooiiiiiii 379
12.2.3. Time window (WIN:TMeE)c.uuiiiiiiiiee i 380
12.2.4. Externally-timed window (win:ext_timed)cccooeviiiiiiiiiiinicie e, 380
12.2.5. Time batch window (win:time_batch)cccoooviiiiiiiiii 381
12.2.6. Externally-timed batch window (win:ext_timed_batch) 383
12.2.7. Time-Length combination batch window (win:time_length_batch) 384
12.2.8. Time-Accumulating window (win:time_accum)ccoccceeeviieeiineeennnnnnn. 385
12.2.9. Keep-All window (win:keepall)ocoouuiiiiiiiii e 386
12.2.10. First Length (win:firstlength) ..o 386
12.2.11. First Time (WIin:firStiime)oioiiiiiii e 386
12.2.12. EXpiry EXPression (WIN:EXPI) ..ueeeuieeieeeiiieeiieeesieeesineesaneesanaessnaesanneens 387
12.2.13. Expiry Expression Batch (win:expr_batch)cccooiiiiiiiiin 389
12.3. StANAArd VIEW ST ...iiiiiiiiiiiii et e et e e e et e e e et aeeeeataeaeees 392
12.3.1. UNIqUe (SA:UNIQUE) .evvneiiiiiieeeeii ettt et e e e e e eni e e e 392
12.3.2. Grouped Data Window (Std:groupwin)ccccueieiiiieiiiieriin e eeinee e 393
12.3.3. Sz (SUAISIZE) ..oieriiieiiii e 396
12.3.4. Last Event (Std:1asteVvent)cc.viiiiiiiii i 397
12.3.5. First Event (StA:firSteVENt)coouvuiiiiiiiiii e 397
12.3.6. First Unique (Std:firStunique)coevviiiiiiiiiec e 398
12.4. STALISHICS VIBWS ..euiieiiiiiii e e ettt e e e e e e e et e e et e e et e e e e e an e eeeen 398
12.4.1. Univariate statistics (StatiUNi)coceeuieriiiiiiiiiciieec e 399
12.4.2. Regression (StatiliNest)v v 400
12.4.3. Correlation (Stat:COITel)iiviiiiiii e 401
12.4.4. Weighted average (stat:weighted_avg)ccooeveiiiiiniiiiiiinieeieeeien 402
12.5. EXIENSION VIBW S ...iiiiiiiieiiiiiiie ettt e et e et e e e 403
12.5.1. Sorted WIiNdOwW VIEW (EXEISON)uueeieiriieieiii et 403
12.5.2. Ranked Window View (eXt:rank)cccovieiiiieiiiieiiiiieiieeeeee e eeeee e 404
12.5.3. Time-Order View (eXtHMe_Order)c.coiieiiiiinieiiii e 405

13. EPL Reference: Data FIOWoiiiiiiiiiiiiii e 407

Xi

Esper Reference

R 0 I [11 o o [T o o P 407
I F - T [PP 407
R T T @ V=TV = P 407

R B S Y | - ¥ QPP 409
13.3. BUIlt-iN OPEIALOIS . .cevuiiiiiii ettt et e e s 414
13.3.1. BEACONSOUICEuieiiiieit et ie ettt et e e et e e e e e e e n e e et e et eennas 414
13.3.2. EPSTAtEMENTSOUICE .. cuuiiiiiiiii ettt e eans 416
13.3.3. EVENIBUSSINK .uuiiiiiiiiieeiiii et e e e e e eaanns 417
13.3.4. EVENIBUSSOUICEctiiiiiiii ettt e et et e e e eans 418
13.3.5. FHET e 419
13.3.6. LOGSINK Luuiiiiiiiieee et 420
13.3.7. SEIECE ..t 420

R 2 S L PP 422
13.4.1. Declaring a Data FIOWccooiiiiiiiiiec e e 422
13.4.2. Instantiating a Data FIOWooviiiiiiiiiiii e 423
13.4.3. Executing a Data FIOWcooooiiiiiiiiii e 424
13.4.4. Instantiation OPLIONScciiuiniieiiiie e 425
13.4.5. StArt CapliVE ..ovuiiiiiiiii e e 425
13.4.6. Data Flow Punctuation with Markersccccooviiiiiiiiiiniii e, 426
13.4.7. Exception Handlingoiiiiieiiiiiii i r e e 427
13,5, EXAIMPIES .ttt ettt et e e e e aae 427
13.6. Operator IMplemMENtatioNcociiiiiiiie e e e e e 428
13.6.1. Sample Operator ACtiNG 8S SOUICEccccuuuieiiiuiieiiiiieeeeiin et eenen 429
13.6.2. Sample TOKENIZEr OPEIALONcc.vuiviiieiieeei et e e e e e e aaas 430
13.6.3. Sample Aggregator OPEratOriiiieuiiiiiiii e 431

LA, API REFEIENCE ..oueiiiiii et e e aes 433
I o @Y= 1 PP 433
14.2. The Service Provider INtErfacecoovvvuuiiiiiiiiiiieiii e 433
14.3. The Administrative INterfaceooiiiiiiii e 435
14.3.1. Creating StatemMENTSccouiiiiiieii e e eeas 435
14.3.2. Receiving Statement RESUILSccoouiiiiiiiiiiiii e 436
14.3.3. Setting a Subscriber ObJECTc.iiiiiiii 437
14.3.4. AAdING LISIENEISouniiiiiii it 442
14.3.5. USING HLErAtOrSvuiiiiieiii e e e e e e e e et e e e e aaeees 443
14.3.6. Managing StatemMeNLSiiiiiiiiiieiiiii e 445
14.3.7. Runtime Configurationcc.oiiiiiiiiiiie e e e e e 445
14.4. The RUNtiME INEIfACEc.uniiiiii e e 446
I V=Y o1 S T=T oo [P 447
14.4.2. Receiving Unmatched EVENLSccoiiiiiiiiiiiii e 447
14.5. On-Demand Fire-And-Forget Query EXecutioncocciiiiiiiiiiiieiiin e 448
14.5.1. On-Demand Query Single EXeCULIONccccuviiiiiiiiiiiiiiiiieecc e 449
14.5.2. On-Demand Query Prepared Unparameterized Execution 450
14.5.3. On-Demand Query Prepared Parameterized Execution 450
14.6. EVENt QN EVENE TYP oiiiiiiiii i e et e e e e e e e et e e e e et e e eaneees 451

Xii

14.6.1. Event Type Metadatalccouuiiiiiiiiiiiiii e 451

14.6.2. EVENE ODJECE .ouiiiiiiiii e 452
14.6.3. QUETY EXAMPIE .ooiiiiii e 453
14.6.4. Pattern EXampPlecooiiiiiiiii e 454
14.7. Engine Threading and CONCUITENCYuviiiiriieeiiiiieeiiie e et e 455
14.7.1. Advanced Threadingooovvuieiiiiiiiie e e 457
14.7.2. ProCeSSiNG OFUEIciiiiii ettt 460
14.8. Controlling TiMe-KEEPINGccvvuiiiiiieiii e 461
14.8.1. Controlling Time Using Time Span EVENtScccoooviviiiiiiiiiiieeciiieeees 463
14.8.2. Additional Time-Related APIScoviiiiiiiiiii e 464
14.9. TIME RESOIULION ...iitiiii e e e e e et e ean e eees 464
14.20. SErVICE ISOIALION ..euuuiiiiiii et 465
T4.10.1. OVEIVIEW ...eviieeiieeii et e e et e e e e e et e e et e e et e et e e et e e et e e et e eeanneaeen 465
14.10.2. Example: Suspending a Statementccoeeviiiiiiiiiiin i 467
14.10.3. Example: Catching up a Statement from Historical Data 468
14.10.4. Isolation for INSErt-INt0iiiiiiiiiiiiiiin e 469
14.10.5. Isolation for Named WINAOWScciviiiiiiiiiieiiieiiieeceec e eeieee 469
14.10.6. Runtime CoNSIderationscccuiiieiiiiiieeieiin e 469
14.2171. EXCeption HaNAINGcooouiniiiiieiee e e 470
14.12. Condition HaNAlNGoiiiiiiiiiiiie e e e e e e e 470
14.13. Statement ObJect MOTElcoooiiiiiii e 471
14.13.1. Building an Object MOdelc.ooviiiiiiiiiiiii e, 472
14.13.2. BUIldING EXPIrESSIONScevitiieiiiiiiee it e et e e 473
14.13.3. Building a Pattern Statementccooeviiiiiiiiiii e 474
14.13.4. Building a Select Statementccoouuiiiiiiiiiieii e 474
14.13.5. Building a Create-Variable and On-Set Statementcccoocvvneeennn.. 475
14.13.6. Building Create-Window, On-Delete and On-Select Statements 476
14.14. Prepared Statement and Substitution Parametersccocceveviiieviinieiieennnnn, 477
14.15. Engine and Statement Metrics REPOItiNgoveviviiiiiiiiiiiieeiiieece e 478
14.15.1. ENQINE MELIICS ...ivvniiiiieiie e e e e e e e e e e e eaa s 479
14.15.2. Statement MELHCS ..oeuuiiii i e e e e e e 480
14.16. Event Rendering to XML and JSONccoooiiiiiiiiiiiiiicic e e e 480
14.16.1. JSON Event Rendering Conventions and Optionsccccceveevevnnnnen. 481
14.16.2. XML Event Rendering Conventions and OPLioNScccoevvviveeinneeinnnns 482
14.27. PIUG-IN LOAAERT ...ttt ettt e 482
14.18. Interrogating EPL ANNOLAtiONSccovuiiiiiiiiiii e ee e 483
14.19. Context Partition SeleCtioncc.iiiiiiiiiiii e 484
e I I ST =][Tod (o) £ O PR 486
14.20. Context Partition AdmMINIStrationccoovuiiiiiiiii e 486
14.21. Test and ASSErtioN SUPPOITcovuiiiii i e e e e e eaaees 487
14.21.1. EPASSertionUtIl SUMMAIYcoooviiiiiiiiiieci e 487
14.21.2. SupportUpdateListener SUMMATYc.ccciviiiiieeiiiieiiieeeie e e e 488
14.21.3. Usage EXAMPIEooouiiiiiiiii e 488

ST @o Yo} o 10 1= 41 o [491

Xiii

Esper Reference

15.1. Programmatic ConfiQUuIationooeeiiiiiiiiiiiiieec e 491
15.2. Configuration via XML Filecccooiiiiiiii e 492
15.3. XML Configuration Fileoooiiiiiiiiiiii e 492
15.4. Configuration IEMSiiii i e e 492
15.4.1. Events represented by Java CIaSSeScccouuiieiiiiiiiiiiiiiiieeieiieeeeeiie 493
15.4.2. Events represented by java.util.Mapccoooeviiiiiiiiii e 498
15.4.3. Events represented by Object[] (Object-array)ccccovveeeveiiiiierinneennnn. 500
15.4.4. Events represented by org.w3c.dom.NOdeccoeevviiiiiiiiiiiniiiinneiie, 501
15.4.5. Events represented by Plug-in Event Representationscc........ 506
15.4.6. Class and package iIMPOrtSccooeiiiiiiiiiiiiieci e e 507
15.4.7. Cache Settings for From-Clause Method Invocationscccccoeeeeeenn. 508
15.4.8. Variablesccooouiiiiiiii i 508
15.4.9. Relational Database ACCESSiiieiiiiiieiiieiie e e e 509
15.4.10. Engine Settings related to Concurrency and Threading 516
15.4.11. Engine Settings related to Event Metadataccocceveviiiiininnnns 520
15.4.12. Engine Settings related to View RESOUICEScocevvveviiieiiiieiiineiineans 521
15.4.13. Engine Settings related t0 LOggiNgovevvvniiiiiiiieeiiiiineeciii e 522
15.4.14. Engine Settings related to Variablescccoccoiiiiiiiiii i 525
15.4.15. Engine Settings related to Patternscooveveiviiiiiiineeieeceeeeeee 526
15.4.16. Engine Settings related to SCrPLSc.oviiiiiiiiiieiii e 526
15.4.17. Engine Settings related to Stream Selectionccooeveviviiiiiiiiiinnns 527
15.4.18. Engine Settings related to TiIMe SOUICEcoeevviiviiiieiiiicii e 528
15.4.19. Engine Settings related to JIMX MEtriCSccvuvviiiiiiiiiiiiieeii e 528
15.4.20. Engine Settings related to Metrics Reportingccoooeveeeiiieiiineninnenns 529
15.4.21. Engine Settings related to Language and Localeccccoevveeennnnnnn. 531
15.4.22. Engine Settings related to Expression Evaluationccccccceeeiiinnnis 531
15.4.23. Engine Settings related to Execution of Statementsccccooeeeevennn. 534
15.4.24. Engine Settings related to Exception Handlingccooocviivevinennnnn. 536
15.4.25. Engine Settings related to Condition Handlingcccoccoivivininnn. 537
15.4.26. ReVISION EVENE TYPE ..uniiiiiiiiie et e e e 538
15.4.27. Variant StrEaAMoouiiiiiiii et e e 540
15,5, TYPE NAIMES oottt 540
15.6. Runtime ConfiQUIationoiiiiiiniiiiiii et e e e e 541
15.7. Logging ConfigUurationciiiiieiiiieeiie e e e e e e e e e e e 541
15.7.1. Log4j Logging Configurationoieeiiuiieieiiinieeeiiie et 542

16. Development LIfECYCIE ..o 543
16.0. AUTNOTING ..t et 543
T =T 1 Vo N 543
16.3. DEDUGING ...neeeeiiieieiii ettt ettt aaaas 543
16.3.1. @AUIt ANNOLALION ...ucviieiiii i e e e e aas 543
16.4. Packaging and Deploying OVEIVIEWccoiiiiiieiiiiiiieeiiiie e 545
16.5. EPL MOAUIESouiiiiiiii ettt e e e e eaanns 545
16.6. The Deployment Administrative INnterfacecccoooovviiiiiiiinieieiiece e, 547
16.6.1. Reading Module CONENLcovuiiiiiiiiii e e 548

Xiv

16.6.2. Ordering Multiple MOdUIESccouiiiiiiiiii e 548

16.6.3. Deploying and Undeployingcccccueeiiiiiiiiiiiiii e 548
16.6.4. Listing DeplOYMENTSiiiiiiiieiiiii et 549
16.6.5. State Transitioning @ Moduleccoeiiiiiiiiiici e 549
16.6.6. BESE PraCliCeS ...oivvuiiiiiiiiiieii et e e e e 550
16.7. J2EE Packaging and Deploymentccocoiiiiiiiiiiiie e 550
16.7.1. J2EE Deployment ConSiderationsccccovveeeiiinieiiiiiineeeiineeeeiineeeenns 550
16.7.2. Serviet CoNtext LISTENENovviiiiiiiiiii e 551
16.8. MONItOriNg @and JMX ...t 553
17. Integration and EXTENSIONcciiiiiiiii e e e 555
A R @ Y= V1= PP 555
17.2. Virtual Data WINAOWooiiiiiieiiiiiiee e e et e e et eeeea e e eeaeneeeees 556
17.2.0. HOW 10 USE ..ottt e e e e e e 557
17.2.2. Implementing the FacCtoryccooviiiiiiii e 559
17.2.3. Implementing the Virtual Data WIiNdOWccooeveiiiiiiiiiiineiiiieeeeeen. 561
17.2.4. Implementing the LOOKUPccuniiiiiiiii e 562
17.3. SIiNGIE-ROW FUNCLION ...coiiiiiiiiii e 563
17.3.1. Implementing a Single-Row FUNCtioncccoociiiiiiiiiiin e 563
17.3.2. Configuring the Single-Row Function Nameccccooviiiiiiinneiiiinneeen, 564
17.3.3. Value CaCheiiiiiiieii e 565
17.3.4. Single-Row Functions in Filter Predicate EXpressionscccceeveeeen. 565
17.3.5. Single-Row Functions Taking Events as Parameterscccccceeevvnnnns 566
17.3.6. Receiving a Context ODJECTviiiiiiiiiiiiii e 567
17.3.7. Exception Handlingoviiiiiiiiiiiii e 567
17.4. Derived-value and Data WIiNAOW VIEWcooiuiiiiiiiiiiieeiieeee e 567
17.4.1. Implementing a VIiew FaCtOryccocoiiiiiiiiiiii e 568
17.4.2. Implementing @ VIEWuuiiiiiiiiiiii e 570
17.4.3. VIEW CONLFACE ..uuiiiiiii et e e eeaa e e eaanns 570
17.4.4. Configuring View Namespace and Nameccoevveviviinieiiiiinneeeninnnnn. 571
17.4.5. Requirement for Data WIiNndow VIEWSccocceiiiiiiiiiiiiccieecceeeieeee 572
17.4.6. Requirement for Derived-Value VIEWSoocoviiiiiiiiiiiiieiii e 572
17.4.7. Requirement for Grouped VIEWSccuiiiiiiieiiiieiiiiieeie e e e e 572
17.5. AgQregation FUNCLIONooiiiiiiiiii et 573
17.5.1. Aggregation Single-Function Developmentccocooveiiiiiiineiiieeennnn, 574
17.5.2. Aggregation Multi-Function Developmentc.ocoviiiiiiiiniiiiniineecenn, 579
17.6. PAErN GUAIMccoiiviiiiiii et e e e et e e e eaa s 586
17.6.1. Implementing @ Guard FacCtOrycccooiiiiiiiiiieiiiiiieece e 587
17.6.2. Implementing a Guard CIassSc.ccveiiiiiiiiiiiiii e 588
17.6.3. Configuring Guard Namespace and Namec.cccoevveiiieiiiiinneeciinnnen. 589
17.7. PAttern ODSEIVER ...uuuiiiiiiiiieeeie ettt e et e e e eaa s 589
17.7.1. Implementing an ObServer FaCtOryccoovviieiiiiieiiiiiieeiiii e 590
17.7.2. Implementing an ObServer CIasscccovvviiiiiiiieiin e 591
17.7.3. Configuring Observer Namespace and Namec.ocooviiieiiiinneeninnnnn. 592
17.8. Event Type And Event ODJECtcoouiiiiiiii e 593

XV

Esper Reference

17.8.1. HOW Tt WOTKS ..ottt e e e e e e e e e e een 593

R TS (= o LSS 594
17.8.3. URI-based ReSOIULIONooiiiiiiiii e 594

A O e T 111 o =P 595

18, SCIIPE SUPPOIT ettt e et e et e e e e et e e e e et aeeeebaaeeeee 603
B0 @Y= V= PP 603
L8.2. SYNTAX ..ieieteeeii ettt 603
18.3. EXAMPIES ...iiiiiiii e 604
18.4. Built-In EPL Script AfMDULESiiiiiiieeei e 605
18.5. Performance NOESiiiuiiiii ettt e e e e ean s 605
18.6. AdAItIONAl NOTESuiieieiiiee e e e e e e e e e e eee 606
19. Examples, Tutorials, Case STtUAIESccccuieiiiiiiiiii e 607
19.1. EXAMPIES OVEIVIEWeiiiiiiiiiii ettt ettt e e et e e et e e e et e e eena e eees 607
19.2. RUNNINg the EXaMPIEScconiiiii e 609
19.3. AULOID RFID REAUEeeeiiiiiieeie ettt e e e e e ean e 610
19.4. Runtime ConfigUrationcc.iiiiiiiiiiiii e e e e e e e e een 610
19.5. JMS Server Shell and Clentco.uiviiiiiiii e 610
L1O.5. 1. OVEIVIEW .evtuieiiiiiiee et e et e et e et e e e ettt e e e et e e e e et s e e aeat e eeeentaeaees 610
19.5.2. IMS MeSsages as EVENLS ..o 611
19.5.3. JMX for Remote Dynamic Statement Managementcccoeevvvneennnn. 612
19.6. Market Data Feed MONIOKoovuueiiieie e et e e e eees 612
J1O.6.1. INPUL EVENES ouiiiiiiii i en 612
19.6.2. Computing Rates Per FEEdoviiiiiiiiiiiiiii e 612
19.6.3. Detecting a Fall-Offcooiiiiiiii 613
19.6.4. EVENE GENEIALONuiiieiieiii ittt et e e 613
19.7. OHLC PIUG-IN VIBW ..ttt e et e et e e e 613
19.8. Transaction 3-Event Challengeoiiiiiiiiiiiii e 614
19.8.1. THE EVENLS ..uuiiiiiiiii e e e e e e e e 614
19.8.2. ComMbBINEd VENLeiiiiii e 614
19.8.3. Real time summary datacccooevuiiiiiiieiiiiee e e 615
19.8.4. FiNd Problems ... 615
19.8.5. EVENE ENEIALOT ..iviitiitiiiii i e 615
19.9. Self-Service Terminalcooeuiiiii e 616
19.9. 1. EVENES oottt 616
19.9.2. Detecting Customer Check-in ISSUEScooveiiiiiiiiiiiieie e 616
19.9.3. Absence Of Status EVENTSvvviiiiiiiiiiiiiiecei e e 617
19.9.4. Activity SUMMArY Datauiiiiiiiiiiiiii e 617
19.9.5. Sample Application for J2EE Application Serverccoooeieviiiineiinnn, 617
19.10. Assets Moving Across Zones - An RFID Exampleccoooviiiiiiiiiininees 619
I T I S (o Tod 1 o (=] PP 620
B Y = 1o 11V = 1 620
19.13. Named WINAOW QUETYciuuiiiiiieii e e e e e e e e e e et s e e e et e e st e e e e e eanes 621
19.14. Sample Virtual Data WINAOWc.uuiiiiiiiiieiiiie e 621
19.15. Sample Cycle DEtECIONcciuiiiiii e e e e eaae s 621

XVi

19.16. QUAItY Of SEIVICEuiiiiiii e 621

19.27. Trivia GEEKS ClIUDviiii i 622
b4 IR =T (o] o 4= g Yo = PN 623
20.1. Performance RESUILScoouuiiiiiiii e e 623
20.2. PerfOormManCe TIPS ...uueiiiiiieeiiii ettt ettt e et e et eeaa s 623
20.2.1. Understand how to tune your Java virtual machinec....coec. 623
20.2.2. Input and Output Bottenecks ... 624
2O I T I 4 1= Vo [o P 624
20.2.4. Select the underlying event rather than individual fields 626
20.2.5. Prefer stream-level filtering over where-clause filtering 627
20.2.6. Reduce the use of arithmetic in eXPressionscoovvvviiiieiiiineeeeeiee, 628
20.2.7. Remove Unneccessary CONSIIUCESovuiiiiiiiiiiiiiiiiieieeee e 629
20.2.8. End Pattern SUD-EXPreSSIONSc.uuiiiiiiiiiiiiiiiiee et 630
20.2.9. Consider using EventPropertyGetter for fast access to event properties... 630
20.2.10. Consider casting the underlying eventcccoooeeiiiiiiiiinneeiieeeeenn, 631
20.2.11. Turn off logging and auditccoeeeiiiiiiii e 632
20.2.12. Disable VIEW Sharingoooieiiiiiiiiie e 632
20.2.13. Tune or disable delivery order guaranteescccovevvvieeviieiiiniennnnenns 632
20.2.14. Use a Subscriber Object to Receive Eventscccooovviiiiiiiiiiiiinnenen, 633
20.2.15. Consider Data FIOWSoiiiiiiiiieiiiieee e 633
20.2.16. High-Arrival-Rate Streams and Single Statementscccccoeeevevnnnene. 633
20.2.17. Subqueries versus Joins And Where-clause And Data Windows 635
20.2.18. Patterns and Pattern Sub-Expression Instancesc.c..occcoeevvevennnnnn. 636
20.2.19. Pattern Sub-Expression Instance Versus Data Window Use 637
20.2.20. The Keep-All Data WINOWooviiiiiiiiiiiiiecii e 638
20.2.21. Statement Design for Reduced Memory Consumption - Diagnosing
OULOTMEIMOIYEITOL ...ttt e e e e 638
20.2.22. Performance, JVM, OS and hardwareccccoevveiiiiinneiiiiineeeciinn, 639
20.2.23. Consider using HiNtScoiiuiiiiiii e 640
20.2.24. Optimizing Stream Filter EXPresSionsc.ccvveviiieiiiiieiiieeiiieeeiiee s 640
20.2.25. Statement and Engine Metric Reportingccoooveeiivniiiiiinneeiiiinnnn. 641
20.2.26. Expression Evaluation Order and Early EXitccocooveiiiiiiiiiieiinennnn. 641
20.2.27. Large Number of Threadscoooiiiiiiiiiiiiiic e 641
20.2.28. Context Partition Related Informationccooooviiiiiiiiiiiiiiinn e, 641
20.2.29. Prefer Constant Variables over Non-Constant Variables 642
20.2.30. Prefer Object-array EVENLScocvviiiiiiieiiiiecie e e e e e 642
20.2.31. Composite or ComMpoUNd KEYScoeiiiiiiiiiiiiiiieiiiiieeeeei e 643
20.2.32. Notes on Query Planningc.ccuiveiiiieiiiieiiii e e e e e e eanee s 643
20.2.33. Query Planning IndeX HINtScoouuiiiiiiiiiii e 644
20.2.34. Measuring Throughputcoouiiiiiiici e e 645
20.2.35. Do not create the same EPL Statement X timesccccovvvveviiieeennnnn. 645
20.2.36. Comparing Single-Threaded and Multi-Threaded Performance 646
20.2.37. Incremental Versus Recomputed Aggregation for Named Window

XVii

Esper Reference

20.2.38. When Does Memory Get Releasedcooeuiiiiiiiiiieiiiiinieiiiieeeeinn 647
20.3. Using the performance Kitoooiiiiiiiiii e, 648
20.3.1. How to use the performance Kitccoooiiiiiiiniiiiii e, 648
20.3.2. How we use the performance Kitcccooeviiiiiiiieiiiiiiiee e, 651

A S U] 1= 1= o = 653
21.1. REEIENCE LIST ..uiiiiiiiiiiiiii e 653
A. Output Reference and SAmMPIESoiiiiiiiiii e 655
A.L. Introduction and Sample Datacccceuiiiiiiieiii e 655
A.2. Output for Un-aggregated and Un-grouped QUETIEScccuvvreiiiiinieiiiiineeeiiinnnn, 657
A.2.1. No Output Rate LImitingcoeuveiiiiiiiiiieii e e e 657
A.2.2. Output Rate Limiting - Defaultcooiiiiiiiiii e 658
A.2.3. Output Rate Limiting - LAStccoiiiiiiiiii e 660
A.2.4. Output Rate Limiting - FirStiiiiiiiiiiiii e 661
A.2.5. Output Rate Limiting - SNapshotccoociiiiiiii e 662

A.3. Output for Fully-aggregated and Un-grouped QUENEScoeviiviieriiiinieeeiinnnen. 664
A.3.1. No Output Rate LImitingcoeuieiiiiiiiiiicii e e 664
A.3.2. Output Rate Limiting - Defaultccooiiiiiiiiii e 666
A.3.3. Output Rate Limiting - LAStovviiiiiiiiccii e e 667
A.3.4. Output Rate Limiting - FirStoviiiiiiiiiii e 668
A.3.5. Output Rate Limiting - SNapshotccoooiiiiiiiiii e 669

A.4. Output for Aggregated and Un-grouped QUENIESoeeviiiniiriiiiieeiiiii e 671
A.4.1. No Output Rate LImitingcoeuveiiiiiiiiiicii e e e e 671
A.4.2. Output Rate Limiting - Defaultcccooiiiiiiiiii e 672
A.4.3. Output Rate Limiting - LASstooiiiiiiiiiciii e 673
A.4.4. Output Rate Limiting - FirStiiiiiiiiiiiii e 675
A.4.5. Output Rate Limiting - SNapshotcccooiiiiiiii e 676

A.5. Output for Fully-aggregated and Grouped QUENEScc.ovevvniiiiieeiiniieiiieeiieennn. 678
A.5.1. No Output Rate LImitingcocuveiiiiiiiiiicii e 678
A.5.2. Output Rate Limiting - Defaultcccooiiiiiiiiii e 679
A.5.3. Output Rate Limiting - All ... 681
A.5.4. Output Rate Limiting - LASTuviiiiiiiiiiii e 682
A.5.5. Output Rate Limiting - Firstcccoiiiiiiiiii e 684
A.5.6. Output Rate Limiting - SNapshotcoiiiiiiiiii e, 685

A.6. Output for Aggregated and Grouped QUETIESveviueiiiiieiiiieeiie e eeee s 686
A.6.1. No Output Rate LIMItiNgccuuieiiiiiiieiiiii e 687
A.6.2. Output Rate Limiting - Defaultccoooiiiiii e 688
A.6.3. Output Rate Limiting - All ... 689
A.6.4. Output Rate Limiting - LAStcc.oviiiiiiiii e 691
A.6.5. Output Rate Limiting - FirStoviiiiiiiiii e 692
A.6.6. Output Rate Limiting - SNapshotccoooiiiiiiii e 694

B. RESEIVEU KEYWOITS ..ottt ettt e e e e enaans 697
1o = PP SPPRT 701

Xviii

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of
custom applications. Typically these applications must obtain the data to analyze, filter data,
derive information and then indicate this information through some form of presentation or
communication. Data may arrive with high frequency requiring high throughput processing. And
applications may need to be flexible and react to changes in requirements while the data is
processed. Esper is an event stream processor that aims to enable a short development cycle
from inception to production for these types of applications.

This document is a resource for software developers who develop event driven applications. It also
contains information that is useful for business analysts and system architects who are evaluating
Esper.

It is assumed that the reader is familiar with the Java programming language.

This document is relevant in all phases of your software development project: from design to
deployment and support.

If you are new to Esper, please follow these steps:
1. Read the tutorials, case studies and solution patterns available on the Esper public web site
at http://esper.codehaus. org

2. Read Section 1.1, “Introduction to CEP and event stream analysis” if you are new to CEP and
ESP (complex event processing, event stream processing)

3. Read Chapter 2, Event Representations that explains the different ways of representing events
to Esper

4. Read Chapter 3, Processing Model to gain insight into EPL continuous query results
5. Read Section 5.1, “EPL Introduction” for an introduction to event stream processing via EPL
6. Read Section 6.1, “Event Pattern Overview” for an overview over event patterns

7. Read Section 7.1, “Overview” for an overview over event patterns using the match recognize
syntax.

8. Then glance over the examples Section 19.1, “Examples Overview”

9. Finally to test drive Esper performance, read Chapter 20, Performance

XiX

XX

Chapter 1.

Chapter 1. Technology Overview

1.1. Introduction to CEP and event stream analysis

The Esper engine has been developed to address the requirements of applications that analyze
and react to events. Some typical examples of applications are:

« Business process management and automation (process monitoring, BAM, reporting
exceptions)

» Finance (algorithmic trading, fraud detection, risk management)

* Network and application monitoring (intrusion detection, SLA monitoring)

» Sensor network applications (RFID reading, scheduling and control of fabrication lines, air
traffic)

What these applications have in common is the requirement to process events (or messages) in
real-time or near real-time. This is sometimes referred to as complex event processing (CEP) and
event stream analysis. Key considerations for these types of applications are throughput, latency
and the complexity of the logic required.

 High throughput - applications that process large volumes of messages (between 1,000 to 100k
messages per second)

» Low latency - applications that react in real-time to conditions that occur (from a few milliseconds
to a few seconds)

« Complex computations - applications that detect patterns among events (event correlation),
filter events, aggregate time or length windows of events, join event streams, trigger based on
absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in
which most data is fairly static and complex queries are less frequent. Also, most databases store
all data on disks (except for in-memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the
data 10 times per second it must fire the query 10 times per second. This does not scale well to
hundreds or thousands of queries per second.

Database triggers can be used to fire in response to database update events. However database
triggers tend to be slow and often cannot easily perform complex condition checking and
implement logic to react.

In-memory databases may be better suited to CEP applications than traditional relational database
as they generally have good query performance. Yet they are not optimized to provide immediate,
real-time query results required for CEP and event stream analysis.

Chapter 1. Technology Overview

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and
running queries against stored data, the Esper engine allows applications to store queries and run
the data through. Response from the Esper engine is real-time when conditions occur that match
gueries. The execution model is thus continuous rather than only when a query is submitted.

Esper provides two principal methods or mechanisms to process events: event patterns and event
stream queries.

Esper offers an event pattern language to specify expression-based event pattern matching.
Underlying the pattern matching engine is a state machine implementation. This method of event
processing matches expected sequences of presence or absence of events or combinations of
events. It includes time-based correlation of events.

Esper also offers event stream queries that address the event stream analysis requirements of
CEP applications. Event stream queries provide the windows, aggregation, joining and analysis
functions for use with streams of events. These queries are following the EPL syntax. EPL has
been designed for similarity with the SQL query language but differs from SQL in its use of views
rather than tables. Views represent the different operations needed to structure data in an event
stream and to derive data from an event stream.

Esper provides these two methods as alternatives through the same API.

1.4. Required 3rd Party Libraries

Esper requires the following 3rd-party libraries at runtime:

« ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EPL
syntax. Credit goes to Terence Parr at http://www.antlr.org. The ANTLR license is in the lib
directory. The library is required for compile-time only.

« CGLIB is the code generation library for fast method calls. This open source software is under
the Apache license. The Apache 2.0 license is in the lib directory.

« Apache commons logging is a logging API that works together with LOG4J and other logging
APIs. While Apache commons logging is required, the LOG4J log component is not required and
can be replaced with SLF4J or other loggers. This open source software is under the Apache
license. The Apache 2.0 license is in the lib directory.

Esper requires the following 3rd-party libraries at compile-time and for running the test suite:

» JUnitis a great unit testing framework. Its license has also been placed in the lib directory. The
library is required for build-time only.

* MySQL connector library is used for testing SQL integration and is required for running the
automated test suite.

Chapter 2.

Chapter 2. Event Representations

This section outlines the different means to model and represent events.

Esper uses the term event type to describe the type information available for an event
representation.

Your application may configure predefined event types at startup time or dynamically add event
types at runtime via APl or EPL syntax. See Section 15.4, “Configuration Items” for startup-time
configuration and Section 14.3.7, “Runtime Configuration” for the runtime configuration API.

The EPL create schema syntax allows declaring an event type at runtime using EPL, see
Section 5.16, “Declaring an Event Type: Create Schema”.

In Section 14.6, “Event and Event Type” we explain how an event type becomes visible in EPL
statements and output events delivered by the engine.

2.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. Event
properties capture the state information for an event.

In Esper, an event can be represented by any of the following underlying Java objects:

Table 2.1. Event Underlying Java Objects

Java Class Description

j ava. | ang. Qbj ect Any Java POJO (plain-old java object) with getter
methods following JavaBean conventions; Legacy
Java classes not following JavaBean conventions can
also serve as events .

java.util.Mp Map events are implementations of the
java. util . Map interface where each map entry is a
propery value.

Qbj ect[] (array of object) Object-array events are arrays of objects (type
Obj ect[]) where each array element is a property
value.

org. w3c. dom Node XML document object model (DOM).

or g. apache. axi om om OvDocument XML - Streaming API for XML (StAX) - Apache Axiom

or OVEl enent (provided by EsperlO package).

Application classes Plug-in event representation via the extension API.

Esper provides multiple choices for representing an event. There is no absolute need for you to
create new Java classes to represent an event.

Chapter 2. Event Representations

Event representations have the following in common:

« All event representations support nested, indexed and mapped properties (aka. property
expression), as explained in more detail below. There is no limitation to the nesting level.

« All event representations provide event type metadata. This includes type metadata for nested
properties.

« All event representations allow transposing the event itself and parts of all of its property graph
into new events. The term transposing refers to selecting the event itself or event properties that
are themselves nestable property graphs, and then querying the event's properties or nested
property graphs in further statements. The Apache Axiom event representation is an exception
and does not currently allow transposing event properties but does allow transposing the event
itself.

» The Java object, Map and Object-array representations allow supertypes.

The API behavior for all event representations is the same, with minor exceptions noted in this
chapter.

The benefits of multiple event representations are:

» For applications that already have events in one of the supported representations, there is no
need to transform events into a Java object before processing.

« Event representations are exchangeable, reducing or eliminating the need to change
statements when the event representation changes.

« Event representations are interoperable, allowing all event representations to interoperate in
same or different statements.

» The choice makes its possible to consciously trade-off performance, ease-of-use, the ability to
evolve and effort needed to import or externalize events and use existing event type metadata.

2.2. Event Properties

Event properties capture the state information for an event. Event properties be simple as well
as indexed, mapped and nested event properties. The table below outlines the different types of
properties and their syntax in an event expression. This syntax allows statements to query deep
JavaBean objects graphs, XML structures and Map events.

Table 2.2. Types of Event Properties

Type Description Syntax Example

Simple A property that has a single value
that may be retrieved.

nane sensorld

Indexed An indexed property stores an
ordered collection of objects (all
of the same type) that can be
individually accessed by an integer-
valued, non-negative index (or
subscript).

nane[i ndex] sensor [0]

Escape Characters

Type Description Syntax Example

Mapped A mapped property stores a keyed
collection of objects (all of the same
type).
Nested A nested property is a property that
lives within another property of an
event.

nane(' key') sensor (' light")

nane. nest ednanme sensor . val ue

Combinations are also possible. For example, a valid combination could be
per son. address(' home').street[0].

You may use any expression as a mapped property key or indexed property index by putting the
expression within parenthesis after the mapped or index property name. Please find examples
below.

2.2.1. Escape Characters

If your application usesj ava. util . Map, Qoj ect [] (object-array) or XML to represent events, then
event property names may themselves contain the dot (.") character. The backslash ('\') character
can be used to escape dot characters in property names, allowing a property name to contain
dot characters.

For example, the EPL as shown below expects a property by name part 1. par t 2 to exist on event
type MyEvent :

sel ect partl\.part2 from M/Event

Sometimes your event properties may overlap with EPL language keywords or contain spaces or
other special characters. In this case you may use the backwards apostrophe * (aka. back tick)
character to escape the property name.

The next example assumes a Quot e event that has a property by name or der, while or der is
also a reserved keyword:

select “order’, price as “price.for.goods’ from Quote

When escaping mapped or indexed properties, make sure the back tick character appears outside
of the map key or index.

The next EPL selects event properties that have names that contain spaces (e.g. candi date
book), have the tick special character (e.g. chil dren' s books), are an indexed property (e.g.
children's books[0]) and a mapped property that has a reserved keyword as part of the
property name (e.g. book sel ect('isbn')):

Chapter 2. Event Representations

sel ect “candidate book®™ , “children's books [0], “book select ('"isbn') from
MyEvent Type

2.2.2. Expression as Key or Index Value

The key or index expression must be placed in parenthesis. When using an expression as key for
a mapped property, the expression must return a St r i ng-typed value. When using an expression
as index for an indexed property, the expression must return an i nt -typed value.

This example below uses Java classes to illustrate;The same principles apply to all event
representations.

Assume a class declares these properties (getters not shown for brevity):

public class MyEvent Type {
String nmyMapKey;
i nt nmyl ndexVal ue;
int myl nner | ndexVal ue;
Map<String, |nnerType> innerTypesMap; // mapped property
I nner Type[] innerTypesArray; // indexed property

public class InnerType {
String nane;
int[] ids;

A sample EPL statement demonstrating expressions as map keys or indexes is:

sel ect innerTypesMap(' sonmekey'), // returns map value for 'sonekey'

i nner TypesMap(myMapKey) , /1 returns map value for nyMapKey val ue (an
expr essi on)
i nner TypesArray[1], /'l returns array value at index 1

i nner TypesArray(nyl ndexVal ue) /1 returns array value at index nylndexVal ue
(an expression)
from MyEvent Type

The dot-operator can be used to access methods on the value objects returned by the mapped or
indexed properties. By using the dot-operator the syntax follows the chained method invocation
described at Section 8.6, “Dot Operator”.

A sample EPL statement demonstrating the dot-operator as well as expressions as map keys or
indexes is:

Dynamic Event Properties

sel ect inner TypesMap(' somekey').ids[1],
i nner TypesMap(nyMapKey) . get | ds(myl ndexVal ue),
i nner TypesArray[1].ids[2],
i nner TypesArray(nyl ndexVal ue). getl ds(myl nner | ndexVal ue)
from MyEvent Type

Please note the following limitations:

» The square brackets-syntax for indexed properties does now allow expressions and requires
a constant index value.

* When using the dot-operator with mapped or indexed properties that have expressions as map
keys or indexes you must follow the chained method invocation syntax.

2.3. Dynamic Event Properties

Dynamic (unchecked) properties are event properties that need not be known at statement
compilation time. Such properties are resolved during runtime: they provide duck typing
functionality.

The idea behind dynamic properties is that for a given underlying event representation we don't
always know all properties in advance. An underlying event may have additional properties that
are not known at statement compilation time, that we want to query on. The concept is especially
useful for events that represent rich, object-oriented domain models.

The syntax of dynamic properties consists of the property name and a question mark. Indexed,
mapped and nested properties can also be dynamic properties:

Table 2.3. Types of Event Properties

Type Syntax

Dynamic Simple name?

Dynamic Indexed name[i ndex] ?

Dynamic Mapped ST (4)

Dynamic Nested nanme?. nest edPr opert yNane

Dynamic properties always return the j ava. | ang. Qbj ect type. Also, dynamic properties return a
nul | value if the dynamic property does not exist on events processed at runtime.

As an example, consider an OrderEvent event that provides an "item" property. The "item" property
is of type Obj ect and holds a reference to an instance of either a Service or Product.

Chapter 2. Event Representations

Assume that both Service and Product classes provide a property named "price". Via a dynamic
property we can specify a query that obtains the price property from either object (Service or
Product):

select itemprice? from O der Event

As a second example, assume that the Service class contains a "serviceName" property that
the Product class does not possess. The following query returns the value of the "serviceName"
property for Service objects. It returns a nul | -value for Product objects that do not have the
"serviceName" property:

sel ect item serviceNane? from O der Event

Consider the case where OrderEvent has multiple implementation classes, some of which have
a "timestamp" property. The next query returns the timestamp property of those implementations
of the OrderEvent interface that feature the property:

sel ect tinestanp? from O der Event

The query as above returns a single column named "timestamp?" of type Obj ect .

When dynamic properties are nested, then all properties under the dynamic property are also
considered dynamic properties. In the below example the query asks for the "direction" property
of the object returned by the "detail" dynamic property:

sel ect detail ?.direction from O der Event

Above is equivalent to:

sel ect detail?.direction? from O der Event

The functions that are often useful in conjunction with dynamic properties are:

e The cast function casts the value of a dynamic property (or the value of an expression) to a
given type.

» The exi st s function checks whether a dynamic property exists. It returns t r ue if the event has
a property of that name, or false if the property does not exist on that event.

Fragment and Fragment Type

e Theinstanceof function checks whether the value of a dynamic property (or the value of an
expression) is of any of the given types.

e The typeof function returns the string type name of a dynamic property.

Dynamic event properties work with all event representations outlined next: Java objects, Map-
based, Object-array-based and XML DOM-based events.

2.4. Fragment and Fragment Type

Sometimes an event can have properties that are itself events. Esper uses the term fragment and
fragment type for such event pieces. The best example is a pattern that matches two or more
events and the output event contains the matching events as fragments. In other words, output
events can be a composite event that consists of further events, the fragments.

Fragments have the same metadata available as their enclosing composite events. The metadata
for enclosing composite events contains information about which properties are fragments, or
have a property value that can be represented as a fragment and therefore as an event itself.

Fragments and type metadata can allow your application to navigate composite events without
the need for using the Java reflection API and reducing the coupling to the underlying event
representation. The APl is further described in Section 14.6, “Event and Event Type”.

2.5. Plain-Old Java Object Events

Plain-old Java object events are object instances that expose event properties through
JavaBeans-style getter methods. Events classes or interfaces do not have to be fully compliant to
the JavaBean specification; however for the Esper engine to obtain event properties, the required
JavaBean getter methods must be present or an accessor-style and accessor-methods may be
defined via configuration.

Esper supports JavaBeans-style event classes that extend a superclass or implement one or more
interfaces. Also, Esper event pattern and EPL statements can refer to Java interface classes and
abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state
change or action that occurred in the past, the relevant event properties should not be changeable.
However this is not a hard requirement and the Esper engine accepts events that are mutable
as well.

The hashCode and equal s methods do not need to be implemented. The implementation of these
methods by a Java event class does not affect the behavior of the engine in any way.

Please see Chapter 15, Configuration on options for naming event types represented by Java
object event classes. Java classes that do not follow JavaBean conventions, such as legacy
Java classes that expose public fields, or methods not following naming conventions, require
additional configuration. Via configuration it is also possible to control case sensitivity in property
name resolution. The relevant section in the chapter on configuration is Section 15.4.1.3, “Non-
JavaBean and Legacy Java Event Classes”.

Chapter 2. Event Representations

2.5.1. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans
specification, and some of which are uniquely supported by Esper:

« Simple properties have a single value that may be retrieved. The underlying property type might
be a Java language primitive (such as int, a simple object (such as a java.lang.String), or a
more complex object whose class is defined either by the Java language, by the application, or
by a class library included with the application.

» Indexed - An indexed property stores an ordered collection of objects (all of the same type) that
can be individually accessed by an integer-valued, non-negative index (or subscript).

* Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that
accepts a String-valued key a mapped property.

* Nested - A nested property is a property that lives within another Java object which itself is a
property of an event.

Assume there is an NewEnpl oyeeEvent event class as shown below. The mapped and indexed
properties in this example return Java objects but could also return Java language primitive types
(such as int or String). The Addr ess object and Enpl oyee can themselves have properties that
are nested within them, such as a street name in the Addr ess object or a name of the employee
in the Enpl oyee object.

public class NewEnpl oyeeEvent {
public String getFirstNane();
public Address get Address(String type);
publ i ¢ Enpl oyee get Subordi nate(int index);
publ i c Enpl oyee[] get Al |l Subordi nates();

}

Simple event properties require a getter-method that returns the property value. In this example,
the get Fi r st Nane getter method returns the fi r st Nane event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes
an integer-type key value and returns the property value, such as the get Subor di nat e method,
or a method that returns an array-type, or a class that implements | t er abl e. An example is the
get Al | Subor di nat es getter method, which returns an array of Employee but could also return
an lterabl e. In an EPL or event pattern statement, indexed properties are accessed via the
property[index] syntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns
the property value, such as the get Address method. In an EPL or event pattern statement,
mapped properties are accessed via the property(' key') syntax.

Nested event properties require a getter-method that returns the nesting object. The get Addr ess
and get Subor di nat e methods are mapped and indexed properties that return a nesting

10

Property Names

object. In an EPL or event pattern statement, nested properties are accessed via the
property. nest edProperty syntax.

All event pattern and EPL statements allow the use of indexed, mapped and nested properties (or
a combination of these) anywhere where one or more event property names are expected. The
below example shows different combinations of indexed, mapped and nested properties in filters
of event pattern expressions (each line is a separate EPL statement):

every NewEnpl oyeeEvent (first Nane=' nyNane')

every NewEnpl oyeeEvent (address(' hone'). street Name=' Park Avenue')

every NewEnpl oyeeEvent (subordi nat e[0] . name="' anot her Nane')

every NewEnpl oyeeEvent (al | Subor di nat es[1] . nane='t hat Nane')

every NewEnpl oyeeEvent (subor di nat e[0] . addr ess(' home'). street Nane=" Wt er
Street')

Similarly, the syntax can be used in EPL statements in all places where an event property name
is expected, such as in select lists, where-clauses or join criteria.

sel ect firstName, address('work'), subordinate[0].nanme, subordinate[1l].name
from NewkEnpl oyeeEvent
where address('work').streetName = ' Park Ave'

2.5.2. Property Names

Property names follows Java standards: the class j ava. beans. I ntrospector and method
get Beanl nf o returns the property names as derived from the name of getter methods. In addition,
Esper configuration provides a flag to turn off case-sensitive property names. A sample list of
getter methods and property names is:

Table 2.4. JavaBeans-style Getter Methods and Property Names

Method Property Name Example

get Price() price sel ect price from MyEvent
get NAME() NAME sel ect NAME from MyEvent

get I tenmDesc() itemDesc sel ect itenDesc from MyEvent
get) q sel ect g from MyEvent

get QN() QN

sel ect QN from MyEvent

11

Chapter 2. Event Representations

Method Property Name Example

getan() an sel ect gn from MyEvent

gets() S sel ect s from M/Event

2.5.3. Parameterized Types

When your getter methods or accessor fields return a parameterized type, for example
I t er abl e<MyEvent Dat a> for an indexed property or Map<St ri ng, MyEvent Dat a> for a mapped
property, then property expressions may refer to the properties available through the class that
is the type parameter.

An example event that has properties that are parameterized types is:

public class NeweEnpl oyeeEvent {
public String getName();
public Iterabl e<Educati onHi st ory> get Educati on();
public Map<String, Address> getAddresses();

A sample of valid property expressions for this event is shown next:

sel ect name, education, education[0].date, addresses('home').street
from NewEnpl oyeeEvent

2.5.4. Setter Methods for Indexed and Mapped Properties

An EPL statement may update indexed or mapped properties of an event, provided the event
class exposes the required setter method.

The setter method for indexed properties must be named set PropertyName and must take two
parameters: the i nt -type index and the Obj ect type new value.

The setter method for mapped properties must be named set PropertyName and must take two
parameters: the St ri ng-type map key and the bj ect type new map value.

The following is an example event that features a setter method for the pr ops mapped property
and for the ar r ay indexed property:

public class MyEvent {
private Map props = new HashMap();
private Qobject[] array = new Object[10];

12

Known Limitations

public void setProps(String nane, Object value) {
props. put (nane, val ue);

public void setArray(int index, Object value) {
array[index] = val ue;

}

/1 ... also provide regular JavaBean getters and setters for all properties
This sample statement updates mapped and indexed property values:

update i stream MyEvent Stream set props(' key') = "abc', array[2] = 100

2.5.5. Known Limitations

Esper employs byte code generation for fast access to event properties. When byte code
generation is unsuccessful, the engine logs a warning and uses Java reflection to obtain property
values instead.

A known limitation is that when an interface has an attribute of a particular type and the actual
event bean class returns a subclass of that attribute, the engine logs a warning and uses reflection
for that property.

2.6. java. util.vmp EVENts

2.6.1. Overview

Events can also be represented by objects that implement the j ava. uti | . Map interface. Event
properties of Map events are the values in the map accessible through the get method exposed
by the j ava. uti | . Map interface.

Similar to the Object-array event type, the Map event type takes part in the comprehensive type
system that can eliminate the need to use Java classes as event types, thereby making it easier
to change types at runtime or generate type information from another source.

A given Map event type can have one or more supertypes that must also be Map event types.
All properties available on any of the Map supertypes are available on the type itself. In addition,
anywhere within EPL that an event type name of a Map supertype is used, any of its Map subtypes
and their subtypes match that expression.

Your application can add properties to an existing Map event type during runtime using the
configuration operation updat eMapEvent Type. Properties may not be updated or deleted -
properties can only be added, and nested properties can be added as well. The runtime
configuration also allows removing Map event types and adding them back with new type
information.

13

Chapter 2. Event Representations

After your application configures a Map event type by providing a type name, the type name can
be used when defining further Map or Object-array event types by specifying the type name as
a property type or an array property type.

One-to-Many relationships in Map event types are represented via arrays. A property in a Map
event type may be an array of primitive, an array of Java object, an array of Map or an an array
of Object-array.

The engine can process java. util.Mp events via the sendEvent(Map map, String
event TypeNane) method on the EPRuntine interface. Entries in the Map represent event
properties. Keys must be of type j ava. util. String for the engine to be able to look up event
property names specified by pattern or EPL statements.

The engine does not validate Map event property names or values. Your application should ensure
that objects passed in as event properties match the creat e schema property names and types,
or the configured event type information when using runtime or static configuration.

2.6.2. Map Properties

Map event properties can be of any type. Map event properties that are Java application objects
or that are of type j ava. uti| . Map (or arrays thereof) or that are of type Obj ect [] (object-array)
(or arrays thereof) offer additional power:

» Properties that are Java application objects can be queried via the nested, indexed, mapped
and dynamic property syntax as outlined earlier.

» Properties that are of type Map allow Maps to be nested arbitrarily deep and thus can be used
to represent complex domain information. The nested, indexed, mapped and dynamic property
syntax can be used to query Maps within Maps and arrays of Maps within Maps.

» Properties that are of type bj ect[] (object-array) allow object-arrays to be nested arbitrarily
deep. The nested, indexed, mapped and dynamic property syntax can be used to query nested
Maps and object-arrays alike.

In order to use Map events, the event type name and property names and types must be made
known to the engine via Configuration or creat e schema EPL syntax. Please see examples in
Section 5.16, “Declaring an Event Type: Create Schema” and Section 15.4.2, “Events represented
by java.util.Map”.

The code snippet below defines a Map event type, creates a Map event and sends the event
into the engine. The sample defines the Car LocUpdat eEvent event type via runtime configuration
interface (creat e schena or static configuration could have been used instead).

/1 Define CarlLocUpdateEvent event type (exanple for runtine-configuration
interface)

Map<String, Object> def = new HashMap<String, Object>;

def . put ("carld", String.class);

14

Map Supertypes

def . put ("direction", int.class);

epSer vi ce. get EPAdmi ni strator (). get Configuration().
addEvent Type(" Car LocUpdat eEvent ", def);

The Car LocUpdat eEvent can now be used in a statement:

select carld from CarLocUpdat eEvent.win:time(1l mn) where direction =1

/| Create a CarLocUpdat eEvent event and send it into the engine for processing
Map<String, Object> event = new HashMap<String, bject>();

event.put("carld", carld);

event.put("direction", direction);

epRunti ne. sendEvent (event, "CarlLocUpdat eEvent");

The engine can also query Java objects as values in a Map event via the nested property syntax.
Thus Map events can be used to aggregate multiple data structures into a single event and query
the composite information in a convenient way. The example below demonstrates a Map event
with a transaction and an account object.

Map event = new HashMap();

event. put ("txn", txn);

event . put ("account", account);

epRunti ne. sendEvent (event, "TxnEvent");

An example statement could look as follows.

sel ect account.id, account.rate * txn.anount
from TxnEvent.win:ti me(60 sec)
group by account.id

2.6.3. Map Supertypes

Your Map event type may declare one or more supertypes when configuring the type at engine
initialization time or at runtime through the administrative interface.

Supertypes of a Map event type must also be Map event types. All property names and types
of a supertype are also available on a subtype and override such same-name properties of the
subtype. In addition, anywhere within EPL that an event type name of a Map supertype is used,
any of its Map subtypes also matches that expression (similar to the concept of interface in Java).

15

Chapter 2. Event Representations

This example assumes that the BaseUpdat e event type has been declared and acts as a supertype
to the Account Updat e event type (both Map event types):

epSer vi ce. get EPAdni ni strator (). get Configuration().
addEvent Type(" Account Updat e", account Updat eDef,
new String[] {"BaseUpdate"});

Your application EPL statements may select BaseUpdat e events and receive both BaseUpdat e
and Account Updat e events, as well as any other subtypes of BaseUpdat e and their subtypes.

/'l Receive BaseUpdate and any subtypes including subtypes of subtypes
sel ect * from BaseUpdate

Your application Map event type may have multiple supertypes. The multiple inheritance hierarchy
between Maps can be arbitrarily deep, however cyclic dependencies are not allowed. If using
runtime configuration, supertypes must exist before a subtype to a supertype can be added.

See Section 15.4.2, “Events represented by java.util.Map” for more information on configuring
Map event types.

2.6.4. Advanced Map Property Types

2.6.4.1. Nested Properties

Strongly-typed nested Map-within-Map events can be used to build rich, type-safe event types
on the fly. Use the addEvent Type method on Confi gurati on or Confi gurati onOperati ons for
initialization-time and runtime-time type definition, or the creat e schena EPL syntax.

Noteworthy points are:

« JavaBean (POJO) objects can appear as properties in Map event types.

« One may represent Map-within-Map and Map-Array within Map (same for object-array) using
the name of a previously registered Map (or object-array) event type.

e There is no limit to the number of nesting levels.

« Dynamic properties can be used to query Map-within-Map keys that may not be known in
advance.

e The engine returns a nul | value for properties for which the access path into the nested
structure cannot be followed where map entries do not exist.

For demonstration, in this example our top-level event type is an Account Updat e event, which
has an Updat edFi el dType structure as a property. Inside the Updat edFi el dType structure the
example defines various fields, as well as a property by name ‘history' that holds a JavaBean

16

Advanced Map Property Types

class Updat eHi st ory to represent the update history for the account. The code snippet to define
the event type is thus:

Map<String, Object> updatedFi el dDef = new HashMap<String, Object>();
updat edFi el dDef . put ("name", String.cl ass);
updat edFi el dDef . put (" addr essLi nel", String.class);
updat edFi el dDef . put (" hi story", UpdateHi story. cl ass);
epSer vi ce. get EPAdni ni strator (). get Configuration().
addEvent Type(" Updat edFi el dType", updat edFi el dDef) ;

Map<String, Object> accountUpdateDef = new HashMap<String, OCbject>();
account Updat eDef . put ("account 1 d", |ong.cl ass);

account Updat eDef . put ("fi el ds", "UpdatedFi el dType");

/1l the latter can also be: accountUpdateDef.put("fields", updatedFiel dDef);

epSer vi ce. get EPAdni ni strator (). get Configuration().
addEvent Type(" Account Updat e", account Updat eDef);

The next code snippet populates a sample event and sends the event into the engine:

Map<String, Object> updatedField = new Hashivap<String, Object>();
updat edFi el d. put ("nane", "Joe Doe");

updat edFi el d. put ("addressLi nel", "40 Popular Street");

updat edFi el d. put ("hi story", new UpdateHi story());

Map<String, Object> accountUpdate = new HashMap<String, Object>();
account Updat e. put ("account | d*, 10009901);
account Updat e. put ("fi el ds", updatedFiel d);

epServi ce. get EPRunt i ne() . sendEvent (account Updat e, "Account Update");

Last, a sample query to interrogate Account Updat e events is as follows:

sel ect accountld, fields.nane, fields.addressLinel, fields.history.|astUpdate
from Account Updat e

2.6.4.2. One-to-Many Relationships

To model repeated properties within a Map, you may use arrays as properties in a Map. You may
use an array of primitive types or an array of JavaBean objects or an array of a previously declared
Map or object-array event type.

When using a previously declared Map event type as an array property, the literal [] must be
appended after the event type name.

17

Chapter 2. Event Representations

This following example defines a Map event type by name Sal e to hold array properties of the
various types. It assumes a Sal esPer son Java class exists and a Map event type by name
Or der | t emwas declared:

Map<String, Object> sale = new HashMap<String, Object>();

sal e. put ("userids", int[].class);
sal e. put ("sal esPersons”, Sal esPerson[].cl ass);
sale.put("items", "Oderltenf]"); /!l The property type is the nane itself

appended by []

epSer vi ce. get EPAdni ni strator (). get Configuration().
addEvent Type(" Sal eEvent", sale);

The three properties that the above example declares are:

« An integer array of user ids.

* An array of Sal esPer son Java objects.

« An array of Maps for order items.

The next EPL statement is a sample query asking for property values held by arrays:

sel ect userids[0], sal esPersons[1].naneg,
itens[1], itens[1].price.anount from Sal eEvent

2.7. Object-array (mject[1) Events

2.7.1. Overview

An event can also be represented by an array of objects. Event properties of Coj ect[] events
are the array element values.

Similar to the Map event type, the object-array event type takes part in the comprehensive type
system that can eliminate the need to use Java classes as event types, thereby making it easier
to change types at runtime or generate type information from another source.

A given Object-array event type can have only a single supertype that must also be an Object-
array event type. All properties available on the Object-array supertype is also available on the
type itself. In addition, anywhere within EPL that an event type name of an Object-array supertype
is used, any of its Object-array subtypes and their subtypes match that expression.

Your application can add properties to an existing Object-array event type during runtime using
the configuration operation updat eObj ect Ar rayEvent Type. Properties may not be updated or

18

Object-Array Properties

deleted - properties can only be added, and nested properties can be added as well. The runtime
configuration also allows removing Object-array event types and adding them back with new type
information.

After your application configures an Object-array event type by providing a type name, the type
name can be used when defining further Object-array or Map event types by specifying the type
name as a property type or an array property type.

One-to-Many relationships in Object-array event types are represented via arrays. A property in
an Object-array event type may be an array of primitive, an array of Java object, an array of Map
or an array of Object-array.

The engine can process bject[] events via the sendEvent (Cbject[] array, String
event TypeNane) method on the EPRunt i me interface. Entries in the Object array represent event
properties.

The engine does not validate Object array length or value types. Your application must ensure
that Object array values match the declaration of the event type: The type and position of property
values must match property names and types in the same exact order and object array length must
match the number of properties declared via cr eat e schena or the static or runtime configuration.

2.7.2. Object-Array Properties

Object-array event properties can be of any type. Object-array event properties that are Java
application objects or that are of type java. util.Map (or arrays thereof) or that are of type
bj ect - array (or arrays thereof) offer additional power:

« Properties that are Java application objects can be queried via the nested, indexed, mapped
and dynamic property syntax as outlined earlier.

» Properties that are of type Qbj ect [] allow object-arrays to be nested arbitrarily deep and thus
can be used to represent complex domain information. The nested, indexed, mapped and
dynamic property syntax can be used to query object-array within object-arrays and arrays of
object-arrays within object-arrays.

» Properties that are of type Map allow Maps to be nested in object-array events and arbitrarily
deep. The nested, indexed, mapped and dynamic property syntax can be used to query nested
Maps and object-arrays alike.

In order to use (bj ect[] (object-array) events, the event type name and property names and
types, in a well-defined order that must match object-array event properties, must be made
known to the engine via configuration or creat e schema EPL syntax. Please see examples in
Section 5.16, “Declaring an Event Type: Create Schema” and Section 15.4.3, “Events represented
by Object[] (Object-array)”.

The code snippet below defines an Object-array event type, creates an Object-array event and
sends the event into the engine. The sample defines the Car LocUpdat eEvent event type via the

19

Chapter 2. Event Representations

runtime configuration interface (create schema or static configuration could have been used
instead).

/1 Define CarLocUpdateEvent event type (exanple for runtine-configuration
interface)

String[] propertyNanes = {"carld", "direction"}; /] order is inportant

oj ect[] propertyTypes = {String.class, int.class}; [// type order matches nanme
or der

epServi ce. get EPAdmi ni strator (). getConfiguration().
addEvent Type(" Car LocUpdat eEvent ", propertyNanes, propertyTypes);

The Car LocUpdat eEvent can now be used in a statement:

sel ect carld from CarLocUpdat eEvent.win:tine(1l min) where direction =1

/1 Send an event
oject[] event = {carld, direction};
epRunti me. sendEvent (event, "CarlLocUpdat eEvent");

The engine can also query Java objects as values in an Qbj ect [] event via the nested property
syntax. Thus Cbj ect[] events can be used to aggregate multiple data structures into a single
event and query the composite information in a convenient way. The example below demonstrates
a bj ect [] event with a transaction and an account object.

epRunti ne. sendEvent (new Obj ect[] {txn, account}, "TxnEvent");
An example statement could look as follows:

sel ect account.id, account.rate * txn.anmount
from TxnEvent.w n:ti me(60 sec)
group by account.id

2.7.3. Object-Array Supertype

Your Obj ect [] (object-array) event type may declare one supertype when configuring the type at
engine initialization time or at runtime through the administrative interface.

The supertype of a bj ect[] event type must also be an object-array event type. All property
names and types of a supertype are also available on a subtype and override such same-name

20

Advanced Object-Array Property Types

properties of the subtype. In addition, anywhere within EPL that an event type name of an Object-
array supertype is used, any of its Object-array subtypes also matches that expression (similar
to the concept of interface or superclass).

The properties provided by the top-most supertype must occur first in the object array. Subtypes
each append to the object array. The number of values appended must match the number of
properties declared by the subtype.

For example, assume your application declares the following two types:

create objectarray schema Super Type (pO string)

create objectarray schema SubType (pl string) inherits SuperType

The object array event objects that your application can send into the engine are shown by the
next code snippet:

epRunti nme. sendEvent (new Obj ect[] {"pO_value", "pl_value"}, "SubType");
epRunti ne. sendEvent (new Obj ect[] {"pO_val ue"}, "SuperType");

2.7.4. Advanced Object-Array Property Types

2.7.4.1. Nested Properties

Strongly-typed nested bj ect [] -within-Obj ect[] events can be used to build rich, type-
safe event types on the fly. Use the addEvent Type method on Configuration or
Confi gur ati onQper at i ons for initialization-time and runtime-time type definition, or the create
schema EPL syntax.

Noteworthy points are:

« JavaBean (POJO) objects can appear as properties in Obj ect [] event types.

* One may represent Object-array within Object-array and Object-Array-Array within Object-array
(same for Map event types) using the name of a previously registered Object-array (or Map)
event type.

» There is no limit to the number of nesting levels.

« Dynamic properties can be used to query Qoj ect [] -within-Cbj ect [] values that may not be
known in advance.

* The engine returns a nul | value for properties for which the access path into the nested
structure cannot be followed where entries do not exist.

21

Chapter 2. Event Representations

For demonstration, in this example our top-level event type is an Account Updat e event, which
has an Updat edFi el dType structure as a property. Inside the Updat edFi el dType structure the
example defines various fields, as well as a property by name ‘history' that holds a JavaBean
class Updat eHi st ory to represent the update history for the account. The code snippet to define
the event type is thus:

String[] propertyNanesUpdField = {"nane", "addressLinel", "history"};
oj ect[] propertyTypesUpdFi el d = {String.cl ass, String. cl ass,
Updat eHi st ory. cl ass};
epServi ce. get EPAdmi ni strator (). getConfiguration().
addEvent Type(" Updat edFi el dType", propert yNanmesUpdFi el d,
propertyTypesUpdFi el d) ;

String[] propertyNanesAccount Update = {"accountld", "fields"};
oj ect[] propertyTypesAccount Update = {l ong. cl ass, "Updat edFi el dType"};
epServi ce. get EPAdmi ni strator (). get Configuration().
addEvent Type(" Account Updat e", pr oper t yNanesAccount Updat e,
propertyTypesAccount Updat e) ;

The next code snippet populates a sample event and sends the event into the engine:

oj ect[] updatedField = {"Joe Doe", "40 Popul ar Street", new UpdateH story()};
oj ect[] account Update = {10009901, updatedFi el d};

epServi ce. get EPRunti ne() . sendEvent (account Updat e, "Account Update");

Last, a sample query to interrogate Account Updat e events is as follows:

sel ect accountld, fields.nane, fields.addressLinel, fields.history.|astUpdate
from Account Updat e

2.7.4.2. One-to-Many Relationships

To model repeated properties within an Object-array, you may use arrays as properties in an
Object-array. You may use an array of primitive types or an array of JavaBean objects or an array
of a previously declared Object-array or Map event type.

When using a previously declared Object-array event type as an array property, the literal [] must
be appended after the event type name.

This following example defines an Object-array event type by name Sal e to hold array properties
of the various types. It assumes a Sal esPer son Java class exists and an Object-array event type
by name O der | t emwas declared:

22

org.w3c.dom.Node XML Events

String[] propertyNames = {"userids", "sal esPersons”, "items"};
oject[] propertyTypes = {int[].class, SalesPerson[].class, "Oderlten{]");

epServi ce. get EPAdmi ni strator (). get Configuration().
addEvent Type(" Sal eEvent”, propertyNanmes, propertyTypes);

The three properties that the above example declares are:

* An integer array of user ids.
« An array of Sal esPer son Java objects.
« An array of Object-array for order items.

The next EPL statement is a sample query asking for property values held by arrays:

sel ect userids[0], sal esPersons[1].nane,
itens[1], itens[1].price.anmount from Sal eEvent

2.8. org.wac. dom node XML Events

Events can be represented as or g. w3c. dom Node instances and send into the engine via the
sendEvent method on EPRunt i me or via Event Sender . Please note that configuration is required
so the event type name and root element name is known. See Chapter 15, Configuration.

If a XML schema document (XSD file) can be made available as part of the configuration,
then Esper can read the schema and appropriately present event type metadata and validate
statements that use the event type and its properties. See Section 2.8.1, “Schema-Provided XML
Events”.

When no XML schema document is provided, XML events can still be queried, however the return
type and return values of property expressions are string-only and no event type metadata is
available other then for explicitly configured properties. See Section 2.8.2, “No-Schema-Provided
XML Events”.

In all cases Esper allows you to configure explicit XPath expressions as event properties. You
can specify arbitrary XPath functions or expressions and provide a property name and type by
which result values will be available for use in EPL statements. See Section 2.8.3, “Explicitly-
Configured Properties”.

Nested, mapped and indexed event properties are also supported in expressions against
or g. w3dc. dom Node events. Thus XML trees can conveniently be interrogated via the property
expression syntax.

23

Chapter 2. Event Representations

Only one event type per root element name may be configured. The engine recognizes each event
by its root element name or you may use Event Sender to send events.

This section uses the following XML document as an example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Sensor xm ns="Sensor Schena" >
<I D>urn: epc: 1: 4. 16. 36</ | D>
<Observati on Conmand="READ PALLET TAGS ONLY">
<| b>00000001</ | D>
<Tag>
<| D>ur n: epc: 1: 2. 24. 400</ | D>
</ Tag>
<Tag>
<I D>urn: epc: 1: 2. 24. 401</ | D>
</ Tag>
</ Gbservati on>
</ Sensor >

The schema for the example is:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema" >

<xs: el ement nanme="Sensor">
<xs: conpl exType>
<XS:sequence>
<xs: el enrent nanme="1D" type="xs:string"/>
<xs: el ement ref="Cbservation" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement name="Cbservation">
<xs:conpl exType>
<Xs:sequence>
<xs:el ement name="1D" type="xs:string"/>
<xs:el ement ref="Tag" maxQccurs="unbounded" />
</ xs: sequence>
<xs:attribute nane="Command" type="xs:string" use="required" />
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="Tag" >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="ID"' type="xs:string"/>

24

Schema-Provided XML Events

</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schenma>

2.8.1. Schema-Provided XML Events

If you have a XSD schema document available for your XML events, Esper can interrogate the
schema. The benefits are:

* New EPL statements that refer to event properties are validated against the types provided in
the schema.
» Event type metadata becomes available for retrieval as part of the Event Type interface.

2.8.1.1. Getting Started

The engine reads a XSD schema file from an URL you provide. Make sure files imported by the
XSD schema file can also be resolved.

The configuration accepts a schema URL. This is a sample code snippet to determine a schema
URL from a file in classpath:

URL schemaURL = this.getd ass().getd assLoader().get Resource("sensor.xsd");

Here is a sample use of the runtime configuration API, please see Chapter 15, Configuration for
further examples.

epServi ce = EPServi ceProvi der Manager . get Def aul t Provi der () ;
Confi gur ati onEvent TypeXM_.DOM sensor cfg = new Confi gurati onEvent TypeXM.DOV) ;
sensor cf g. set Root El enent Nane(" Sensor ") ;
sensor cf g. set SchemaResour ce(schemaURL. toString());
epServi ce. get EPAdni ni strator (). get Configuration()
. addEvent Type(" Sensor Event", sensorcfQ);

You must provide a root element name. This name is used to look up the event type for the
sendEvent (or g. w3c. Node node) method. An Event Sender is a useful alternative method for
sending events if the type lookup based on the root or document element name is not desired.

After adding the event type, you may create statements and send events. Next is a sample
statement:

sel ect I D, Qoservation. Command, Observation.| D,
Observation. Tag[0] .| D, Observation.Tag[1].1D

25

Chapter 2. Event Representations

from Sensor Event

As you can see from the example above, property expressions can query property values held in
the XML document's elements and attributes.

There are multiple ways to obtain a XML DOM document instance from a XML string. The next
code snippet shows how to obtain a XML DOM or g. w3c. Docunent instance:

| nput Sour ce source = new | nput Sour ce(new Stri ngReader (xm));

Document Bui | der Fact ory bui | der Fact ory = Documnent Bui | der Fact ory. newl nst ance() ;
bui | der Fact ory. set NanespaceAwar e(true);

Docunment doc = buil der Fact ory. newDocunent Bui | der (). par se(source);

Send the or g. w3c. Node or Docurrent object into the engine for processing:

epServi ce. get EPRunti ne() . sendEvent (doc) ;

2.8.1.2. Property Expressions and Namespaces

By default, property expressions such as Chser vat i on. Tag[0] . | Dare evaluated by a fast DOM-
walker implementation provided by Esper. This DOM-walker implementation is not namespace-
aware.

Should you require namespace-aware traversal of the DOM document, you must set the xpat h-
property-expr configuration option to true (default is false). This flag causes Esper to generate
namespace-aware XPath expressions from each property expression instead of the DOM-walker,
as described next. Setting the xpat h- property-expr option to true requires that you also
configure namespace prefixes as described below.

When matching up the property names with the XSD schema information, the engine determines
whether the attribute or element provides values. The algorithm checks attribute names first
followed by element names. It takes the first match to the specified property name.

2.8.1.3. Property Expression to XPath Rewrite

By setting the xpat h- propert y- expr option the engine rewrites each property expression as an
XPath expression, effectively handing the evaluation over to the underlying XPath implementation
available from classpath. Most JVM have a built-in XPath implementation and there are also
optimized, fast implementations such as Jaxen that can be used as well.

Set the xpat h- property- expr option if you need namespace-aware document traversal, such
as when your schema mixes several namespaces and element names are overlapping.

The below table samples several property expressions and the XPath expression generated for
each, without namespace prefixes to keep the example simple:

26

Schema-Provided XML Events

Table 2.5. Property Expression to XPath Expression

Property Expression Equivalent XPath

Cbserveration. | D / Sensor/ Cbservation/ I D

Gbserver ati on. Command / Sensor/ Cbser vat i on/ @omrand

Observeration. Tag[0]. 1D / Sensor/ OGbservat i on/ Tag[posi tion() =
1]/1D

For mapped properties that are specified via the syntax name(' key'), the algorithm looks for an
attribute by name i d and generates a XPath expression as napped[@ d=' key'] .

Finally, here is an example that includes all different types of properties and their XPath expression
equivalent in one property expression:

sel ect nested. mapped(' key').indexed[1].attribute from MyEvent

The equivalent XPath expression follows, this time including n0 as a sample namespace prefix:

/' n0: root el enent/ n0: nest ed/ n0: mapped][@ d=' key']/ n0: i ndexed[posi ti on() = 2]/
@ttribute

2.8.1.4. Array Properties

All elements that are unbound or have max occurs greater then 1 in the XSD schema are
represented as indexed properties and require an index for resolution.

For example, the following is not a valid property expression in the sample Sensor document:
CQbserver ati on. Tag. | D. As no index is provided for Tag, the property expression is not valid.

Repeated elements within a parent element in which the repeated element is a simple type also
are represented as an array.

Consider the next XML document:

<itenp
<book sku="8800090" >
<aut hor >l saac Asi nov</ aut hor >
<aut hor >Robert A Hei nl ei n</ aut hor >
</ book>
</itenmp

Here, the result of the expression book. aut hor is an array of type String and the result of
book. aut hor [0] is a String value.

27

Chapter 2. Event Representations

2.8.1.5. Dynamic Properties

Dynamic properties are not validated against the XSD schema information and their result value
is always or g. w3c. Node. You may use a user-defined function to process dynamic properties
returning Node. As an alternative consider using an explicit property.

An example dynamic property is Ori gi n?. | Dwhich will look for an element by name Ori gi n that

contains an element or attribute node by name Locat i onCode:

sel ect Origin?. Locati onCode from Sensor Event

2.8.1.6. Transposing Properties

When providing a XSD document, the default configuration allows to transpose property values
that are themselves complex elements, as defined in the XSD schema, into a new stream. This
behavior can be controlled via the flag aut o- f r agnent .

For example, consider the next query:

insert into CbservationStream
sel ect I D, Qoservation from Sensor Event

The Obser vat i on as a property of the Sensor Event gets itself inserted into a new stream by name
Qbservati onSt ream The Qbser vati onSt r eamthus consists of a string-typed | D property and a
complex-typed property named Qoser vat i on, as described in the schema.

A further statement can use this stream to query:

sel ect Cbservation. Command, Cbservation. Tag[0].ID from Gbservati onStream

Before continuing the discussion, here is an alternative syntax using the wildcard-select, that is
also useful:

insert into TaglLi stStream
select I D as sensorld, Observation.* from SensorEvent

The new TaglLi st St r eamhas a string-typed | D and Command property as well as an array of Tag
properties that are complex types themselves as defined in the schema.

Next is a sample statement to query the new stream:

28

Schema-Provided XML Events

sel ect sensorld, Conmand, Tag[O].ID from TagLi st Stream

Please note the following limitations:

« The XPath standard prescribes that XPath expressions against or g. w3c. Node are evaluated
against the owner document of the Node. Therefore XPath is not relative to the current node
but absolute against each node's owner document. Since Esper does not create new document
instances for transposed nodes, transposing properties is not possible when the xpat h-
property-expr flag is set.

« Complex elements that have both simple element values and complex child elements are not
transposed. This is to ensure their property value is not hidden. Use an explicit XPath expression
to transpose such properties.

Esper automatically registers a new event type for transposed properties. It generates the type
name of the new XML event type from the XML event type name and the property names used
in the expression. The synposis is type_name.property_name[.property _name...]. The type name
can be looked up, for example for use with Event Sender or can be created in advance.

2.8.1.7. Event Sender

An Event Sender sends events into the engine for a given type, saving a type lookup based on
element name.

This brief example sends an event via Event Sender :

Event Sender sender = epRunti ne. get Event Sender (" Sensor Event ") ;
sender . sendEvent (node) ;

The XML DOM event sender checks the root element name before processing the event. Use the
event - sender - val i dat es- r oot setting to disable validation. This forces the engine to process
XML documents according to any predefined type without validation of the root element name.

2.8.1.8. Limitations

The engine schema interrogation is based on the Xerces distribution packaged into Sun Java
runtimes. Your application may not replace the JRE's Xerces version and use XML schemas,
unless your application sets the DOM implementation registry as shown below before loading the
engine configuration:

Syst em set Property(DOM npl enent ati onRegi st ry. PROPERTY,
"com sun. or g. apache. xer ces. i nt er nal . dom DOMXSI npl enent at i onSour cel npl ") ;

29

Chapter 2. Event Representations

2.8.2. No-Schema-Provided XML Events

Without a schema document a XML event may still be queried. However there are important
differences in the metadata available without a schema document and therefore the property
expression results. These differences are outlined below.

All property expressions against a XML type without schema are assumed valid. There is no
validation of the property expression other then syntax validation. At runtime, property expressions
return string-type values or nul | if the expression did not yield a matching element or attribute
result.

When asked for property names or property metadata, a no-schema type returns empty array.

In all other aspects the type behaves the same as the schema-provided type described earlier.

2.8.3. Explicitly-Configured Properties

Regardless of whether or not you provide a XSD schema for the XML event type, you can always
fall back to configuring explicit properties that are backed by XPath expressions.

For further documentation on XPath, please consult the XPath standard or other online material.
Consider using Jaxen or Apache Axiom, for example, to provide faster XPath evaluation then your
Java VM built-in XPath provider may offer.

2.8.3.1. Simple Explicit Property
Shown below is an example configuration that adds an explicit property backed by a XPath

expression and that defines namespace prefixes:

epServi ce = EPServi ceProvi der Manager . get Def aul t Provi der () ;
Confi gur ati onEvent TypeXM.DOM sensorcfg = new Confi gurati onEvent TypeXM.DOV) ;

sensor cf g. addXPat hProperty("count Tags", "count (/ss: Sensor/ ss: Qbservati on/
ss: Tag) ",

XPat hConst ant s. NUMBER) ;
sensor cf g. addNanmespacePrefi x("ss", "SensorSchem");

sensor cf g. set Root El enent Nane(" Sensor ") ;
epServi ce. get EPAdni ni strator (). get Configuration()
. addEvent Type(" Sensor Event", sensorcfQ);

The count Tags property is now available for querying:

sel ect count Tags from Sensor Event

The XPath expression count (. ..) is a XPath built-in function that counts the number of nodes,
for the example document the result is 2.

30

Explicitly-Configured Properties

2.8.3.2. Explicit Property Casting and Parsing

Esper can parse or cast the result of your XPath expression to the desired type. Your property
configuration provides the type to cast to, like this:

sensor cf g. addXPat hProperty("count Tags", "count (/ss: Sensor/ ss: Qbservati on/
ss: Tag) ",
XPat hConst ant s. NUMBER, "int");

The type supplied to the property configuration must be one of the built-in types. Arrays of built-
in type are also possible, requiring the XPat hConst ant s. NODESET type returned by your XPath
expression, as follows:

sensor cf g. addXPat hProperty("idarray", "//ss:Tag/ss:I1D",
XPat hConst ant s. NODESET, "String[]");

The XPath expression //ss: Tag/ ss: | D returns all ID nodes under a Tag node, regardless of
where in the node tree the element is located. For the example document the result is 2 array
elements urn: epc: 1: 2. 24. 400 and ur n: epc: 1: 2. 24. 40.

2.8.3.3. Node and Nodeset Explicit Property

An explicit property may return XPat hConst ant s. NODE or XPat hConst ant s. NODESET and can
provide the event type name of a pre-configured event type for the property. The method name
to add such properties is addXPat hPr oper t yFr agnent .

This code snippet adds two explicit properties and assigns an event type name for each property:

sensor cf g. addXPat hProper t yFragnment ("t agOne", "//ss:Tag[position() = 1]",
XPat hConst ant s. NODE, "TagEvent");

sensor cf g. addXPat hPr opert yFragnment ("tagArray", "//ss:Tag",
XPat hConst ant s. NODESET, "TagEvent");

The configuration above references the TagEvent event type. This type must also be configured.
Prefix the root element name with "//" to cause the lookup to search the nested schema elements
for the definition of the type:

Confi gur ati onEvent TypeXM_.DOM t agcf g = new Confi gurati onEvent TypeXM.DOVW) ;
tagcf g. set Root El erent Nane("// Tag") ;
t agcf g. set SchemaResour ce(schemaURL) ;
epAdmi ni strator. getConfiguration()
. addEvent Type(" TagEvent", tagcfg);

31

Chapter 2. Event Representations

The tagOne and t agArray properties are now ready for selection and transposing to further
streams:

insert into TagOneStream sel ect tagOne.* from Sensor Event

Select from the new stream:

select ID from TagOneStream

An example with indexed properties is shown next:

insert into TagArrayStream sel ect tagArray as nytags from Sensor Event
Select from the new stream:

sel ect mytags[0].ID from TagArrayStream

2.9. Additional Event Representations

Part of the extension and plug-in features of Esper is an event representation API. This set of
classes allow an application to create new event types and event instances based on information
available elsewhere, statically or dynamically at runtime when EPL statements are created. Please
see Section 17.8, “Event Type And Event Object” for details.

Creating a plug-in event representation can be useful when your application has existing Java
classes that carry event metadata and event property values and your application does not want
to (or cannot) extract or transform such event metadata and event data into one of the built-in
event representations (POJO Java objects, Map, Object-array or XML DOM).

Further use of a plug-in event representation is to provide a faster or short-cut access path to
event data. For example, access to event data stored in a XML format through the Streaming
API for XML (StAX) is known to be very efficient. A plug-in event representation can also provide
network lookup and dynamic resolution of event type and dynamic sourcing of event instances.

Currently, EsperlO provides the following additional event representations:

« Apache Axiom: Streaming API for XML (StAX) implementation
Please see the EsperlO documentation for details on the above.

The chapter on Section 17.8, “Event Type And Event Object” explains how to create your own
custom event representation.

32

Updating, Merging and Versioning Events

2.10. Updating, Merging and Versioning Events

To summarize, an event is an immutable record of a past occurrence of an action or state change,
and event properties contain useful information about an event.

The length of time an event is of interest to the event processing engine (retention time) depends
on your EPL statements, and especially the data window, pattern and output rate limiting clauses
of your statements.

During the retention time of an event more information about the event may become available,
such as additional properties or changes to existing properties. Esper provides three concepts for
handling updates to events.

The first means to handle updating events is the updat e i st reamclause as further described in
Section 5.21, “Updating an Insert Stream: the Update IStream Clause”. It is useful when you need
to update events as they enter a stream, before events are evaluated by any particular consuming
statement to that stream.

The second means to update events is the on- ner ge and on- updat e clauses, for use with named
windows only, as further described in Section 5.15.12, “Triggered Upsert using the On-Merge
Clause” and Section 5.15.8, “Updating Named Windows: the On Update clause”. On-merge is
similar to the SQL ner ge clause and provides what is known as an "Upsert" operation: Update
existing events or if no existing event(s) are found then insert a new event, all in one atomic
operation provided by a single EPL statement. On-update can be used to update individual
properties of events held in a named window.

The third means to handle updating events is the revision event types, for use with named windows
only, as further described in Section 5.15.14, “Versioning and Revision Event Type Use with
Named Windows”. With revision event types one can declare, via configuration only, multiple
different event types and then have the engine present a merged event type that contains a
superset of properties of all merged types, and have the engine merge events as they arrive
without additional EPL statements.

Note that patterns do not reflect changes to past events. For the temporal nature of patterns, any
changes to events that were observed in the past do not reflect upon current pattern state.

2.11. Coarse-Grained Events

Your application events may consist of fairly comprehensive, coarse-grained structures or
documents. For example in business-to-business integration scenarios, XML documents or other
event objects can be rich deeply-nested graphs of event properties.

To extract information from a coarse-grained event or to perform bulk operations on the rows
of the property graph in an event, Esper provides a convenient syntax: When specifying a filter
expression in a pattern or in a sel ect clause, it may contain a contained-event selection syntax,
as further described in Section 5.20, “Contained-Event Selection”.

33

Chapter 2. Event Representations

2.12. Event Objects Instantiated and Populated by insert

Into

The insert into clause can populate instantiate new instances of Java object events,
java.util.Mp events and Obj ect[] (object array) events directly from the results of sel ect
clause expressions and populate such instances. Simply use the event type name as the stream
name intheinsert into clause as described in Section 5.10, “Merging Streams and Continuous
Insertion: the Insert Into Clause”.

If instead you have an existing instance of a Java object returned by an expression, such as a
single-row function or static method invocation for example, you can transpose that expression
result object to a stream. This is described further in Section 5.10.7, “Transposing an Expression
Result” and Section 9.4, “Select-Clause transpose Function”.

The column names specified inthe sel ect andi nsert i nt o clause must match available writable
properties in the event object to be populated (the target event type). The expression result types
of any expressions in the sel ect clause must also be compatible with the property types of the
target event type.

If populating a POJO-based event type and the class provides a matching constructor, the
expression result types of expressions in the sel ect clause must be compatible with the
constructor parameters in the order listed by the constructor. The i nsert i nto clause column
names are not relevant in this case.

Consider the following example statement:

insert into com myconpany. NeweEnpl oyeeEvent
sel ect fnane as firstNanme, | nane as | ast Nane from HRSyst enmEvent

The above example specifies the fully-qualified class name of NewEnpl oyeeEvent . The engine
instantianes NewEnpl oyeeEvent for each result row and populates the fi r st Nanme and | ast Narme
properties of each instance from the result of sel ect clause expressions. The HRSyst enEvent in
the example is assumed to have | nane and f nanme properties, and either setter-methods and a
default constructor, or a matching constructor.

Note how the example uses the as-keyword to assign column names that match the property
names of the NewEnpl oyeeEvent target event. If the property names of the source and target
events are the same, the as-keyword is not required.

The next example is an alternate form and specifies property names within the i nsert into
clause instead. The example also assumes that NewEnpl oyeeEvent has been defined or imported
via configuration since it does not specify the event class package name:

i nsert into Newknpl oyeeEvent (firstNanme, |astNane)

34

Comparing Event Representations

sel ect fnanme, |name from HRSyst enEvent

Finally, this example populates HRSyst enEvent events. The example populates the value of a
t ype property where the event has the value 'NEW' and populates a new event object with the
value 'HIRED', copying the f name and | name property values to the new event object:

insert into HRSystenmEvent
sel ect fnanme, Iname, 'H RED as type from HRSystenEvent (type=" NEW)

The matching of the sel ect orinsert i nto-clause column names to target event type's property
names is case-sensitive. It is allowed to only populate a subset of all available columns in the
target event type. Wildcard (*) is also allowed and copies all fields of the events or multiple events
in ajoin.

For Java object events, your event class must provide setter-methods according to JavaBean
conventions or, alternatively, a matching constructor. If the event class provides setter methods
the class should also provide a default constructor taking no parameters. If the event class
provides a matching constructor there is no need for setter-methods. If your event class does not
have a default constructor and setter methods, or a matching constructor, your application may
configure a factory method via Conf i gur ati onEvent TypelLegacy.

The engine follows Java standards in terms of widening, performing widening automatically in
cases where widening type conversion is allowed without loss of precision, for both boxed and
primitive types and including Biginteger and BigDecimal.

When inserting array-typed properties into a Java, Map-type or Object-array underlying event the
event definition should declare the target property as an array.

Please note the following limitations:

« Event types that utilize XML or g. w3c. dom Node underlying event objects cannot be target of
aninsert into clause.

2.13. Comparing Event Representations

Each of the event representations of Java object, Map and XML document has advantages and
disadvantages that are summarized in the table below:

35

Chapter 2. Event Representations

Table 2.6. Comparing Event Representations

Java Object
(POJO/Bean or

other)

Map

Object-array

XML Document

Performance Good Good Very Good Not comparable
and depending
on use of XPath

Memory Use Small Medium Small Depends on
DOM and XPath
implementation
used, can be
large

Call Method on| Yes Yes, if contains Yes, if contains No

Event Object(s) Object(s)

Nested, Indexed, | Yes Yes Yes Yes

Mapped and

Dynamic

Properties

Course-grained | Yes Yes Yes Yes

event syntax

Insert-into that | Yes Yes Yes No

Representation

Runtime Type Reloadclass, yes | Yes Yes Yes

Change

Create-schema | Yes Yes Yes No, runtime and

Syntax static
configuration

Object is Self-| Yes Yes No Yes

Descriptive

Supertypes Multiple Multiple Single No

36

Chapter 3.

Chapter 3. Processing Model

3.1. Introduction

The Esper processing model is continuous: Update listeners and/or subscribers to statements
receive updated data as soon as the engine processes events for that statement, according to the
statement's choice of event streams, views, filters and output rates.

As outlined in Chapter 14, APl Reference the interface for listeners s
com espertech. esper.client. UpdateLi stener. Implementations must provide a single
updat e method that the engine invokes when results become available:

(Updatel istener \

update(EvantBean]] newEvents,
EventBean[] aldEvents)

A second, strongly-typed and native, highly-performant method of result delivery is provided: A
subscriber object is a direct binding of query results to a Java object. The object, a POJO, receives
statement results via method invocation. The subscriber class need not implement an interface
or extend a superclass. Please see Section 14.3.3, “Setting a Subscriber Object”.

The engine provides statement results to update listeners by placing results in
com espertech. esper. client. Event Bean instances. A typical listener implementation queries
the Event Bean instances via getter methods to obtain the statement-generated results.

(EventBean w

get{String propertyName) : Object
getUnderlying) : Object

getEventType() : EventType

The get method on the Event Bean interface can be used to retrieve result columns by name. The
property name supplied to the get method can also be used to query nested, indexed or array
properties of object graphs as discussed in more detail in Chapter 2, Event Representations and
Section 14.6, “Event and Event Type”

The get Under | yi ng method on the Event Bean interface allows update listeners to obtain the
underlying event object. For wildcard selects, the underlying event is the event object that was
sent into the engine via the sendEvent method. For joins and select clauses with expressions,
the underlying object implements j ava. uti | . Map.

3.2. Insert Stream

In this section we look at the output of a very simple EPL statement. The statement selects an
event stream without using a data window and without applying any filtering, as follows:

37

Chapter 3. Processing Model

select * from Wt hdrawal

This statement selects all Wt hdr awal events. Every time the engine processes an event of type
W t hdr awal or any sub-type of W t hdr awal , it invokes all update listeners, handing the new event
to each of the statement's listeners.

The term insert stream denotes the new events arriving, and entering a data window or
aggregation. The insert stream in this example is the stream of arriving Withdrawal events, and
is posted to listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. The number in
parenthesis is the withdrawal amount, an event property that is used in the examples that discuss
filtering.

UpdateListener

Incoming Events New Events Old Events
| |
W1(500) —m Wy | |
| |
| |
W3(100) —= W2 | |
| |
| |
W4(200) ——m W : :
| |
Wa(50) ——m= Wa | |
| |
| |
Ws(150) ——t Ws : :
| |
We(300) — Ws | |
| |

Time

Figure 3.1. Output example for a simple statement

The example statement above results in only new events and no old events posted by the engine
to the statement's listeners.

3.3. Insert and Remove Stream

A length window instructs the engine to only keep the last N events for a stream. The next
statement applies a length window onto the Withdrawal event stream. The statement serves to
illustrate the concept of data window and events entering and leaving a data window:

38

Insert and Remove Stream

select * from Wthdrawal . w n: | ength(5)

The size of this statement's length window is five events. The engine enters all arriving Withdrawal
events into the length window. When the length window is full, the oldest Withdrawal event is
pushed out the window. The engine indicates to listeners all events entering the window as new
events, and all events leaving the window as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes events
leaving a data window, or changing aggregation values. In this example, the remove stream is
the stream of Withdrawal events that leave the length window, and such events are posted to
listeners as old events.

The next diagram illustrates how the length window contents change as events arrive and shows
the events posted to an update listener.

Incoming Events Length Window — 5 Events New Events Old Events

| |

W1(500) ——m Wi | |
| |

| |

W2(100) —pu Wa | |
| |

| |

W(200) — W | |
| |

| |

Wa(50) —pm Wy | |

| |

| |

Ws(150) —— w, | |
| |

| |

We(300) ——m Ws | Wy |
| |

Time

Figure 3.2. Output example for a length window

As before, all arriving events are posted as new events to listeners. In addition, when event W,
leaves the length window on arrival of event Wy, it is posted as an old event to listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time
period. A time window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds
pass, the time window actively pushes the oldest events out of the window resulting in one or
more old events posted to update listeners.

39

Chapter 3. Processing Model

Section 5.3.7, “Selecting insert and remove stream events”
Section 15.4.17, “Engine Settings

related to Stream Selection”

3.4. Filters and Where-clauses

Filters to event streams allow filtering events out of a given stream before events enter a data
window. The statement below shows a filter that selects Withdrawal events with an amount value
of 200 or more.

select * from Wt hdrawal (anbunt >=200) . wi n: | engt h(5)

With the filter, any Withdrawal events that have an amount of less then 200 do not enter the length
window and are therefore not passed to update listeners. Filters are discussed in more detail in
Section 5.4.1, “Filter-based Event Streams” and Section 6.4, “Filter Expressions In Patterns”.

; Filter: Length Window — 5 Events New Events Old Events
Incoming Events ;000 g | | |
Wi(E00) —) e |

| | |
| | |
W2(100) — gl >< | | |
| | |
| | |
W(200) — | | Ws | |
| | |
| | |
W(50) ——pf X I | |
| | |
| | |
We(150) — ol >< | | |
| | |
| | |
We(300) —pf | We | |
| | |
Time

Figure 3.3. Output example for a statement with an event stream filter

40

Filters and Where-clauses

The where-clause and having-clause in statements eliminate potential result rows at a later stage
in processing, after events have been processed into a statement's data window or other views.

The next statement applies a where-clause to Withdrawal events. Where-clauses are discussed
in more detail in Section 5.5, “Specifying Search Conditions: the Where Clause”.

select * from Wthdrawal .wi n:|ength(5) where amount >= 200

The where-clause applies to both new events and old events. As the diagram below shows,
arriving events enter the window however only events that pass the where-clause are handed to
update listeners. Also, as events leave the data window, only those events that pass the conditions
in the where-clause are posted to listeners as old events.

Updatel istener

Filter:
Incoming Events Length Window — 5 Events Amount==200 New Events Old Events
|
Wi(500) —— | W,
|
|
wil100) — X |
|
|
W3(200) — : Wa
|
Waf50) — ol >< |
|
|
Wi(150) —)4 |
|
|
Wp(300) ——pm | We W
|

Time

Figure 3.4. Output example for a statement with where-clause

The where-clause can contain complex conditions while event stream filters are more restrictive
in the type of filters that can be specified. The next statement's where-clause applies the cei |
function of the j ava. | ang. Mat h Java library class in the where clause. The insert-into clause
makes the results of the first statement available to the second statement:

insert into Wthdrawal Filtered select * from Wthdrawal where Mth. ceil (anbunt)
>= 200

41

Chapter 3. Processing Model

select * fromWthdrawal Filtered

3.5. Time Windows

In this section we explain the output model of statements employing a time window view and a
time batch view.

3.5.1. Time Window

A time window is a moving window extending to the specified time interval into the past based on
the system time. Time windows enable us to limit the number of events considered by a query,
as do length windows.

As a practical example, consider the need to determine all accounts where the average withdrawal
amount per account for the last 4 seconds of withdrawals is greater then 1000. The statement to
solve this problem is shown below.

sel ect account, avg(anount)
fromWthdrawal . win:tine(4 sec)
group by account

havi ng amount > 1000

The next diagram serves to illustrate the functioning of a time window. For the diagram, we assume
a query that simply selects the event itself and does not group or filter events.

select * fromWthdrawal .win:time(4 sec)

The diagram starts at a given time t and displays the contents of the time window att + 4 and
t + 5 seconds and so on.

42

Time Batch

UpdateListener

Time Window — 4 seconds

Incoming Events New Events Old Events
Att+d A 1+5 ALHHBS AL+
I

(\ | |
e | |
() | |
2 | |
| |
wa (\ | |
B S | |
N | N R |

w, (e \) || [V
(\ | |
Wa Wa Wa W | |
A = | |
:G | |
e |

Wy ———-

= | |
| |
—r 20 — : W :
| |

Figure 3.5. Output example for a statement with a time window

The activity as illustrated by the diagram:

1. Attimet + 4 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

2. Attimet + 5 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

3. Attimet + 6.5 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

4. Attimet + 8 seconds event W leaves the time window. The engine reports the event as an
old event to update listeners.

3.5.2. Time Batch

The time batch view buffers events and releases them every specified time interval in one update.
Time windows control the evaluation of events, as does the length batch window.

The next diagram serves to illustrate the functioning of a time batch view. For the diagram, we
assume a simple query as below:

select * fromWthdrawal . wi n:time_batch(4 sec)

43

Chapter 3. Processing Model

The diagram starts at a given time t and displays the contents of the time window att + 4 and
t + 5 seconds and so on.

UpdateListener
Time Batch — 4 seconds

Incoming Events New Events Old Events
Att+1 Att+3 Att+d AtH+6.5 AL+

Bl

'
R

+2

= || e

§E

/—\ (——-\ W and Wa

t+5
1+6

1+7

+a A A A J
- — W, and Wa

m W3

Figure 3.6. Output example for a statement with a time batch view

The activity as illustrated by the diagram:

1. Attimet + 1 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

2. Attimet + 3 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

3. Attimet + 4 seconds the engine processes the batched events and a starts a new batch.
The engine reports events W and W to update listeners.

4. Attimet + 6.5 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

5. Attimet + 8 seconds the engine processes the batched events and a starts a new batch.
The engine reports the event W as new data to update listeners. The engine reports the events
W and W as old data (prior batch) to update listeners.

3.6. Batch Windows

The built-in data windows that act on batches of events are the win:tinme_batch and the
wi n: | engt h_bat ch views, among others. The wi n:ti me_bat ch data window collects events

44

Aggregation and Grouping

arriving during a given time interval and posts collected events as a batch to listeners at the end
of the time interval. The wi n: | engt h_bat ch data window collects a given number of events and
posts collected events as a batch to listeners when the given number of events has collected.

Related to batch data windows is output rate limiting. While batch data windows retain events the
out put clause offered by output rate limiting can control or stabilize the rate at which events are
output, see Section 5.7, “Stabilizing and Controlling Output: the Output Clause”.

Let's look at how a time batch window may be used:
sel ect account, ampunt from Wthdrawal . wi n:tine_batch(1 sec)

The above statement collects events arriving during a one-second interval, at the end of which
the engine posts the collected events as new events (insert stream) to each listener. The engine
posts the events collected during the prior batch as old events (remove stream). The engine starts
posting events to listeners one second after it receives the first event and thereon.

For statements containing aggregation functions and/or a group by clause, the engine posts
consolidated aggregation results for an event batch. For example, consider the following
statement:

sel ect sun{anount) as mysum from Wthdrawal . win:time_batch(1l sec)

Note that output rate limiting also generates batches of events following the output model as
discussed here.

3.7. Aggregation and Grouping

3.7.1. Insert and Remove Stream

Statements that aggregate events via aggregation functions also post remove stream events as
aggregated values change.

Consider the following statement that alerts when 2 Withdrawal events have been received:
sel ect count(*) as nycount from Wthdrawal having count(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update
listeners. The value of the "mycount" property on that new event is 2. Additionally, when the engine
encounters the third Withdrawal event, it posts an old event to update listeners containing the
prior value of the count, if specifing the r st r eamkeyword in the select clause to select the remove
stream. The value of the "mycount" property on that old event is also 2.

45

Chapter 3. Processing Model

Note the statement above does not specify a data window and thereby counts all arriving events
since statement start. The statement above retains no events and its memory allocation is only
the aggregation state, i.e. a single long value to represent count (*) .

Thei st r eamor r st r eamkeyword can be used to eliminate either new events or old events posted
to listeners. The next statement uses the i st r eamkeyword causing the engine to call the listener
only once when the second Withdrawal event is received:

sel ect istream count(*) as nycount from Wthdrawal having count(*) = 2

3.7.2. Output for Aggregation and Group-By

Following SQL (Standard Query Language) standards for queries against relational databases,
the presence or absence of aggregation functions and the presence or absence of the gr oup by
clause dictates the number of rows posted by the engine to listeners. The next sections outline
the output model for batched events under aggregation and grouping. The examples also apply to
data windows that don't batch events and post results continously as events arrive or leave data
windows. The examples also apply to patterns providing events when a complete pattern matches.

In summary, as in SQL, if your query only selects aggregation values, the engine provides one row
of aggregated values. It provides that row every time the aggregation is updated (insert stream),
which is when events arrive or a batch of events gets processed, and when the events leave a data
window or a new batch of events arrives. The remove stream then consists of prior aggregation
values.

Also as in SQL, if your query selects non-aggregated values along with aggregation values in
the select clause, the engine provides a row per event. The insert stream then consists of the
aggregation values at the time the event arrives, while the remove stream is the aggregation value
at the time the event leaves a data window, if any is defined in your query.

The documentation provides output examples for query types in Appendix A, Output Reference
and Samples, and the next sections outlines each query type.

3.7.2.1. Un-aggregated and Un-grouped

An example statement for the un-aggregated and un-grouped case is as follows:
select * fromWthdrawal .w n:tine_batch(1 sec)

At the end of a time interval, the engine posts to listeners one row for each event arriving during
the time interval.

The appendix provides a complete example including input and output events over time at
Section A.2, “Output for Un-aggregated and Un-grouped Queries”

46

Output for Aggregation and Group-By

3.7.2.2. Fully Aggregated and Un-grouped

If your statement only selects aggregation values and does not group, your statement may look
as the example below:

sel ect sun(anount)
fromWthdrawal . win:tine_batch(1l sec)

At the end of a time interval, the engine posts to listeners a single row indicating the aggregation
result. The aggregation result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at
Section A.3, “Output for Fully-aggregated and Un-grouped Queries”

3.7.2.3. Aggregated and Un-Grouped

If your statement selects non-aggregated properties and aggregation values, and does not group,
your statement may be similar to this statement:

sel ect account, sum(anount)
fromWthdrawal . win:tine_batch(1l sec)

At the end of a time interval, the engine posts to listeners one row per event. The aggregation
result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at
Section A.4, “Output for Aggregated and Un-grouped Queries”

3.7.2.4. Fully Aggregated and Grouped

If your statement selects aggregation values and all non-aggregated properties in the sel ect
clause are listed in the gr oup by clause, then your statement may look similar to this example:

sel ect account, sun{anount)
fromWthdrawal . win:tine_batch(1l sec)
group by account

At the end of a time interval, the engine posts to listeners one row per unique account number.
The aggregation result aggregates per unique account.

The appendix provides a complete example including input and output events over time at
Section A.5, “Output for Fully-aggregated and Grouped Queries”

47

Chapter 3. Processing Model

3.7.2.5. Aggregated and Grouped

If your statement selects non-aggregated properties and aggregation values, and groups only
some properties using the group by clause, your statement may look as below:

sel ect account, accountName, sumanount)
fromWthdrawal . win:tine_batch(1l sec)
group by account

At the end of a time interval, the engine posts to listeners one row per event. The aggregation
result aggregates per unique account.

The appendix provides a complete example including input and output events over time at
Section A.6, “Output for Aggregated and Grouped Queries”

3.8. Event Visibility and Current Time

An event sent by your application or generated by statements is visible to all other statements in the
same engine instance. Similarly, current time (the time horizon) moves forward for all statements
in the same engine instance. Please see the Chapter 14, API Reference chapter for how to send
events and how time moves forward through system time or via simulated time, and the possible
threading models.

Within an Esper engine instance you can additionally control event visibility and current time on a
statement level, under the term isolated service as described in Section 14.10, “Service Isolation”.

An isolated service provides a dedicated execution environment for one or more statements.
Events sent to an isolated service are visible only within that isolated service. In the isolated
service you can move time forward at the pace and resolution desired without impacting other
statements that reside in the engine runtime or other isolated services. You can move statements
between the engine and an isolated service.

48

Chapter 4.

Chapter 4. Context and Context
Partitions

4.1. Introduction

This section discusses the notion of context and its role in the Esper event processing language
(EPL).

When you look up the word context in a dictionary, you may find: Context is the set of
circumstances or facts that surround a particular event, situation, etc..

Context-dependent event processing occurs frequently: For example, consider a requirement that
monitors banking transactions. For different customers your analysis considers customer-specific
aggregations, patterns or data windows. In this example the context of detection is the customer.
For a given customer you may want to analyze the banking transactions of that customer by using
aggregations, data windows, patterns including other EPL constructs.

In a second example, consider traffic monitoring to detect speed violations. Assume the speed
limit must be enforced only between 9 am and 5 pm. The context of detection is of temporal nature.

A context takes a cloud of events and classifies them into one or more sets. These sets are called
context partitions. An event processing operation that is associated with a context operates on
each of these context partitions independently. (Credit: Taken from the book "Event Processing
in Action" by Opher Etzion and Peter Niblett.)

A context is a declaration of dimension and may thus result in one or more context partitions.
In the banking transaction example there the context dimension is the customer and a context
partition exists per customer. In the traffic monitoring example there is a single context partition
that exists only between 9 am and 5 pm and does not exist outside of that daily time period.

In an event processing glossary you may find the term event processing agent. An EPL statement
is an event processing agent. An alternative term for context partition is event processing agent
instance.

Esper EPL allows you to declare contexts explicitly, offering the following benefits:

1. Context can apply to multiple statements thereby eliminating the need to duplicate context
dimensional information between statements.

2. Context partitions can be temporally overlapping.

3. Context partitions provide a fine-grained lifecycle that is independent of the lifecycle of
statement lifecycle.

4. Fine-grained lock granularity: The engine locks on the level of context partitions thereby
allowing very high concurrency, with a maximum (theoretical) degree of parallelism at 2°31-1

49

Chapter 4. Context and Contex...

(2,147,483,647) parallel threads working to process a single EPL statement under a hash
segmented context.

5. EPL can become easier to read as common predicate expressions can be factored out into
a context.

6. You may specify a nested context that is composed from two or more contexts. In particular a
temporal context type is frequently used in combination with a segmentation-oriented context.

7. Using contexts your application can aggregate events over time periods (overlapping or non-
overlapping) without retaining any events in memory.

8. Using contexts your application can coordinate time boundaries for multiple statements.

Esper EPL allows you to declare a context explicitly via the creat e cont ext syntax introduced
below.

After you have declared a context, one or more EPL statements can refer to that context by
specifying cont ext name. When an EPL statement refers to a context, all EPL-statement related
state such as aggregations, patterns or data windows etc. exists once per context partition.

If an EPL statement does not declare a context, it implicitly has a single context partition. The
single context partition lives as long as the EPL statement is started and ends when the EPL
statement is stopped.

Variables are global state and are visible across context partitions. The same is true for event
types and external data.

For more information on locking and threading please see Section 14.7, “Engine Threading and
Concurrency”. For performance related information please refer to Chapter 20, Performance.

4.2. Context Declaration

The create context statement declares a context by specifying a context name and context
dimension information.

A context declaration by itself does not consume any resources or perform any logic until your
application starts at least one statement that refers to that context. Until then the context is inactive
and not in use.

When your application creates or starts the first statement that refers to the context, the engine
activates the context.

As soon as your application stops or destroys all statements that refer to the context, the context
becomes inactive again.

When your application stops or destroys a statement that refers to a context, the context partitions
associated to that statement also end (context partitions associated to other started statements
live on).

50

Context-Provided Properties

When your application stops or destroys the statement that declared the context and does not
also stop or destroy any statements that refer to the context, the context partitions associated to
each such statement do not end.

When your application destroys the statement that declared the context and destroys all
statements that refer to that context then the engine removes the context declaration entirely.

The creat e cont ext statement posts no output events to listeners or subscribers and does not
return any rows when iterated.

4.2.1. Context-Provided Properties

Each of the context declarations makes available a set of built-in context properties as well as
initiating event or pattern properties, as applicable. You may select these context properties for
output or use them in any of the statement expressions.

Refer to built-in context properties as cont ext . property_name, wherein property _name refers to
the name of the built-in context property.

Refer to initiating event or pattern match event properties as
cont ext . stream_name.property_name, wherein stream_name refers to the name assigned to
the event or the tag name specified in a pattern and property_name refers to the name of the
initiating event or pattern match event property.

4.2.2. Keyed Segmented Context

This context assigns events to context partitions based on the values of one or more event
properties, using the value of these property(s) as a key that picks a unique context partition
directly. Each event thus belongs to exactly one context partition or zero context partitions if the
event does not match the optional filter predicate expression(s). Each context partition handles
exactly one set of key values.

The syntax for creating a keyed segmented context is as follows:

create context context_nane partition [by]
event _property [and event_property [and ...]] from stream def
[, event _property [...] from stream def]

[...

The context_name you assign to the context can be any identifier.

Following the context name is one or more lists of event properties and a stream definition for
each entry, separated by comma (,).

The event_property is the name(s) of the event properties that provide the value(s) to pick a unique
partition. Multiple event property names are separated by the and keyword.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions.

51

Chapter 4. Context and Contex...

You may list multiple event properties for each stream definition. You may list multiple stream
definitions. Please refer to usage guidelines below when specifying multiple event properties and/
or multiple stream definitions.

The next statement creates a context Segment edByCust oner that considers the value of the
cust | d property of the BankTxn event type to pick the context partition to assign events to:

create context SegnentedByCustoner partition by custld from BankTxn

The following statement refers to the context created as above to compute a total withdrawal
amount per account for each customer:

cont ext Segnent edByCust oner
sel ect custld, account, sun{anount) from BankTxn group by account

The following statement refers to the context created as above and detects a withdrawal of more
then 400 followed by a second withdrawal of more then 400 that occur within 10 minutes of the
first withdrawal, all for the same customer:

cont ext Segnent edByCust oner
select * frompattern [

every a=BankTxn(anount > 400) -> b=BankTxn(anount > 400) where tiner:w thin(10
m nut es)

]

The EPL statement that refers to a keyed segmented context must have at least one filter
expression, at any place within the EPL statement that looks for events of any of the event types
listed in the context declaration.

For example, the following is not valid:

/'l Neither Logi nEvent nor LogoutEvent are listed in the context declaration
cont ext Segnent edByCust oner

select * frompattern [every a=Logi nEvent -> b=Logout Event where tiner:wthin(10
m nut es)]

4.2.2.1. Multiple Stream Definitions

If the context declaration lists multiple streams, each event type must be unrelated: You may not
list the same event type twice and you may not list a sub- or super-type of any event type already
listed.

52

Keyed Segmented Context

The following is not a valid declaration since the BankTxn event type is listed twice:

/1l Not valid
create context SegnentedByCustoner partition by custld from BankTxn, account
f rom BankTxn

If the context declaration lists multiple streams, the number of event properties provided for each
event type must also be the same. The value type returned by event properties of each event
type must match within the respective position it is listed in, i.e. the first property listed for each
event type must have the same type, the second property listed for each event type must have
the same type, and so on.

The following is not a valid declaration since the customer id of BankTxn and login time of
Logi nEvent is not the same type:

/'l Invalid: Type m smatch between properties
create context SegmentedByCustomer partition by custld from BankTxn, | oginTinme
from Logi nEvent

The next statement creates a context Segnment edByCust oner that also considers Logi nEvent and

Logout Event :

create context Segnment edByCustoner partition by
custld from BankTxn, loginld from Logi nEvent, |oginld from Logout Event

As you may have noticed, the above example refers to | ogi nl d as the event property name for
Logi nEvent and Logout Event events. The assumption is that the | ogi nl d event property of the
login and logout events has the same type and carries the same exact value as the cust 1 d of
bank transaction events, thereby allowing all events of the three event types to apply to the same
customer-specific context partition.

4.2.2.2. Filters

You may add a filter expression to each of the event types listed. The engine applies the filter
expression to the EPL statement that refers to the context and to the same event type.

The next statement creates a context Segnent edByCust oner that does not consider login events

that indicate that the login failed.

create context SegnentedByCustoner partition by
custld from BankTxn, loginld from Logi nEvent (f ai |l ed=f al se)

53

Chapter 4. Context and Contex...

4.2.2.3. Multiple Properties Per Event Type

You may assign events to context partitions based on the values of two or more event properties.
The engine thus uses the combination of values of these properties to pick a context partition.

An example context declaration follows:
create context ByCustoner AndAccount partition by custld and account from BankTxn

The next statement refers to the context and computes a total withdrawal amount, per account
and customer:

cont ext ByCustonmer AndAccount sel ect custld, account, sun{anount) from BankTxn

As you can see, the above statement does not need to specify gr oup by clause to aggregate per
customer and account, since events of each unique combination of customer id and account are
assigned to separate context partitions.

4.2.2.4. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a keyed
segmented context:

Table 4.1. Keyed Segmented Context Properties

Name Description

name The string-type context name.

id The integer-type internal context id that the engine assigns to the context
partition.

keyl The event property value for the first key.

keyN The event property value for the Nth key.

Assume the keyed segmented context is declared as follows:

create context ByCustoner AndAccount partition by custld and account from BankTxn

You may, for example, select the context properties as follows:

cont ext ByCust omer AndAccount
sel ect context.nane, context.id, context.keyl, context.key2 from BankTxn

54

Hash Segmented Context

4.2.2.5. Examples of Joins

This section discusses the impact of contexts on joins to provide further samples of use and
deepen the understanding of context partitions.

Consider a context declared as follows:
create context ByCust partition by custld from BankTxn

The following statement matches, within the same customer id, the current event with the last 30
minutes of events to determine those events that match amounts:

cont ext ByCust
select * from BankTxn as t1 unidirectional, BankTxn.wi n:tine(30) t2
where t1.anpbunt = t 2. anmount

Note that the wher e-clause in the join above does not mention customer id. Since each BankTxn
applies to a specific context partition the join evaluates within that single context partition.

Consider the next statement that matches a security event with the last 30 minutes of transaction
events for each customer:

cont ext ByCust
select * from SecurityEvent as t1 unidirectional, BankTxn.w n:time(30) t2
where t1.customerName = t 2. custoner Nane

When a security event comes in, it applies to all context partitions and not any specific context
partition, since the Securi t yEvent event type is not part of the context declaration.

4.2.3. Hash Segmented Context

This context assigns events to context partitions based on result of a hash function and modulo
operation. Each event thus belongs to exactly one context partition or zero context partitions if the
event does not match the optional filter predicate expression(s). Each context partition handles
exactly one result of hash value modulo granularity.

The syntax for creating a hashed segmented context is as follows:

create context context_nanme coal esce [by]
hash_f unc_nane(hash_func_paran) from stream def
[, hash_func_nanme(hash_func_param) from stream def]

[...

granul arity granularity_val ue

55

Chapter 4. Context and Contex...

[preal | ocat €]

The context_name you assign to the context can be any identifier.

Following the context name is one or more lists of hash function name and parameters pairs and
a stream definition for each entry, separated by comma (,).

The hash_func_name can either be consi st ent _hash_crc32 or hash_code or a plug-in single-
row function. The hash_func_param is a list of parameter expressions.

« If you specify consi st ent _hash_cr c¢32 the engine computes a consistent hash code using the
CRC-32 algorithm.

« If you specify hash_code the engine uses the Java object hash code.

* If you specify the name of a plug-in single-row function your function must return an integer
value that is the hash code. You may use the wildcard (*) character among the parameters to
pass the underlying event to the single-row function.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions.

You may list multiple stream definitions. Please refer to usage guidelines below when specifying
multiple stream definitions.

The granul arity is required and is an integer number that defines the maximum number of
context partitions. The engine computes hash code modulo granularity hash(params) nod
granularity to determine the context partition. When you specify the hash_code function the engine
uses the object hash code and the computation is params.hashCode() %granularity.

Since the engine locks on the level of context partition to protect state, the granularity defines
the maximum degree of parallelism. For example, a granularity of 1024 means that 1024 context
partitions handle events and thus a maximum 1024 threads can process each assigned statement
concurrently.

The optional pr eal | ocat e keyword instructs the engine to allocate all context partitions at once
at the time a statement refers to the context. This is beneficial for performance as the engine
does not need to determine whether a context partition exists and dynamically allocate, but may
require more memory.

The next statement creates a context Segnent edByCust omer Hash that considers the CRC-32
hash code of the cust | d property of the BankTxn event type to pick the context partition to assign
events to, with up to 16 different context partitions that are preallocated:

create context Segnent edByCust oner Hash
coal esce by consistent_hash_crc32(custld) from BankTxn granularity 16
preal | ocate

56

Hash Segmented Context

The following statement refers to the context created as above to compute a total withdrawal
amount per account for each customer:

cont ext Segment edByCust oner Hash
sel ect custld, account, sun{amount) from BankTxn group by custld, account

Note that the statement above groups by cust | d: Since the events for different customer ids can
be assigned to the same context partition, it is necessary that the EPL statement also groups by
customer id.

The context declaration shown next assumes that the application provides a conput eHash single-
row function that accepts BankTxn as a parameter, wherein the result of this function must be an
integer value that returns the context partition id for each event:

create context MyHashCont ext
coal esce by conput eHash(*) from BankTxn granularity 16 preall ocate

The EPL statement that refers to a hash segmented context must have at least one filter
expression, at any place within the EPL statement that looks for events of any of the event types
listed in the context declaration.

For example, the following is not valid:

/1 Neither Logi nEvent nor LogoutEvent are listed in the context declaration

cont ext Segment edByCust oner Hash

select * frompattern [every a=Logi nEvent -> b=Logout Event where timer:w thin(10
m nut es) |

4.2.3.1. Multiple Stream Definitions

If the context declaration lists multiple streams, each event type must be unrelated: You may not
list the same event type twice and you may not list a sub- or super-type of any event type already
listed.

If the context declaration lists multiple streams, the hash code function should return the same
hash code for the related keys of all streams.

The next statement creates a context HashedByCust oner that also considers Logi nEvent and
Logout Event :

create context HashedByCustomer as coal esce
consi stent _hash_crc32(custld) from BankTxn,
consi stent _hash_crc32(1 ogi nld) from Logi nEvent,

57

Chapter 4. Context and Contex...

consi stent _hash_crc32(1 ogi nld) from Logout Event
granul arity 32 preallocate

4.2.3.2. Filters

You may add a filter expression to each of the event types listed. The engine applies the filter
expression to the EPL statement that refers to the context and to the same event type.

The next statement creates a context HashedByCust oner that does not consider login events

that indicate that the login failed.

create context HashedByCust oner
coal esce consi stent_hash_crc32(loginld) from Logi nEvent(failed = fal se)
granul arity 1024 preallocate

4.2.3.3. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a keyed
segmented context:

Table 4.2. Keyed Segmented Context Properties

Name Description

nane ‘ The string-type context name.
id The integer-type internal context id that the engine assigns to the context
partition.

Assume the hashed segmented context is declared as follows:

create context ByCustonerHash coal esce consistent_hash_crc32(custld) from
BankTxn granul arity 1024

You may, for example, select the context properties as follows:

cont ext ByCust omer Hash
sel ect context.nane, context.id from BankTxn

4.2.3.4. Performance Considerations

The hash_code function based on the Java object hash code is generally faster then the
CRC32 algorithm. The CRC32 algorithm, when used with a non-String parameter or with multiple

58

Category Segmented Context

parameters, requires the engine to serialize all expression results to a byte array to compute the
CRC32 hash code.

We recommend keeping the granularity small (1k and under) when using pr eal | ocat e.

When specifying a granularity greater then 65536 (64k) the engine switches to a Map-based
lookup of context partition state which can slow down statement processing.

4.2.4. Category Segmented Context

This context assigns events to context partitions based on the values of one or more event
properties, using a predicate expression(s) to define context partition membership. Each event
can thus belong to zero, one or many context partitions depending on the outcome of the predicate
expression(s).

The syntax for creating a category segmented context is as follows:

create context context_nane
group [by] group_expression as category_| abel
[, group [by] group_expression as category_| abel]

L.

from stream def

The context_name you assign to the context can be any identifier.

Following the context name is a list of groups separated by the gr oup keyword. The list of group
is followed by the f r omkeyword and a stream definition.

The group_expression is an expression that categorizes events. Each group expression must be
followed by the as keyword and a category label which can be any identifier.

Group expressions are predicate expression and must return a Boolean true or false when applied
to an event. For a given event, any number of the group expressions may return true thus
categories can be overlapping.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions.

The next statement creates a context Cat egor yBy Tenp that consider the value of the t enper at ure
property of the Sensor Event event type to pick context partitions to assign events to:

create context CategoryByTenp
group tenp < 65 as cold,
group tenp between 65 and 85 as nornal,
group tenp > 85 as | arge
from Sensor Event

59

Chapter 4. Context and Contex...

The following statement simply counts, for each category, the number of events and outputs the
category label and count:

cont ext CategoryByTenp sel ect context.label, count(*) from SensorEvent

4.2.4.1. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a category
segmented context:

Table 4.3. Category Segmented Context Properties

Name Description

name The string-type context name.

id The integer-type internal context id that the engine assigns to the context
partition.

| abel The category label is the string identifier value after the as keyword that is
specified for each group.

You may, for example, select the context properties as follows:

cont ext Cat egoryByTenp
sel ect context.nane, context.id, context.|abel from Sensor Event

4.2.5. Non-Overlapping Context

You may declare a non-overlapping context that exists once or that repeats in a regular fashion
as controlled by start and end conditions. The number of context partitions is always either one
or zero: Context partitions do not overlap.

The syntax for creating a non-overlapping context is as follows:

create context context_name
start (@ow | start_condition)
end end_condition

The context_name you assign to the context can be any identifier.

Following the context name is the start keyword, either @ow or a start_condition, the end
keyword and an end_condition.

Both the start (if specified) and end condition can be an event filter, a pattern, a crontab or a time
period. The syntax of start and end conditions is described in Section 4.2.7, “Context Conditions”.

60

Non-Overlapping Context

Once the start condition occurs, the engine no longer observes the start condition and begins
observing the end condition. Once the end condition occurs, the engine observes the start
condition again. If you specified @ow instead of a start condition, the engine begins observing
the end condition instead.

If you specified an event filter as the start condition, then the event also counts towards the
statement(s) that refer to that context. If you specified a pattern as the start condition, then the
events that may constitute the pattern match can also count towards the statement(s) that refer
to the context provided that @ ncl usi ve and event tags are both specified (see below).

At the time of context activation when your application creates a statement that utilizes the context,
the engine checks whether the start and end condition are crontab expressions. The engine
evaluates the start and end crontab expressions and determines whether the current time is a time
between start and end. If the current time is between start and end times, the engine allocates
the context partition and waits for observing the end time. Otherwise the engine waits to observe
the start time and does not allocate a context partition.

The built-in context properties that are available are the same as described in Section 4.2.6.1,
“Built-In Context Properties”.

The next statement creates a context Ni neToFi ve that declares a daily time period that starts at
9 am and ends at 5 pm:

create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

The following statement outputs speed violations between 9 am and 5 pm, considering a speed
of 100 or greater as a violation:

context NineToFive select * from TrafficEvent(speed >= 100)

The example that follows demonstrates the use of an event filter as the start condition and a
pattern as the end condition.

The next statement creates a context Power Qut age that starts when the first Power Qut ageEvent

event arrives and that ends 5 seconds after a subsequent Power OnEvent arrives:

create context PowerCQutage start PowerQutageEvent end pattern [Power OnEvent -
> tinmer:interval (5)]

The following statement outputs the temperature during a power outage and for 5 seconds after
the power comes on:

61

Chapter 4. Context and Contex...

cont ext Power Qutage sel ect * from Tenper at ureEvent

To output only the last value when a context partition ends (terminates, expires), please read on
to the description of output rate limiting.

The next statement creates a context Ever y15M nut es that starts immediately and lasts for 15
minutes, repeatedly allocating a new context partition at the end of 15 minute intervals:

create context Everyl5M nutes start @ow end after 15 m nutes

create context MyCtx start MyStartEvent end MyEndEvent

context MyCtx select count(*) as cnt from M/EndEvent output when
term nat ed

4.2.6. Overlapping Context

This context initiates a new context partition when an initiating condition occurs, and terminates
one or more context partitions when the terminating condition occurs. The engine maintains
as many context partitions as the initiating condition fired, and discards context partitions that
terminate when the termination condition fires.

62

Overlapping Context

The syntax for creating an overlapping context is as follows:

create context context_nane
initiated [by] [@ow and] initiating_condition
terminated [by] term nating_condition

The context_name you assign to the context can be any identifier.

Following the context name is the initi at ed keyword, optionally followed by @ow and and
followed by the initiating condition. It follows the t er ni nat ed keyword followed by the terminating
condition.

Both the initiating and terminating condition can be an event filter, a pattern, a crontab or a time
period. The syntax of initiating and terminating conditions is described in Section 4.2.7, “Context
Conditions”.

If you specified @ow and before the initiating condition then the engine initiates a new context
partition immediately. The @owis only allowed in conjunction with initiation conditions that specify
a pattern, crontab or time period and not with event filters.

If you specified an event filter for the initiating condition, then the event that initiates a new context
partition also counts towards the statement(s) that refer to that context. If you specified a pattern
to initiate a new context partition, then the events that may constitute the pattern match can also
count towards the statement(s) that refer to the context provided that @ ncl usi ve and event tags
are both specified (see below).

The next statement creates a context &t xTr ai nEnt er that allocates a new context partition when
a train enters a station, and that terminates each context partition 5 minutes after the time the
context partition was allocated:

create context CtxTrainEnter
initiated by Trai nEnterEvent as te
term nated after 5 m nutes

The context declared above assigns the stream name t e. Thereby the initiating event's properties
can be accessed, for example, by specifying cont ext . te. trainl d.

The following statement detects when a train enters a station as indicated by a Tr ai nEnt er Event
but does not leave the station within 5 minutes as would be indicated by a matching
Trai nLeaveEvent :

context CtxTrainEnter
select t1 frompattern [
t1=Trai nEnterEvent -> tiner:interval (5 mn) and not Trai nLeaveEvent(trainld
= context.te.trainld)

63

Chapter 4. Context and Contex...

Since the Trai nEnt er Event that initiates a new context partition also counts towards the
statement, the first part of the pattern (the t 1=Tr ai nEnt er Event) is satisfied by that initiating
event.

The next statement creates a context Ct xEachM nut e that allocates a new context partition
immediately and every 1 minute, and that terminates each context partition 1 minute after the time
the context partition was allocated:

create context CtxEachM nute
initiated @ow and pattern [every tiner:interval (1 m nute)]
termnated after 1 m nutes

The statement above specifies @ow to instruct the engine to allocate a new context partition
immediately as well as when the pattern fires. Without the @ow the engine would only allocate a
new context partition when the pattern fires after 1 minute and every minute thereafter.

The following statement averages the temperature, starting anew every 1 minute and outputs the
aggregate value continuously:

context CtxEachM nute sel ect avg(tenp) from Sensor Event

To output only the last value when a context partition ends (terminates, expires), please read on
to the description of output rate limiting.

/ Note

e If you specified an event filter or pattern as the termination condition for a context
partition, and statements that refer to the context specify an event filter or pattern
that matches the same conditions, use @Priority to instruct the engine whether
the context management or the statement evaluation takes priority (see below for
configuring prioritized execution). See the note above for more information.

4.2.6.1. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a context:

Table 4.4. Context Properties

Description

nane The string-type context name.

64

Context Conditions

Name Description

start Time ‘ The start time of the context partition.

endTi me The end time of the context partition. This field is only available in the case that
it can be computed from the crontab or time period expression that is provided.

You may, for example, select the context properties as follows:

context Ni neToFi ve
sel ect context.nane, context.startTine, context.endTime from TrafficEvent(speed
>= 100)

The following statement looks for the next train leave event for the same train id and selects a
few of the context properties:

context CtxTrai nEnter
select *, context.te.trainld, context.id, context.nane
from Trai nLeaveEvent (trainld = context.te.trainld)

4.2.7. Context Conditions

Context start/initiating and end/terminating conditions are for use with overlapping and non-
overlapping contexts. Any combination of conditions may be specified.

4.2.7.1. Filter Context Condition

Use the syntax described here to define the stream that starts/initiates a context partition or that
ends/terminates a context partition.

The syntax is:

event _streamnane [(filter_criteria)] [as stream nane]

The event_stream_name is either the name of an event type or name of an event stream populated
by an insert into statement. The filter_criteria is optional and consists of a list of expressions
filtering the events of the event stream, within parenthesis after the event stream name.

Two examples are:
/'l A non-overl appi ng context that starts when MyStartEvent arrives and ends when

MyEndEvent arrives
create context MyContext start MyStartEvent end MyEndEvent

65

Chapter 4. Context and Contex...

/1 An overl appi ng context where each MyEvent with | evel greater zero
Il initiates a new context partition that term nates after 10 seconds
create context MyContext initiated M/Event (level > 0) terninated after 10 seconds

You may correlate the start/initiating and end/terminating streams by providing a stream name
following the as keyword, and by referring to that stream name in the filter criteria of the end
condition.

Two examples that correlate the start/initiating and end/terminating condition are:

/'l A non-overl appi ng context that starts when MyEvent arrives
/'l and ends when a matching MyEvent arrives (sane id)

create context M/Context

start MyEvent as nyevent

end MyEvent (i d=nyevent.id)

/1 An overlapping context where each MlInitEvent initiates a new context
partition

/'l that term nates when a matching MyTernEvent arrives

create context MyContext

initiated by Myl nitEvent as el

term nated by MyTernEvent (i d=el.id, |level <> el.level)

4.2.7.2. Pattern Context Condition

You can define a pattern that starts/initiates a context partition or that ends/terminates a context
partition.

The syntax is:

pattern [pattern_expression] [@nclusive]

The pattern_expression is a pattern at Chapter 6, EPL Reference: Patterns.

Specify @ ncl usi ve after the pattern to have those same events that constitute the pattern match
also count towards any statements that are associated to the context. You must also provide a
tag for each event in a pattern that should be included.

Examples are:

/1 A non-overlapping context that starts when either StartEventOne or
Start Event Two arrive
/1 and that ends after 5 seconds.

66

Context Conditions

/'l Here neither StartEventOne or StartEvent Two count towards any statenments
/1l that are referring to the context.
create context M/Context

start pattern [StartEvent One or StartEvent Two]

end after 5 seconds

/] Same as above.
/!l Here both StartEventOne or StartEvent Two do count towards any statenents
/'l that are referring to the context.
create context M/Context
start pattern [a=StartEventOne or b=Start Event Two] @ ncl usive
end after 5 seconds

/'l An over| appi ng context where each distinct Myl nitEvent initiates a new context
/1l and each context partition term nates after 20 seconds
/1l W use @nclusive to say that the same MylnitEvent that fires the pattern
/'l also applies to statements that are associated to the context.
create context MyContext
initiated by pattern [every-distinct(a.id, 20 sec) a=Myl nitEvent] @ncl usive
term nated after 20 sec

/1 An overl appi ng context where each pattern match initiates a new context

// and all context partitions term nate when MyTernEvent arrives.

/1l The MylnitEvent and MyO herEvent that trigger the pattern are thensel ves not
i ncl uded

/1 in any statenents that are associated to the context.

create context MyContext
initiated by pattern [every M/l nitEvent -> MyQt her Event where tiner:wthin(5)]
term nated by MyTernEvent

You may correlate the start and end streams by providing tags as part of the pattern, and by
referring to the tag name(s) in the filter criteria of the end condition.

An example that correlates the start and end condition is:

Il A non-overlapping context that starts when either StartEventOne or
Start Event Two arrive
// and that ends when either a matchi ng EndEvent One or EndEvent Two arrive
create context MyContext

start pattern [a=Start Event One or b=Start Event Two] @ ncl usi ve

end pattern [EndEvent One(id=a.id) or EndEvent Two(id=b.id)]

67

Chapter 4. Context and Contex...

4.2.7.3. Crontab Context Condition

Crontab expression are described in Section 6.6.2.2, “timer:at”.

Examples are:

/'l A non-overl appi ng context started daily between 9 amto 5 pm
// and not started outside of these hours:
create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, ¥*)

I/ An overl appi ng context where crontab initiates a new context every 1 mnute
/1 and each context partition term nates after 10 seconds:
create context MyContext initiated (*, *, *, *, *) termnated after 10 seconds

4.2.7.4. Time Period Context Condition

You may specify a time period that the engine observes before the condition fires. Time period
expressions are described in Section 5.2.1, “Specifying Time Periods”.

The syntax is:

after time_period_expression

Examples are:

/1 A non-overl appi ng context started after 10 seconds
/] that ends 1 minute after it starts and that again starts 10 seconds thereafter.
create context NonOverl aplOSecFor1M n start after 10 seconds end after 1 minute

/1 An overl apping context that starts a new context partition every 5 seconds
/1 and each context partition lasts 1 minute

create context Overl ap5SecForlMn initiated after 5 seconds termnated after 1
m nut e

4.3. Context Nesting

A nested context is a context that is composed from two or more contexts.

The syntax for creating a nested context is as follows:

create context context_nane
cont ext nested_context_nanme [as] nested_context_definition ,

68

Context Nesting

cont ext nested_context_nanme [as] nested_context_definition [, ...]

The context_name you assign to the context can be any identifier.

Following the context name is a comma-separated list of nested contexts. For each nested context
specify the cont ext keyword followed a nested context name and the nested context declaration.
Any of the context declarations as outlined in Section 4.2, “Context Declaration” are allowed for
nested contexts. The order of nested context declarations matters as outlined below.

The next statement creates a nested context Ni neToFi veSegnent ed that, between 9 am and 5
pm, allocates a new context partition for each customer id:

create context N neToFi veSegnent ed
context Ni neToFive start (0, 9, *, *, *) end (0, 17, *, *, *),
cont ext Segnent edByCustoner partition by custld from BankTxn

The following statement refers to the nested context to compute a total withdrawal amount per
account for each customer but only between 9 am and 5 pm:

cont ext Ni neToFi veSegment ed
sel ect custld, account, sun{anount) from BankTxn group by account

Esper implements nested contexts as a context tree: The context declared first controls the
lifecycle of the context(s) declared thereafter. Thereby, in the above example, outside of the
9am-to-5pm time the engine has ho memory and consumes no resources in relationship to bank
transactions or customer ids.

When combining segmented contexts, the set of context partitions for the nested context
effectively is the Cartesian product of the partition sets of the nested segmented contexts.

When combining temporal contexts with other contexts, since temporal contexts may overlap and
may terminate, it is important to understand that temporal contexts control the lifecycle of sub-
contexts (contexts declared thereafter). The order of declaration of contexts in a nested context
can thereby change resource usage and output result.

The next statement creates a context that allocates context partition only when a train enters a
station and then for each hash of the tag id of a passenger as indicated by PassengerScanEvent
events, and terminates all context partitions after 5 minutes:

create context CtxNestedTrainEnter
context InitCtx initiated by TrainEnterEvent as te terninated after 5 m nutes,
cont ext HashCt x coal esce by consi stent _hash_crc32(tagl d) from
Passenger ScanEvent
granul arity 16 preall ocate

69

Chapter 4. Context and Contex...

In the example above the engine does not start tracking PassengerScanEvent events or hash
codes or allocate context partitions until a TrainEnterEvent arrives.

4.3.1. Built-In Nested Context Properties

Context properties of all nested contexts are available for use. Specify
cont ext . nested_context_name. property _name or if nested context declaration provided stream
names or tags for patterns then cont ext . nested_context_name. stream_name. property_name.

For example, consider the Ct xNestedTrai nEnter context declared earlier. The following
statement selects a few of the context properties:

cont ext CtxNestedTrai nEnter
select context.lnitCtx.te.trainld, context.HashCx.id,
tagld, count(*) from Passenger ScanEvent group by tagld

In a second example, consider the Ni neToFi veSegnent ed context declared earlier. The following
statement selects a few of the context properties:

cont ext Ni neToFi veSegnent ed
sel ect context.N neToFive. startTine, cont ext . Segnent edByCust oner. keyl from
BankTxn

The following context properties are available in your EPL statement when it refers to a nested
context:

Table 4.5. Nested Context Properties

Name Description

name The string-type context name.
id The integer-type internal context id that the engine assigns to the context
partition.

This example selects the nested context name and context partition id:

cont ext Ni neToFi veSegnent ed sel ect context.nane, context.id from BankTxn

4.4. Partitioning Without Context Declaration

You do not need to declare a context to partition data windows, aggregation values or patterns
themselves individually. You may mix-and-match partitioning as needed.

The table below outlines other partitioning syntax supported by EPL:

70

Output When Context Partition Ends

Table 4.6. Partition in EPL without the use of Context Declaration

Partition Description Example

Type

Grouped Partitions at the level of dat

Data window, only applies to appender // Length window of 2 events per
Window data window(s). custorer

select * from

Syntax: st d: gr oupby(...)
BankTxn. st d: groupwi n(custld).w n: | ength(2)

Grouped Partitons at the level ¢

Aggregation aggregation, only applies to an Sel ect avg(price), w ndow(*)
aggregations from BankTxn group by custld

Syntax: group by

Pattern Partitions pattern subexpressions.
select * frompattern [

Syntax: every or every-di sti ncl every a=BankTxn -> BankTxn(custld
= a.custld)...]

Match- Partitions match-recogniz
Recognize patterns. select * from match_recogni ze
partition by custld

Syntax: partition by

Join and Partitions join and subqueries.
Subquery select * from ... where a.custld =

Syntax: where ... b.custld

4.5. Output When Context Partition Ends

You may use output rate limiting to trigger output when a context partition ends, as further
described in Section 5.7, “Stabilizing and Controlling Output: the Output Clause”.

Consider the fixed temporal context: A new context partition gets allocated at the designated start
time and the current context partition ends at the designated end time. To trigger output when the
context partition ends and before it gets removed, read on.

The same is true for the initiated temporal context: That context starts a new context partition when
trigger events arrive or when a pattern matches. Each context partition expires (ends, terminates)
after the specified time period passed. To trigger output at the time the context partition expires,
read on.

You may use the when t er nmi nat ed syntax with output rate limiting to trigger output when a context
partition ends. The following example demonstrates the idea by declaring an initiated temporal
context.

71

Chapter 4. Context and Contex...

The next statement creates a context Ct xEachM nut e that initiates a new context partition every
1 minute, and that expires each context partition after 5 minutes:

create context C xEachM nute
initiated by pattern [every tinmer:interval (1 nmin)]
termnated after 5 m nutes

The following statement computes an ongoing average temperature however only outputs the last
value of the average temperature after 5 minutes when a context partition ends:

context CtxEachM nute
sel ect context.id, avg(tenp) from SensorEvent output snapshot when terninated

The when terni nat ed syntax can be combined with other output rates.

The next example outputs every 1 minute and also when the context partition ends:

context C xEachM nute
sel ect context.id, avg(tenp) from SensorEvent output snapshot every 1 ninute
and when term nated

In the case that the end/terminating condition of the context partition is an event or pattern, the
context properties contain the information of the tagged events in the pattern or the single event
that ended/terminated the context partition.

For example, consider the following context wherein the engine initializes a new context partition
for each arriving MySt art Event event and that terminates a context partition when a matching
M/EndEvent arrives:

create context CtxSanple
initiated by M/Start Event as startevent
term nated by MyEndEvent (id = startevent.id) as endevent

The following statement outputs the id property of the initiating and terminating event and only
outputs when a context partition ends:

context CtxSanple
sel ect context.startevent.id, context.endevent.id, count(*) from M/Event
out put snapshot when terninated

72

Context and Named Window

You may in addition specify a termination expression that the engine evaluates when a context
partition terminates. Only when the terminaton expression evaluates to true does output occur.
The expression may refer to built-in properties as described in Section 5.7.1.1, “Controlling Output
Using an Expression”. The syntax is as follows:

...output when term nated and terni nati on_expression

The next example statement outputs when a context partition ends but only if at least two events
are available for output:

context CtxEachM nute
sel ect * from Sensor Event out put when terminated and count _i nsert >= 2

The final example EPL outputs when a context partition ends and sets the variable nyvar to a
new value:

context CtxEachM nute
sel ect * from Sensor Event out put when term nated then set myvar=3

4.6. Context and Named Window

Named windows are globally-visible data window that may be referred to by multiple statements.
You may refer to named windows in statements that declare a context without any special
considerations.

You may also create a named window and declare a context for the named window. In this case
the engine in effect manages separate named windows, one for each context partition. Limitations
apply in this case that we discuss herein.

For example, consider the 9 am to 5 pm fixed temoral context as shown earlier:

create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

You may create a hamed window that only exists between 9 am and 5 pm:

context N neToFive create w ndow SpeedingEventslHour.win:tine(30 mnmin) as
Traf fi cEvent

You can insert into the named window:

73

Chapter 4. Context and Contex...

insert into Speedi ngEvent slHour select * from Traffi cEvent (speed > 100)

Any on-merge, on-select, on-update and on-delete statements must however declare the same
context.

The following is not a valid statement as it does not declare the same context that was used to
declare the named window:

/1 You must declare the sane context for on-trigger statenents
on Truncat eEvent del ete from Speedi ngEvent s1Hour

The following is valid:
context N neToFive on TruncateEvent del ete from Speedi ngEvent s1Hour

For context declarations that require specifying event types, such as the hash segmented context
and keyed segmented context, please provide the named window underlying event type.

The following sample EPL statements define a type for the named window, declare a context and
associate the named window to the context:

create schema ScoreCycle (userld string, keyword string, productld string, score
| ong)

create context HashByUserCtx as
coal esce by consistent_hash_crc32(userld) from ScoreCycle granularity 64

context HashByUserCtx create w ndow ScoreCycleW ndow. std: uni que(productld,
keyword) as ScoreCycle

4.7. Operations on Specific Context Partitions

Selecting specific context partitions and interrogating context partitions is useful for:

1. Iterating a specific context partition or a specific set of context partitions. Iterating a statement
is described in Section 14.3.5, “Using Iterators”.

74

Operations on Specific Context Partitions

2. Executing an on-demand (fire-and-forget) query against specific context partition(s). On-
demand queries are described in Section 14.5, “On-Demand Fire-And-Forget Query
Execution”.

Esper provides APIs to identify, filter and select context partitions for statement iteration and on-
demand queries. The APIs are described in detail at Section 14.19, “Context Partition Selection”.

For statement iteration, your application can provide context selector objects to the iterate
and saf el t er at e methods on EPSt at ement . If your code does not provide context selectors the
iteration considers all context partitions. At the time of iteration, the engine obtains the current set
of context partitions and iterates each independently. If your statement has an order-by clause,
the order-by clause orders within the context partition and does not order across context partitions.

For on-demand queries, your application can provide context selector objects to the
execut eQuer y method on EPRunt i me and to the execut e method on EPOnDenmandPr epar edQuery.
If your code does not provide context selectors the on-demand query considers all context
partitions. At the time of on-demand query execution, the engine obtains the current set of context
partitions and queries each independently. If the on-demand query has an order-by clause, the
order-by clause orders within the context partition and does not order across context partitions.

75

76

Chapter 5.

Chapter 5. EPL Reference: Clauses

5.1. EPL Introduction

The Event Processing Language (EPL) is a SQL-like language with SELECT, FROM, WHERE, GROUP
BY, HAVI NG and ORDER BY clauses. Streams replace tables as the source of data with events
replacing rows as the basic unit of data. Since events are composed of data, the SQL concepts of
correlation through joins, filtering and aggregation through grouping can be effectively leveraged.

The | NSERT | NTO clause is recast as a means of forwarding events to other streams for further
downstream processing. External data accessible through JDBC may be queried and joined with
the stream data. Additional clauses such as the PATTERN and OQUTPUT clauses are also available
to provide the missing SQL language constructs specific to event processing.

The purpose of the UPDATE clause is to update event properties. Update takes place before an
event applies to any selecting statements or pattern statements.

EPL statements are used to derive and aggregate information from one or more streams of events,
and to join or merge event streams. This section outlines EPL syntax. It also outlines the built-in
views, which are the building blocks for deriving and aggregating information from event streams.

EPL statements contain definitions of one or more views. Similar to tables in a SQL statement,
views define the data available for querying and filtering. Some views represent windows over
a stream of events. Other views derive statistics from event properties, group events or handle
unigue event property values. Views can be staggered onto each other to build a chain of views.
The Esper engine makes sure that views are reused among EPL statements for efficiency.

The built-in set of views is:

1. Data window views: win:length, win:length batch, win:time, wn:tinme_batch,
win:time_length_batch, wn:time_accum w n:ext_timed, wn:ext_timed_batch,
ext:sort, ext:rank, ext:time_order, std:unique, std:groupwin, std:lastevent,
std:firstevent,std:firstunique,win:firstlength,win:firsttime.

2. Views that derive statistics: std:size, stat:uni, stat:linest, stat:correl,

st at: wei ght ed_avg.

EPL provides the concept of named window. Named windows are data windows that can be
inserted-into and deleted-from by one or more statements, and that can queried by one or more
statements. Named windows have a global character, being visible and shared across an engine
instance beyond a single statement. Use the CREATE W NDOWCclause to create named windows.
Use the ON MERGE clause to atomically merge events into named window state, the | NSERT | NTO
clause to insert data into a hamed window, the ON DELETE clause to remove events from a named
window, the ON UPDATE clause to update events held by a nhamed window and the ON SELECT
clause to perform a query triggered by a pattern or arriving event on a named window. Finally, the
name of the named window can occur in a statement's FROMclause to query a named window or
include the named window in a join or subquery.

77

Chapter 5. EPL Reference: Clauses

EPL allows execution of on-demand (fire-and-forget, non-continuous, triggered by API) queries
against named windows through the runtime API. The query engine automatically indexes named
window data for fast access by ON SELECT/ UPDATE/ | NSERT/ DELETE without the need to create
an index explicitly. For fast on-demand query execution via runtime API use the CREATE | NDEX
syntax to create an explicit index.

Use CREATE SCHEMA to declare an event type.

Variables can come in handy to parameterize statements and change parameters on-the-fly and
in response to events. Variables can be used in an expression anywhere in a statement as well
as in the output clause for dynamic control of output rates.

Esper can be extended by plugging-in custom developed views and aggregation functions.

5.2. EPL Syntax

EPL queries are created and stored in the engine, and publish results to listeners as events are
received by the engine or timer events occur that match the criteria specified in the query. Events
can also be obtained from running EPL queries via the safelterator and iterator methods
that provide a pull-data API.

The sel ect clause in an EPL query specifies the event properties or events to retrieve. The f r om
clause in an EPL query specifies the event stream definitions and stream names to use. The wher e
clause in an EPL query specifies search conditions that specify which event or event combination
to search for. For example, the following statement returns the average price for IBM stock ticks
in the last 30 seconds.

sel ect avg(price) from StockTick.win:time(30 sec) where synbol =' | BM

EPL queries follow the below syntax. EPL queries can be simple queries or more complex queries.
A simple select contains only a sel ect clause and a single stream definition. Complex EPL
queries can be build that feature a more elaborate select list utilizing expressions, may join multiple
streams, may contain a wher e clause with search conditions and so on.

[annot at i ons]

[expressi on_decl arati ons]

[cont ext cont ext _nane]

[Insert into insert _into_def]

sel ect select |ist

fromstreamdef [as nane] [, stream.def [as nane]] [,...]
[where search_conditions]

[group by groupi ng_expression_|ist]
[havi ng groupi ng_search_condi ti ons]
[out put out put _specification]
[order by order by expression_list]
[limt numrows]

78

Specifying Time Periods

5.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter.
Time periods follow the syntax below.

tinme-period : [year-part] [nonth-part] [week-part] [day-part] [hour-part]
[mM nute-part] [seconds-part] [mlliseconds-part]

year-part : (nunber|variable_nane) ("years" | "year")

nmont h-part : (nunber|variabl e_name) ("nonths" | "nonth")

week-part : (nunber|variable_nane) ("weeks" | "week")

day-part : (nunber|variabl e_nane) ("days" | "day")

hour-part : (nunber|variable_nanme) ("hours" | "hour")

m nute-part : (nunber|variable nane) ("mnutes" | "mnute" | "mn")

seconds-part : (nunber|variabl e_nane) ("seconds" | "second" | "sec")

m | |iseconds-part : (nunber|variable _nanme) ("mlliseconds"” | "mllisecond"
"msec")

Some examples of time periods are:

10 seconds

10 mi nutes 30 seconds

20 sec 100 nsec

1 day 2 hours 20 m nutes 15 seconds 110 nilliseconds
0.5 m nutes

1 year

1 year 1 nonth

Variable names and substitution parameters '?' for prepared statements are also allowed as part
of a time period expression.

A unit in the month part is equivalent to 30 days.

5.2.2. Using Comments

Comments can appear anywhere in the EPL or pattern statement text where whitespace is
allowed. Comments can be written in two ways: slash-slash (// ...) comments and slash-star
(/* ... */)comments.

Slash-slash comments extend to the end of the line:

/1 This comment extends to the end of the line.
/1 Two forward slashes with no whitespace between them begin such coments

select * from M/Event // this is a slash-slash conment

79

Chapter 5. EPL Reference: Clauses

/1 Al of this text together is a valid statenent.

Slash-star comments can span multiple lines:

/* This comment is a "slash-star" conmment that spans nultiple lines.

* |t begins with the slash-star sequence with no space between the '/' and
'*' characters.

* By convention, subsequent |lines can begin with a star and are aligned, but
this is

* not required.

*/

select * from MEvent /* this also works */

Comments styles can also be mixed:

select fieldl, // first comment
/* second conment*/ field2
from MyEvent

5.2.3. Reserved Keywords

Certain words such as sel ect, del et e or set are reserved and may not be used as identifiers.
Please consult Appendix B, Reserved Keywords for the list of reserved keywords and permitted
keywords.

Names of built-in functions and certain auxiliary keywords are permitted as event property names
and in the rename syntax of the sel ect clause. For example, count is acceptable.

Consider the example below, which assumes that ' | ast' is an event property of MyEvent:

/1l valid
sel ect last, count(*) as count from MyEvent

This example shows an incorrect use of a reserved keyword:

[l invalid
sel ect insert from M/Event

EPL offers an escape syntax for reserved keywords: Event properties as well as event or stream
names may be escaped via the backwards apostrophe * (ASCII 96) character.

80

Escaping Strings

The next example queries an event type by name O der (a reserved keyword) that provides a
property by name i nsert (areserved keyword):

// valid
select “insert” from Oder”

5.2.4. Escaping Strings

You may surround string values by either double-quotes (") or single-quotes (*). When your string
constant in an EPL statement itself contains double quotes or single quotes, you must escape
the quotes.

Double and single quotes may be escaped by the backslash (\) character or by unicode notation.
Unicode 0027 is a single quote (*) and 0022 is a double quote ().

Escaping event property names is described in Section 2.2.1, “Escape Characters”.

The sample EPL below escapes the single quote in the string constant John' s, and filters out
order events where the name value matches:

select * from OrderEvent (nane='John\'s")
/1 ...equivalent to...
select * from O der Event (nane=' John\ u0027s")

The next EPL escapes the string constant Quote "Hel | 0":

select * from OrderEvent (description like "Quote \"Hello\"")
/'l is equivalent to
select * from Order Event (description |ike "Quote \u0022Hel | 0\ u0022")

When building an escape string via the API, escape the backslash, as shown in below code
snippet:

epServi ce. get EPAdmi ni strator().createEPL("select * from O der Event (name='John\
Vs
/1 ... and for double quotes...
epSer vi ce. get EPAdmi ni strator().createEPL("sel ect * from O der Event (
description like \"Quote \\\"Hello\\\"\")");

5.2.5. Data Types

81

Chapter 5. EPL Reference: Clauses

EPL honors all Java built-in primitive and boxed types, including j ava. mat h. Bi gl nt eger and
j ava. nat h. Bi gDeci nal .

EPL also follows Java standards in terms of widening, performing widening automatically in cases
where widening type conversion is allowed without loss of precision, for both boxed and primitive
types and including Bi gl nt eger and Bi gDeci mal :

. byte to short, int, long, float, double, Biginteger or BigDecimal
. short to int, long, float, or double, Biginteger or BigDecimal

. char to int, long, float, or double, Biginteger or BigDecimal

. int to long, float, or double, Biginteger or BigDecimal

. long to float or double, Biginteger or BigDecimal

. float to double or BigDecimal

. double to BigDecimal

N o 0o WN P

In cases where loss of precision is possible because of narrowing requirements, EPL compilation
outputs a compilation error.

EPL supports casting via the cast function.

EPL returns double-type values for division regardless of operand type. EPL can also be
configured to follow Java rules for integer arithmetic instead as described in Section 15.4.22,
“Engine Settings related to Expression Evaluation”.

Division by zero returns positive or negative infinity. Division by zero can be configured to return
null instead.

5.2.5.1. Data Type of Constants

An EPL constant is a humber or a character string that indicates a fixed value. Constants can
be used as expressions in many EPL statements, including variable assignment and case-when
statements. They can also be used as parameter values for many built-in objects and clauses.
Constants are also called literals.

EPL supports the standard SQL constant notation as well as Java data type literals.

The following are types of EPL constants:

Table 5.1. Types of EPL constants

Type ‘ Description Examples

string A single character to an unlimited number ¢
characters. Valid delimiters are the single quot: S€l ect "volume’ as fieldl,

() or double quote (*). "sleep" as field2,
"\u0041" as uni codeA

boolean A boolean value.
sel ect true as fieldil,

false as field2

82

Data Types

Type Description Examples

integer An integer value (4 byte). |

select 1 as fieldi,
-1 as field2,
le2 as field3

long A long value (8 byte). Use the "L" c

||||| (|OW€I‘C&S€ L) Suf-flx sel ect 1L as fi el dl,
1l as field2

double A double-precision 64-bit IEEE 754 floatin
point. select 1.67 as fieldil,

167e-2 as field2,
1.67d as field3

float A single-precision 32-bit IEEE 754 floating poin
Use the "f* suffix. select 1.2f as fieldil,
1.2F as field2

byte A 8-bit signed two's complement integer.
sel ect 0x10 as fieldl

EPL does not have a single-byte character data type for its literals. Single character literals are
treated as string.

Internal byte representation and boundary values of constants follow the Java standard.

5.2.5.2. Biginteger and BigDecimal

EPL automatically performs widening of numbers to Bi gl nt eger and Bi gDeci mal as required,
and employs the respective equal s, conpar eTo and arithmetic methods provided by Bi gl nt eger
and Bi gDeci nmal .

To explicitly create Bi gl nt eger and Bi gDeci mal constants in EPL, please use the cast syntax :
cast (value, Biglnteger).

Note that since Bi gDeci nal . val ueOf (1. 0) is not the same as Bi gDeci mal . val ueOf (1) (in
terms of equality through equal s), care should be taken towards the consistent use of scale.

When using aggregation functions for Bi gl nt eger and Bi gDeci mal values, please note these

limitations:

1. The nedi an, stddev and avedev aggregation functions operate on the double value of the
object and return a double value.
2. All other aggregation functions return Bi gDeci mal or Bi gl nt eger values (except count).

For Bi gDeci mal precision and rounding, please see Section 15.4.22.6, “Math Context”.

83

Chapter 5. EPL Reference: Clauses

5.2.6. Using Constants and Enum Types

This chapter is about Java language constants and enum types and their use in EPL expressions.

Java language constants are public static final fields in Java that may participate in expressions
of all kinds, as this example shows:

select * from M/Event where property = MyConstant C ass. Fl ELD VALUE
Event properties that are enumeration values can be compared by their enum type value:
select * from MyEvent where enunProp = EnunCl ass. ENUM VALUE 1

Event properties can also be passed to enum type functions or compared to an enum type method
result:

select * from MyEvent where soneval ue = EnunCl ass. ENUM VALUE_ 1. get SoneVal ue()
or EnuntCl ass. ENUM VALUE_2. anal yze(soneot her val ue)

Enum types have a val ueOf method that returns the enum type value:

select * from M/Event where enunProp = Enuntl ass. val ueX (' ENUM _VALUE 1')

If your application does not import, through configuration, the package that contains the
enumeration class, then it must also specify the package name of the class. Enum types that are
inner classes must be qualified with $ following Java conventions.

For example, the Color enum type as an inner class to MyEvent in package or g. nyorg can be
referenced as shown:

sel ect * from MyEvent (enunProp=org. nyorg. MyEvent $Col or. GREEN) . st d: fi rstevent ()

Instance methods may also be invoked on event instances by specifying a stream name, as shown
below:

sel ect myevent. conput eSonet hi ng() as result from MyEvent as nyevent

Chaining instance methods is supported as this example shows:

84

Annotation

sel ect myevent. get Comput er For (' books', 'novies').calculate() as result
from M/Event as nyevent

5.2.7. Annotation

An annotation is an addition made to information in a statement. Esper provides certain built-in
annotations for defining statement name, adding a statement description or for tagging statements
such as for managing statements or directing statement output. Other then the built-in annotations,
applications can provide their own annotation classes that the EPL compiler can populate.

An annotation is part of the statement text and precedes the EPL select or pattern statement.
Annotations are therefore part of the EPL grammar. The syntax for annotations follows the host
language (Java, .NET) annotation syntax:

@nnot ati on_nane [(annotati on_paraneters)]

An annotation consists of the annotation name and optional annotation parameters. The
annotation_name is the simple class name or fully-qualified class name of the annotation class.
The optional annotation_parameters are a list of key-value pairs following the syntax:

@nnot ati on_nane (attribute _name = attribute_val ue, [name=value, ...])

The attribute_name is an identifier that must match the attributes defined by the annotation class.
An attribute_value is a constant of any of the primitive types or string, an array, an enum type
value or another (nested) annotation. Null values are not allowed as annotation attribute values.
Enumeration values are supported in EPL statements and not support in statements created via
the cr eat ePat t er n method.

Use the get Annot at i ons method of EPSt at enent to obtain annotations provided via statement
text.

5.2.7.1. Application-Provided Annotations

Your application may provide its own annotation classes. The engine detects and populates
annotation instances for application annotation classes.

To enable the engine to recognize application annotation classes, your annotation name must
include the package name (i.e. be fully-qualified) or your engine configuration must import the
annotation class or package via the configuration API.

For example, assume that your application defines an annotation in its application code as follows:

public @nterface Processhonitor {
String processNane();
bool ean i sLongRunni ng default fal se;

85

Chapter 5. EPL Reference: Clauses

int[] subProcesslds;

Shown next is an EPL statement text that utilizes the annotation class defined earlier:

@r ocessMoni t or (processNanme=' Credi t Approval ',
i sLongRunni ng=true, subProcesslds = {1, 2, 3})

sel ect count(*) from ProcessEvent (processlid in (1, 2, 3).w n:tine(30)
Above example assumes the ProcessMonitor annotation class is imported via configuration

XML or API. Here is an example API call to import annotations provided by a package

com myconpany. nyannot at i ons:

epSer vi ce. get EPAdmi ni strat or (). get Configuration().addl nport("com myconpany. myannot ati ons.*");

5.2.7.2. Built-In Annotations

The list of built-in EPL annotations is:

Table 5.2. Built-In EPL Annotations

Purpose and Attributes Example

Name Provides a statement name. Attribute
are: @anme(" MySt at enent Nane")

value : Statement name.

Description Provides a statement textual descriptior
Attributes are: @escription("Place
st at enment
value : Statement description. description here.")
Tag For tagging a statement with additione
information. Attributes are: @ag(name="MTagNanme",

val ue="My/TagVal ue")
name : Tag name.

value : Tag value.

Priority Applicable when an event (or schedule
matches filter criteria for multipl @riority(10)
statements: Defines the order c.
statement processing (requires an
engine-level setting).

86

Annotation

Name Purpose and Attributes Example
Attributes are:

value : priority value.

Drop Applicable when an event (or schedule
matches filter criteria for multipl @ op
statements, drops the event afte.
processing the statement (requires an
engine-level setting).

No attributes.

Hint For providing one or more hints toward
how the engine should execute . @int("ITERATE ONLY")
statement. Attributes are:

value : A comma-separated list of one or
more case-insensitive keywords.

Hook Use this annotation to register one c
more statement-specific hooks providine @#0k(type=HookType. SQLCOL,
a hook type for each individual hook, sucl
as for SQL parameter, column or rov
conversion.

hook="' MyDBTypeConvertor")

Attributes are the hook t ype and the hook
itself (usually a import or class name):

Audit Causes the engine to output detaile:
processing information for a statement. ~ @udi t

optional value : A comma-separated list of
one or more case-insensitive keywords.

EventRepresentation Causes the engine to use object-arra
event representation, if possible, fc @VventRepresentation(array=true)
output and internal event types.

The following example statement text specifies some of the built-in annotations in combination:

@\ane(" RevenuePer Cust omer ")

@escription("Qutputs revenue per customer considering all events encountered
so far.")

@ag(nanme="groupi ng", val ue="custoner")

sel ect custonerld, sum(revenue) from Custoner RevenueEvent

87

Chapter 5. EPL Reference: Clauses

5.2.7.3. @Name

Use the @Name EPL annotation to specify a statement name within the EPL statement itself, as
an alternative to specifying the statement name via API.

If your application is also providing a statement name through the API, the statement name
provided through the API overrides the annotation-provided statement name.

Example:

@Nanme("SecurityFilterl") select * from SecurityFilter(ip="127.0.0.1")

5.2.7.4. @Description

Use the @Description EPL annotation to add a statement textual description.

Example:

@escription(' This st at enent filters | ocal host. ") sel ect * from
SecurityFilter(ip="127.0.0.1")

5.2.7.5. @Tag

Use the @Tag EPL annotation to tag statements with name-value pairs, effectively adding a
property to the statement. The attributes nane and val ue are of type string.

Example:

@ag(nane="ip_sensitive', value="Y")
@ag(name="aut hor', value="Jim)
select * from SecurityFilter(ip="127.0.0.1")

5.2.7.6. @Priority

This annotation only takes effect if the engine-level setting for prioritized execution is set
via configuration, as described in Section 15.4.23, “Engine Settings related to Execution of
Statements”.

Use the @Priority EPL annotation to tag statements with a priority value. The default priority value
is zero (0) for all statements. When an event (or single timer execution) requires processing the
event for multiple statements, processing begins with the highest priority statement and ends with
the lowest-priority statement.

Example:

88

Annotation

@riority(10) select * from SecurityFilter(ip="127.0.0.1")

5.2.7.7. @Drop

This annotation only takes effect if the engine-level setting for prioritized execution is set
via configuration, as described in Section 15.4.23, “Engine Settings related to Execution of
Statements”.

Use the @Drop EPL annotation to tag statements that preempt all other same or lower-priority
statements. When an event (or single timer execution) requires processing the event for multiple
statements, processing begins with the highest priority statement and ends with the first statement
marked with @Drop, which becomes the last statement to process that event.

Unless a different priority is specified, the statement with the @Drop EPL annotation executes at
priority 1. Thereby @Drop alone is an effective means to remove events from a stream.

Example:

@rop select * from SecurityFilter(ip="127.0.0.1")

5.2.7.8. @Hint

A hint can be used to provide tips for the engine to affect statement execution. Hints change
performance or memory-use of a statement but generally do not change its output.

The string value of a H nt annotation contains a keyword or a comma-separated list of multiple
keywords. Hint keywords are case-insensitive. A list of hints is available in Section 20.2.23,
“Consider using Hints”.

Example:
@ nt (' di sabl e_recl ai m group')

sel ect ipaddress, count(*) from SecurityFilter.win:tinme(60 sec) group by
i paddr ess

5.2.7.9. @Hook

A hook is for attaching a callback to a statement.

The type value of a @ook annotation defines the type of hook and the hook value is an imported
or fully-qualified class name providing the callback implementation.

89

Chapter 5. EPL Reference: Clauses

5.2.7.10. @Audit

Causes the engine to output detailed information about the statements processing. Described in
more detail at Section 16.3.1, “@Audit Annotation”.

5.2.7.11. @EventRepresentation

Use the @vent Repr esent at i on annotation with cr eat e schenma and cr eat e wi ndow statements
to instruct the engine to use a specific event representation for the schema or named window.

Use the @vent Repr esent at i on annotation with sel ect statements to instruct the engine to use
a specific event representation for output events.

When no @vent Repr esent ati on annotation is specified, the engine uses the default event
representation as configured, see Section 15.4.11.1, “Default Event Representation”.

Use @vent Represent ati on(array=true) to instruct the engine to use object-array events.

Use @vent Represent ati on(array=fal se) to instruct the engine to use Map events.

5.2.8. Expression Declaration

An EPL statement can contain expression declarations. Expressions that are common to multiple
places in the same EPL statement can be moved to a named expression declaration and reused
within the same statement without duplicating the expression itself.

For declaring expressions that are visible across multiple EPL statements i.e. globally visible
expressions please consult Section 5.19.1, “Declaring a Global Expression” that explains the

create expression clause.

An expression declaration follows the lambda-style expression syntax. This syntax was chosen
as it typically allows for a shorter and more concise expression body that can be easier to read
then most procedural code.

The syntax for an expression declaration is:

expressi on expressi on_name { expression_body }

An expression declaration consists of the expression name and an expression body. The
expression_name is any identifier. The expression_body contains optional parameters and the
expression. The parameter types and the return type of the expression is determined by the engine
and do not need to be specified.

Parameters to a declared expression can be a stream name, pattern tag name or wildcard (*).
Use wildcard to pass the event itself to the expression. In a join or subquery, or more generally
in an expression where multiple streams or pattern tags are available, the EPL must specify the
stream name or pattern tag name and cannot use wildcard.

90

Expression Declaration

In the expression body the => lambda operator reads as "goes to". The left side of the lambda
operator specifies the input parameters (if any) and the right side holds the expression. The
lambda expression x => x * x is read "x goes to x times x".

In the expression body, if your expression takes no parameters, you may simply specify the
expression and do not need the => lambda operator.

If your expression takes one parameters, specify the input parameter name followed by the
=> lambda operator and followed by the expression. The synopsis for use with a single input
parameter is:

expr essi on_body: i nput _param nane => expression
If your expression takes two or more parameters, specify the input parameter names in
parenthesis followed by the => lambda operator followed by the expression. The synopsis for use
with a multiple input parameter is:

expr essi on_body: (i nput _param [,input_param|[,...]]) => expression

The following example declares an expression that returns two times PI (ratio of the circumference
of a circle to its diameter) and demonstrates its use in a select-clause:

expression twoPl { Math.Pl * 2} select twoPl () from Sanpl eEvent

The next example declares an expression that accepts one parameter: a MarketData event. The
expression computes a new "mid" price based on the buy and sell price:

expression mdPrice { x => (x.buy + x.sell) / 2}
sel ect m dPrice(nd) from Market Dat aEvent as nd

The variable name can be left off if event property names resolve without ambiguity.

This example EPL removes the variable name x:

expression mdPrice { x => (buy + sell) / 2}
sel ect m dPrice(nd) from Market Dat aEvent as nd

The next example EPL specifies wildcard instead:

expression mdPrice { x => (buy + sell) / 2}
sel ect mdPrice(*) from Market Dat aEvent

91

Chapter 5. EPL Reference: Clauses

A further example that demonstrates two parameters is listed next. The example joins two streams
and uses the price value from MarketDataEvent and the sentiment value of NewsEvent to compute
a weighted sentiment:

expressi on wei ghtedSentinent { (x, y) => x.price * y.sentinent }
sel ect wei ghtedSenti ment (nmd, news)
from Mar ket Dat aEvent . std: | astevent () as nd, NewsEvent.std:|lastevent() news

Any expression can be used in the expression body including aggregations, variables, subqueries
or further declared expressions. Sub-queries, when used without i n or exi st s, must be placed
within parenthesis.

An example subquery within a declared expression is shown next:

expressi on newsSubqg(nd) {
(sel ect sentiment fromNewsEvent. std: uni que(synbol) where synbol = nd. synbol)

}
sel ect newsSubg(ndstream
from Mar ket Dat aEvent ndstream

When using declared expressions please note these limitations:

1. Parameters to a declared expression can only be a stream name, pattern tag name or wildcard

(*).

The following scope rules apply for declared expressions:

1. The scope of the expression body of a declared expression only includes the parameters
explicitly listed.

5.2.9. Script Declaration

Esper allows the use of scripting languages within EPL. Any scripting language that supports JSR
223 and also the MVEL scripting language can be specified in EPL.

Please see Chapter 18, Script Support for more information.

5.2.10. Referring to a Context

You may refer to a context in the EPL text by specifying the cont ext keyword followed by a context
name. Context are described in more detail at Chapter 4, Context and Context Partitions

The effect of referring to a context is that your statement operates according to the context
dimensional information as declared for the context.

92

Choosing Event Properties And Events: the Select Clause

The synopsis is:
cont ext context_nanme ...

You may refer to a context in all statements except for the following types of statements:

1. creat e schena for declaring event types.
2. create vari abl e for declaring a variable.
3. create i ndex for creating an index on a named window.

4. updat e i st reamfor updating insert stream events.

5.3. Choosing Event Properties And Events: the Select
Clause

The sel ect clause is required in all EPL statements. The sel ect clause can be used to select all
properties via the wildcard *, or to specify a list of event properties and expressions. The sel ect
clause defines the event type (event property names and types) of the resulting events published
by the statement, or pulled from the statement via the iterator methods.

The sel ect clause also offers optional i stream irstreamand rstreamkeywords to control
whether input stream, remove stream or input and remove stream events are posted to
Updat eLi st ener instances and observers to a statement. By default, the engine provides only the
insert stream to listener and observers. See Section 15.4.17, “Engine Settings related to Stream
Selection” on how to change the default.

The syntax for the sel ect clause is summarized below.

select [istream| irstream| rstrean] [distinct] * | expression_list

The i streamkeyword is the default, and indicates that the engine only delivers insert stream
events to listeners and observers. The i r st r eamkeyword indicates that the engine delivers both
insert and remove stream. Finally, the r st r eamkeyword tells the engine to deliver only the remove
stream.

The di sti nct keyword outputs only unique rows depending on the column list you have specified
after it. It must occur after the sel ect and after the optional stream keywords, as described in
more detail below.

5.3.1. Choosing all event properties: select *

The syntax for selecting all event properties in a stream is:

93

Chapter 5. EPL Reference: Clauses

select * from stream def

The following statement selects StockTick events for the last 30 seconds of IBM stock ticks.
select * from StockTick(symbol ="1BM).w n:time(30 sec)

You may well be asking: Why does the statement specify a time window here? First, the statement
is meant to demonstrate the use of * wildcard. When the engine pushes statement results to your
listener and as the statement does not select remove stream events via r st r eamkeyword, the
listener receives only new events and the time window could be left off. By adding the time window
the pull API (iterator API or JDBC driver) returns the last 30 seconds of events.

The * wildcard and expressions can also be combined in a sel ect clause. The combination
selects all event properties and in addition the computed values as specified by any additional
expressions that are part of the sel ect clause. Here is an example that selects all properties
of stock tick events plus a computed product of price and volume that the statement names
'pricevolume”:

select *, price * volune as pricevolune from StockTi ck

When using wildcard (*), Esper does not actually copy your event properties out of your event or
events. It simply wraps your native type in an Event Bean interface. Your application has access to
the underlying event object through the get Under | yi ng method and has access to the property
values through the get method.

In a join statement, using the sel ect * syntax selects one event property per stream to hold the
event for that stream. The property name is the stream name in the f r omclause.

5.3.2. Choosing specific event properties

To choose the particular event properties to return:

sel ect event property [, event _property] [, ...] from stream def

The following statement simply selects the symbol and price properties of stock ticks, and the total
volume for stock tick events in a 60-second time window.

sel ect synmbol, price, sun(volune) from StockTick(synbol="1BM).win:tinme(60 sec)

The following statement declares a further view onto the event stream of stock ticks: the univariate
statistics view (st at : uni). The statement selects the properties that this view derives from the
stream, for the last 100 events of IBM stock ticks in the length window.

94

Expressions

sel ect datapoints, total, average, variance, stddev, stddevpa
from St ockTi ck(synbol =" I BM). w n: | engt h(100). stat: uni (vol une)
5.3.3. Expressions

The sel ect clause can contain one or more expressions.

sel ect expression [, expression] [, ...] from stream def

The following statement selects the volume multiplied by price for a time batch of the last 30
seconds of stock tick events.

sel ect volume * price from StockTick.w n:time_batch(30 sec)

5.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

sel ect [event _property | expression] as identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for
the resulting column.

sel ect volume * price as vol Price from StockTick

Identifiers cannot contain the "." (dot) character, i.e. "vol.price" is not a valid identifier for the
rename syntax.

5.3.5. Choosing event properties and events in a join

If your statement is joining multiple streams, your may specify property hames that are unique
among the joined streams, or use wildcard (*) as explained earlier.

In case the property name in your sel ect or other clauses is not unique considering all joined
streams, you will need to use the name of the stream as a prefix to the property.

This example is a join between the two streams StockTick and News, respectively named as 'tick’
and 'news'. The example selects from the StockTick event the symbol value using the 'tick’ stream
name as a prefix:

sel ect tick.synbol fromStockTick.win:time(10) as tick, News.w n:time(10) as news

95

Chapter 5. EPL Reference: Clauses

wher e news. synmbol = tick. symbol

Use the wildcard (*) selector in a join to generate a property for each stream, with the property
value being the event itself. The output events of the statement below have two properties: the
'tick' property holds the StockTick event and the 'news' property holds the News event:

sel ect * from StockTick.w n:time(10) as tick, News.w n:tine(10) as news

The following syntax can also be used to specify what stream’s properties to select:

sel ect streamnane.* [as nane] from...

The selection of ti ck. * selects the StockTick stream events only:

select tick.* from StockTick.win:tinme(10) as tick, News.wi n:tinme(10) as news
wher e tick. synmbol = news. synbol

The next example uses the as keyword to name each stream's joined events. This instructs the
engine to create a property for each named event:

select tick.* as stocktick, news.* as news
from St ockTi ck.win:tinme(10) as tick, News.w n:tinme(10) as news
where stock.synbol = news. synbol

The output events of the above example have two properties 'stocktick' and 'news' that are the
StockTick and News events.

The stream name itself, as further described in Section 5.4.5, “Using the Stream Name”, may be
used within expressions or alone.

This example passes events to a user-defined function named conput e and also shows i nsert -
i nt o to populate an event stream of combined events:

insert into TickNewStreamselect tick, news, MLib.conpute(news, tick) as result
from St ockTick.wi n:time(10) as tick, News.w n:time(10) as news
where tick.synmbol = news. synbol

/|l second statenent that uses the Ti ckNewStream stream
sel ect tick.price, news.text, result from Ti ckNewStream

96

Choosing event properties and events from a pattern

In summary, the stream_name.* streamname wildcard syntax can be used to select a stream
as the underlying event or as a property, but cannot appear within an expression. While the
stream_name syntax (without wildcard) always selects a property (and not as an underlying

event), and can occur anywhere within an expression.

5.3.6. Choosing event properties and events from a pattern

If your statement employs pattern expressions, then your pattern expression tags events with a
tag name. Each tag name becomes available for use as a property in the sel ect clause and all

other clauses.

For example, here is a very simple pattern that matches on every StockTick event received within
30 seconds after start of the statement. The sample selects the symbol and price properties of

the matching events:

sel ect tick.synbol as synbol, tick.price as price
frompattern[every tick=StockTick where tiner:wthin(10 sec)]

The use of the wildcard selector, as shown in the next statement, creates a property for each
tagged event in the output. The next statement outputs events that hold a single 'tick' property

whose value is the event itself:

select * frompattern[every tick=StockTick where timer:within(10 sec)]

You may also select the matching event itself using the ti ck. * syntax. The engine outputs the

StockTick event itself to listeners:

select tick.* frompattern[every tick=StockTick where tinmer:wthin(10 sec)]

A tag name as specified in a pattern is a valid expression itself. This example uses the i nsert

i nt o clause to make available the events matched by a pattern to further statements:

/1 make a new stream of ticks and news avail abl e

insert into StockTi ckAndNews

sel ect tick, news from pattern [every ti ck=St ockTi ck
news=News(symbol =t i ck. synbol)]

/'l second statement to select fromthe streamof ticks and news
sel ect tick.synmbol, tick.price, news.text from StockTi ckAndNews

97

Chapter 5. EPL Reference: Clauses

5.3.7. Selecting insert and remove Stream events

The optional i st ream i rstreamand r st r eamkeywords in the sel ect clause control the event
streams posted to listeners and observers to a statement.

If neither keyword is specified, and in the default engine configuration, the engine posts only insert
stream events via the newEvent s parameter to the updat e method of Updat eLi st ener instances
listening to the statement. The engine does not post remove stream events, by default.

The insert stream consists of the events entering the respective window(s) or stream(s) or
aggregations, while the remove stream consists of the events leaving the respective window(s) or
the changed aggregation result. See Chapter 3, Processing Model for more information on insert
and remove streams.

The engine posts remove stream events to the ol dEvent s parameter of the updat e method only
if the i r st r eamkeyword occurs in the sel ect clause. This behavior can be changed via engine-
wide configuration as described in Section 15.4.17, “Engine Settings related to Stream Selection”.

By specifying the i st r eamkeyword you can instruct the engine to only post insert stream events
via the newEvent s parameter to the updat e method on listeners. The engine will then not post
any remove stream events, and the ol dEvent s parameter is always a null value.

By specifying the i r st r eamkeyword you can instruct the engine to post both insert stream and
remove stream events.

By specifying the r st r eamkeyword you can instruct the engine to only post remove stream events
via the newEvent s parameter to the updat e method on listeners. The engine will then not post
any insert stream events, and the ol dEvent s parameter is also always a null value.

The following statement selects only the events that are leaving the 30 second time window.
sel ect rstream* from StockTi ck.win:tinme(30 sec)

The i st reamand r st r eamkeywords in the sel ect clause are matched by same-name keywords
available in the i nsert i nto clause. While the keywords in the sel ect clause control the event
stream posted to listeners to the statement, the same keywords in the i nsert i nt o clause specify
the event stream that the engine makes available to other statements.

5.3.8. Qualifying property names and stream names

Property or column names can optionally be qualified by a stream name and the provider URI.
The syntax is:

[[provider_URI.]stream nane.]property_name

The provider_URI is the URI supplied to the EPSer vi cePr ovi der Manager class, or the string
def aul t for the default provider.

98

Select Distinct

This example assumes the provider is the default provider:

sel ect MyEvent. nyProperty from MyEvent
/1l ... equivalent to ...
sel ect default. MMEvent. nyProperty from M/Event

Stream names can also be qualified by the provider URI. The syntax is:

[provi der _URI.]stream nane

The next example assumes a provider URI by name of Processor:

sel ect Processor. M/Event. myProperty from Processor. MyEvent

5.3.9. Select pistinct

The optional di sti nct keyword removes duplicate output events from output. The keyword must
occur after the sel ect keyword and after the optional i r st r eamkeyword.

The di sti nct keyword in your sel ect instructs the engine to consolidate, at time of output, the
output event(s) and remove output events with identical property values. Duplicate removal only
takes place when two or more events are output together at any one time, therefore di sti nct
is typically used with a batch data window, output rate limiting, on-demand queries, on-select or
iterator pull API.

If two or more output event objects have same property values for all properties of the event, the
di sti nct removes all but one duplicated event before outputting events to listeners. Indexed,
nested and mapped properties are considered in the comparison, if present in the output event.

The next example outputs sensor ids of temperature sensor events, but only every 10 seconds
and only unique sensor id values during the 10 seconds:

sel ect distinct sensorld from Tenper at ureSensor Event out put every 10 seconds
Use di sti nct with wildcard (*) to remove duplicate output events considering all properties of

an event.

This example statement outputs all distinct events either when 100 events arrive or when 10
seconds passed, whichever occurs first:

select distinct * from TenperatureSensor Event.wi n:tinme_| ength_batch(10, 100)

99

Chapter 5. EPL Reference: Clauses

When selecting nested, indexed, mapped or dynamic properties in a sel ect clause with
di stinct, it is relevant to know that the comparison uses hash code and the Java equal s
semantics.

5.3.10. Transposing an Expression Result to a Stream

For transposing an instance of a Java object returned by an expression to a stream use the
transpose function as described in Section 9.4, “Select-Clause transpose Function”.

5.3.11. Selecting EventBean instead of Underlying Event

By default, for certain select-clause expressions that output events or a collection of events, the
engine outputs the underlying event objects. With outputs we refer to the data passed to listeners,
subscribers and inserted-into into another stream via insert-into.

The select-clause expressions for which underlying event objects are output by default are:

Event Aggregation Functions (including extension API)

e The previ ous family of single-row functions

Subselects that select events

Declared expressions and enumeration methods that operate on any of the above

To have the engine output Event Bean instance(s) instead, add @vent bean to the relevant
expressions of the sel ect -clause.

The sample EPL shown below outputs current data window contents as Event Bean instances into
the stream Qut St r eam thereby statements consuming the stream may operate on such instances:

insert into QutStream
sel ect prevw ndow(s0) @uventbean as wn
from WEvent.w n:length(2) as sO

The next EPL consumes the stream and selects the last event:

select win.lastOf () from Qut Stream

It is not necessary to use @vent bean if an event type by the same name (Qut Streamin the
example) is already declared and a property exist on the type by the same name (wi n in this
example) and the type of the property is the event type (MyEvent in the example) returned by the
expression. This is further described in Section 5.10.8, “Select-Clause Expression And Inserted-
Into Column Event Type”.

100

Specifying Event Streams: the From Clause

5.4. Specifying Event Streams: the From Clause

The fromclause is required in all EPL statements. It specifies one or more event streams or
named windows. Each event stream or named window can optionally be given a name by means
of the as keyword.

fromstreamdef [as nane] [unidirectional] [retain-union | retain-
i ntersection]
[, streamdef [as streamnane]] [, ...]

The event stream definition stream_def as shown in the syntax above can consists of either a
filter-based event stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins between pattern-based
and filter-based event streams are also supported. Joins and the uni di recti onal keyword are
described in more detail in Section 5.12, “Joining Event Streams”.

Esper supports joins against relational databases for access to historical or reference data as
explained in Section 5.13, “Accessing Relational Data via SQL”. Esper can also join results
returned by an arbitrary method invocation, as discussed in Section 5.14, “Accessing Non-
Relational Data via Method Invocation”.

The stream_name is an optional identifier assigned to the stream. The stream name can itself
occur in any expression and provides access to the event itself from the named stream. Also, a
stream name may be combined with a method name to invoke instance methods on events of
that stream.

For all streams with the exception of historical sources your query may employ data window views
as outlined below. The ret ai n-i nt er sect i on (the default) and r et ai n- uni on keywords build a
union or intersection of two or more data windows as described in Section 5.4.4, “Multiple Data
Window Views”.

5.4.1. Filter-based Event Streams

The stream_def syntax for a filter-based event stream is as below:

event _streamnnanme [(filter_criteria)] [contained_selection] [.view spec]
[.view spec] [...]

The event_stream_name is either the name of an event type or name of an event stream populated
by aninsert i nto statement or the name of a named window.

The filter_criteria is optional and consists of a list of expressions filtering the events of the event
stream, within parenthesis after the event stream name.

The contained_selection is optional and is for use with coarse-grained events that have properties
that are themselves one or more events, see Section 5.20, “Contained-Event Selection” for the
synopsis and examples.

101

Chapter 5. EPL Reference: Clauses

The view_spec are optional view specifications, which are combinable definitions for retaining
events and for deriving information from events.

The following EPL statement shows event type, filter criteria and views combined in one statement.
It selects all event properties for the last 100 events of IBM stock ticks for volume. In the
example, the event type is the fully qualified Java class hame or g. esper . exanpl e. St ockTi ck.
The expression filters for events where the property synbol has a value of "IBM". The optional
view specifications for deriving data from the StockTick events are a length window and a view
for computing statistics on volume. The name for the event stream is "volumeStats".

select * from
or g. esper. exanpl e. St ockTi ck(synbol =" I BM). wi n: | engt h(100) . stat: uni (vol une) as
vol uneSt at s

Esper filters out events in an event stream as defined by filter criteria before it sends events to
subsequent views. Thus, compared to search conditions in a wher e clause, filter criteria remove
unneeded events early. In the above example, events with a symbol other then IBM do not enter
the time window.

5.4.1.1. Specifying an Event Type

The simplest form of filter is a filter for events of a given type without any conditions on the event
property values. This filter matches any event of that type regardless of the event's properties.
The example below is such a filter.

sel ect * from com nypackage. nyevents. Rfi dEvent

Instead of the fully-qualified Java class name any other event name can be mapped via
Configuration to a Java class, making the resulting statement more readable:

sel ect * from Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example
| Rf i dReadabl e is an interface class.

select * fromorg.myorg.rfid.|Rfi dReadabl e

5.4.1.2. Specifying Filter Criteria

The filtering criteria to filter for events with certain event property values are placed within
parenthesis after the event type name:

102

Filter-based Event Streams

select * from Rfi dEvent (cat egory="Peri shabl e")

All expressions can be used in filters, including static methods that return a boolean value:

select * from com myconpany. Rfi dEvent (MyRFI DLi b. i sl nRange(x, y) or (x < 0 and
y <0))

Filter expressions can be separated via a single comma ', '. The comma represents a logical AND
between filter expressions:

sel ect * from Rfi dEvent (zone=1, category=10)
...is equivalent to...
select * from Rfi dEvent (zone=1 and cat egory=10)

The following operators are highly optimized through indexing and are the preferred means of
filtering in high-volume event streams and especially in the presence of a larger number of filters
or statements:

e equals =

* notequals!=

e comparison operators < , >, >=, <=

* ranges
» use the bet ween keyword for a closed range where both endpoints are included
» usethein keywordandround () orsquare brackets[] to control how endpoints are included
« for inverted ranges use the not keyword and the bet ween or i n keywords

« list-of-values checks using the i n keyword or the not in keywords followed by a comma-
separated list of values

* single-row functions that have been registered and are invoked via function name (see user-
defined functions) and that either return a boolean value or that have their return value compared
to a constant

At compile time as well as at run time, the engine scans new filter expressions for sub-expressions
that can be indexed. Indexing filter values to match event properties of incoming events enables
the engine to match incoming events faster, especially if your application creates a large number
of statements or requires many similar filters. The above list of operators represents the set of
operators that the engine can best convert into indexes. The use of comma or logical and in filter
expressions does not impact optimizations by the engine.

103

Chapter 5. EPL Reference: Clauses

5.4.1.3. Filtering Ranges
Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates

whether an endpoint is included or excluded. The low point and the high-point of the range are
separated by the colon : character.

« Open ranges that contain neither endpoint (| ow: hi gh)

» Closed ranges that contain both endpoints [| ow: hi gh] . The equivalent 'between' keyword also
defines a closed range.

» Half-open ranges that contain the low endpoint but not the high endpoint [| ow: hi gh)

» Half-closed ranges that contain the high endpoint but not the low endpoint (| ow: hi gh]

The next statement shows a filter specifying a range for x and y values of RFID events. The range
includes both endpoints therefore uses [] hard brackets.

nypackage. Rfi dEvent (x in [100:200], y in [0:100])

The bet ween keyword is equivalent for closed ranges. The same filter using the bet ween keyword
is:

nmypackage. Rf i dEvent (x between 100 and 200, y between 0 and 50)

The not keyword can be used to determine if a value falls outside a given range:
nmypackage. Rfi dEvent (x not in [0:100])

The equivalent statement using the bet ween keyword is:

nypackage. Rf i dEvent (x not between 0 and 100)

5.4.1.4. Filtering Sets of Values
The i n keyword for filter criteria determines if a given value matches any value in a list of values.

In this example we are interested in RFID events where the category matches any of the given
values:

nypackage. Rf i dEvent (category in (' Perishable', 'Container'))

104

Pattern-based Event Streams

By using the not in keywords we can filter events with a property value that does not match
any of the values in a list of values:

nmypackage. Rf i dEvent (cat egory not in (' Household', 'Electrical'))

5.4.1.5. Filter Limitations

The following restrictions apply to filter criteria:

» Range and comparison operators require the event property to be of a numeric or string type.

» Aggregation functions are not allowed within filter expressions.

» The prev previous event function and the pri or prior event function cannot be used in filter
expressions.

5.4.2. Pattern-based Event Streams

Event pattern expressions can also be used to specify one or more event streams in an EPL
statement. For pattern-based event streams, the event stream definition stream_def consists of
the keyword pat t er n and a pattern expression in brackets []. The syntax for an event stream
definition using a pattern expression is below. As in filter-based event streams, an optional list of
views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view spec] [.view spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade
events. The example tags stock tick events with the name "tick" and trade events with the name
"trade".

select * frompattern [every tick=StockTi ckEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types.
The generated events resemble a map with "tick" and "trade" keys. For stock tick events, the "tick"
key value is the underlying stock tick event, and the "trade" key value is a null value. For trade
events, the "trade" key value is the underlying trade event, and the "tick" key value is a null value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock
tick or trade events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sun(tick.price) + sun(trade.price) as total
frompattern [every tick=StockTi ckEvent or every trade=TradeEvent].w n:ti nme(30
sec)

105

Chapter 5. EPL Reference: Clauses

Note that in the statement above ti ckPri ce and t radePri ce can each be null values depending
on the event processed. Therefore, an aggregation function such as sum(tick.price +
trade. price)) would always return null values as either of the two price properties are always
a null value for any event matching the pattern. Use the coal esce function to handle null values,
for example: sun{ coal esce(tick.price, 0) + coal esce(trade.price, 0)).

5.4.3. Specifying Views

Views are used to specify an expiry policy for events (data window views) and also to derive data.
Views can be staggered onto each other. See the section Chapter 12, EPL Reference: Views
on the views available that also outlines the different types of views: Data Window views and
Derived-Value views.

Views can optionally take one or more parameters. These parameters are expressions themselves
that may consist of any combination of variables, arithmetic, user-defined function or substitution
parameters for prepared statements, for example.

The example statement below outputs a count per expressway for car location events (contains
information about the location of a car on a highway) of the last 60 seconds:

sel ect expressway, count(*) from CarLocEvent.wi n:tinme(60)
group by expressway

The next example serves to show staggering of views. It uses the st d: gr oupwi n view to create
a separate length window per car id:

sel ect cardld, expressway, direction, segnent, count(*)
from Car LocEvent . std: groupwi n(carld).w n:|ength(4)
group by carld, expressway, direction, segnent

The first view st d: gr oupwi n(car | d) groups car location events by car id. The second view
wi n: | engt h(4) keeps a length window of the 4 last events, with one separate length window for
each car id. The example reports the number of events per car id and per expressway, direction
and segment considering the last 4 events for each car id only.

Note that the gr oup by syntax is generally preferable over st d: gr oupwi n for grouping information
as itis SQL-compliant, easier to read and does not create a separate data window per group. The
st d: gr oupwi n in above example creates a separate data window (length window in the example)
per group, demonstrating staggering views.

When views are staggered onto each other as a chain of views, then the insert and remove stream
received by each view is the insert and remove stream made available by the view (or stream)
earlier in the chain.

106

Multiple Data Window Views

The special keep-all view keeps all events: It does not provide a remove stream, i.e. events are not
removed from the keep-all view unless by means of the on- del et e syntax or by revision events.

5.4.4. Multiple Data Window Views

Data window views provide an expiry policy that indicates when to remove events from the data
window, with the exception of the keep-all data window which has no expiry policy and the
st d: gr oupwi n grouped-window view for allocating a new data window per group.

EPL allows the freedom to use multiple data window views onto a stream and thus combine expiry
policies. Combining data windows into an intersection (the default) or a union can achieve a useful
strategy for retaining events and expiring events that are no longer of interest. Named windows
and the on- del et e syntax provide an additional degree of freedom.

In order to combine two or more data window views there is no keyword required. The retain-
intersection keyword is the default and the retain-union keyword may instead be provided for a
stream.

The concept of union and intersection come from Set mathematics. In the language of Set
mathematics, two sets A and B can be "added" together: The intersection of A and B is the set of
all things which are members of both A and B, i.e. the members two sets have "in common". The
union of A and B is the set of all things which are members of either A or B.

Use the retain-intersection (the default) keyword to retain an intersection of all events as defined
by two or more data windows. All events removed from any of the intersected data windows are
entered into the remove stream. This is the default behavior if neither retain keyword is specified.

Use the retain-union keyword to retain a union of all events as defined by two or more data
windows. Only events removed from all data windows are entered into the remove stream.

The next example statement totals the price of OrderEvent events in a union of the last 30 seconds

and unigue by product name:

select sum(price) from OderEvent.win:tine(30 sec).std:unique(productNane)
retai n-uni on

In the above statement, all OrderEvent events that are either less then 30 seconds old or that are
the last event for the product name are considered.
Here is an example statement totals the price of OrderEvent events in an intersection of the last

30 seconds and unique by product name:

select sum(price) from OderEvent.win:tine(30 sec).std:unique(productNane)
retain-intersection

107

Chapter 5. EPL Reference: Clauses

In the above statement, only those OrderEvent events that are both less then 30 seconds old and
are the last event for the product name are considered. The number of events that the engine
retains is the number of unique events per product name in the last 30 seconds (and not the
number of events in the last 30 seconds).

For an intersection the engine retains the minimal number of events representing that intersection.
Thus when combining a time window of 30 seconds and a last-event window, for example, the
number of events retained at any time is zero or one event (and not 30 seconds of events).

When combining a batch window into an intersection with another data window the combined
data window gains batching semantics: Only when the batch criteria is fulfilled does the engine
provide the batch of intersecting insert stream events. Multiple batch data windows may not be
combined into an intersection.

In below table we provide additional examples for data window intersections:

Table 5.3. Intersection Data Window Examples

Example Description

wi n:time(30).std:firstuni que(keys) Retains 30 seconds of events unique per keys
value (first event per value).

win: firstlength(3).std:firstuni que(keys)Retains the first 3 events that are also unique
per keys value.

wi n:time_batch(N Posts a batch every N seconds that contains
seconds) . st d: uni que(keys) the last of each unique event per keys value.
w n:tinme_batch(N Posts a batch every N seconds that contains
seconds) . std: firstuni que(keys) the first of each unique event per keys value.

wi n: | engt h_bat ch(N). std: uni que(keys) Posts a batch of unique events (last event per
value) when N unigue events per keys value
are encountered.

wi n: | ength_batch(N).std: firstuni que(keydosts a batch of unique events (first event per
value) when N unigue events per keys value
are encountered.

For advanced users and for backward compatibility, it is possible to configure Esper to
allow multiple data window views without either of the retain keywords, as described in
Section 15.4.12.2, “Configuring Multi-Expiry Policy Defaults”.

5.4.5. Using the Stream Name

Your f r omclause may assign a name to each stream. This assigned stream name can serve any
of the following purposes.

First, the stream name can be used to disambiguate property names. The
stream name. property_nane syntax uniquely identifies which property to select if property
names overlap between streams. Here is an example:

108

Using the Stream Name

sel ect prod. productld, ord. productld fromProduct Event as prod, OrderEvent as ord

Second, the stream name can be used with a wildcard (*) character to select events in a join, or
assign new names to the streams in a join:

/'l Sel ect ProductEvent only
sel ect prod.* from Product Event as prod, OrderEvent

/1l Assign colum names 'product’ and 'order' to each event
select prod.* as product, ord.* as order from Product Event as prod, O derEvent
as ord

Further, the stream name by itself can occur in any expression: The engine passes the event itself
to that expression. For example, the engine passes the ProductEvent and the OrderEvent to the
user-defined function 'checkOrder":

sel ect prod. productld, MyFunc.checkOrder(prod, ord)
from Product Event as prod, O derEvent as ord

Last, you may invoke an instance method on each event of a stream, and pass parameters to the
instance method as well. Instance method calls are allowed anywhere in an expression.
The next statement demonstrates this capability by invoking a method '‘computeTotal' on

OrderEvent events and a method 'getMultiplier' on ProductEvent events:

sel ect ord.conputeTotal (prod.getMiltiplier()) from ProductEvent as prod,
Order Event as ord

Instance methods may also be chained: Your EPL may invoke a method on the result returned
by a method invocation.

Assume that your product event exposes a method get Zone which returns a zone object. Assume
that the Zone class declares a method checkZone. This example statement invokes a method
chain:

sel ect prod. get Zone().checkZone("zone 1") from Product Event as prod

109

Chapter 5. EPL Reference: Clauses

5.5. Specifying Search Conditions: the Where Clause

The wher e clause is an optional clause in EPL statements. Via the wher e clause event streams
can be joined and events can be filtered.

combinations via and and or are supported in the where clause. The where clause can also
introduce join conditions as outlined in Section 5.12, “Joining Event Streams”. wher e clauses can
also contain expressions. Some examples are listed below.

Comparison operators =, <, >, >=, <=, I= <> s null, is not null and logical

.where fraud. severity = 5 and anount > 500

.where (orderltemorderld is null) or (orderltemclass != 10)
.where (orderltemorderld = null) or (orderltemclass <> 10)
.where itemCount / packageCount > 10

5.6. Aggregates and grouping: the Group-by Clause
and the Having Clause

5.6.1. Using aggregate functions

The aggregate functions are sum avg, count, max, min, nedian, stddev, avedev.Youcan
use aggregate functions to calculate and summarize data from event properties. For example, to
find out the total price for all stock tick events in the last 30 seconds, type:

sel ect sum(price) from StockTi ckEvent.w n:tine(30 sec)

Here is the syntax for aggregate functions:

aggregate_function([all | distinct] expression)

You can apply aggregate functions to all events in an event stream window or other view, or to
one or more groups of events. From each set of events to which an aggregate function is applied,
Esper generates a single value.

Expr essi on is usually an event property name. However it can also be a constant, function, or any
combination of event property names, constants, and functions connected by arithmetic operators.

For example, to find out the average price for all stock tick events in the last 30 seconds if the
price was doubled:

sel ect avg(price * 2) from StockTi ckEvent.w n:time(30 seconds)

110

Organizing statement results into groups: the Group-by clause

You can use the optional keyword di sti nct with all aggregate functions to eliminate duplicate
values before the aggregate function is applied. The optional keyword al | which performs the
operation on all events is the default.

You can use aggregation functions in a sel ect clause and in a havi ng clause. You cannot use
aggregate functions in a wher e clause, but you can use the wher e clause to restrict the events to
which the aggregate is applied. The next query computes the average and sum of the price of stock
tick events for the symbol IBM only, for the last 10 stock tick events regardless of their symbol.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent. w n: | engt h(10)
where synbol =' | BM

In the above example the length window of 10 elements is not affected by the wher e clause, i.e.
all events enter and leave the length window regardless of their symbol. If we only care about the
last 10 IBM events, we need to add filter criteria as below.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent (synbol ="' | BM). wi n: | engt h(10)
where synbol =' | BM

You can use aggregate functions with any type of event property or expression, with the following
exceptions:

1. You can use sum avg, nedian, stddev, avedev with numeric event properties only

Esper ignores any null values returned by the event property or expression on which the aggregate
function is operating, except for the count (*) function, which counts null values as well. All
aggregate functions return null if the data set contains no events, or if all events in the data set
contain only null values for the aggregated expression.

5.6.2. Organizing statement results into groups: the Group-by
clause

The group by clause is optional in all EPL statements. The group by clause divides the output
of an EPL statement into groups. You can group by one or more event property names, or by
the result of computed expressions. When used with aggregate functions, gr oup by retrieves the
calculations in each subgroup. You can use gr oup by without aggregate functions, but generally
that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in
the last 30 seconds:

111

Chapter 5. EPL Reference: Clauses

sel ect symbol, sum(price) from StockTi ckEvent.w n:time(30 sec) group by synbol

The syntax of the gr oup by clause is:

group by aggregate free expression [, aggregate free expression] [, ...]

Esper places the following restrictions on expressions in the gr oup by clause:

1. Expressions in the gr oup by cannot contain aggregate functions

2. Event properties that are used within aggregate functions in the sel ect clause cannot also be
used in a gr oup by expression

3. When grouping an unbound stream, i.e. no data window is specified onto the stream providing
groups, or when using output rate limiting with the ALL keyword, you should ensure your group-
by expression does not return an unlimited number of values. If, for example, your group-by
expression is a fine-grained timestamp, group state that accumulates for an unlimited number
of groups potentially reduces available memory significantly. Use a @Hint as described below
to instruct the engine when to discard group state.

You can list more then one expression in the gr oup by clause to nest groups. Once the sets are
established with gr oup by the aggregation functions are applied. This statement posts the median
volume for all stock tick events in the last 30 seconds per symbol and tick data feed. Esper posts
one event for each group to statement listeners:

sel ect synbol, tickDataFeed, nedi an(vol une)
from St ockTi ckEvent.w n:ti ne(30 sec)
group by synbol, tickDataFeed

In the statement above the event properties in the sel ect list (symbol, tickDataFeed) are also
listed in the gr oup by clause. The statement thus follows the SQL standard which prescribes that
non-aggregated event properties in the sel ect list must match the gr oup by columns.

Esper also supports statements in which one or more event properties in the sel ect list are not
listed in the group by clause. The statement below demonstrates this case. It calculates the
standard deviation for the last 30 seconds of stock ticks aggregating by symbol and posting for
each event the symbol, tickDataFeed and the standard deviation on price.

sel ect synmbol, tickDataFeed, stddev(price) from StockTi ckEvent.wi n:tine(30 sec)
group by synbol

The above example still aggregates the pri ce event property based on the synbol , but produces
one event per incoming event, not one event per group.

112

Organizing statement results into groups: the Group-by clause

Additionally, Esper supports statements in which one or more event properties in the group by
clause are not listed in the sel ect list. This is an example that calculates the mean deviation per
synbol and ti ckDat aFeed and posts one event per group with synmbol and mean deviation of
price in the generated events. Since tickDataFeed is not in the posted results, this can potentially
be confusing.

sel ect synbol, avedev(price)
from St ockTi ckEvent.wi n:ti ne(30 sec)
group by synbol, tickDataFeed

Expressions are also allowed in the group by list:

sel ect synbol * price, count(*) from StockTi ckEvent.win:tinme(30 sec) group by
synbol * price

If the group by expression resulted in a null value, the null value becomes its own group.
All null values are aggregated into the same group. If you are using the count (expr essi on)
aggregate function which does not count null values, the count returns zero if only null values
are encountered.

You can use awher e clause in a statement with gr oup by. Events that do not satisfy the conditions
in the wher e clause are eliminated before any grouping is done. For example, the statement below
posts the number of stock ticks in the last 30 seconds with a volume larger then 100, posting one
event per group (symbol).

sel ect synbol, count(*) from StockTi ckEvent.wi n:tinme(30 sec) where volune > 100
group by synbol

5.6.2.1. Hints Pertaining to Group-By

The Esper engine reclaims aggregation state agressively when it determines that a group has no
data points, based on the data in the data windows. When your application data creates a large
number of groups with a small or zero number of data points then performance may suffer as state
is reclaimed and created anew. Esper provides the @1 nt (' di sabl e_recl ai m group') hint that
you can specify as part of an EPL statement text to avoid group reclaim.

When aggregating values over an unbound stream (i.e. no data window is specified onto the
stream) and when your group-by expression returns an unlimited number of values, for example
when a timestamp expression is used, then please note the next hint.

A sample statement that aggregates stock tick events by timestamp, assuming the event type
offers a property by name t i mest anp that, reflects time in high resolution, for example arrival or
system time:

113

Chapter 5. EPL Reference: Clauses

// Note the bel ow statement could |l ead to an out-of -nmenory probl em
sel ect symbol, sum(price) from StockTi ckEvent group by timestanp

As the engine has no means of detecting when aggregation state (sums per symbol) can be
discarded, you may use the following hints to control aggregation state lifetime.

The @Hint("recl ai m gr oup_aged=age_in_seconds") hint instructs the engine to discard
aggregation state that has not been updated for age_in_seconds seconds.

The optional @Hint("r ecl ai m gr oup_f r eq=sweep_frequency_in_seconds"”) can be used in
addition to control the frequency at which the engine sweeps aggregation state to determine
aggregation state age and remove state that is older then age_in_seconds seconds. If the hint is
not specified, the frequency defaults to the same value as age_in_seconds.

The updated sample statement with both hints:

/1 Instruct engine to renove state ol der then 10 seconds and sweep every 5 seconds
@i nt (' recl ai m group_aged=10, recl ai m group_freq=5")
sel ect symbol, sum(price) from StockTi ckEvent group by tinmestanp

Variables may also be wused to provide values for age in_seconds and
sweep_frequency_in_seconds.

This example statement uses a variable nhamed var Age to control how long aggregation state
remains in memory, and the engine defaults the sweep frequency to the same value as the variable
provides:

@i nt (' recl ai m_group_aged=var Age')
sel ect synbol, sunm(price) from StockTi ckEvent group by tinmestanp

5.6.3. Selecting groups of events: the Having clause

Use the havi ng clause to pass or reject events defined by the gr oup- by clause. The havi ng
clause sets conditions for the group by clause in the same way wher e sets conditions for the
sel ect clause, except wher e cannot include aggregate functions, while havi ng often does.

This statement is an example of a havi ng clause with an aggregate function. It posts the total
price per symbol for the last 30 seconds of stock tick events for only those symbols in which the
total price exceeds 1000. The havi ng clause eliminates all symbols where the total price is equal
or less then 1000.

sel ect synbol, sun(price)

114

How the stream filter, Where, Group By and Having clauses interact

from St ockTi ckEvent.wi n:ti ne(30 sec)
group by synbol
havi ng sum(price) > 1000

To include more then one condition in the havi ng clause combine the conditions with and, or or
not . This is shown in the statement below which selects only groups with a total price greater then
1000 and an average volume less then 500.

sel ect synmbol, sum(price), avg(vol une)

from St ockTi ckEvent.wi n:ti ne(30 sec)

group by synbol

havi ng sum(price) > 1000 and avg(vol une) < 500

A statement with the havi ng clause should also have a gr oup by clause. If you omit gr oup- by,
all the events not excluded by the wher e clause return as a single group. In that case havi ng acts
like a wher e except that havi ng can have aggregate functions.

The havi ng clause can also be used without gr oup by clause as the below example shows. The
example below posts events where the price is less then the current running average price of all
stock tick events in the last 30 seconds.

sel ect synbol, price, avg(price)
from St ockTi ckEvent.w n:ti ne(30 sec)
havi ng price < avg(price)

5.6.4. How the stream filter, Where, Group By and Having
clauses interact

When you include filters, the wher e condition, the group by clause and the havi ng condition in
an EPL statement the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is
used). The filter discards any events not meeting filter criteria.

2. The wher e clause excludes events that do not meet its search condition.

3. Aggregate functions in the select list calculate summary values for each group.

4. The havi ng clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and havi ng clauses in one
statement with a sel ect clause containing an aggregate function.

sel ect tickDat aFeed, stddev(price)
from St ockTi ckEvent (synmbol =" | BM). wi n: | engt h(10)

115

Chapter 5. EPL Reference: Clauses

where vol ume > 1000
group by tickDat aFeed
havi ng stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream St ockTi ckEvent . In the example
above only events with symbol IBM enter the length window over the last 10 events, all other
events are simply discarded. The where clause removes any events posted by the length
window (events entering the window and event leaving the window) that do not match the
condition of volume greater then 1000. Remaining events are applied to the st ddev standard
deviation aggregate function for each tick data feed as specified in the group by clause. Each
ti ckDat aFeed value generates one event. Esper applies the havi ng clause and only lets events
pass for t i ckDat aFeed groups with a standard deviation of price greater then 0.8.

5.6.5. Comparing Keyed Segmented Context, the Group By
clause and the std:groupwin view

The keyed segmented context create context ... partition by and the group by clause as well as
the built-in std:groupwin view are similar in their ability to group events but very different in their
semantics. This section explains the key differences in their behavior and use.

The keyed segmented context as declared with create context ... partition by and context
select ... creates a new context partition per key value(s). The engine maintains separate
data window views as well as separate aggregations per context partition; thereby the keyed
segmented context applies to both. See Section 4.2.2, “Keyed Segmented Context” for additional
examples.

The group by clause works together with aggregation functions in your statement to produce an
aggregation result per group. In greater detail, this means that when a new event arrives, the
engine applies the expressions in the group by clause to determine a grouping key. If the engine
has not encountered that grouping key before (a new group), the engine creates a set of new
aggregation results for that grouping key and performs the aggregation changing that new set of
aggregation results. If the grouping key points to an existing set of prior aggregation results (an
existing group), the engine performs the aggregation changing the prior set of aggregation results
for that group.

The std:groupwin view is a built-in view that groups events into data windows. The view is
described in greater detail in Section 12.3.2, “Grouped Data Window (std:groupwin)”. Its primary
use is to create a separate data window per group, or more generally to create separate instances
of all its sub-views for each grouping key encountered.

The table below summarizes the point:

Table 5.4. Grouping Options

Option Description

Keyed Segmented Context ‘ Separate context partition per key value.

116

Stabilizing and Controlling Output: the Output Clause

Option Description

Affects all of data windows, aggregations, patterns, etc. (except
variables which are global).

Grouped Data Window | Separate data window per key value.

(std:groupwin)
Affects only the data window that is declared next to it.

Group By Clause (group by) | Separate aggregation values per key value.

Affects only aggregation values.

Please review the performance section for advice related to performance or memory-use.

The next example shows queries that produce equivalent results. The query using the group by
clause is generally preferable as is easier to read. The second form introduces the st at : uni view
which computes univariate statistics for a given property:

sel ect synbol, avg(price) from StockTi ckEvent group by synbol
/Il ... is equivalent to ...
sel ect synbol, average from St ockTi ckEvent. std: gr oupwi n(synbol). stat: uni (price)

The next example shows two queries that are NOT equivalent as the length window is ungrouped
in the first query, and grouped in the second query:

sel ect synmbol, sum(price) from StockTi ckEvent.w n: |l ength(10) group by synbol

/1 ... NOT equivalent to ...

sel ect synbol , sun(price) from
St ockTi ckEvent . st d: gr oupwi n(symnbol). w n: | engt h(10)

The key difference between the two statements is that in the first statement the length window is
ungrouped and applies to all events regardless of group. While in the second query each group
gets its own instance of a length window. For example, in the second query events arriving for
symbol "ABC" get a length window of 10 events, and events arriving for symbol "DEF" get their
own length window of 10 events.

5.7. Stabilizing and Controlling Output: the Output
Clause

5.7.1. Output Clause Options

The out put clause is optional in Esper and is used to control or stabilize the rate at which events
are output and to suppress output events. The EPL language provides for several different ways
to control output rate.

117

Chapter 5. EPL Reference: Clauses

Here is the syntax for the out put clause that specifies a rate in time interval or number of events:

out put [after suppression_def]
[[all | first | last | snapshot] every output_rate [seconds | events]]
[and when term nated]

An alternate syntax specifies the time period between output as outlined in Section 5.2.1,
“Specifying Time Periods” :

out put [after suppression_def]
[[all | first | last | snapshot] every tinme_period]
[and when terni nated]

A crontab-like schedule can also be specified. The schedule parameters follow the pattern
observer parameters and are further described in Section 6.6.2.2, “timer:at” :

out put [after suppression_def]

[[all | first | last | snapshot] at

(m nutes, hours, days of nonth, nonths, days of week [, seconds])]
[and when term nated]

For use with contexts, in order to trigger output only when a context partition terminates, specify
when terninat ed as further described in Section 4.5, “Output When Context Partition Ends”:

out put [after suppression_def]
[[all | first | last | snapshot] when termn nated
[and term nati on_expression]
[then set variable_nane = assign_expression [, variable_name =
assi gn_expression [,...]]]

]

Last, output can be controlled by an expression that may contain variables, user-defined functions
and information about the number of collected events. Output that is controlled by an expression
is discussed in detail below.

The after keyword and suppression_def can appear alone or together with further output
conditions and suppresses output events.

For example, the following statement outputs, every 60 seconds, the total price for all orders in

the 30-minute time window:

select sun(price) from OrderEvent.win:tinme(30 mn) output snapshot every 60
seconds

118

Output Clause Options

The al | keyword is the default and specifies that all events in a batch should be output, each
incoming row in the batch producing an output row. Note that for statements that group via the
group by clause, the al I keyword provides special behavior as below.

The first keyword specifies that only the first event in an output batch is to be output. Using
the first keyword instructs the engine to output the first matching event as soon as it arrives,
and then ignores matching events for the time interval or number of events specified. After the
time interval elapsed, or the number of matching events has been reached, the next first matching
event is output again and the following interval the engine again ignores matching events. For
statements that group via the group by clause, the first keywords provides special behavior
as below.

The | ast keyword specifies to only output the last event at the end of the given time interval or
after the given number of matching events have been accumulated. Again, for statements that
group via the group by clause the | ast keyword provides special behavior as below.

The snapshot keyword indicates that the engine output current computation results considering
all events as per views specified and/or current aggregation results. While the other keywords
control how a batch of events between output intervals is being considered, the snapshot keyword
outputs all current state of a statement independent of the last batch. Its output is equivalent to
the i t er at or method provided by a statement. The snapshot keyword requires a data window
declaration if not used within a join and outputs only the last event if used without a data window.

The output_rate is the frequency at which the engine outputs events. It can be specified in terms
of time or number of events. The value can be a number to denote a fixed output rate, or the
name of a variable whose value is the output rate. By means of a variable the output rate can be
controlled externally and changed dynamically at runtime.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert
and remove stream output for the various out put clause keywords.

For use with contexts you may append the keywords and when ter ni nat ed to trigger output at
the rate defined and in addition trigger output when the context partition terminates. Please see
Section 4.5, “Output When Context Partition Ends” for details.

The time interval can also be specified in terms of minutes; the following statement is identical
to the first one.

select * from StockTi ckEvent output every 1.5 minutes

A second way that output can be stabilized is by batching events until a certain number of events
have been collected:

select * from StockTi ckEvent output every 5 events

119

Chapter 5. EPL Reference: Clauses

Additionally, event output can be further modified by the optional | ast keyword, which causes
output of only the last event to arrive into an output batch.

sel ect * from StockTi ckEvent output |ast every 5 events

Using the first keyword you can be notified at the start of the interval. The allows to watch for
situations such as a rate falling below a threshold and only be informed every now and again after
the specified output interval, but be informed the moment it first happens.

select * from Ti ckRate where rate<100 output first every 60 seconds

A sample statement using the Unix “crontab"-command schedule is shown next. See
Section 6.6.2.2, “timer:at” for details on schedule syntax. Here, output occurs every 15 minutes
from 8am to 5:45pm (hours 8 to 17 at 0, 15, 30 and 45 minutes past the hour):

sel ect synbol, sum(price) from StockTi ckEvent group by synbol output at
=has, & iz, =, =, =)

5.7.1.1. Controlling Output Using an Expression

Output can also be controlled by an expression that may check variable values, use user-defined
functions and query built-in properties that provide additional information. The synopsis is as
follows:

out put [after suppression_def]

[[all | first | last | snapshot] when trigger_expression
[then set variable_nane = assign_expression [, variable_name
= assign_expression [,...]]]

[and when terninated
[and term nati on_expression]
[then set variable_nane = assign_expression [, variable_name =
assi gn_expression [,...]]]

]

The when keyword must be followed by a trigger expression returning a boolean value of true
or false, indicating whether to output. Use the optional t hen keyword to change variable values
after the trigger expression evaluates to true. An assignment expression assigns a new value to
variable(s).

For use with contexts you may append the keywords and when terninated to also trigger
output when the context partition terminates. Please see Section 4.5, “Output When Context
Partition Ends” for details. You may optionally specify a termination expression. If that expression
is provided the engine evaluates the expression when the context partition terminates: The

120

Output Clause Options

evaluation result of t r ue means output occurs when the context partition terminates, f al se means
no output occurs when the context partition terminates. You may specify t hen set followed by a
list of assignments to assign variables. Assignments are executed on context partition termination
regardless of the termination expression, if present.

Lets consider an example. The next statement assumes that your application has defined a
variable by name OutputTriggerVar of boolean type. The statement outputs rows only when the
OutputTriggerVar variable has a boolean value of true:

sel ect sun(price) from StockTi ckEvent output when CQutput Tri ggerVar = true

The engine evaluates the trigger expression when streams and data views post one or more
insert or remove stream events after considering the wher e clause, if present. It also evaluates
the trigger expression when any of the variables used in the trigger expression, if any, changes
value. Thus output occurs as follows:

1. When there are insert or remove stream events and the when trigger expression evaluates to
true, the engine outputs the resulting rows.

2. When any of the variables in the when trigger expression changes value, the engine evaluates
the expression and outputs results. Result output occurs within the minimum time interval of
timer resolution (100 milliseconds).

By adding a t hen part to the EPL, we can reset any variables after the trigger expression evaluated
to true:

sel ect sum(price) from StockTi ckEvent
out put when CQutput Tri ggerVar = true
then set QutputTriggerVar = fal se

Expressions in the when and t hen may, for example, use variables, user defined functions or any
of the built-in named properties that are described in the below list.

The following built-in properties are available for use:

Table 5.5. Built-In Properties for Use with Output When

Built-In Property Name Description

| ast _out put _ti mest anp | Timestamp when the last output occurred for the statement; Initially
set to time of statement creation

count _insert Number of insert stream events

count _i nsert _t ot al Number of insert stream events in total (not reset when output
occurs).

count _renove Number of remove stream events

121

Chapter 5. EPL Reference: Clauses

Built-In Property Name Description

count _renove_t ot al Number of remove stream events in total (not reset when output
occurs).

The values provided by count _i nsert and count _renove are non-continues: The number
returned for these properties may ‘jump' up rather then count up by 1. The counts reset to zero
upon output.

The following restrictions apply to expressions used in the output rate clause:
« Event property names cannot be used in the output clause.
» Aggregation functions cannot be used in the output clause.

e The prev previous event function and the pri or prior event function cannot be used in the
output clause.

5.7.1.2. Suppressing Output With after

The af t er keyword and its time period or number of events parameters is optional and can occur
after the out put keyword, either alone or with output conditions as listed above.

The synopsis of af t er is as follows:

output after tine_period | nunber events [...]

When using af t er either alone or together with further output conditions, the engine discards all
output events until the time period passed as measured from the start of the statement, or until
the number of output events are reached. The discarded events are not output and do not count
towards any further output conditions if any are specified.

For example, the following statement outputs every minute the total price for all orders in the 30-
minute time window but only after 30 minutes have passed:

sel ect sun(price) from OrderEvent.win:time(30 mn) output after 30 m n snapshot
every 1 mn

An example in which aft er occur alone is below, in a statement that outputs total price for all
orders in the last minute but only after 1 minute passed, each time an event arrives or leaves
the data window:

sel ect sun(price) from OrderEvent.win:tine(1l mn) output after 1 mn

To demonstrate af t er when used with an event count, this statement find pairs of orders with the
same id but suppresses output for the first 5 pairs:

122

Aggregation, Group By, Having and Output clause interaction

select * from pattern[every o=OrderEvent->p=0OrderEvent(id=0.id)] output after
5 events

5.7.2. Aggregation, Group By, Having and Output clause
interaction

Remove stream events can also be useful in conjunction with aggregation and the out put
clause: When the engine posts remove stream events for fully-aggregated queries, it presents the
aggregation state before the expiring event leaves the data window. Your application can thus
easily obtain a delta between the new aggregation value and the prior aggregation value.

The engine evaluates the having-clause at the granularity of the data posted by views. That is, if
you utilize a time window and output every 10 events, the havi ng clause applies to each individual
event or events entering and leaving the time window (and not once per batch of 10 events).

The out put clause interacts in two ways with the group by and havi ng clauses. First, in the
output every n events case, the number n refers to the number of events arriving into the
group by cl ause. Thatis, if the gr oup by clause outputs only 1 event per group, or if the arriving
events don't satisfy the havi ng clause, then the actual number of events output by the statement
could be fewer than n.

Second, the | ast, al | and first keywords have special meanings when used in a statement
with aggregate functions and the gr oup by clause:

« When no keyword is specified, the engine produces an output row for each row in the batch
or when using group-by then an output per group only for those groups present in the batch,
following Section 3.7.2, “Output for Aggregation and Group-By”.

e The al| keyword (the default) specifies that the most recent data for all groups seen so far
should be output, whether or not these groups' aggregate values have just been updated

« Thel ast keyword specifies that only groups whose aggregate values have been updated with
the most recent batch of events should be output.

e The first keyword specifies that only groups whose aggregate values have been updated
with the most recent batch of events should be output following the defined frequency, keeping
frequency state for each group.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert
and remove stream output for aggregation and group-by.

By adding an output rate limiting clause to a statement that contains a group by clause we can
control output of groups to obtain one row for each group, generating an event per group at the
given output frequency.

The next statement outputs total price per symbol cumulatively (no data window was used here).
As it specifies the al | keyword, the statement outputs the current value for all groups seen so far,
regardless of whether the group was updated in the last interval. Output occurs after an interval
of 5 seconds passed and at the end of each subsequent interval:

123

Chapter 5. EPL Reference: Clauses

sel ect symbol, sum(price) from StockTi ckEvent group by synbol output all every
5 seconds

The below statement outputs total price per symbol considering events in the last 3 minutes.
When events leave the 3-minute data window output also occurs as new aggregation values are
computed. The | ast keyword instructs the engine to output only those groups that had changes.
Output occurs after an interval of 10 seconds passed and at the end of each subsequent interval:

sel ect synbol, sum(price) from StockTi ckEvent.wi n:tine(3 mnin)
group by synbol output |ast every 10 seconds

This statement also outputs total price per symbol considering events in the last 3 minutes. The
first keyword instructs the engine to output as soon as there is a new value for a group. After
output for a given group the engine suppresses output for the same group for 10 seconds and
does not suppress output for other groups. Output occurs again for that group after the interval
when the group has new value(s):

sel ect synbol, sun(price) from StockTi ckEvent.win:tine(3 mnn)
group by synbol output first every 10 seconds

5.7.3. Runtime Considerations

Output rate limiting provides output events to your application in regular intervals. Between
intervals, the engine uses a buffer to hold events until the output condition is reached. If your
application has high-volume streams, you may need to be mindful of the memory needs for output
rates.

The out put clause with the snapshot keyword does not require a buffer, all other output keywords
do consume memory until the output condition is reached.

5.8. Sorting Output: the Order By Clause

The order by clause is optional. It is used for ordering output events by their properties, or by
expressions involving those properties. .

For example, the following statement outputs batches of 5 or more stock tick events that are sorted
first by price ascending and then by volume ascending:

sel ect synbol from StockTi ckEvent.wi n:time(60 sec)
out put every 5 events
order by price, volune

124

Limiting Row Count: the Limit Clause

Here is the syntax for the or der by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

If the or der by clause is absent then the engine still makes certain guarantees about the ordering
of output:

« If the statement is not a join, does not group via gr oup by clause and does not declare grouped
data windows via st d: gr oupwi n view, the order in which events are delivered to listeners and
through the i t er at or pull API is the order of event arrival.

« If the statement is a join or outer join, or groups, then the order in which events are delivered
to listeners and through the i t er at or pull APl is not well-defined. Use the or der by clause if
your application requires events to be delivered in a well-defined order.

Esper places the following restrictions on the expressions in the or der by clause:

1. All aggregate functions that appear in the order by clause must also appear in the sel ect
expression.

Otherwise, any kind of expression that can appear in the sel ect clause, as well as any name
defined in the sel ect clause, is also valid in the order by clause.

By default all sort operations on string values are performed via the conpar e method and are
thus not locale dependent. To account for differences in language or locale, see Section 15.4.21,
“Engine Settings related to Language and Locale” to change this setting.

5.9. Limiting Row Count: the Limit Clause

The l'i nit clause is typically used together with the order by and out put clause to limit your
query results to those that fall within a specified range. You can use it to receive the first given
number of result rows, or to receive a range of result rows.

There are two syntaxes for the | i mi t clause, each can be parameterized by integer constants or
by variable names. The first syntax is shown below:

limt row count [offset offset_count]

The required row_count parameter specifies the number of rows to output. The row_count can be
an integer constant and can also be the name of the integer-type variable to evaluate at runtime.

The optional offset_count parameter specifies the number of rows that should be skipped (offset)
at the beginning of the result set. A variable can also be used for this parameter.

The next sample EPL query outputs the top 10 counts per property 'uri' every 1 minute.

select uri, count(*) from WbEvent
group by uri

125

Chapter 5. EPL Reference: Clauses

out put snapshot every 1 mnute
order by count(*) desc
limt 10

The next statement demonstrates the use of the of f set keyword. It outputs ranks 3 to 10 per
property 'uri* every 1 minute:

sel ect uri, count(*) from WbEvent
group by uri

out put snapshot every 1 mnute
order by count(*) desc

limt 8 offset 2

The second syntax for the | i ni t clause is for SQL standard compatibility and specifies the offset
first, followed by the row count:

limt offset_count[, row count]

The following are equivalent:

limt 8 offset 2
/Il ...equivalent to
limt 2, 8

A negative value for row_count returns an unlimited number or rows, and a zero value returns
no rows. If variables are used, then the current variable value at the time of output dictates the
row count and offset. A variable returning a null value for row_count also returns an unlimited
number or rows.

A negative value for offset is not allowed. If your variable returns a negative or null value for offset
then the value is assumed to be zero (i.e. no offset).

Theiterator pull APl also honorsthe |l i mit clause, if present.

5.10. Merging Streams and Continuous Insertion: the
Insert Into Clause

Theinsert into clause is optional in Esper. The clause can be specified to make the results of
a statement available as an event stream for use in further statements, or to insert events into a
named window. The clause can also be used to merge multiple event streams to form a single
stream of events.

The syntax for the i nsert i nto clause is as follows:

126

Merging Streams and Continuous Insertion: the Insert Into Clause

insert [istream| irstream| rstrean] into event_stream nanme
[(property nane [, property _nane]) |

The i st r eam(default) and r st r eamkeywords are optional. If no keyword or the i st r eamkeyword
is specified, the engine supplies the insert stream events generated by the statement. The insert
stream consists of the events entering the respective window(s) or stream(s). If the rstream
keyword is specified, the engine supplies the remove stream events generated by the statement.
The remove stream consists of the events leaving the respective window(s).

If your application specifies i r st r eam the engine inserts into the new stream both the insert and
remove stream. This is often useful in connection with the i st r eambuilt-in function that returns
an inserted/removed boolean indicator for each event, see Section 9.1.7, “The Istream Function”.

The event _st ream nane is an identifier that names the event stream (and also implicitly names
the types of events in the stream) generated by the engine. The identifier can be used in further
statements to filter and process events of that event stream. The i nsert i nt o clause can consist
of just an event stream name, or an event stream name and one or more property names.

The engine also allows listeners to be attached to a statement that containani nsert i nt o clause.
Listeners receive all events posted to the event stream.

To merge event streams, simply use the same event _st r eam nane identifier in all EPL statements
that merge their result event streams. Make sure to use the same number and names of event
properties and event property types match up.

Esper places the following restrictions on the i nsert i nt o clause:

1. The number of elements inthe sel ect clause must match the number of elementsinthei nsert
i nt o clause if the clause specifies a list of event property names

2. If the event stream name has already been defined by a prior statement or configuration, and
the event property names and/or event types do not match, an exception is thrown at statement
creation time.

The following sample inserts into an event stream by name CombinedEvent:

insert into Conbi nedEvent

sel ect A custonerld as custld, Atinmestanp - B.timestanp as | atency
fromEBEventAwin:tine(30 nin) A, EventB.win:tinme(30 mn) B

where A txnld = B.txnld

Each event in the Conbi nedEvent event stream has two event properties named "custld" and
"latency". The events generated by the above statement can be used in further statements, such
as shown in the next statement:

sel ect custld, sun(latency)
from Conbi nedEvent . wi n: ti me(30 mn)

127

Chapter 5. EPL Reference: Clauses

group by custld

The example statement below shows the alternative form of the i nsert i nt o clause that explicitly
defines the property names to use.

insert into Conmbi nedEvent (custld, |atency)
sel ect A customerld, A timestanp - B.tinmestanp

The r st r eamkeyword can be useful to indicate to the engine to generate only remove stream
events. This can be useful if we want to trigger actions when events leave a window rather
then when events enter a window. The statement below generates Conbi nedEvent events when
EventA and EventB leave the window after 30 minutes.

insert rstreaminto Conbi nedEvent

sel ect A custonerld as custld, Atinmestanp - B.timestanp as | atency
fromEBEventAwin:tine(30 nin) A EventB.win:time(30 mn) B

where A txnld = B.txnld

The i nsert into clause can be used in connection with patterns to provide pattern results to
further statements for analysis:

insert into ReUpEvent

select linkUp.ip as ip

from pattern [every | i nkDown=Li nkDownEvent ->
I i nkUp=Li nkUpEvent (i p=I i nkDown. i p)]

5.10.1. Transposing a Property To a Stream

Sometimes your events may carry properties that are themselves event objects. Therefore EPL
offers a special syntax to insert the value of a property itself as an event into a stream:

insert into stream nane sel ect property_nane.* from...

This feature is only supported for JavaBean events and for Map and Object-array (Cbj ect []) event
types that associate an event type name with the property type. It is not supported for XM events.
Nested property names are also not supported.

In this example, the class Summary with properties bi d and ask that are of type Quot e is:

public class Sunmary {

128

Merging Streams By Event Type

private Quote bid;
private Quote ask;

The statement to populate a stream of Quot e events is thus:

insert into MyBi dStream sel ect bid.* from Sunmmary

5.10.2. Merging Streams By Event Type

The i nsert into clause allows to merge multiple event streams into a event single stream.
The clause names an event stream to insert into by specifing an event_stream_name. The first
statement that inserts into the named stream defines the stream's event types. Further statements
that insert into the same event stream must match the type of events inserted into the stream as
declared by the first statement.

One approach to merging event streams specifies individual colum names either in the sel ect
clause or in the i nsert into clause of the statement. This approach has been shown in earlier
examples.

Another approach to merging event streams specifies the wildcard (*) in the sel ect clause (or the
stream wildcard) to select the underlying event. The events in the event stream must then have
the same event type as generated by the f r omclause.

Assume a statement creates an event stream named MergedStream by selecting OrderEvent
events:

insert into MergedStream sel ect * from O der Event

A statement can use the stream wildcard selector to select only OrderEvent events in a join:

insert into MergedStream sel ect ord.* from ltenScanEvent, OrderEvent as ord

And a statement may also use an application-supplied user-defined function to convert events to
OrderEvent instances:

insert into MergedStream sel ect MyLib. convert(item) fromltenScanEvent as item

Esper specifically recognizes a conversion function as follows: A conversion function must be
the only selected column, and it must return either a Java object or j ava. uti | . Map or Qoj ect []
(object array). Your EPL should not use the as keyword to assign a column name.

129

Chapter 5. EPL Reference: Clauses

5.10.3. Merging Disparate Types of Events: Variant Streams

A variant stream is a predefined stream into which events of multiple disparate event types can
be inserted.

A variant stream name may appear anywhere in a pattern or f romclause. In a pattern, a filter
against a variant stream matches any events of any of the event types inserted into the variant
stream. In a f r omclause including for named windows, views declared onto a variant stream may
hold events of any of the event types inserted into the variant stream.

A variant stream is thus useful in problems that require different types of event to be treated the
same.

Variant streams can be declared by means of creat e vari ant schena or can be predefined via
runtime or initialization-time configuration as described in Section 15.4.27, “Variant Stream”. Your
application may declare or predefine variant streams to carry events of a limited set of event types,
or you may choose the variant stream to carry any and all types of events. This choice affects
what event properties are available for consuming statements or patterns of the variant stream.

Assume that an application predefined a variant stream named O der Stream to carry only
Servi ceOrder and Product Order events. Ani nsert into clause inserts events into the variant
stream:

insert into OrderStream select * from Servi ceOrder

insert into OrderStream sel ect * from Product Or der

Here is a sample statement that consumes the variant stream and outputs a total price per
customer id for the last 30 seconds of Servi ceOr der and Product Or der events:

select custonerld, sum(price) from OderStreamw n:time(30 sec) group by
custonerld

If your application predefines the variant stream to hold specific type of events, as the sample
above did, then all event properties that are common to all specified types are visible on the variant
stream, including nested, indexed and mapped properties. For access to properties that are only
available on one of the types, the dynamic property syntax must be used. In the example above,
the cust oner I d and pri ce were properties common to both Servi ceOr der and Pr oduct Or der
events.

For example, here is a consuming statement that selects a ser vi ce dur act i on property that only
Servi ceOr der events have, and that must therefore be casted to double and null values removed
in order to aggregate:

130

Decorated Events

sel ect custonerld, sum(coal esce(cast(serviceDuraction?, double), 0))
fromOrderStreamw n:ti me(30 sec) group by custonerld

If your application predefines a variant stream to hold any type of events (the any type variance),
then all event properties of the variant stream are effectively dynamic properties.

For example, an application may define an Qut goi ngEvent s variant stream to hold any type of
event. The next statement is a sample consumer of the Qut goi ngEvent s variant stream that looks
for the desti nati on property and fires for each event in which the property exists with a value
of "email"':

sel ect * from Qut goi ngEvent s(destination = "email")

5.10.4. Decorated Events

Yoursel ect clause may use the *' wildcard together with further expressions to populate a stream
of events. A sample statement is:

insert into OrderStream select *, price*units as linePrice from PurchaseO der

When using wildcard and selecting additional expression results, the engine produces what is
called decorating events for the resulting stream. Decorating events add additional property values
to an underlying event.

In the above example the resulting OrderStream consists of underlying PurchaseOrder events
decorated by a | i nePri ce property that is a result of the pri ce*uni t s expression.

Inordertouseinsert into toinsertintoan existing stream of decorated events, your underlying
event type must match, and all additional decorating property hames and types of the sel ect
clause must also match.

5.10.5. Event as a Property

Your sel ect clause may use the stream name to populate a stream of events in which each event
has properties that are itself an event. A sample statement is:

insert into ConpositeStream sel ect order, service, order.price+service.price as
total Price

from PurchaseOrder.std:|lastevent() as order, ServiceEvent:std:|astevent() as
service

131

Chapter 5. EPL Reference: Clauses

When using the stream name (or tag in patterns) in the select-clause, the engine produces
composite events: One or more of the properties of the composite event are events themselves.

In the above example the resulting CompositeStream consists of 3 columns: the PurchaseOrder
event, the ServiceEvent event and the t ot al Pri ce property that is a result of the order. price
+servi ce. pri ce expression.

In order to use i nsert into toinsertinto an existing stream of events in which properties are
themselves events, each event column's event type must match, and all additional property names
and types of the sel ect clause must also match.

5.10.6. Instantiating and Populating an Underlying Event Object

Yourinsert into clause may also directly instantiate and populate application underlying event
objects or Map or Qbj ect [] event objects. This is described in greater detail in Section 2.12, “Event
Objects Instantiated and Populated by Insert Into”.

If instead you have an expression that returns an event object, please read on to the next section.

5.10.7. Transposing an Expression Result

You can transpose an object returned as an expression result into a stream using the t r anspose
function as described further in Section 9.4, “Select-Clause transpose Function”.

5.10.8. Select-Clause Expression And Inserted-Into Column
Event Type

When you declare the inserted-into event type in advance to the statement that inserts, the engine
compares the inserted-into event type information to the return type of expressions in the select-
clause. The comparison uses the column alias assigned to each select-clause expression using
the as keyword.

When the inserted-into column type is an event type and when using a subquery or the new
operator, the engine compares column names assigned to subquery columns or new operator
columns.

For example, assume a Pur chaseOr der event type that has a property called i t ens that consists

of I t emrows:

create schema Item(name string, price double)

create schenm PurchaseOrder(orderld string, itens Iltenf])

Declare a statement that inserts into the Pur chaseOr der stream:

132

Subqueries

insert into PurchaseOrder
select '001' as orderld, new {name='i1l", price=10} as itens
from Tri gger Event

The alias assigned to the first and second expression in the select-clause, namely or der | d and
i t ens, both match the event property names of the Purchase Order event type. The column
names provided to the new operator also both match the event property names of the | t emevent

type.

When the event type declares the column as a single value (and not an array) and when the
select-clause expression produces a multiple rows, the engine only populate the first row.

Consider a Pur chaseOr der event type that has a property called i t emthat consists of a single
I t emevent:

create schema PurchaseOrder(orderld string, itens lten)

The sample subquery below populates only the very first event, discarding remaining subquery
result events, since the i t ens property above is declared as holding a single 1t emtyped event
only (versus | teni] to hold multiple I t emtyped events).

insert into PurchaseOrder select
(select "il" as nane, 10 as price fromHi storyEvent.win:length(2)) as itens
from Tri gger Event

Consider using a subquery with filter, or one of the enumeration methods to select a specific
subquery result row.

5.11. Subqueries

A subquery is asel ect within another statement. Esper supports subqueries inthe sel ect clause,
wher e clause, havi ng clause and in stream and pattern filter expressions. Subqueries provide an
alternative way to perform operations that would otherwise require complex joins. Subqueries can
also make statements more readable then complex joins.

Esper supports both simple subqueries as well as correlated subqueries. In a simple subquery,
the inner query is not correlated to the outer query. Here is an example simple subquery within
a sel ect clause:

sel ect assetld, (select zone fromZoneC osed. std: | astevent()) as | astd osed from
RFI DEvent

133

Chapter 5. EPL Reference: Clauses

If the inner query is dependent on the outer query, we will have a correlated subquery. An example
of a correlated subquery is shown below. Notice the wher e clause in the inner query, where the
condition involves a stream from the outer query:

select * from Rfi dEvent as RFID where 'Dock 1' =
(sel ect nane from Zones. std: uni que(zoneld) where zoneld = RFID. zonel d)

The example above shows a subquery in the wher e clause. The statement selects RFID events
in which the zone name matches a string constant based on zone id. The statement uses the
view st d: uni que to guarantee that only the last event per zone id is held from processing by
the subquery.

The next example is a correlated subquery within a sel ect clause. In this statement the sel ect
clause retrieves the zone name by means of a subquery against the Zones set of events correlated
by zone id:

sel ect zoneld, (select nane from Zones. std: uni que(zonel d)
where zoneld = RFID. zoneld) as nane from RFI DEvent

Note that when a simple or correlated subquery returns multiple rows, the engine returns a nul |
value as the subquery result. To limit the number of events returned by a subquery consider using
one of the views st d: | ast event, st d: uni que and st d: gr oupwi n or aggregation functions or the
multi-row and multi-column selects as described below.

The sel ect clause of a subquery also allows wildcard selects, which return as an event property
the underlying event object of the event type as defined in the f r omclause. An example:

select (select * from MarketData. std: | astevent()) as nd
frompattern [every tinmer:interval (10 sec)]

The output events to the statement above contain the underlying MarketData event in a property
named "md". The statement populates the last MarketData event into a property named "md"
every 10 seconds following the pattern definition, or populates a nul | value if no MarketData
event has been encountered so far.

When your subquery returns multiple rows, you must use an aggregation function in the sel ect
clause of the subselect, as a subquery can only return a single row and single value object. To
return multiple values from a subquery, consider writing a custom aggregation function that returns
an array or collection of values.

Aggregation functions may be used in the sel ect clause of the subselect as this example outlines:

134

Subqueries

select * from Market Dat a
where price > (sel ect max(price) fromMarket Dat a(synbol =" GOOG). std: | astevent ())

As the sub-select expression is evaluated first (by default), the query above actually never fires
for the GOOG symbol, only for other symbols that have a price higher then the current maximum
for GOOG. As a sidenote, the i nsert i nto clause can also be handy to compute aggregation
results for use in multiple subqueries.

When using aggregation functions in a correlated subselect the engine computes the aggregation
based on data window or named window contents matching the where-clause.

The following example compares the quantity value provided by the current order event against
the total quantity of all order events in the last 1 hour for the same client.

sel ect * from Order Event oe

where qty >
(select sum(qty) from OrderEvent.win:time(1 hour) pd
where pd.client = oe.client)

Filter expressions in a pattern or stream may also employ subqueries. Subqueries can be
uncorrelated or can be correlated to properties of the stream or to properties of tagged events in
a pattern. Subqueries may reference named windows as well.

The following example filters Bar Dat a events that have a close price less then the last moving
average (field movAgv) as provided by stream SMA20St r eam(an uncorrelated subquery):

select * from BarData(ticker="MSFT', closePrice <
(sel ect nobvAgv from SMA20Stream(ticker="MSFT').std: |l astevent()))

A few generic examples follow to demonstrate the point. The examples use short event and
property names so they are easy to read. Assume A and B are streams and DNamedW ndow is a
named window, and propertiesa_id, b_id, d_id, a_val, b_val, d_val respectively:

/1 Sanple correl ated subquery as part of streamfilter criteria
select * fromA(a_val in
(select b_val fromB.std:unique(b_val) as b where a.a_id = b.b_id)) as a

/1 Sanple correl ated subquery agai nst a named w ndow
select * fromA(a_val in
(select b_val from DNanedW ndow as d where a.a_id = d.d_id)) as a

135

Chapter 5. EPL Reference: Clauses

// Sanple correlated subquery in the filter criteria as part of a pattern,
querying a named w ndow
select * frompattern [
a=A -> b=B(bval ue =
(select d_val from DNamedW ndow as d where d.d_id = b.b_id and d.d_id =
a.a_id))
]

Subquery state starts to accumulate as soon as a statement starts (and not only when a pattern-
subexpression activates).

The following restrictions apply to subqueries:

1. The subquery stream definition must define a data window or other view to limit subquery
results, reducing the number of events held for subquery execution

2. Subqueries can only consist of a sel ect clause, afromclause and a wher e clause. The gr oup
by and havi ng clauses, as well as joins, outer-joins and output rate limiting are not permitted
within subqueries.

3. If using aggregation functions in a subquery, note these limitations:
a. None of the properties of the correlated stream(s) can be used within aggregation functions.
b. The properties of the subselect stream must all be within aggregation functions.

The order of evaluation of subqueries relative to the containing statement is guaranteed: If the
containing statement and its subqueries are reacting to the same type of event, the subquery will
receive the event first before the containing statement's clauses are evaluated. This behavior can
be changed via configuration. The order of evaluation of subqueries is not guaranteed between
subqueries.

Performance of your statement containing one or more subqueries principally depends on two
parameters. First, if your subquery correlates one or more columns in the subquery stream with
the enclosing statement's streams, the engine automatically builds the appropriate indexes for fast
row retrieval based on the key values correlated (joined). The second parameter is the number of
rows found in the subquery stream and the complexity of the filter criteria (wher e clause), as each
row in the subquery stream must evaluate against the wher e clause filter.

5.11.1. The 'exists' Keyword

The exi st s condition is considered "to be met" if the subquery returns at least one row. The not
exi st s condition is considered true if the subquery returns no rows.

The synopsis for the exi st s keyword is as follows:

exi sts (subquery)

Let's take a look at a simple example. The following is an EPL statement that uses the exi sts
condition:

136

The 'in" and 'not in' Keywords

sel ect assetld from RFI DEvent as RFID
where exists (select * from Asset.std:unique(assetld) where assetld =
RFI D. asset | d)

This select statement will return all RFID events where there is at least one event in Assets unique
by asset id with the same asset id.

5.11.2. The 'in" and 'not in' Keywords

The i n subquery condition is true if the value of an expression matches one or more of the values
returned by the subquery. Consequently, the not i n condition is true if the value of an expression
matches none of the values returned by the subquery.

The synopsis for the i n keyword is as follows:

expression in (subquery)
The right-hand side subquery must return exactly one column.
The next statement demonstrates the use of the i n subquery condition:

sel ect assetld from RFlI DEvent
where zone in (sel ect zone fromZoneUpdate(status = 'closed').win:tine(10 nin))

The above statement demonstrated the i n subquery to select RFID events for which the zone
status is in a closed state.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of the i n construct will be null, not false (or true for
not - i n). This is in accordance with SQL's normal rules for Boolean combinations of null values.

5.11.3. The 'any' and 'sore' Keywords

The any subquery condition is true if the expression returns true for one or more of the values
returned by the subquery.

The synopsis for the any keyword is as follows:

expressi on operator any (subquery)
expressi on operator sonme (subquery)

The left-hand expression is evaluated and compared to each row of the subquery result using
the given operator, which must yield a Boolean result. The result of any is "true" if any true result

137

Chapter 5. EPL Reference: Clauses

is obtained. The result is "false" if no true result is found (including the special case where the
subquery returns no rows).

The operator can be any of the following values: =, '=, <>, <, <=, >, >=,
The sone keyword is a synonym for any. The i n construct is equivalent to = any.
The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the any subquery condition:

select * from ProductOrder as ord
where quantity < any
(select mnimunuantity from M ni mrunQuantity.w n: keepal | ())

The above query compares ProductOrder event's quantity value with all rows from the
MinimumQuantity stream of events and returns only those ProductOrder events that have a
quantity that is less then any of the minimum quantity values of the MinimumQuantity events.

Note that if there are no successes and at least one right-hand row yields null for the operator's
result, the result of the any construct will be null, not false. This is in accordance with SQL's normal
rules for Boolean combinations of null values.

5.11.4. The ‘a1’ Keyword

The al | subquery condition is true if the expression returns true for all of the values returned by
the subquery.

The synopsis for the al | keyword is as follows:

expression operator all (subquery)

The left-hand expression is evaluated and compared to each row of the subquery result using
the given operator, which must yield a Boolean result. The result of al | is "true" if all rows yield
true (including the special case where the subquery returns no rows). The result is "false" if any
false result is found. The result is nul | if the comparison does not return false for any row, and
it returns nul | for at least one row.

The operator can be any of the following values: =, =, <>, <, <=, >, >=
The not i n construct is equivalentto!= al I .
The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the al | subquery condition:

select * from Product Order as ord
where quantity < all

138

Multi-Column Selection

(select mninmunuantity from M ni munQuantity.w n: keepal | ())

The above query compares ProductOrder event's quantity value with all rows from the
MinimumQuantity stream of events and returns only those ProductOrder events that have a
quantity that is less then all of the minimum quantity values of the MinimumQuantity events.

5.11.5. Multi-Column Selection

Your subquery may select multiple columns in the sel ect clause including multiple aggregated
values from a data window or named window.

The following example is a correlated subquery that selects wildcard and in addition selects the
bi d and of f er properties of the last Mar ket Dat a event for the same symbol as the arriving
Or der Event :

sel ect *,
(select bid, offer from Market Data. std: uni que(synbol) as nd
where nd. synbol = oe.synbol) as bidoffer

from O der Event oe

Output events for the above query contain all properties of the original Or der Event event. In
addition each output event contains a bi dof f er nested property that itself contains the bi d
and of f er properties. You may retrieve the bid and offer from output events directly via the
bi dof f er. bi d property name syntax for nested properties.

The next example is similar to the above query but instead selects aggregations and selects
from a named window by name O der NanmedW ndow (creation not shown here). For each arriving
Or der Event it selects the total quantity and count of all order events for the same client, as
currently held by the named window:

sel ect *,
(sel ect sun(qty) as sunPrice, count(*) as count Rows
from O der NamedW ndow as onw
where onw. client = oe.client) as pastOderTotal s
from O der Event as oe

The next EPL statement computes a prorated quantity considering the maximum and minimum
quantity for the last 1 minute of order events:

expressi on subqg {
(sel ect max(quantity) as maxq, mn(quantity) as ming fromOrderEvent.win:tine(1l
mn))

}

139

Chapter 5. EPL Reference: Clauses

select (quantity - minqg) / (subq().maxq - subqg().m ng) as prorated
from O der Event

Output events for the above query contain all properties of the original Or der Event event. In
addition each output event contains a past Or der Tot al s nested property that itself contains the
sunPri ce and count Rows properties.

5.11.6. Multi-Row Selection

While a subquery cannot change the cardinality of the selected stream, a subquery can return
multiple values from the selected data window or named window. This section shows examples
of the wi ndow aggregation function as well as the use of enumeration methods with subselects.

Consider using an inner join, outer join or unidirectional join instead to achieve a 1-to-many
cardinality in the number of output events.

The next example is an uncorrelated subquery that selects all current ZoneEvent events
considering the last ZoneEvent per zone for each arriving RFI DEvent .

sel ect assetld,
(sel ect window(z.*) as wi nzones from ZoneEvent. std: uni que(zone) as z) as zones
f rom RFI DEvent

Output events for the above query contain two properties: the asset | d property and the zones
property. The latter property is a nested property that contains the wi nzones property. You may
retrieve the zones from output events directly via the zones. wi nzones property name syntax for
nested properties.

In this example for a correlated subquery against a named window we assume that the
O der NanedW ndow has been created and contains order events. The query returns for each
Mar ket Dat a event the list of order ids for orders with the same symbol:

sel ect price,
(sel ect wi ndow(orderld) as wi norders
from O der NanedW ndow onw
where onw. synbol = nd. synbol) as orderlds
from Mar ket Data nd

Output events for the above query contain two properties: the pri ce property and the or der | ds
property. The latter property is a nested property that contains the wi nor der s property of type
array.

Another option to reduce selected rows to a single value is through the use of enumeration
methods.

140

Hints Related to Subqueries

sel ect price,
(select * from O der NanedW ndow onw
where onw. synbol = nd. synbol).sel ectFron{v => v) as ordersSynbol
from Mar ket Data nd

Output events for the above query also contain a Collection of underlying events in the
or der sSynbol property.

5.11.7. Hints Related to Subqueries

The following hints are available to tune performance and memory use of subqueries.

Use the @i nt (' set _noi ndex') hint for a statement that utilizes one or more subqueries. It
instructs the engine to always perform a full table scan. The engine does not build an implicit index
or use an explicitly-created index when this hint is provided. Use of the hint may result in reduced
memory use but poor statement performance.

The following hints are available to tune performance and memory use of subqueries that select
from named windows.

Named windows are globally-visible data windows. As such an application may create explicit
indexes as discussed in Section 5.15.13, “Explicitly Indexing Named Windows”. The engine may
also elect to create implicit indexes (no create-index EPL required) for index-based lookup of rows
when executing on- sel ect, on- mer ge, on- updat e and on- del et e statements and for statements
that subquery a named window.

By default and without specifying a hint, each statement that subqueries a named window also
maintains its own index for looking up events held by the named window. The engine maintains
the index by consuming the named window insert and remove stream. When the statement is
destroyed it releases that index.

Specify the @1 nt (' enabl e_wi ndow subquery_i ndexshare') hint to enable subquery index
sharing for named windows. When using this hint, indexes for subqueries are maintained by the
named window itself (and not each statement), are shared between one or more statements and
may also utilize explicit indexes. Specify the hint once as part of the creat e wi ndow statement.

This sample EPL statement creates a named window with subquery index sharing enabled:

@ nt (' enabl e_wi ndow_subquery_i ndexshare')
create wi ndow Al | Or der sNamedW ndow. wi n: keepal | () as Order MapEvent Type

When subquery index sharing is enabled, performance may increase as named window stream
consumption is no longer needed. You may also expect reduced memory use especially if a large
number of EPL statements perform similar subqueries against a named window. Subquery index

141

Chapter 5. EPL Reference: Clauses

sharing may require additional short-lived object creation and may slightly increase lock held time
for named windows.

The following statement performs a correlated subquery against the named window above. When
a settlement event arrives it select the order detail for the same order id as provided by the
settlement event:

sel ect
(select * fromAl | O der sNanedW ndow as onw
where onw. orderld = se.orderld) as orderDetail
from Settl enent Event as se

With subquery index sharing enabled the engine maintains an index of order events by order id for
the named window, and shares that index between additional statements until the time all utilizing
statements are destroyed.

You may disable subquery index sharing for a specific statement by specifying the
@i nt (' di sabl e_wi ndow_subquery_i ndexshare') hint, as this example shows, causing the
statement to maintain its own index:

@+ nt (' di sabl e_wi ndow_subquery_i ndexshare')
sel ect
(select * from Al |l O der sNamedW ndow as onw
where onw. orderld = se.orderld) as orderDetail
from Settl enent Event as se

5.12. Joining Event Streams

5.12.1. Introducing Joins

Two or more event streams can be part of the f r omclause and thus both (all) streams determine
the resulting events. This section summarizes the important concepts. The sections that follow
present more detail on each topic.

The default join is an inner join which produces output events only when there is at least one
match in all streams.

Consider the sample statement shown next:

select * from Ti ckEvent.std:|astevent(), NewsEvent.std:|astevent()

The above statement outputs the last TickEvent and the last NewsEvent in one output event when
either a TickEvent or a NewsEvent arrives. If no TickEvent was received before a NewsEvent

142

Introducing Joins

arrives, no output occurs. Similarly when no NewsEvent was received before a TickEvent arrives,
no output occurs.

The wher e-clause lists the join conditions that Esper uses to relate events in the two or more
streams.

The next example statement retains the last TickEvent and last NewsEvent per symbol, and joins
the two streams based on their symbol value:

select * from TickEvent.std:unique(synbol) as t, NewsEvent.std:uni que(synbol)
as n
where t.synbol = n.synbol

As before, when a TickEvent arrives for a symbol that has no matching NewsEvent then there
is no output event.

An outer join does not require each event in either stream to have a matching event. The full outer
join is useful when output is desired when no match is found. The different outer join types (full,
left, right) are explained in more detail below.

This example statement is an outer-join and also returns the last TickEvent and last NewsEvent
per symbol:

sel ect * from Ti ckEvent. std: uni que(synbol) as t
full outer join NewsEvent.std: unique(synbol) as n on t.synmbol = n.synbol

In the sample statement above, when a TickEvent arrives for a symbol that has no matching
NewsEvent, or when a NewsEvent arrives for a symbol that has no matching TickEvent, the
statement still produces an output event with a null column value for the missing event.

Note that each of the sample queries above defines a data window. The sample queries above
use the last-event data window (std:lastevent) or the unique data window (std:unique). A data
window serves to indicate the subset of events to join from each stream and may be required
depending on the join.

In above queries, when either a TickEvent arrives or when a NewsEvent arrives then the query
evaluates and there is output. The same holds true if additional streams are added to the fr om
clause: Each of the streams in the f r omclause trigger the join to evaluate.

The uni di recti onal keyword instructs the engine to evaluate the join only when an event arrives
from the single stream that was marked with the uni di recti onal keyword. In this case no data
window should be specified for the stream marked as uni di rect i onal since the keyword implies
that the current event of that stream triggers the join.

Here is the sample statement above with uni di recti onal keyword, so that output occurs only
when a TickEvent arrives and not when a NewsEvent arrives:

143

Chapter 5. EPL Reference: Clauses

select * fromTickEvent as t unidirectional, NewsEvent.std:uni que(synbol) as n
where t.synmbol = n.symbol

It is oftentimes the case that an aggregation (count, sum, average) only needs to be calculated
in the context of an arriving event or timer. Consider using the uni di recti onal keyword when
aggregating over joined streams.

An EPL pattern is a normal citizen also providing a stream of data consisting of pattern matches. A
time pattern, for example, can be useful to evaluate a join and produce output upon each interval.

This sample statement includes a pattern that fires every 5 seconds and thus triggers the join to
evaluate and produce output, computing an aggregated total quantity per symbol every 5 seconds:

sel ect synbol , sunm(qty) from pattern[every timer:interval (5 sec)]
uni di recti onal ,
Ti ckEvent . st d: uni que(synbol) t, NewsEvent.std: uni que(synbol) as n
where t.synbol = n.synbol group by synbol

Named windows as well as reference and historical data such as stored in your relational
database, and data returned by a method invocation, can also be included in joins as discussed in
Section 5.13, “Accessing Relational Data via SQL” and Section 5.14, “Accessing Non-Relational
Data via Method Invocation”.

Related to joins are subqueries: A subquery is a sel ect within another statement, see
Section 5.11, “Subqueries”

The engine performs extensive query analysis and planning, building internal indexes and
strategies as required to allow fast evaluation of many types of queries.

5.12.2. Inner (Default) Joins

Each point in time that an event arrives to one of the event streams, the two event streams are
joined and output events are produced according to the wher e clause when matching events are
found for all joined streams.

This example joins 2 event streams. The first event stream consists of fraud warning events for
which we keep the last 30 minutes. The second stream is withdrawal events for which we consider
the last 30 seconds. The streams are joined on account number.

sel ect fraud. account Number as accnt Num fraud.warning as warn, wthdraw amount
as anount,
max(fraud.timestanp, withdraw timestanp) as tinestanp, 'wthdraw Fraud'
as desc
from com espertech. esper. exanpl e. at m Fr audWar ni ngEvent .win:time(30 min) as
f raud,

144

Outer, Left and Right Joins

com espertech. esper. exanpl e. atm Wt hdrawal Event.wi n: ti mre(30 sec) as
wi t hdr aw
wher e fraud. account Nunber = wi t hdraw. account Nunber

Joins can also include one or more pattern statements as the next example shows:

sel ect * from FraudWarnni ngEvent.win:tinme(30 mn) as fraud,
pattern [every w=W t hdr awal Event ->
Pl NChangeEvent (acct =w. acct)].std: |l astevent() as w t hdraw
wher e fraud. account Number = wi t hdraw. w. account Nunber

The statement above joins the last 30 minutes of fraud warnings with a pattern. The pattern
consists of every withdrawal event that is followed by a PIN change event for the same account
number. It joins the two event streams on account number. The last-event view instucts the join
to only consider the last pattern match.

In a join and outer join, your statement must declare a data window view or other view onto each
stream. Streams that are marked as unidirectional and named windows as well as database or
methods in a join are an exception and do not require a view to be specified. If you are joining an
event to itself via contained-event selection, views also do not need to be specified. The reason
that a data window must be declared is that a data window specifies which events are considered
for the join (i.e. last event, last 10 events, all events, last 1 second of events etc.).

The next example joins all FraudWarningEvent events that arrived since the statement was
started, with the last 20 seconds of PINChangeEvent events:

sel ect * from FraudWar ni ngEvent . wi n: keepal | () as fraud,
Pl NChangeEvent . wi n:ti ne(20 sec) as pin
where fraud. account Nunber = pin.account Nunber

The above example employed the special keep-all view that retains all events.

5.12.3. Outer, Left and Right Joins

Esper supports left outer joins, right outer joins, full outer joins and inner joins in any combination
between an unlimited number of event streams. Outer and inner joins can also join reference and
historical data as explained in Section 5.13, “Accessing Relational Data via SQL”, as well as join
data returned by a method invocation as outlined in Section 5.14, “Accessing Non-Relational Data
via Method Invocation”.

The keywords | eft, right, full andinner control the type of the join between two streams.
The optional on clause specifies one or more properties that join each stream. The synopsis is
as follows:

145

Chapter 5. EPL Reference: Clauses

...from stream def [as nane]

((left|right|full outer) | inner) join stream def
[on property = property [and property = property ...]]
[((left|right|[full outer) | inner) join streamdef [on ...]]...

If the outer join is a left outer join, there will be an output event for each event of the stream on
the left-hand side of the clause. For example, in the left outer join shown below we will get output
for each event in the stream RfidEvent, even if the event does not match any event in the event
stream OrderList.

select * fromRfidEvent.win:tine(30 sec) as rfid
left outer join
OrderList.w n:length(10000) as orderli st
on rfid.itemd = orderList.itenld

Similarly, if the join is a Right Outer Join, then there will be an output event for each event of the
stream on the right-hand side of the clause. For example, in the right outer join shown below we
will get output for each event in the stream OrderList, even if the event does not match any event
in the event stream RfidEvent.

select * fromRfidEvent.win:tine(30 sec) as rfid
right outer join
Order List.w n:length(10000) as orderlist
on rfid.itemd = orderList.itemd

For all types of outer joins, if the join condition is not met, the select list is computed with the event
properties of the arrived event while all other event properties are considered to be null.

The next type of outer join is a full outer join. In a full outer join, each point in time that an event
arrives to one of the event streams, one or more output events are produced. In the example below,
when either an RfidEvent or an OrderList event arrive, one or more output event is produced. The
next example shows a full outer join that joins on multiple properties:

select * fromRfidEvent.win:tine(30 sec) as rfid
full outer join
Order List.w n:length(10000) as orderli st
on rfid.itemd = orderList.itemld and rfid.assetld = orderlList.assetld

The last type of join is an inner join. In an inner join, the engine produces an output event for each
event of the stream on the left-hand side that matches at least one event on the right hand side
considering the join properties. For example, in the inner join shown below we will get output for
each eventin the RfidEvent stream that matches one or more events in the OrderList data window:

146

Unidirectional Joins

select * from Rfi dEvent.wi n:tinme(30 sec) as rfid
inner join
OrderList.w n:length(10000) as orderli st
on rfid.itemd = orderList.itemld and rfid.assetld = orderlList.assetld

Patterns as streams in a join follow this rule: If no data window view is declared for the pattern
then the pattern stream retains the last match. Thus a pattern must have matched at least once for
the last row to become available in a join. Multiple rows from a pattern stream may be retained by
declaring a data window view onto a pattern using the pattern [...]. view_specification syntax.

This example outer joins multiple streams. Here the RfidEvent stream is outer joined to both
ProductName and LocationDescription via left outer join:

select * fromRfidEvent.win:tine(30 sec) as rfid
| eft outer join ProductNane.w n: keepal | () as refprod
on rfid.productld = refprod. prodld
| eft outer join LocationDescription.w n:keepall () as refdesc
on rfid.location = refdesc.locld

If the optional on clause is specified, it may only employ the = equals operator and property names.
Any other operators must be placed in the wher e-clause. The stream names that appear in the
on clause may refer to any stream in the f r omclause.

Your EPL may also provide no on clause. This is useful when the streams that are joined do not
provide any properties to join on, for example when joining with a time-based pattern.

The next example employs a unidirectional left outer join such that the engine, every 10 seconds,
outputs a count of the number of RfidEvent events in the 60-second time window.

sel ect count(*) from
pattern[every timer:interval (1)] unidirectional
left outer join
Rfi dEvent.win:ti me(60 sec)

5.12.4. Unidirectional Joins

In a join or outer join your statement lists multiple event streams, views and/or patterns in the f r om
clause. As events arrive into the engine, each of the streams (views, patterns) provides insert and
remove stream events. The engine evaluates each insert and remove stream event provided by
each stream, and joins or outer joins each event against data window contents of each stream,
and thus generates insert and remove stream join results.

147

Chapter 5. EPL Reference: Clauses

The direction of the join execution depends on which stream or streams are currently providing an
insert or remove stream event for executing the join. A join is thus multidirectional, or bidirectional
when only two streams are joined. A join can be made unidirectional if your application does not
want new results when events arrive on a given stream or streams.

The uni di rectional keyword can be used in the fromclause to identify a single stream that
provides the events to execute the join. If the keyword is present for a stream, all other streams
in the fromclause become passive streams. When events arrive or leave a data window of a
passive stream then the join does not generate join results.

For example, consider a use case that requires us to join stock tick events (TickEvent) and
news events (NewsEvent). The uni di recti onal keyword allows to generate results only when
TickEvent events arrive, and not when NewsEvent arrive or leave the 10-second time window:

sel ect * from Ti ckEvent unidirectional, NewsEvent.w n:time(1l0 sec)
where tick.symbol = news.synbol

Aggregation functions in a unidirectional join aggregate within the context of each
unidirectional event evaluation and are not cumulative. Thereby aggregation functions when used
with uni di rect i onal may evaluate faster as they do not need to consider a remove stream (data
removed from data windows or named windows).

The count function in the next query returns, for each TickEvent, the number of matching
NewEvent events:

sel ect count(*) from Ti ckEvent unidirectional, NewsEvent.w n:time(10 sec)
where tick.symbol = news.synbol

The following restrictions apply to unidirectional joins:

1. The uni di recti onal keyword can only be specified for a single stream in the f r omclause.

2. Receiving data from a unidirectional join via the pull API (i t er at or method) is not allowed.
This is because the engine holds no state for the single stream that provides the events to
execute the join.

3. The stream that declares the uni di r ect i onal keyword cannot declare a data window view or
other view for that stream, since remove stream events are not processed for the single stream.

5.12.5. Hints Related to Joins

When joining 3 or more streams (including any relational or non-relational sources as below) it
can sometimes help to provide the query planner instructions how to best execute the join. The
engine compiles a query plan for the EPL statement at statement creation time. You can output
the query plan to logging (see configuration).

148

Accessing Relational Data via SQL

An outer join that specifies only i nner keywords for all streams is equivalent to an default (inner)
join. The following two statements are equivalent:

select * from Ti ckEvent.std:|astevent(),
NewsEvent . std: | astevent () where tick.synmbol = news. synbol

Equivalent to:

select * from Ti ckEvent.std: | astevent ()
i nner join NewsEvent.std:|astevent() on tick.synmbol = news.synbol

For all types of joins, the query planner determines a query graph: The term is used here for all
the information regarding what properties or expressions are used to join the streams. The query
graph thus includes the where-clause expressions as well as outer-join on-clauses if this statement
is an outer join. The query planner also computes a dependency graph which includes information
about all historical data streams (relational and non-relational as below) and their input needs.

For default (inner) joins the query planner first attempts to find a path of execution as a nested
iteration. For each stream the query planner selects the best order of streams available for the
nested iteration considering the query graph and dependency graph. If the full depth of the join
is achievable via nested iteration for all streams without full table scan then the query planner
uses that nested iteration plan. If not, then the query planner re-plans considering a merge join
(Cartesian) approach instead.

Specify the @Hint('PREFER_MERGE_JOIN") to instruct the query planner to prefer a merge join
plan instead of a nested iteration plan. Specify the @Hint(FORCE_NESTED _ITER') to instruct
the query planner to always use a nested iteration plan.

For example, consider the below statement. Depending on the number of matching rows in
OrderBookOne and OrderBookTwo (named windows in this example, and assumed to be defined
elsewhere) the performance of the join may be better using the merge join plan.

@i nt (' PREFER_MERGE_JO N)
select * from Ti ckEvent.std:|lastevent() t,
Or der BookOne obl, O der BookOne ob2
where obl.synbol = t.synbol and ob2.synbol = t.synbol
and obl.price between t.buy and t.sell and ob2.price between t.buy and t.sell

For outer joins the query planner considers nested iteration and merge join (Cartesian) equally
and above hints don't apply.

5.13. Accessing Relational Data via SQL

149

Chapter 5. EPL Reference: Clauses

This chapter outlines how reference data and historical data that are stored in a relational database
can be queried via SQL within EPL statements.

Esper can access via join and outer join as well as via iterator (poll) API all types of event streams
to stored data. In order for such data sources to become accessible to Esper, some configuration
is required. The Section 15.4.9, “Relational Database Access” explains the required configuration
for database access in greater detail, and includes information on configuring a query result cache.

Esper does not parse or otherwise inspect your SQL query. Therefore your SQL can make use of
any database-specific SQL language extensions or features that your database provides.

If you have enabled query result caching in your Esper database configuration, Esper retains SQL
query results in cache following the configured cache eviction policy.

Also if you have enabled query result caching in your Esper database configuration and provide
EPL wher e clause and/or on clause (outer join) expressions, then Esper builds indexes on the
SQL query results to enable fast lookup. This is especially useful if your queries return a large
number of rows. For building the proper indexes, Esper inspects the expression found in your EPL
query wher e clause, if present. For outer joins, Esper also inspects your EPL query on clause.
Esper analyzes the EPL on clause and wher e clause expressions, if present, looking for property
comparison with or without logical AND-relationships between properties. When a SQL query
returns rows for caching, Esper builds and caches the appropriate index and lookup strategies
for fast row matching against indexes.

Joins or outer joins in which only SQL statements or method invocations are listed in the from
clause and no other event streams are termed passive joins. A passive join does not produce an
insert or remove stream and therefore does not invoke statement listeners with results. A passive
join can be iterated on (polled) using a statement's saf el t erat or and i t er at or methods.

There are no restrictions to the number of SQL statements or types of streams joined. The
following restrictions currently apply:

e Sub-views on an SQL query are not allowed; That is, one cannot create a time or length window
on an SQL query. However one can use the i nsert i nt o syntax to make join results available
to a further statement.

» Your database software must support JDBC prepared statements that provide statement meta
data at compilation time. Most major databases provide this function. A workaround is available
for databases that do not provide this function.

« JDBC drivers must support the getMetadata feature. A workaround is available as below for
JDBC drivers that don't support getting metadata.

The next sections assume basic knowledge of SQL (Structured Query Language).

5.13.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of
the database and a parameterized SQL query. The syntax to use in the f romclause of an EPL
statement is:

150

Joining SQL Query Results

sql : dat abase_nane [" paraneterized_sql _query "]

The engine uses the database name identifier to obtain configuration information in order to
establish a database connection, as well as settings that control connection creation and removal.
Please see Section 15.4.9, “Relational Database Access” to configure an engine for database
access.

Following the database name is the SQL query to execute. The SQL query can contain one or
more substitution parameters. The SQL query string is placed in single brackets [and] . The SQL
query can be placed in either single quotes (') or double quotes (). The SQL query grammer is
passed to your database software unchanged, allowing you to write any SQL query syntax that
your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${ expression} . The engine resolves
expression at statement execution time to the actual expression result by evaluating the events
in the joined event stream or current variable values, if any event property references or variables
occur in the expression. An expression may not contain EPL substitution parameters.

The engine determines the type of the SQL query output columns by means of the result set
metadata that your database software returns for the statement. The actual query results are
obtained via the get Obj ect onj ava. sql . Resul t Set .

The sample EPL statement below joins an event stream consisting of Cust oner Cal | Event events
with the results of an SQL query against the database named MyCust omer DB and table Cust omrer :

sel ect custld, cust_nanme from CustonerCal | Event,
sql : MyCustoner DB [' sel ect cust_name from Cust oner where cust _id = ${custld} ']

The example above assumes that Custoner Cal | Event supplies an event property named
custld. The SQL query selects the customer name from the Customer table. The where
clause in the SQL matches the Customer table column cust _i d with the value of custld
in each CustonerCal | Event event. The engine executes the SQL query for each new
Cust omer Cal | Event encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event.
Else the engine generates one output event for each row returned by the SQL query. An outer
join as described in the next section can be used to control whether the engine should generate
output events even when the SQL query returns no rows.

The next example adds a time window of 30 seconds to the event stream Cust oner Cal | Event . It
also renames the selected properties to customerName and customerld to demonstrate how the
naming of columns in an SQL query can be used in the sel ect clause in the EPL query. And the
example uses explicit stream names via the as keyword.

sel ect custonerld, custonerNanme from

151

Chapter 5. EPL Reference: Clauses

Cust oner Cal | Event . wi n: ti me(30 sec) as cce,
sql : MyCustonerDB ["select cust_id as custonerld, cust_nane as custonerNane
from Cust omer
where cust_id = ${cce.custld}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events
enter the window, and remove stream (rstream) events as events leave the window. The engine
executes the given SQL query for each Cust orer Cal | Event in both the insert stream and the
remove stream. As a performance optimization, the i st r eamor r st r eamkeywords in the sel ect
clause can be used to instruct the engine to only join insert stream or remove stream events,
reducing the number of SQL query executions.

Since any expression may be placed within the ${. ..} syntax, you may use variables or user-
defined functions as well.

The next example assumes that a variable by name var Lower Li ni t is defined and that a user-
defined function get Li nmi t exists on the MyLi b imported class that takes a Linit Event as a
parameter:

select * fromLimtEvent |e,
sql : MyCustonmer DB [' sel ect cust_nane from Custoner where
amount > ${rmax(varLowerLimt, MyLib.getLimt(le))} ']

The example above takes the higher of the current variable value or the value returned by the user-
defined function to return only those customer names where the amount exceeds the computed
limit.

5.13.2. SQL Query and the EPL were Clause

Consider using the EPL wher e clause to join the SQL query result to your event stream. Similar
to EPL joins and outer-joins that join event streams or patterns, the EPL wher e clause provides
join criteria between the SQL query results and the event stream (as a side note, an SQL wher e
clause is a filter of rows executed by your database on your database server before returning
SQL query results).

Esper analyzes the expression in the EPL wher e clause and outer-join on clause, if present, and
builds the appropriate indexes from that information at runtime, to ensure fast matching of event
stream events to SQL query results, even if your SQL query returns a large number of rows. Your
applications must ensure to configure a cache for your database using Esper configuration, as
such indexes are held with regular data in a cache. If you application does not enable caching of
SQL query results, the engine does not build indexes on cached data.

The sample EPL statement below joins an event stream consisting of Or der Event events with the
results of an SQL query against the database named MyRef DB and table Synbol Ref er ence:

152

Outer Joins With SQL Queries

sel ect symbol, synbol Desc from O der Event as orders,
sqgl : MyRef DB [' sel ect symnbol Desc from Synbol Ref erence'] as reference
where reference. synbol = orders. synbol

Notice how the EPL wher e clause joins the Or der Event stream to the Synbol Ref er ence table.
In this example, the SQL query itself does not have a SQL wher e clause and therefore returns
all rows from table Synbol Ref er ence.

If your application enables caching, the SQL query fires only at the arrival of the first O der Event
event. When the second Or der Event arrives, the join execution uses the cached query result. If
the caching policy that you specified in the Esper database configuration evicts the SQL query
result from cache, then the engine fires the SQL query again to obtain a new result and places
the result in cache.

If SQL result caching is enabled and your EPL wher e clause, as show in the above example,
provides the properties to join, then the engine indexes the SQL query results in cache and retains
the index together with the query result in cache. Thus your application can benefit from high
performance index-based lookups as long as the SQL query results are found in cache.

The SQL result caches operate on the level of all result rows for a given parameter set. For
example, if your query returns 10 rows for a certain set of parameter values then the cache treats
all 10 rows as a single entry keyed by the parameter values, and the expiry policy applies to all
10 rows and not to each individual row.

It is also possible to join multiple autonomous database systems in a single query, for example:

sel ect synbol, synbol Desc from Order Event as orders,
sql: M/_Oracle DB ['sel ect synbol Desc from Synbol Ref erence'] as reference,
sql : My_MWSQ._DB ['select orderList fromorderHi story'] as history
where reference. synbol = orders. synbol
and history. synbol = orders. synbol

5.13.3. Outer Joins With SQL Queries

You can use outer joins to join data obtained from an SQL query and control when an event is
produced. Use a left outer join, such as in the next statement, if you need an output event for each
event regardless of whether or not the SQL query returns rows. If the SQL query returns no rows,
the join result populates null values into the selected properties.

sel ect custld, custName from
Cust oner Cal | Event as cce
left outer join
sql : MyCust oner DB ["sel ect cust_id, cust_nane as cust Name
from Customer where cust_id = ${cce.custld}"] as cq

153

Chapter 5. EPL Reference: Clauses

on cce.custld = cq.cust_id

The statement above always generates at least one output event for each Cust oner Cal | Event ,
containing all columns selected by the SQL query, even if the SQL query does not return any
rows. Note the on expression that is required for outer joins. The on acts as an additional filter
to rows returned by the SQL query.

5.13.4. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can also be applied together in useful ways. One such use
is to poll or request data from a database at regular intervals or following the schedule of the
crontab-like ti mer: at .

The next statement is an example that shows a pattern that fires every 5 seconds to query the
NewOrder table for new orders:

insert into NewOrders
sel ect orderld, order Anount from
pattern [every timer:interval (5 sec)],
sqgl : MyCustonerDB [' sel ect orderld, orderAnount from NewOrders']

5.13.5. Polling SQL Queries via Iterator

Usually your SQL query will take part in a join and thus be triggered by an event or pattern
occurrence. Instead, your application may need to poll a SQL query and thus use Esper query
execution and caching facilities and obtain event data and metadata.

Your EPL statement can specify an SQL statement without a join. Such a stand-alone SQL
statement does not post new events, and may only be queried via the i t er at or poll API. Your
EPL and SQL statement may still use variables.

The next statement assumes that a pri ce_var variable has been declared. It selects from the
relational database table named NewOr der all rows in which the pri ce column is greater then the
current value of the pri ce_var EPL variable:

select * from sql: MyCustonerDB ['select * from NewOrder where ${price_var} >
price']

Use thei terat or and saf el t er at or methods on EPSt at enent to obtain results. The statement
does not post events to listeners, it is strictly passive in that sense.

154

JDBC Implementation Overview

5.13.6. JDBC Implementation Overview

The engine translates SQL queries into JDBC j ava. sql . Prepar edSt at enent statements by
replacing ${name} parameters with '?' placeholders. It obtains name and type of result columns
from the compiled Pr epar edSt at ement meta data when the EPL statement is created.

The engine supplies parameters to the compiled statement via the set Obj ect method on
Pr epar edSt at enent . The engine uses the get Obj ect method on the compiled statement
Pr epar edSt at enent to obtain column values.

5.13.7. Oracle Drivers and No-Metadata Workaround

Certain JDBC database drivers are known to not return metadata for precompiled prepared SQL
statements. This can be a problem as metadata is required by Esper. Esper obtains SQL result
set metadata to validate an EPL statement and to provide column types for output events. JDBC
drivers that do not provide metadata for precompiled SQL statements require a workaround. Such
drivers do generally provide metadata for executed SQL statements, however do not provide the
metadata for precompiled SQL statements.

Please consult the Chapter 15, Configuration for the configuration options available in relation to
metadata retrieval.

To obtain metadata for an SQL statement, Esper can alternatively fire a SQL statement which
returns the same column names and types as the actual SQL statement but without returning
any rows. This kind of SQL statement is referred to as a sample statement in below workaround
description. The engine can then use the sample SQL statement to retrieve metadata for the
column names and types returned by the actual SQL statement.

Applications can provide a sample SQL statement to retrieve metadata via the et adat asq|l
keyword:

sql : dat abase_nane ["paraneterized_sqgl _query" netadatasql "sql _neta_query"]

The sgl_meta_query must be an SQL statement that returns the same number of columns, the
same type of columns and the same column names as the parameterized_sql_query, and does
not return any rows.

Alternatively, applications can choose not to provide an explicit sample SQL statement. If the EPL
statement does not use the net adat asgl syntax, the engine applies lexical analysis to the SQL
statement. From the lexical analysis Esper generates a sample SQL statement adding a restrictive
clause "where 1=0" to the SQL statement.

Alternatively, you can add the following tag to the SQL statement: ${ $ESPER- SAMPLE- WHERE} .
If the tag exists in the SQL statement, the engine does not perform lexical analysis and simply
replaces the tag with the SQL wher e clause "where 1=0". Therefore this workaround is applicable
to SQL statements that cannot be correctly lexically analyzed. The SQL text after the placeholder
is not part of the sample query. For example:

155

Chapter 5. EPL Reference: Clauses

sel ect mycol from sql:nyDB [
"select nycol from nytesttabl e ${ $ESPER- SAMPLE- WHERE} where'],

If your parameterized_sql_query SQL query contains vendor-specific SQL syntax, generation of
the metadata query may fail to produce a valid SQL statement. If you experience an SQL error
while fetching metadata, use any of the above workarounds with the Oracle JDBC driver.

5.13.8. SQL Input Parameter and Column Output Conversion

As part of database access configuration you may optionally specify SQL type mappings. These
mappings apply to all queries against the same database identified by name.

If your application must perform SQL-query-specific or EPL-statement-specific mapping or
conversion between types, the facility to register a conversion callback exists as follows.

Use the @iook instruction and HookType. SQLCOL as part of your EPL statement text
to register a statement SQL parameter or column conversion hook. Implement the
interface com espert ech. esper. cli ent. hook. SQLCol umTypeConver si on to perform the input
parameter or column value conversion.

A sample statement with annotation is shown:

@1ook(t ype=HookType. SQLCOL, hook=" MyDBTypeConvertor')
select * fromsql: MDB ['select * from M/Event Tabl €]

The engine expects MyDBTypeConvert or to resolve to a class (considering engine imports) and
instantiates one instance of MyDBTypeConvertor for each statement.

5.13.9. SQL Row POJO Conversion

Your application may also directly convert a SQL result row into a Java class which is an
opportunity for your application to interrogate and transform the SQL row result data freely before
packing the data into a Java class. Your application can additionally indicate to skip SQL result
rows.

Use the @look instruction and HookType. SQLROW as part of your EPL statement text
to register a statement SQL output row conversion hook. Implement the interface
com espertech. esper. client. hook. SQLQut put RowConver si on to perform the output row
conversion.

A sample statement with annotation is shown:

@Hook(t ype=HookType. SQLROWN hook=" MyDBRowConvertor')
select * fromsql: DB ['sel ect * from MyEvent Tabl €]

156

Accessing Non-Relational Data via Method Invocation

The engine expects MyDBRowConver t or to resolve to a class (considering engine imports) and
instantiates one MyDBRowConvertor instance for each statement.

5.14. Accessing Non-Relational Data via Method
Invocation

Your application may need to join data that originates from a web service, a distributed cache, an
object-oriented database or simply data held in memory by your application. Esper accommodates
this need by allowing a method invocation (or procedure call or function) in the fr omclause of
a statement.

The results of such a method invocation in the f r omclause plays the same role as a relational
database table in an inner and outer join in SQL. The role is thus dissimilar to the role of a user-
defined function, which may occur in any expression such as in the sel ect clause or the where
clause. Both are backed by one or more static methods provided by your class library.

Esper can join and outer join an unlimited number and all types of event streams to the data
returned by your method invocation. In addition, Esper can be configured to cache the data
returned by your method invocations.

Joins or outer joins in which only SQL statements or method invocations are listed in the from
clause and no other event streams are termed passive joins. A passive join does not produce an
insert or remove stream and therefore does not invoke statement listeners with results. A passive
join can be iterated on (polled) using a statement's saf el t erat or and i t er at or methods.

The following restrictions currently apply:

« Sub-views on a method invocations are not allowed; That is, one cannot create a time or length
window on a method invocation. However one can use the i nsert i nto syntax to make join
results available to a further statement.

5.14.1. Joining Method Invocation Results

The syntax for a method invocation in the f r omclause of an EPL statement is:

nmet hod: cl ass_nane. met hod_nane[(par anet er _expr essi ons) |

The met hod keyword denotes a method invocation. It is followed by a class name and a method
name separated by a dot (.) character. If you have parameters to your method invocation, these
are placed in round brackets after the method name. Any expression is allowed as a parameter,
and individual parameter expressions are separated by a comma. Expressions may also use event
properties of the joined stream.

In the sample join statement shown next, the method ‘'lookupAsset' provided by class
'MyLookupLib' returns one or more rows based on the asset id (a property of the AssetMoveEvent)
that is passed to the method:

157

Chapter 5. EPL Reference: Clauses

sel ect * from Asset MoveEvent, nethod: MyLookuplLi b. | ookupAsset (asset|d)

The following statement demonstrates the use of the wher e clause to join events to the rows
returned by a method invocation, which in this example does not take parameters:

sel ect assetld, assetDesc from Asset MoveEvent as asset,
met hod: MyLookupLi b. get Asset Descri ptions() as desc
where asset.assetid = desc. assetid

Your method invocation may return zero, one or many rows for each method invocation. If you
have caching enabled through configuration, then Esper can avoid the method invocation and
instead use cached results. Similar to SQL joins, Esper also indexes cached result rows such that
join operations based on the wher e clause or outer-join on clause can be very efficient, especially
if your method invocation returns a large number of rows.

If the time taken by method invocations is critical to your application, you may configure local
caches as Section 15.4.7, “Cache Settings for From-Clause Method Invocations” describes.

Esper analyzes the expression in the EPL wher e clause and outer-join on clause, if present, and
builds the appropriate indexes from that information at runtime, to ensure fast matching of event
stream events to method invocation results, even if your method invocation returns a large number
of rows. Your applications must ensure to configure a cache for your method invocation using
Esper configuration, as such indexes are held with regular data in a cache. If you application does
not enable caching of method invocation results, the engine does not build indexes on cached
data.

5.14.2. Polling Method Invocation Results via Iterator

Usually your method invocation will take part in a join and thus be triggered by an event or pattern
occurrence. Instead, your application may need to poll a method invocation and thus use Esper
query execution and caching facilities and obtain event data and metadata.

Your EPL statement can specify a method invocation in the from clause without a join. Such
a stand-alone method invocation does not post new events, and may only be queried via the
i terator poll API. Your EPL statement may still use variables.

The next statement assumes that a cat egory_var variable has been declared. It polls the
get Asset Descri pti ons method passing the current value of the cat egory_var EPL variable:

sel ect * from net hod: MyLookupLi b. get Asset Descri pti ons(category_var)]

Usetheiterator and safelterat or methods on EPSt at enent to obtain results. The statement
does not post events to listeners, it is strictly passive in that sense.

158

Providing the Method

5.14.3. Providing the Method

Your application must provide a Java class that exposes a public static method. The method must
accept the same number and type of parameters as listed in the parameter expression list.

If your method invocation returns either no row or only one row, then the return type of the method
can be a Java class or a j ava. uti | . Map. If your method invocation can return more then one
row, then the return type of the method must be an array of Java class or an array of Map.

If you are using a Java class or an array of Java class as the return type, then the class must
adhere to JavaBean conventions: it must expose properties through getter methods.

If you are using j ava. uti | . Map as the return type or an array of Map, then the map should have
St ri ng-type keys and object values (Map<Stri ng, Obj ect >). When using Map as the return type,
your application must provide a second method that returns property metadata, as the next section
outlines.

Your application method must return either of the following:

1. Anul | value or an empty array to indicate an empty result (no rows).

2. A Java object or Map to indicate a one-row result, or an array that consists of a single Java
object or Map.

3. An array of Java objects or Map instances to return multiple result rows.

As an example, consider the method 'getAssetDescriptions’ provided by class 'MyLookupLib' as
discussed earlier:

sel ect assetld, assetDesc from Asset MoveEvent as asset,
met hod: com nmypackage. MyLookuplLi b. get Asset Descri ptions() as desc
where asset.assetid = desc. assetid

The 'getAssetDescriptions' method may return multiple rows and is therefore declared to return
an array of the class 'AssetDesc'. The class AssetDesc is a POJO class (not shown here):
public class MyLookupLib {

public static AssetDesc[] getAssetDescriptions() {

return new AssetDesc[] {...};

The example above specifies the full Java class name of the class 'MyLookupLib' class in the EPL
statement. The package name does not need to be part of the EPL if your application imports the

159

Chapter 5. EPL Reference: Clauses

package using the auto-import configuration through the API or XML, as outlined in Section 15.4.6,
“Class and package imports”.

5.14.4. Using a wap Return Type

Your application may return j ava. uti | . Map or an array of Map from method invocations. If doing
S0, your application must provide metadata about each row: it must declare the property name
and property type of each Map entry of a row. This information allows the engine to perform type
checking of expressions used within the statement.

You declare the property names and types of each row by providing a method that returns property
metadata. The metadata method must follow these conventions:

1. The method name providing the property metadata must have same method name appended
by the literal Met adat a.

2. The method must have an empty parameter list and must be declared public and static.

3. The method providing the metadata must return a Map of Stri ng property name keys and
j ava. | ang. C ass property name types (Map<Stri ng, C ass>).

In the following example, a class 'MyLookupLib' provides a method to return historical data based
on asset id and asset code:

sel ect assetld, location, x_coord, y_coord from Asset MoveEvent as asset,
met hod: com nmypackage. MyLookuplLi b. get Asset Hi story(assetld, assetCode) as
hi story

A sample implementation of the class 'MyLookupLib' is shown below.

public class MyLookupLib {

/1l For each colum in a row, provide the property name and type

Il

public static Map<String, C ass> getAssetH storyMetadata() {
Map<String, O ass> propertyNames = new HashMap<String, O ass>();
propertyNanes. put ("l ocation", String.class);

propertyNanes. put ("x_coord", |nteger.class);
propertyNanes. put ("y_coord", Integer.class);
return propertyNanes;

}

/'l Lookup rows based on assetld and asset Code
/1
public static Map<String, Object>[] getAssetHi story(String assetld, String
asset Code) {
Map rows = new Map[2]; // this sanple returns 2 rows

160

Creating and Using Named Windows

for (int i =0; i < 2; i++) {
rows[i] = new HashMap();
rows[i].put("location", "soneval ue");
rows[i].put("x_coord", 100);
I/l ... set nore values for each row
}
return rows;

In the example above, the 'getAssetHistoryMetadata' method provides the property metadata: the
names and types of properties in each row. The engine calls this method once per statement to
determine event typing information.

The 'getAssetHistory' method returns an array of Map objects that are two rows. The
implementation shown above is a simple example. The parameters to the method are the assetld
and assetCode properties of the AssetMoveEvent joined to the method. The engine calls this
method for each insert and remove stream event in AssetMoveEvent.

To indicate that no rows are found in a join, your application method may return either a nul |
value or an array of size zero.

5.15. Creating and Using Named Windows

A named window is a global data window that can take part in many statement queries, and that
can be inserted-into and deleted-from by multiple statements. A named window holds events of
the same type or supertype, unless used with a variant stream.

The creat e wi ndow clause declares a new named window. The named window starts up empty
unless populated from an existing named window at time of creation. Events must be inserted
into the named window using the i nsert i nt o clause. Events can also be deleted from a named
window via the on del et e clause.

Events enter the named window by means of i nsert i nt o clause of a sel ect statement. Events
leave a named window either because the expiry policy of the declared data window removes
events from the named window, or through statements that use the on del et e clause to explicitly
delete from a named window.

To query a named window, simply use the window name in the f r omclause of your statement,
including statements that contain subqueries, joins and outer-joins.

A named window may also decorate an event to preserve original events as described in
Section 5.10.4, “Decorated Events” and Section 5.15.2.1, “Named Windows Holding Decorated
Events”. In addition, columns of a named window are allowed to hold events themselves, as
further explained in Section 5.10.5, “Event as a Property” and Section 5.15.2.2, “Named Windows
Holding Events As Property”.

To tune subquery performance when the subquery selects from a named window, consider the
hints discussed in Section 5.11.7, “Hints Related to Subqueries”.

161

Chapter 5. EPL Reference: Clauses

5.15.1. Creating Named Windows: the ceate wndow Clause

The creat e wi ndow statement creates a named window by specifying a window name and one
or more data window views, as well as the type of event to hold in the named window.

There are two syntaxes for creating a named window: The first syntax allows to model a named
window after an existing event type or an existing named window. The second syntax is similar to
the SQL create-table syntax and provides a list of column names and column types.

A new named window starts up empty. It must be explicitly inserted into by one or more statements,
as discussed below. A hamed window can also be populated at time of creation from an existing
named window.

If your application stops or destroys the statement that creates the named window, any consuming
statements no longer receive insert or remove stream events. The named window can also not
be deleted from after it was stopped or destroyed.

The create wi ndow statement posts to listeners any events that are inserted into the named
window as new data. The statement posts all deleted events or events that expire out of the data
window to listeners as the remove stream (old data). The named window contents can also be
iterated on via the pull API to obtain the current contents of a named window.

5.15.1.1. Creation by Modelling after an Existing Type

The benefit of modelling a named window after an existing event type is that event properties can
be nested, indexed, mapped or other types that your event objects may provide as properties,
including the type of the underlying event itself. Also, using the wildcard (*) operator means your
EPL does not need to list each individual property explicitly.

The syntax for creating a named window by modelling the named window after an existing event
type, is as follows:

[cont ext cont ext nane]

create w ndow wi ndow_nane. vi ew_speci fi cati ons
[as] [select list_of properties fron] event_type_ or_w ndownane
[insert [where filter_expression]]

The window_name you assign to the named window can be any identifier. The name should not
already be in use as an event type or stream name.

The view_specifications are one or more data window views that define the expiry policy for
removing events from the data window. Named windows must explicitly declare a data window
view. This is required to ensure that the policy for retaining events in the data window is well
defined. To keep all events, use the keep-all view: It indicates that the named window should
keep all events and only remove events from the named window that are deleted via the on
del et e clause. The view specification can only list data window views, derived-value views are not
allowed since these don't represent an expiry policy. Data window views are listed in Chapter 12,

162

Creating Named Windows: the Create Window clause

EPL Reference: Views. View parameterization and staggering are described in Section 5.4.3,
“Specifying Views”.

The sel ect clause and list_of _properties are optional. If present, they specify the column names
and, implicitly by definition of the event type, the column types of events held by the named
window. Expressions other than column names are not allowed in the sel ect list of properties.
Wildcards (*) and wildcards with additional properties can also be used.

The event_type_or_windowname is required if using the model-after syntax. It provides the name
of the event type of events held in the data window, unless column names and types have been
explicitly selected via sel ect. The name of an (existing) other named window is also allowed
here. Please find more details in Section 5.15.7, “Populating a Named Window from an Existing
Named Window”.

Finally, the i nsert clause and optional filter_expression are used if the new named windows
is modelled after an existing named window, and the data of the new named window is to be
populated from the existing named window upon creation. The optional filter_expression can be
used to exclude events.

You may refer to a context by specifying the cont ext keyword followed by a context name. Context
are described in more detail at Chapter 4, Context and Context Partitions. The effect of referring
to a context is that your named window operates according to the context dimensional information
as declared for the context. For usage and limitations please see the respective chapter.

The next statement creates a named window 'AllOrdersNamedWindow' for which the expiry
policy is simply to keep all events. Assume that the event type 'OrderMapEventType' has been
configured. The named window is to hold events of type '‘OrderMapEventType":

create wi ndow Al | Or der sNamedW ndow. wi n: keepal | () as O der MapEvent Type

The below sample statement demonstrates the sel ect syntax. It defines a named window in
which each row has the three properties 'symbol’, 'volume' and 'price’. This named window actively
removes events from the window that are older then 30 seconds.

create wi ndow OrdersTi meW ndow. wi n:ti me(30 sec) as
sel ect synbol, volune, price from O der Event

In an alternate form, the as keyword can be used to rename columns, and constants may occur
in the select-clause as well:

create wi ndow OrdersTi meW ndow. wi n:ti ne(30 sec) as
sel ect synbol as sym volunme as vol, price, 1 as alertld from Order Event

163

Chapter 5. EPL Reference: Clauses

5.15.1.2. Creation By Defining Columns Names and Types

The second syntax for creating a named window is by supplying column names and types:

[cont ext context nane]
create wi ndow wi ndow_nane. vi ew_speci fications [as] (colum_nanme col um_type
[, col um_nane columm_type [,...])

The column_name is an identifier providing the event property name. The column_type is also
required for each column. Valid column types are listed in Section 5.18.1, “Creating Variables: the
Create Variable clause” and are the same as for variable types.

For attributes that are array-type append [] (left and right brackets).

The next statement creates a named window:

create wi ndow SecurityEvent.w n:tine(30 sec)
(i pAddress string, userld String, numAttenpts int, properties String[])

Named window columns can hold events by declaring the column type as the event type name.
Array-type in combination with event-type is also supported.

The next two statements declare an event type and create a named window with a column of the
defined event type:

create schema SecuritybData (nane String, roles String[])

create wi ndow SecurityEvent.w n:tine(30 sec)
(i pAddress string, wuserld String, secData SecurityData, historySecData
SecuritybDatal])

Whether the named window uses a Map or Object-array event representation for
the rows can be specified as follows. If the create-window statement provides the
@vent Repr esent ati on(array=t rue) annotation the engine maintains named window rows as
object array. If the statement provides the @vent Represent ati on(array=fal se) annotation
the engine maintains named window rows using Map objects. If neither annotation is provided,
the engine uses the configured default event representation as discussed in Section 15.4.11.1,
“Default Event Representation”.

The following EPL statement instructs the engine to represent FooWindow rows as object arrays:

164

Inserting Into Named Windows

@vent Representation(array=true) create w ndow FooWndow. win:tine(5 sec) as
(string propl)

5.15.1.3. Dropping or Removing Named Windows

There is no syntax to drop or remove a named window.

The dest r oy method on the EPSt at enent that created the named window removes the named
window. However the implicit event type associated with the named window remains active since
further statements may continue to use that type. Therefore a named window of the same name
can only be created again if the type information matches the prior declaration for a named window.

5.15.2. Inserting Into Named Windows

Theinsert into clause inserts events into named windows. Your application must ensure that
the column names and types match the declared column names and types of the named window
to be inserted into.

For inserting into a named window and for simulateously checking if the inserted row already exists
in the named window or for atomic update-insert operation on a named window, consider using
on- ner ge as described in Section 5.15.12, “Triggered Upsert using the On-Merge Clause”. On-
merge is similar to the SQL ner ge clause and provides what is known as an "Upsert" operation:
Update existing events or if no existing event(s) are found then insert a new event, all in one
atomic operation provided by a single EPL statement.

In this example we first create a named window using some of the columns of an OrderEvent
event type:

create wi ndow OrdersW ndow. wi n: keepal | () as select synbol, volunme, price from
Or der Event

The insert into the named window selects individual columns to be inserted:

insert into OrdersW ndow(synbol, volune, price) select name, count, price from
FXOr der Event

An alternative form is shown next:

insert into OdersWndow select nane as synbol, vol as volunme, price from
FXOr der Event

165

Chapter 5. EPL Reference: Clauses

Following above statement, the engine enters every FXOrderEvent arriving into the engine into
the named window 'OrdersWindow'.

The following EPL statements create a named window for an event type backed by a Java class
and insert into the window any 'OrderEvent' where the symbol value is IBM:

create wi ndow OrdersW ndow. wi n: ti me(30) as com myconpany. O der Event

insert into OrdersW ndow sel ect * from com nmyconpany. O der Event (synbol =' | BM)

The last example adds one column named 'derivedPrice' to the 'OrderEvent’ type by specifying a
wildcard, and uses a user-defined function to populate the column:

create wi ndow OrdersWndow. wi n: ti me(30) as select *, price as derivedPrice from
O der Event

insert into OrdersWndow sel ect *, MyFunc.func(price, percent) as derivedPrice
from O der Event

Event representations based on Java base classes or interfaces, and subclasses or implementing
classes, are compatible as these statements show:

/'l create a naned wi ndow for the base class
create wi ndow O der sW ndow. st d: uni que(nanme) as select * from Product BaseEvent

/1l The ServiceProduct Event cl ass subcl asses the Product BaseEvent cl ass
insert into OrdersW ndow sel ect * from Servi ceProduct Event

// The Merchandi seProduct Event cl ass subcl asses the Product BaseEvent cl ass
insert into OrdersW ndow sel ect * from Merchandi sePr oduct Event

To avoid duplicate events inserted in a named window and atomically check if a row already exists,
use on- ner ge as outlined in Section 5.15.12, “Triggered Upsert using the On-Merge Clause”. An
example:

166

Inserting Into Named Windows

on Servi ceProduct Event as spe nerge O dersW ndow as wi n
where win.id = spe.id when not matched then insert select *

5.15.2.1. Named Windows Holding Decorated Events

Decorated events hold an underlying event and add additional properties to the underlying event,
as described further in Section 5.10.4, “Decorated Events”.

Here we create a named window that decorates OrderEvent events by adding an additional
property named pri ceTot al to each OrderEvent. A matchingi nsert i nt o statementis also part
of the sample:

create wi ndow OrdersWndow. win:tinme(30) as select *, price as priceTotal from
O der Event

insert into OdersWndow select *, price * wunit as priceTotal from
Servi ceOr der Event

The property type of the additional pri ceTot al column is the property type of the existing pri ce
property of OrderEvent.

5.15.2.2. Named Windows Holding Events As Property

Columns in a named window may also hold an event itself. More information on the i nsert into
clause providing event columns is in Section 5.10.5, “Event as a Property”.

The next sample creates a hamed window that specifies two columns: A column that holds an
OrderEvent, and a column by name pri ceTot al . A matching i nsert i nt o statementis also part
of the sample:

create wi ndow Order sW ndow. wi n: ti me(30) as select this, price as priceTotal from
O der Event

insert into OrdersWndow sel ect order, price * unit as priceTot al
from Servi ceOrder Event as order

Note that the thi s proprerty must exist on the event and must return the event class itself
(JavaBean events only). The property type of the additional pri ceTot al column is the property
type of the existing pri ce property.

167

Chapter 5. EPL Reference: Clauses

5.15.3. Inserting Into Named Windows Using Fire-And-Forget
Queries

Your application can insert rows into a named window using on-demand (fire-and-forget,
non-continuous) queries as described in Section 14.5, “On-Demand Fire-And-Forget Query
Execution”.

The syntax for the i nsert into clause is as follows:

insert into wi ndow_nane [(property_nanes)]
sel ect val ue_expressions

The window_name is the name of the named window to insert events into.

After the named window name you can optionally provide a comma-separated list of event property
names. When providing property names, the order of expressions in the select-clause must match
the order of property names specified (select-clause property names are ignored). When not
providing property names, the select-clause expressions must name the event properties to be
inserted into by assigning a property name.

It follows the sel ect keyword and a list of value expressions that provide values for the event
properties of the event to be inserted into the named window.

The example code snippet inserts a new order event into the Or der swW ndow named window:
String query =

"insert into OrdersWndow orderld, synbol, price) select '001', 'GE, 100";
epServi ce. get EPRunti ne() . execut eQuery(query);

If you do not specify event property names, the select-clause expressions must name the event
property names.

The following EPL inserts the same values as above but specifies property names as part of the

select-clause expressions:

insert into O dersW ndow
select '001' as orderld, 'CGE' as synbol, 100 as price

5.15.4. Selecting From Named Windows

A named window can be referred to by any statement in the f r omclause of the statement. Filter
criteria can also be specified. Additional views may be used onto named windows however such
views cannot include data window views.

168

Selecting From Named Windows

A statement selecting all events from a named window 'AllOrdersNamedWindow' is shown next.
The named window must first be created via the cr eat e wi ndow clause before use.

select * from Al | O der sNamedW ndow

The statement as above simply receives the unfiltered insert stream of the named window and
reports that stream to its listeners. The i t er at or method returns returns all events in the named
window, if any.

If your application desires to obtain the events removed from the named window, use the r st r eam
keyword as this statement shows:

sel ect rstream* from Al | O der sNanedW ndow

The next statement derives an average price per symbol for the events held by the named window:

sel ect synbol, avg(price) from Al |l O der sNanedW ndow group by synbol

A statement that consumes from a named window, like the one above, receives the insert and
remove stream of the named window. The insert stream represents the events inserted into the
named window. The remove stream represents the events expired from the named window data
window and the events explicitly deleted via on- del et e for on-demand (fire-and-forget) del et e.

Your application may create a consuming statement such as above on an empty named window,
or your application may create the above statement on an already filled named window. The
engine provides correct results in either case: At the time of statement creation the Esper engine
internally initializes the consuming statement from the current named window, also taking your
declared filters into consideration. Thus, your statement deriving data from a named window does
not start empty if the named window already holds one or more events. A consuming statement
also sees the remove stream of an already populated named window, if any.

If you require a subset of the data in the named window, you can specify one or more filter
expressions onto the named window as shown here:

sel ect synbol, avg(price) from Al O der sNanedW ndow(sect or='energy') group by
synbol

By adding a filter to the named window, the aggregation and grouping as well as any views that
may be declared onto to the named window receive a filtered insert and remove stream. The
above statement thus outputs, continuously, the average price per symbol for all orders in the
named window that belong to a certain sector.

169

Chapter 5. EPL Reference: Clauses

A side note on variables in filters filtering events from named windows: The engine initializes
consuming statements at statement creation time and changes aggregation state continuously as
events arrive. If the filter criteria contain variables and variable values changes, then the engine
does not re-evaluate or re-build aggregation state. In such a case you may want to place variables
in the havi ng clause which evaluates on already-built aggregation state.

The following example further declares a view into the named window. Such a view can be a plug-
in view or one of the built-in views, but cannot be a data window view (with the exception of the
st d: gr oupwi n grouped-window view which is allowed).

select * from Al | O der sNamedW ndow(vol ume>0, price>0). nyconpany: nypl ugi nvi ew()

Data window views cannot be used onto named windows since named windows post insert and
remove streams for the events entering and leaving the named window, thus the expiry policy and
batch behavior are well defined by the data window declared for the named window. For example,
the following is not allowed and fails at time of statement creation:

/1 not a valid statenent
select * from Al | O der sNanedW ndow. wi n: ti ne(30 sec)

5.15.5. Triggered Select on Named Windows: the o select Clause

The on sel ect clause performs a one-time, non-continuous query on a named window every
time a triggering event arrives or a triggering pattern matches. The query can consider all events
in the named window, or only events that match certain criteria, or events that correlate with an
arriving event or a pattern of arriving events.

The syntax for the on sel ect clause is as follows:

on event type[(filter _criteria)] [as stream nane]
[insert into insert _into_def]

sel ect select_|ist

from w ndow _nane [as stream nane]

[where criteria expression]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_conditi ons]

[order by order by expression_list]

The event_type is the name of the type of events that trigger the query against the named window.
It is optionally followed by filter_criteria which are filter expressions to apply to arriving events.
The optional as keyword can be used to assign an stream name. Patterns or named windows
can also be specified in the on clause, see the samples in Section 5.15.10.1, “Using Patterns in
the On Delete Clause”.

170

Triggered Select on Named Windows: the On Select clause

The insert into clause works as described in Section 5.10, “Merging Streams and Continuous
Insertion: the Insert Into Clause”. The select clause is described in Section 5.3, “Choosing Event
Properties And Events: the Select Clause”. For all clauses the semantics are equivalent to a join
operation:; The properties of the triggering event or events are available in the sel ect clause and
all other clauses.

The window_name in the f r omclause is the name of the named window to select events from.
The as keyword is also available to assign a stream name to the named window. The as keyword
is helpful in conjunction with wildcard in the sel ect clause to select named window events via
the syntax sel ect streamane. *

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the events to be considered from the named window. The criteria_expression may also
simply filter for events in the named window to be considered by the query.

The group by clause, the havi ng clause and the order by clause are all optional and work as
described in earlier chapters.

The similarities and differences between an on sel ect clause and a regular or outer join are
as follows:

1. A join is evaluated when any of the streams participating in the join have new events (insert
stream) or events leaving data windows (remove stream). A join is therefore bi-directional or
multi-directional. However, the on sel ect statement has one triggering event or pattern that
causes the query to be evaluated and is thus uni-directional.

2. The query within the on sel ect statement is not continuous: It executes only when a triggering
event or pattern occurs. Aggregation and groups are computed anew considering the contents
of the named window at the time the triggering event arrives.

The i terator of the EPSt at enent object representing the on sel ect clause returns the last
batch of selected events in response to the last triggering event, or null if the last triggering event
did not select any rows.

For correlated queries that correlate triggering events with events held by a named window, Esper
internally creates efficient indexes to enable high performance querying of events. It analyzes the
wher e clause to build one or more indexes for fast lookup in the named window based on the
properties of the triggering event.

The next statement demonstrates the concept. Upon arrival of a QueryEvent event the statement
selects all events in the 'OrdersNamedWindow' named window:

on QueryEvent select win.* from O der sNamedW ndow as w n

The engine executes the query on arrival of a triggering event, in this case a QueryEvent. It posts
the query results to any listeners to the statement, in a single invocation, as the new data array.

171

Chapter 5. EPL Reference: Clauses

By prefixing the wildcard (*) selector with the stream name, the sel ect clause returns only events
of the named window and does not also return triggering events.

The wher e clause filters and correlates events in the named window with the triggering event, as
shown next:

on QueryEvent (vol une>0) as query
sel ect query.synbol, query.volune, w n.synbol from O dersNanedW ndow as win
where wi n.synbol = query. synbol

Upon arrival of a QueryEvent, if that event has a value for the volume property that is greater
then zero, the engine executes the query. The query considers all events currently held by the
'‘OrdersNamedWindow' that match the symbol property value of the triggering QueryEvent event.
The engine then posts query results to the statement's listeners.

Aggregation, grouping and ordering of results are possible as this example shows:

on QueryEvent as queryEvent

sel ect synmbol, sun(volune) from O der sNanedW ndow as wi n
group by synbol

havi ng vol ume > 0

order by synbol

The above statement outputs the total volume per symbol for those groups where the sum of the
volume is greater then zero, ordered by symbol ascending. The engine computes and posts the
output based on the current contents of the 'OrdersNamedWindow' named window considering
all events in the named window, since the query does not have a wher e clause.

When using wildcard (*) to select from streams in an on-select clause, each stream, that is the the
triggering stream and the selected-upon named window, are selected, similar to a join. Therefore
your wildcard select returns two columns: the triggering event and the selection result event, for
each row.

on QueryEvent as queryEvent
sel ect * from O der sNamedW ndow as wi n

The query above returns a quer yEvent column and a wi n column for each event. If only a single
stream's event is desired in the result, use sel ect wi n. * instead.

To trigger an on-select when an update to the selected named window occurs or when the
triggering event is the same event that is being inserted into the named window, specify the named
window name as the event type.

The next query fires the select for every change to the named window OrdersNamedWindow:

172

Triggered Select+Delete on Named Windows: the On Select Delete clause

on OrdersNamedW ndow as trig

sel ect onw. synbol, sum(onw. vol une)
from O der sNamedW ndow as onw
where onw. synbol = trig. synbol

5.15.5.1. On-Select Compared To Join

On- sel ect and the unidirectional join can be compared as follows.

On-sel ect, on-mer ge, on-i nsert, on-del et e, on- updat e and on- sel ect - and- del et e operate
only on named windows. Unidirectional joins however can operate on any stream. If the
unidirectional join is between a single named window and a triggering event or pattern and that
triggering event or pattern is marked unidirectional, the unidirectional join is equivalent to on-
sel ect.

Execution aspects differ in terms of locking. An on- sel ect statement executes under a shareable
named window context partition lock. A unidirectional join does not execute under such named
window context partition lock and instead is a consumer relationship to the named window (see
above).

5.15.6. Triggered Select+Delete on Named Windows: the o
sel ect Delete Clause

The on sel ect del et e clause performs a one-time, non-continuous query on a hamed window
every time a triggering event arrives or a triggering pattern matches, similar to on- sel ect as
described in the previous section. In addition, any selected rows are also deleted.

The syntax for the on sel ect del et e clause is as follows:

on trigger
sel ect [and] delete select list...
(pl ease see on-select for insert into, from group by, having, order

by). ..

The syntax follows the syntax of on- sel ect as described earlier. The sel ect clause follows the
optional and keyword and the del et e keyword.

The example statement below selects and deletes all rows from OrdersNamedWindow when a
QueryEvent arrives:

on QueryEvent select and delete windowmwi n.*) as rows from O der sNanmedW ndow
as win

The sample EPL above also shows the use of the wi ndow aggregation function. It specifies the
wi ndow aggregation function to instruct the engine to output a single event, regardless of the

173

Chapter 5. EPL Reference: Clauses

number of rows in the named window, and that contains a column r ows that contains a collection
of the selected event's underlying objects.

5.15.7. Populating a Named Window from an Existing Named
Window

Your EPL statement may specify the name of an existing hamed window when creating a new
named window, and may use the i nsert keyword to indicate that the new named window is to
be populated from the events currently held by the existing named window.

For example, and assuming the named window Order sNamedW ndow already exists, this
statement creates a new named window ScratchOrders and populates all orders in
O der sNanmedW ndow into the new named window:

create wi ndow ScratchOrders.w n: keepal | () as O der sNamedW ndow i nsert
The wher e keyword is also available to perform filtering, for example:

create wi ndow ScratchBuyOrders.wi n:tine(10) as OrdersNanedW ndow insert where
side = ' buy'

5.15.8. Updating Named Windows: the on wdate Clause

Anon updat e clause updates events held by a named window. The clause can be used to update
all events, or only events that match certain criteria, or events that correlate with an arriving event
or a pattern of arriving events.

For updating a named window and for simulateously checking if the updated row exists in the
named window or for atomic update-insert operation on a named window, consider using on-
mer ge as described in Section 5.15.12, “Triggered Upsert using the On-Merge Clause”. On-merge
is similar to the SQL ner ge clause and provides what is known as an "Upsert" operation: Update
existing events or if no existing event(s) are found then insert a new event, all in one atomic
operation provided by a single EPL statement.

The syntax for the on updat e clause is as follows:

on event _type[(filter_criteria)] [as stream nane]
updat e wi ndow _nane [as stream nane]

set nmutation_expression [, nutation_expression [,...]]
[where criteria_expression]

The event_type is the name of the type of events that trigger an update of rows in a named window.
Itis optionally followed by filter_criteria which are filter expressions to apply to arriving events. The

174

Updating Named Windows: the On Update clause

optional as keyword can be used to assign a name for use in expressions and the wher e clause.
Patterns and named windows can also be specified in the on clause.

The window_name is the name of the named window to update events. The as keyword is also
available to assignh a name to the named window.

After the set keyword follows a list of comma-separated mutation_expression expressions. A
mutation expression is any valid EPL expression. Subqueries may by part of expressions however
aggregation functions and the prev or pri or function may not be used in expressions.

The below table shows some typical mutation expessions:

Table 5.6. Mutation Expressions in Named Window Update And Merge

Description Syntax and Examples

Assignment
property_nane

= val ue_expressi on

price = 10, side =
" BUY'

Event Method Invocation . .
al i as_or_w ndownane. net hodnane(...)

or der W ndow. cl ear ()

User-Defined Function Call :
functionnane(...)

cl ear Quantiti es(orderRow)

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the events to be updated in the named window. The criteria_expression may also simply
filter for events in the named window to be updated.

The it erat or of the EPSt at enent object representing the on updat e clause can also be helpful:
It returns the last batch of updated events in response to the last triggering event, in any order,
or null if the last triggering event did not update any rows.

Statements that reference the named window receive the new event in the insert stream and the
event prior to the update in the remove stream.

Let's look at a couple of examples. In the simplest form, this statement updates all events in the
named window 'AllOrdersNamedWindow' when any 'UpdateOrderEvent' event arrives, setting the
price property to zero for all events currently held by the named window:

175

Chapter 5. EPL Reference: Clauses

on Updat eOr der Event update Al |l Order sNanedW ndow set price = 0

This example adds a where clause to the example above. Upon arrival of a triggering
'ZeroVolumeEvent', the statement updates prices on any orders that have a volume of zero or less:

on ZeroVol uneEvent update Al |l O der sNamedW ndow set price = 0 where volune <= 0

The next example shows a more complete use of the syntax, and correlates the triggering event
with events held by the named window:

on NewOr der Event (vol une>0) as nyNewOr ders
updat e Al |l Order sNanmedW ndow as nyNanedW ndow
set price = nyNewOrders. price

wher e nmyNanmedW ndow. synbol = nmyNewOr der s. symbol

In the above sample statement, only if a '‘NewOrderEvent' event with a volume greater then zero
arrives does the statement trigger. Upon triggering, all events in the named window that have the
same value for the symbol property as the triggering 'NewOrderEvent' event are then updated
(their price property is set to that of the arriving event). The statement also showcases the as
keyword to assign a name for use in the wher e expression.

For correlated queries (as above) that correlate triggering events with events held by a named
window, Esper internally creates efficient indexes to enable high performance update of events.

Your application can subscribe a listener to your on updat e statements to determine update
events. The statement post any events that are updated to all listeners attached to the statement
as new data, and the events prior to the update as old data. Upon iteration, the statement provides
the last update event, if any.

The following example shows the use of tags and a pattern. It sets the price value of orders to
that of either a 'FlushOrderEvent' or 'OrderUpdateEvent’ depending on which arrived:

on pattern [every ord=Order Updat eEvent (vol ume>0) or every fl ush=Fl ushOr der Event]
updat e All Order sNanedW ndow as win

set price = case when ord.price is null then flush.price else ord.price end
where ord.id = win.id or flush.id = win.id

When updating indexed properties use the syntax propertyName[index] = value with the
index value being an integer number. When updating mapped properties use the syntax
propertyName(key) = value with the key being a string value.

176

Updating Named Windows Using Fire-And-Forget Queries

The engine executes assignments in the order they are listed. When performing multiple
assignments, the engine takes the most recent named window event property value according to
the last assignment, if any. To instruct the engine to use the initial property value before update,
prefix the event property name with the literal i ni ti al .

The following statement illustrates:

on Updat eEvent as upd
update MyYW ndow as w n
set field a = 1,
field b = win.field_a, // assigns the value 1
field_c =initial.field_a // assigns the field_a original value before update

The next example assumes that your application provides a user-defined function copyFi el ds
that receives 3 parameters: The update event, the new row and the initial state before-update row.

on Updat eEvent as upd update MyW ndow as wi n set copyFields(win, upd, initial)

The following example assumes that your event type provides a method by name popul at eFr om
that receives the update event as a parameter:

on Updat eEvent as upd update MyW ndow as wi n set w n. popul at eFr om(upd)

The following restrictions apply:

1. Each property to be updated via assignment must be writable.

2. Forunderlying event representations that are Java objects, a event object class mustimplement
the java.io.Serializable interface as discussed in Section 5.21.1, “Immutability and Updates”
and must provide setter methods for updated properties.

3. When using an XML underlying event type, event properties in the XML document
representation are not available for update.

4. Nested properties are not supported for update. Revision event types and variant streams may
also not be updated.

5.15.9. Updating Named Windows Using Fire-And-Forget
Queries

Your application can update named window rows using on-demand (fire-and-forget, non-
continuous) queries as described in Section 14.5, “On-Demand Fire-And-Forget Query
Execution”.

The syntax for the updat e clause is as follows:

177

Chapter 5. EPL Reference: Clauses

updat e wi ndow_nane [as stream nane]
set nmutation_expression [, nmutation_expression [,...]]
[where criteria_expression]

The window_name is the name of the named window to delete events from. The as keyword is
also available to assign a name to the named window.

After the set keyword follows a comma-separated list of mutation expressions. For fire-and-forget
queries the following restriction applies: Subqueries, aggregation functions and the prev or pri or
function may not be used in expressions. Mutation expressions are detailed in Section 5.15.8,
“Updating Named Windows: the On Update clause”.

The optional wher e clause contains a criteria_expression that identifies events to be updated.

The example code snippet updates those rows of the named window that have a negative value
for volume:

String query = "update Al Order sNanedW ndow set volune = 0 where vol ume = 0";
epServi ce. get EPRunt i ne() . execut eQuery(query);

To instruct the engine to use the initial property value before update, prefix the event property
name with the literal i ni ti al .

5.15.10. Deleting From Named Windows: the o pelete Clause

Anon del et e clause removes events from a named window. The clause can be used to remove
all events, or only events that match certain criteria, or events that correlate with an arriving event
or a pattern of arriving events.

The syntax for the on del et e clause is as follows:

on event _type[(filter_criteria)] [as stream nane]
del ete from wi ndow_nane [as stream nane]
[where criteria_expression]

The event_type is the name of the type of events that trigger removal from the named window.
It is optionally followed by filter_criteria which are filter expressions to apply to arriving events.
The optional as keyword can be used to assign a name for use in the wher e clause. Patterns and
named windows can also be specified in the on clause as described in the next section.

The window_name is the name of the named window to delete events from. The as keyword is
also available to assign a name to the named window.

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the events to be removed from the named window. The criteria_expression may also
simply filter for events in the named window to be removed from the named window.

178

Deleting From Named Windows: the On Delete clause

Theiterator of the EPSt at enent object representing the on del et e clause can also be helpful:
It returns the last batch of deleted events in response to the last triggering event, in any order, or
null if the last triggering event did not remove any rows.

Let's look at a couple of examples. In the simplest form, this statement deletes all events from the
named window 'AllOrdersNamedWindow' when any 'FlushOrderEvent' arrives:

on Fl ushOrder Event delete from Al | O der sNanedW ndow

This example adds a where clause to the example above. Upon arrival of a triggering
'ZeroVolumeEvent', the statement removes from the named window any orders that have a
volume of zero or less:

on ZeroVol uneEvent delete from Al | O der sNanedW ndow where vol unme <= 0

The next example shows a more complete use of the syntax, and correlates the triggering event
with events held by the named window:

on NewOr der Event (vol une>0) as nyNewOr ders
del ete from Al | Or der sNanedW ndow as mnyNamedW ndow
wher e myNanedW ndow. synbol = nyNewOr der s. synbol

In the above sample statement, only if a '‘NewOrderEvent' event with a volume greater then zero
arrives does the statement trigger. Upon triggering, all events in the named window that have the
same value for the symbol property as the triggering 'NewOrderEvent' event are then removed
from the named window. The statement also showcases the as keyword to assign a name for
use in the wher e expression.

For correlated queries (as above) that correlate triggering events with events held by a named
window, Esper internally creates efficient indexes to enable high performance removal of events
especially from named windows that hold large numbers of events.

Your application can subscribe a listener to your on del et e statements to determine removed
events. The statement post any events that are deleted from a named window to all listeners
attached to the statement as new data. Upon iteration, the statement provides the last deleted
event, if any.

5.15.10.1. Using Patterns in the on pel ete Clause

By means of patterns the on del et e clause and on sel ect clause (described below) can look
for more complex conditions to occur, possibly involving multiple events or the passing of time.
The syntax for on del et e with a pattern expression is show next:

179

Chapter 5. EPL Reference: Clauses

on pattern [pattern_expression] [as stream nane]
del ete from wi ndow_nanme [as stream nane]
[where criteria_expression]

The pattern_expression is any pattern that matches zero or more arriving events. Tags can be
used to name events in the pattern and can occur in the optional wher e clause to correlate to
events to be removed from a named window.

In the next example the triggering pattern fires every 10 seconds. The effect is that every 10
seconds the statement removes from 'MyNamedWindow' all rows:

on pattern [every tiner:interval (10 sec)] delete from MyNamedW ndow
The following example shows the use of tags in a pattern:

on pattern [every ord=Order Event (vol une>0) or every fl ush=Fl ushOrder Event]
del ete from Order Wndow as wi n
where ord.id = win.id or flush.id = win.id

The pattern above looks for OrderEvent events with a volume value greater then zero and tags
such events as 'ord'. The pattern also looks for FlushOrderEvent events and tags such events as
'flush'. The wher e clause deletes from the 'OrderWindow' named window any events that match
in the value of the 'id' property either of the arriving events.

5.15.11. Deleting From Named Windows Using Fire-And-Forget
Queries

Your application can delete rows from a named window using on-demand (fire-and-forget,
non-continuous) queries as described in Section 14.5, “On-Demand Fire-And-Forget Query
Execution”.

The syntax for the del et e clause is as follows:

del ete from wi ndow_nanme [as stream nane]
[where criteria_expression]

The window_name is the name of the named window to delete events from. The as keyword is
also available to assign a name to the named window.

The optional wher e clause contains a criteria_expression that identifies events to be removed
from the named window.

The example code snippet deletes from a named window all rows that have a negative value for
volume:

180

Triggered Upsert using the On-Merge Clause

String query = "delete from Al | O der sNamedW ndow where vol une <= 0";
epServi ce. get EPRunt i ne() . execut eQuery(query);

5.15.12. Triggered Upsert using the o-mrge Clause

The on mer ge clause is similar to the SQL ner ge clause. It provides what is known as an "Upsert"
operation: Update existing events or if no existing event(s) are found then insert a new event, all
in an atomic operation provided by a single EPL statement.

The syntax for the on mer ge clause is as follows:

on event_type[(filter_criteria)] [as stream nane]
nmerge [into] wi ndow _name [as stream nane]
[where criteria_expression]

when [not] matched [and search_conditi on]

then [
insert [into streamane]
[(property _nane [, property nanme] [,...])]
sel ect sel ect _expression [, select_expression[,...]]
[where filter_expression]
I
update set nutation_expression [, nutation_expression [,...]]
[where filter_expression]
I
del ete
[where filter_expression]
]
[then [insert|update|delete]] [,then ...]
[when ... then ... [...]]

The event_type is the name of the type of events that trigger the merge. It is optionally followed
by filter_criteria which are filter expressions to apply to arriving events. The optional as keyword
can be used to assign a name for use in the wher e clause. Patterns and named windows can also
be specified in the on clause as described in prior sections.

The window_name is the name of the named window to insert, update or delete events. The as
keyword is also available to assign a name to the named window.

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the events to be considered of the named window. We recommend specifying a criteria
expression that is as specific as possible.

Following the wher e clause is one or more when nat ched or when not mat ched clauses in any
order. Each may have an additional search condition associated.

After each when [not] mat ched follow one or more t hen clauses that each contain the action to
take: Either an i nsert, updat e or del et e keyword.

181

Chapter 5. EPL Reference: Clauses

After when not matched only i nsert action(s) are available. After wnen nat ched any i nsert,
updat e and del et e action(s) are available.

Afteri nsert follows, optionally, the i nt o keyword followed by the stream name or named window
to insert-into. If no i nt o and stream name is specified, the insert applies to the current named
window. It follows an optional list of columns inserted. It follows the required sel ect keyword and
one or more select-clause expressions. The wildcard (*) is available in the select-clause as well.
It follows an optional where-clause that may return Boolean false to indicate that the action should
not be applied.

After updat e follows the set keyword and one or more mutation expressions. For mutation
expressions please see Section 5.15.8, “Updating Named Windows: the On Update clause”. It
follows an optional where-clause that may return Boolean false to indicate that the action should
not be applied.

After del et e follows an optional where-clause that may return Boolean false to indicate that the
action should not be applied.

When according to the where-clause criteria_expression the engine finds no events in the named
window that match the condition, the engine evaluates each when not matched clause. If the
optional search condition returns true or no search condition was provided then the engine
performs all of the actions listed after each t hen.

When according to the where-clause criteria_expression the engine finds one or more events in
the named window that match the condition, the engine evaluates each when matched clause. If
the optional search condition returns true or no search condition was provided the engine performs
all of the actions listed after each t hen.

The engine executes when mat ched and when not mat ched in the order specified. If the optional
search condition returns true or no search condition was specified then the engine takes the
associated action (or multiple actions for multiple t hen keywords). When the block of actions
completed the engine proceeds to the next matching event, if any. After completing all matching
events the engine continues to the next triggering event if any.

In the first example we declare a schema that provides a product id and that holds a total price:

create schema Product Total Rec as (productld string, total Price doubl e)

We create a named window that holds a row for each unique product:

create wi ndow Product W ndow. st d: uni que(productld) as Product Tot al Rec

The events for this example are order events that hold an order id, product id, price, quantity and
deleted-flag declared by the next schema:

182

Triggered Upsert using the On-Merge Clause

create schema OrderEvent as (orderld string, productld string, price double,
quantity int, del etedFl ag bool ean)

The following EPL statement utilizes on- ner ge to total up the price for each product based on
arriving order events:

on OrderEvent oe
nmerge Product Wndow pw
where pw. productld = oe. productld
when mat ched
then update set totalPrice = total Price + oe.price
when not mat ched
then insert select productld, price as total Price

In the above example, when an order event arrives, the engine looks up in the product named
window the matching row or rows for the same product id as the arriving event. In this example the
engine always finds no row or one row as the product named window is declared with a unique
data window based on product id. If the engine finds a row in the named window, it performs the
update action adding up the price as defined under when nat ched. If the engine does not find
a row in the named window it performs the insert action as defined under when not nat ched,
inserting a new row.

The i nsert keyword may be followed by a list of columns as shown in this EPL snippet:

/1 equivalent to the insert shown in the last 2 lines in above EPL
... when not matched
then insert(productld, total Price) select productld, price

The second example demonstrates the use of a select-clause with wildcard, a search condition
and the del et e keyword. It creates a named window that holds order events and employs on-
merge to insert order events for which no corresponding order id was found, update quantity to the
quantity provided by the last arriving event and delete order events that are marked as deleted:

create wi ndow O der Wndow. wi n: keepal | () as OrderEvent

on OrderEvent oe
nerge O der Wndow pw
where pw.orderld = oe.orderld
when not natched
then insert select *

183

Chapter 5. EPL Reference: Clauses

when mat ched and oe. del et edFl ag=true
then del ete
when mat ched
then update set pw. quantity = oe.quantity, pw. price = oe.price

In the above example the oe. del et edFl ag=t r ue search condition instructs the engine to take
the delete action only if the deleted-flag is set.

You may specify multiple actions by providing multiple t hen keywords each followed by an action.
Each ofthei nsert, updat e and del et e actions can itself have a where-clause as well. If a where-
clause exists for an action, the engine evaluates the where-clause and applies the action only if
the where-clause returns Boolean true.

This example specifies two update actions and uses the where-clause to trigger different update
behavior depending on whether the order event price is less than zero. This example assumes
that the host application defined a cl ear or der user-defined function, to demonstrate calling a
user-defined function as part of the update mutation expressions:

on OrderEvent oe
nmer ge Order W ndow pw
where pw.orderld = oe.orderld
when mat ched
then update set clearorder(pw) where oe.price < 0
then update set pw. quantity = oe.quantity, pw price = oe.price where oe.price
>= 0

To insert events into another stream and not the named window, use i nsert i nt o streamname.

In the next example each matched-clause contains two actions, one action to insert a log event
and a second action to insert, delete or update:

on Order Event oe

nmer ge Or der W ndow pw

where pw. orderld = oe.orderld

when not mat ched
then insert into LogEvent select '"this is an insert' as nane
then insert select *

when mat ched and oe. del et edFl ag=true
then insert into LogEvent select 'this is a delete' as nane
then del ete

when mat ched
then insert into LogEvent select '"this is a update' as nane
then update set pw. quantity = oe.quantity, pw. price = oe.price

184

Explicitly Indexing Named Windows

While the engine evaluates and executes all actions listed under the same matched-clause in
order, you may not rely on updated field values of an earlier action to trigger the where-clause of
a later action. Similarly you should avoid simultaneous update and delete actions for the same
match: the engine does not guarantee whether the update or the delete take final affect.

For correlated queries (as above) that correlate triggering events with events held by a named
window, Esper internally creates efficient indexes to enable high performance update and removal
of events especially from named windows that hold large numbers of events.

Your application can subscribe a listener to on ner ge statements to determine inserted, updated
and removed events. Statements post any events that are inserted to, updated or deleted from
a named window to all listeners attached to the statement as new data and removed data. Upon
iteration, the statement provides the last inserted events, if any.

The following limitations apply to on-merge statements:

1. Aggregation functions and the prev and pri or operators are not available in conditions and
the sel ect -clause.

5.15.13. Explicitly Indexing Named Windows

You may explicitly create an index on a named window. The engine considers explicitly-created
as well as implicitly-allocated indexes in query planning and execution of the following types of
usages of named windows:

1. On-demand (fire-and-forget, non-continuous) queries as described in Section 14.5, “On-
Demand Fire-And-Forget Query Execution”.
On-sel ect, on- mer ge, on- updat e, on-del et e and on-i nsert.
Subqueries against named windows.

For joins (including outer joins) with named windows the engine considers the filter criteria listed
in parenthesis using the syntax

nane_w ndow _name(filter_criteria)

for index access.

Please use the following syntax to create an explicit index on a named window:

create [unique] index index_name on named_wi ndow_nane (property [hash|
bt ree]
[, property] [hash|btree] [,...])

The optional unique keyboard indicates that the property or properties uniquely identify rows. If
unigue is not specified the index allows duplicate rows.

185

Chapter 5. EPL Reference: Clauses

The index_name is the name assigned to the index. The name uniquely identifies the index and
is used in engine query plan logging.

The named_window_name is the name of an existing named window. If the named window has
data already, the engine builds an index for the data in the named window.

The list of property names are the properties of events within the named window to include in the
index. Following each property name you may specify the optional hash or bt r ee keyword.

If you specify no keyword or the hash keyword for a property, the index will be a hash-based
(unsorted) index in respect to that property. If you specify the bt r ee keyword, the index will be
a binary-tree-based sorted index in respect to that property. You may combine hash and bt ree
properties for the same index. Specify bt r ee for a property if you expect to perform numerical
or string comparison using relational operators (<, >, >=, <=), the bet ween or the i n keyword for
ranges and inverted ranges. Use hash (the default) instead of bt r ee if you expect to perform exact
comparison using =.

We list a few example EPL statements next that create a named window and create a single index:

/1 create a named wi ndow
create wi ndow UserProfil eWndow. win:tine(l hour) select * fromUserProfile

/'l create a non-unique index (duplicates allowed) for the user id property only
create index UserProfilelndex on UserProfil eWndow userl d)

Next, execute an on-demand fire-and-forget query as shown below, herein we use the prepared
version to demonstrate:

String query = "select * from UserProfil eWndow where userld="Joe'";
EPOnDermandPr epar edQuery prepared = epRunti ne. prepar eQuery(query);

/1 query performance excellent in the face of |arge nunber of rows
EPOnDemandQuer yResult result = prepared. execute();

[l ...later

prepared. execute(); // execute a second tine

A unique index is generally preferable over non-unique indexes. If your data window declares a
unigue data window (st d: uni que, st d: fi r st uni que, including intersections and grouped unique
data windows) it is not necessary to create a unique index unless index sharing is enabled, since
the engine considers the unique data window declaration in query planning.

The engine enforces uniqueness (e.g. unique constraint) for unique indexes. If your application
inserts a duplicate row the engine raises a runtime exception when processing the statement and
discards the row. The default error handler logs such an exception and continues.

186

Versioning and Revision Event Type Use with Named Windows

For example, if the user id together with the profile id uniquely identifies an entry into the named
window, your application can create a unigue index as shown below:

/! create a unique index on user id and profile id
create uni que i ndex UserProfilelndex on UserProfil eWndow(userld, profileld)

By default, the engine builds a hash code -based index useful for direct comparison via equals
(=). Filter expressions that look for ranges or use i n, between do not benefit from the hash-
based index and should use the bt r ee keyword. For direct comparison via equals (=) then engine
does not use bt r ee indexes.

The next example creates a composite index over two fields synbol and buyPri ce:

/] create a named w ndow
create w ndow TickEvent Wndow. win:tine(l hour) as (synbol string, buyPrice
doubl e)

/] create a non-uni que index
create index idxl on TickEvent Wndow synbol hash, buyPrice btree)

A sample fire-and-forget query is shown below (this time the API calls are not shown):

/'l query performance excellent in the face of |arge nunber of rows
sel ect * from Ti ckEvent W ndow where synbol = GE' and buyPrice between 10 and 20

5.15.14. Versioning and Revision Event Type Use with Named
Windows

As outlined in Section 2.10, “Updating, Merging and Versioning Events”, revision event types
process updates or new versions of events held by a named window.

A revision event type is simply one or more existing pre-configured event types whose events are
related, as configured by static configuration, by event properties that provide same key values.
The purpose of key values is to indicate that arriving events are related: An event amends, updates
or adds properties to an earlier event that shares the same key values. No additional EPL is
needed when using revision event types for merging event data.

Revision event types can be useful in these situations:

1. Some of your events carry only partial information that is related to a prior event and must be
merged together.

187

Chapter 5. EPL Reference: Clauses

2. Events arrive that add additional properties or change existing properties of prior events.
3. Events may carry properties that have null values or properties that do no exist (for example
events backed by Map or XML), and for such properties the earlier value must be used instead.

To better illustrate, consider a revision event type that represents events for creation and updates
to user profiles. Lets assume the user profile creation events carry the user id and a full profile. The
profile update events indicate only the user id and the individual properties that actually changed.
The user id property shall serve as a key value relating profile creation events and update events.

A revision event type must be configured to instruct the engine which event types participate and
what their key properties are. Configuration is described in Section 15.4.26, “Revision Event Type”
and is not shown here.

Assume that an event type User Prof i | eRevi si ons has been configured to hold profile events,
i.e. creation and update events related by user id. This statement creates a named window to hold
the last 1 hour of current profiles per user id:

create wi ndow User Profi |l eW ndow. wi n: tinme(1 hour) sel ect * from
User Prof i | eRevi si ons

insert into UserProfil eWndow select * from UserProfil eCreation

insert into UserProfil eWndow select * from UserProfil eUpdate

In revision event types, the term base event is used to describe events that are subject to update.
Events that update, amend or add additional properties to base events are termed delta events. In
the example, base events are profile creation events and delta events are profile update events.

Base events are expected to arrive before delta events. In the case where a delta event arrives
and is not related by key value to a base event or a revision of the base event currently held by the
named window the engine ignores the delta event. Thus, considering the example, profile update
events for a user id that does not have an existing profile in the named window are not applied.

When a base or delta event arrives, the insert and remove stream output by the named window
are the current and the prior version of the event. Let's come back to the example. As creation
events arrive that are followed by update events or more creation events for the same user id, the
engine posts the current version of the profile as insert stream (new data) and the prior version
of the profile as remove stream (old data).

Base events are also implicitly delta events. That is, if multiple base events of the same key
property values arrive, then each base event provides a new version. In the example, if multiple
profile creation events arrive for the same user id then new versions of the current profile for that
user id are output by the engine for each base event, as it does for delta events.

188

Declaring an Event Type: Create Schema

The expiry policy as specified by view definitions applies to each distinct key value, or multiple
distinct key values for composite keys. An expiry policy re-evaluates when new versions arrive. In
the example, user profile events expire from the time window when no creation or update event
for a given user id has been received for 1 hour.

Tip

It usually does not make sense to configure a revision event type

without delta event types. Use the unique data window (std: uni que) or
unique data window in intersection with other data windows instead (i.e.

std: uni que(field).win:tinme(l hour)).

Several strategies are available for merging or overlaying events as the configuration chapter
describes in greater detail.

Any of the Map, XML and JavaBean event representations as well as plug-in event representations
may participate in a revision event type. For example, profile creation events could be JavaBean
events, while profile update events could be j ava. uti | . Map events.

Delta events may also add properties to the revision event type. For example, one could add
a new event type with security information to the revision event type and such security-related
properties become available on the resulting revision event type.

The following restrictions apply to revision event types:

» Nested properties are only supported for the JavaBean event representation. Nested properties
are not individually versioned; they are instead versioned by the containing property.

« Dynamic, indexed and mapped properties are only supported for nested properties and not as
properties of the revision event type itself.

5.16. Declaring an Event Type: Create Schema

EPL allows declaring an event type via the cr eat e schena clause and also by means of the static
or runtime configuration APl addEvent Type functions. The term schema and event type has the
same meaning in EPL.

Your application can declare an event type by providing the property names and types or by
providing a class name. Your application may also declare a variant stream schema.

When using the cr eat e schenma syntax to declare an event type, the engine automatically removes
the event type when there are no started statements referencing the event type, including the
statement that declared the event type. When using the configuration API, the event type stays
cached even if there are no statements that refer to the event type and until explicitly removed
via the runtime configuration API.

5.16.1. Declare an Event Type by Providing Names and Types

The synopsis of the creat e schena syntax providing property names and types is:

189

Chapter 5. EPL Reference: Clauses

create [map | objectarray] schema schema_nane [as]

(property_name property type [,property_nane property type [,...])
[inherits inherited_event type[, inherited_event type] [,...]]
[starttimestanp tinestanp_property nane]

[endtimestanp timestanp_property_nane]
[copyfrom copy_type name [, copy_type_name] [,...]]

The cr eat e keyword can be followed by nap to instruct the engine to represent events of that type
by the Map event representation, or obj ect ar r ay to denote an Object-array event type. If neither
the map or obj ect array keywords are provided, the engine-wide default event representation
applies.

After creat e schenm follows a schema_name. The schema name is the event type name.

The property_name is an identifier providing the event property name. The property type is also
required for each property. Valid property types are listed in Section 5.18.1, “Creating Variables:
the Create Variable clause” and in addition include:

1. Any Java class name, fully-qualified or the simple class name if imports are configured.
2. Add left and right square brackets [] to any type to denote an array-type event property.
3. Use an event type name as a property type.

The optional i nheri t s keywords is followed by a comma-separated list of event type names that
are the supertypes to the declared type.

The optional st art t i nest anp keyword is followed by a property name. Use this to tell the engine
that your event has a timestamp. The engine checks that the property name exists on the declared
type and returns a date-time value. Declare a timestamp property if you want your events to
implicitly carry a timestamp value for convenient use with interval algebra methods as a start
timestamp.

The optional endti nest anp keyword is followed by a property name. Use this together with
starttimestamp to tell the engine that your event has a duration. The engine checks that
the property name exists on the declared type and returns a date-time value. Declare an
endtimestamp property if you want your events to implicitly carry a duration value for convenient
use with interval algebra methods.

The optional copyf r omkeyword is followed by a comma-separate list of event type names. For
each event type listed, the engine looks up that type and adds all event property definitions to the
newly-defined type, in addition to those listed explicitly (if any).

A few example event type declarations follow:

/| Declare type SecurityEvent
create schema SecurityEvent as (i pAddress string, userld String, numAttenpts int)

/1 Declare type AuthorizationEvent with the roles property being an array of
String

190

Declare an Event Type by Providing Names and Types

/1 and the hostinfo property being a PQJO object
create schema AuthorizationEvent(group String, roles String[], hostinfo
com myconpany. Host Nanel nf o)

/'l Declare type ConpositeEvent in which the innerEvents property is an array
of SecurityEvent
create schema ConpositeEvent (group String, innerEvents SecurityEvent[])

/| Declare type WebPageVi sit Event that inherits all properties fromPageHitEvent
create schema WebPageVi sitEvent (userld String) inherits PageHit Event

/1 Declare a type with start and end timestanp (i.e. event with duration).
create schenm Roboti cArmvbvenent (robotld string, startts |ong, endts |ong)
starttinestanp startts endti nestanp endts

/] Create a type that has all properties of SecurityEvent plus a userName property
create schenm ExtendedSecurityEvent (userName string) copyfrom SecurityEvent

/Il Create a type that has all properties of SecurityEvent
create schema SimlarSecurityEvent () copyfrom SecurityEvent

/]l Create a type that has all properties of SecurityEvent and WbPageVi si t Event
pl us a userNane property

create schema WebSecurityEvent (userName string) copyfrom SecurityEvent,
WebPageVi si t Event

To elaborate on the i nheri t s keyword, consider the following two schema definitions:

create schena Foo as (string propl)

create schenma Bar() inherits Foo

Following above schema, Foo is a supertype or Bar and therefore any Bar event also fulfills Foo
and matches where Foo matches. An EPL statement such as sel ect * from Foo returns any Foo
event as well as any event that is a subtype of Foo such as all Bar events. When your EPL queries
don't use any Foo events there is no cost, thus i nheri t s is generally an effective way to share
properties between types. The start and end timestamp are also inherited from any supertype that
has the timestamp property names defined.

The optional copyf r omkeyword is for defining a schema based on another schema. This keyword
causes the engine to copy property definitions: There is no inherits, extends, supertype or subtype
relationship between the types listed.

To define an event type Bar that has the same properties as Foo:

191

Chapter 5. EPL Reference: Clauses

create schema Foo as (string propl)

create schema Bar () copyfrom Foo

To define an event type Bar that has the same properties as Foo and that adds its own property
prop2:

create schema Foo as (string propl)

create schema Bar(string prop2) copyfrom Foo

If neither the map or obj ect array keywords are provided, and if the create-schema statement
provides the @vent Repr esent ati on(array=true) annotation the engine expects object array
events. If the statement provides the @vent Representati on(array=fal se) annotation the
engine expects Map objects as events. If neither annotation is provided, the engine uses
the configured default event representation as discussed in Section 15.4.11.1, “Default Event
Representation”.

The following two EPL statements both instructs the engine to represent Foo events as object
arrays. When sending Foo events into the engine use the sendEvent (Obj ect[] data, String
t ypeNane) footprint.

create objectarray schema Foo as (string propl)

@vent Representation(array=true) create schema Foo as (string propl)

The next two EPL statements both instructs the engine to represent Foo events as Maps. When
sending Foo events into the engine use the sendEvent (Map data, String typeNane) footprint.

create map schema Foo as (string propl)

@vent Representati on(array=fal se) create schema Foo as (string propl)

192

Declare an Event Type by Providing a Class Name

5.16.2. Declare an Event Type by Providing a Class Name

When using Java classes as the underlying event representation your application may simply
provide the class name:

create schema schema_nane [as] class_nane
[starttimestanp tinestanp_property nane]
[endtimestanp timestanp_property_nane]

The class_name must be a fully-qualified class name (including the package name) if imports are
not configured. If you application configures imports then the simple class name suffices without
package name.

The optional st artti mest anp and endt i mest anp keywords have a meaning as defined earlier.

The next example statements declare an event type based on a class:

/1l Shows the use of a fully-qualified class name to declare the Logi nEvent
event type
create schema Logi nEvent as com myconpany. Logi nVal ue

/1 When the configuration includes inports, the declaration does not need a
package name
create schema Logout Event as SignoffVal ue

5.16.3. Declare a Variant Stream

A variant stream is a predefined stream into which events of multiple disparate event types can
be inserted. Please see Section 5.10.3, “Merging Disparate Types of Events: Variant Streams”
for rules regarding property visibility and additional information.

The synopsis is:

create variant schema schenma_nane [as] eventtype_ nane|* [, eventtype_ nane|*]

(..

Provide the vari ant keyword to declare a variant stream.

The "' wildcard character declares a variant stream that accepts any type of event inserted into
the variant stream.

Provide eventtype_name if the variant stream should hold events of the given type only. When
usingi nsert i nto toinsertinto the variant stream the engine checks to ensure the inserted event
type or its supertypes match the required event type.

A few examples are shown below:

193

Chapter 5. EPL Reference: Clauses

// Create a variant stream that accepts only Logi nEvent and Logout Event event

types
create variant schenma SecurityVariant as Logi nEvent, Logout Event

// Create a variant streamthat accepts any event type
create variant schema AnyEvent as *

5.17. Splitting and Duplicating Streams

EPL offers a convenient syntax to splitting, routing or duplicating events into multiple streams, and
for receiving unmatched events among a set of filter criteria.

For splitting a single event that acts as a container and expose child events as a property of itself
consider the contained-event syntax as described in Section 5.20, “Contained-Event Selection”.

You may define a triggering event or pattern in the on-part of the statement followed by multiple
insert into, sel ect and wher e clauses.

The synopsis is:

[cont ext cont ext nane]

on event_type[(filter_criteria)] [as stream nane]

insert into insert_into_def select select_|ist [where condition]
[insert into insert_into_def select select_list [where condition]]
[insert into...]

[output first | all]

The event_type is the name of the type of events that trigger the split stream. It is optionally
followed by filter_criteria which are filter expressions to apply to arriving events. The optional
as keyword can be used to assign a stream name. Patterns and named windows can also be
specified in the on clause.

Following the on-clause is one or more insert into clauses as described in Section 5.10, “Merging
Streams and Continuous Insertion: the Insert Into Clause” and select clauses as described in
Section 5.3, “Choosing Event Properties And Events: the Select Clause”.

Each sel ect clause may be followed by a wher e clause containing a condition. If the condition
is true for the event, the engine transforms the event according to the sel ect clause and inserts
it into the corresponding stream.

At the end of the statement can be an optional out put clause. By default the engine inserts into
the first stream for which the wher e clause condition matches if one was specified, starting from
the top. If you specify the out put al | keywords, then the engine inserts into each stream (not only
the first stream) for which the wher e clause condition matches or that do not have a wher e clause.

194

Splitting and Duplicating Streams

If, for a given event, none of the wher e clause conditions match, the statement listener receives the
unmatched event. The statement listener only receives unmatched events and does not receive
any transformed or inserted events. The i t er at or method to the statement returns no events.

You may specify an optional context name to the effect that the split-stream operates according
to the context dimensional information as declared for the context. See Chapter 4, Context and
Context Partitions for more information.

In the below sample statement, the engine inserts each Or der Event into the Lar geOr der s stream
if the order quantity is 100 or larger, or into the Smal | Or der s stream if the order quantity is smaller
then 100:

on O der Event
insert into LargeOrders select * where orderQy >= 100
insert into Small Orders select *

The next example statement adds a new stream for medium-sized orders. The new stream
receives orders that have an order quantity between 20 and 100:

on Order Event

insert into LargeOrders select orderld, customer where orderQy >= 100

insert into MediunOrders select orderld, customer where orderQy between 20
and 100

insert into Small Orders sel ect orderld, custonmer where orderQy > 0

As you may have noticed in the above statement, orders that have an order quantity of zero don't
match any of the conditions. The engine does not insert such order events into any stream and
the listener to the statement receives these unmatched events.

By default the engine inserts into the first i nsert into stream without a wher e clause or for
which the wher e clause condition matches. To change the default behavior and insert into all
matching streams instead (including those without a wher e clause), the out put al I keywords
may be added to the statement.

The sample statement below shows the use of the output all keywords. The statement
populates both the Lar geOrder s stream with large orders as well as the VI PCust oner Or der s
stream with orders for certain customers based on customer id:

on O der Event
insert into LargeOrders select * where orderQy >= 100
insert into VIPCustonerCOrders select * where custonerlid in (1001, 1002)
out put all

195

Chapter 5. EPL Reference: Clauses

Since the out put al | keywords are present, the above statement inserts each order event into
either both streams or only one stream or none of the streams, depending on order quantity and
customer id of the order event. The statement delivers order events not inserted into any of the
streams to the listeners and/or subscriber to the statement.

The following limitations apply to split-stream statements:

1. Aggregation functions and the prev and pri or operators are not available in conditions and
the sel ect -clause.

5.18. Variables and Constants

A variable is a scalar, object or event value that is available for use in all statements including
patterns. Variables can be used in an expression anywhere in a statement as well as in the out put
clause for output rate limiting.

Variables must first be declared or configured before use, by defining each variable's type and
name. Variables can be created via the create variabl e syntax or declared by runtime or
static configuration. Variables can be assigned new values by using the on set syntax or via
the set Vari abl eval ue methods on EPRunt i me. The EPRunt i ne also provides method to read
variable values.

A variable can be declared constant. A constant variable always has the initial value and cannot
be assigned a new value. A constant variable can be used like any other variable and can be used
wherever a constant is required. By declaring a variable constant you enable the Esper engine to
optimize and perform query planning knowing that the variable value cannot change.

When declaring a class-type or an event type variable you may read or set individual properties
within the same variable.

The engine guarantees consistency and atomicity of variable reads and writes on the level of
context partition (this is a soft guarantee, see below). Variables are optimized for fast read access
and are also multithread-safe.

Variables can also be removed, at runtime, by destroying all referencing statements including the
statement that created the variable, or by means of the runtime configuration API.

5.18.1. Creating Variables: the ceate variabi e Clause

The create vari abl e syntax creates a new variable by defining the variable type and name. In
alternative to the syntax, variables can also be declared in the runtime and engine configuration
options.

The synopsis for creating a variable is as follows:

create [constant] variable variable type [[]] variabl e_nane
[= assignnment _expression]

196

Creating Variables: the Create Variable clause

Specify the optional const ant keyword when the variable is a constant whose associated value
cannot be altered. Your EPL design should prefer constant variables over non-constant variables.

The variable_type can be any of the following:

vari abl e_type
string
char

char act er
bool

bool ean
byt e

short

i nt

i nt eger

| ong
doubl e

f | oat

obj ect
enum cl ass
cl ass_nane
event _type_nane

All variable types accept null values. The obj ect type is for an untyped variable that can be
assigned any value. You can provide a class name (use imports) or a fully-qualified class name
to declare a variable of that Java class type including an enumeration class. You can also supply
the name of an event type to declare a variable that holds an event of that type.

Append [] to the variable type to declare an array variable. A limitation is that if your variable type
is an event type then array is not allowed.

The variable_name is an identifier that names the variable. The variable name should not already
be in use by another variable.

The assi gnnent _expr essi on is optional. Without an assignment expression the initial value for
the variable is nul | . If present, it supplies the initial value for the variable.

The EPSt at enent object of the creat e vari abl e statement provides access to variable values.
The pull API methods i t er at or and saf el t er at or return the current variable value. Listeners to
the creat e vari abl e statement subscribe to changes in variable value: the engine posts new and
old value of the variable to all listeners when the variable value is updated by an on set statement.

The example below creates a variable that provides a threshold value. The name of the variable
is var _t hreshol d and its type is | ong. The variable's initial value is nul | as no other value has
been assigned:

create variable |ong var_threshol d

197

Chapter 5. EPL Reference: Clauses

This statement creates an integer-type variable named var _out put _r at e and initializes it to the
value ten (10):

create variable integer var_output_rate = 10
The next statement declares a constant string-type variable:
create constant variable string const_filter_synbol ="'GE

In addition to creating a variable via the create variabl e syntax, the runtime and engine
configuration API also allows adding variables. The next code snippet illustrates the use of the
runtime configuration API to create a string-typed variable:

epServi ce. get EPAdm ni strator (). get Configuration()
.addVvari abl e("nyVar", String.class, "init value");

The following example declares a constant that is an array of string:

create constant variable string[] const filters = {'GE', 'MSFT'}

The next example declares a constant that is an array of enumeration values. It assumes the
Col or enumeration class was imported:

create constant variable Color[] const_colors = {Col or. RED, Col or. BLUE}

The engine removes the variable if the statement that created the variable is destroyed and all
statements that reference the variable are also destroyed. The get Vari abl eNanmeUsedBy and the
renoveVar i abl e methods, both part of the runtime Conf i gur at i onQper at i ons API, provide use
information and can remove a variable. If the variable was added via configuration, it can only be
removed via the configuration API.

5.18.2. Setting Variable Values: the on set clause

The on set statement assigns a new value to one or more variables when a triggering event
arrives or a triggering pattern occurs. Use the set Vari abl eval ue methods on EPRunti ne to
assign variable values programmatically.

The synopsis for setting variable values is:

198

Setting Variable Values: the On Set clause

on event_type[(filter_criteria)] [as stream nane]
set variabl e_nane = expression [, variable_nane = expression [,...]]

The event_type is the name of the type of events that trigger the variable assignments. It is
optionally followed by filter_criteria which are filter expressions to apply to arriving events. The
optional as keyword can be used to assign an stream name. Patterns and named windows can
also be specified in the on clause.

The comma-separated list of variable names and expressions set the value of one or more
variables. Subqueries may by part of expressions however aggregation functions and the pr ev or
pri or function may not be used in expressions.

All new variable values are applied atomically: the changes to variable values by the on set
statement become visible to other statements all at the same time. No changes are visible to other
processing threads until the on set statement completed processing, and at that time all changes
become visible at once.

The EPSt at enent object provides access to variable values. The pull API methodsi t er at or and
saf el t erat or return the current variable values for each of the variables set by the statement.
Listeners to the statement subscribe to changes in variable values: the engine posts new variable
values of all variables to any listeners.

In the following example, a variable by name var _out put _r at e has been declared previously.
When a NewOutputRateEvent event arrives, the variable is updated to a new value supplied by
the event property 'rate":

on NewQut put Rat eEvent set var_output_rate = rate

The next example shows two variables that are updated when a ThresholdUpdateEvent arrives:

on Threshol dUpdat eEvent as t
set var_threshold_| ower = t.|ower,
var _t hreshol d_hi gher = t. hi gher

The sample statement shown next counts the number of pattern matches using a variable. The
pattern looks for OrderEvent events that are followed by CancelEvent events for the same order
id within 10 seconds of the OrderEvent:

on pattern[every a=OrderEvent -> (Cancel Event (order | d=a. order|d) wher e
timer:within(10 sec))]
set var_counter = var_counter + 1

199

Chapter 5. EPL Reference: Clauses

5.18.3. Using Variables

A variable name can be used in any expression and can also occur in an output rate limiting
clause. This section presents examples and discusses performance, consistency and atomicity
attributes of variables.

The next statement assumes that a variable named 'var_threshold' was created to hold a total
price threshold value. The statement outputs an event when the total price for a symbol is greater
then the current threshold value:

sel ect synbol, sun{price) from Ti ckEvent
group by synbo
havi ng sum(price) > var_threshold

In this example we use a variable to dynamically change the output rate on-the-fly. The variable
'var_output_rate' holds the current rate at which the statement posts a current count to listeners:

sel ect count(*) from Ti ckEvent output every var_output_rate seconds

Variables are optimized towards high read frequency and lower write frequency. Variable reads
do not incur locking overhead (99% of the time) while variable writes do incur locking overhead.

The engine softly guarantees consistency and atomicity of variables when your statement
executes in response to an event or timer invocation. Variables acquire a stable value
(implemented by versioning) when your statement starts executing in response to an event or
timer invocation, and variables do not change value during execution. When one or more variable
values are updated via on set statements, the changes to all updated variables become visible
to statements as one unit and only when the on set statement completes successfully.

The atomicity and consistency guarantee is a soft guarantee. If any of your application statements,
in response to an event or timer invocation, execute for a time interval longer then 15 seconds
(default interval length), then the engine may use current variable values after 15 seconds passed,
rather then then-current variable values at the time the statement started executing in response
to an event or timer invocation.

The length of the time interval that variable values are held stable for the duration of execution of
a given statement is by default 15 seconds, but can be configured via engine default settings.

5.18.4. Object-Type Variables

A variable of type obj ect (orj ava. | ang. Obj ect via the API) can be assigned any value including
null. When using an object-type variable in an expression, your statement may need to cast the
value to the desired type.

The following sample EPL creates a variable by name var obj of type object:

200

Class and Event-Type Variables

create variabl e object varobj

5.18.5. Class and Event-Type Variables

The creat e vari abl e syntax and the API accept a fully-qualified class name or alternatively the
name of an event type. This is useful when you want a single variable to have multiple property
values to read or set.

The next statement assumes that the event type PageHi t Event is declared:

create vari abl e PageH t Event varPageHit Zero

These example statements show two ways of assigning to the variable:

/1l You may assign the conplete event
on PageHi t Event (i p='0.0.0.0") pagehit set varPageH tZero = pagehit

[/ O assign individual properties of the event
on PageHi t Event (i p='0.0.0.0') pagehit set varPageHitZero.userld = pagehit.userld

When using class or event-type variables, in order for the engine to assign property values, the
underlying event type must allow writing property values. If using JavaBean event classes the
class must have setter methods and a default constructor. The underlying event type must also
be copy-able i.e. implement Seri al i zabl e or configure a copy method.

Similarly statements may use properties of class or event-type variables as this example shows:

select * from Firewal | Event (user| d=var PageHi t Zero. user| d)

Instances method can also be invoked:

create vari abl e com exanpl e. St at eChecker st at eChecker

select * from Test Event as e where stateChecker. checkState(e)

201

Chapter 5. EPL Reference: Clauses

5.19. Declaring Global Expressions And Scripts: Create
Expression

Your application can declare an expression or script using the cr eat e expr essi on clause. Such
expressions or scripts become available globally to any EPL statement.

The synopsis of the creat e expr essi on syntax is:

create expression expression_or_script

Use the creat e expressi on keywords and append the expression or scripts.

At the time your application creates the creat e expr essi on statement the expression or script
becomes globally visible.

At the time your application destroys the cr eat e expr essi on statement the expression or script
are no longer visible. Existing statements that use the global expression or script are unaffected.

5.19.1. Declaring a Global Expression

The syntax and additional examples for declaring an expression is outlined in Section 5.2.8,
“Expression Declaration”, which discusses declaring expressions that are visible within the same
EPL statement i.e. visible locally only.

When using the cr eat e expr essi on syntax to declare an expression the engine remembers the
expression and allows the expression to be referenced in all other EPL statements.

The below EPL declares a globally visible expression that computes a mid-price:
create expression mdPrice { in => (buy + sell) / 2}

The next EPL returns mid-price for each event:

sel ect mdPrice(nd) from Market Dat aEvent as nd

The expression name must be unique for global expressions. It is not possible to declare the same
global expression twice with the same name.

Your application can declare an expression of the same name local to a given EPL statement as
well as globally using cr eat e expr essi on. The locally-declared expression overrides the globally
declared expression.

The engine validates globally declared expressions at the time your application creates a
statement that references the global expression. When a statement references a global
expression, the engine uses that statement's type information to validate the global expressions.

202

Declaring a Global Script

Global expressions can therefore be dynamically typed and type information does not need to be
the same for all statements that reference the global expression.

This example shows a sequence of EPL, that can be created in the order shown, and that
demonstrates expression validation at time of referral:

create expression mnPrice {(select mn(price) from O der Wndow) }

create wi ndow Order Wndow. wi n: ti me(30) as Order Event

insert into Order Wndow sel ect * from O der Event

/1 Validates and incorporates the decl ared gl obal expression
select minPrice() as mnprice from Market Dat a

5.19.2. Declaring a Global Script

The syntax and additional examples for declaring scripts is outlined in Chapter 18, Script Support,
which discusses declaring scripts that are visible within the same EPL statement i.e. visible locally
only.

When using the creat e expressi on syntax to declare a script the engine remembers the script
and allows the script to be referenced in all other EPL statements.

The below EPL declares a globally visible script in the JavaScript dialect that computes a mid-
price:

create expression nmidPrice(buy, sell) [(buy + sell) / 2]
The next EPL returns mid-price for each event:
sel ect midPrice(buy, sell) from Market Dat aEvent

The engine validates globally declared scripts at the time your application creates a statement
that references the global script. When a statement references a global script, the engine uses
that statement's type information to determine parameter types. Global scripts can therefore be
dynamically typed and type information does not need to be the same for all statements that
reference the global script.

203

Chapter 5. EPL Reference: Clauses

The script name in combination with the number of parameters must be unique for global scripts.
It is not possible to declare the same global script twice with the same name and number of
parameters.

Your application can declare a script of the same name and number of parameters that is local to
a given EPL statement as well as globally using cr eat e expr essi on. The locally-declared script
overrides the globally declared script.

5.20. Contained-Event Selection

Contained-event selection is for use when an event contains properties that are themselves
events, or more generally when your application needs to split an event into multiple events. One
example is when application events are coarse-grained structures and you need to perform bulk
operations on the rows of the property graph in an event.

Use the contained-event selection syntax in a filter expression such as in a pattern, f r omclause,
subselect, on-select and on-delete. This section provides the synopsis and examples.

To review, in the f r omclause a contained_selection may appear after the event stream name and
filter criteria, and before any view specifications.

The synopsis for contained_selection is as follows:

[sel ect sel ect _expressions fronj
cont ai ned_expressi on [@ype(eventtype_nane)] [as alias_nane]
[where filter_expression]

The sel ect clause and select_expressions are optional and may be used to select specific
properties of contained events.

The contained_expression is required and returns individual events. The expression can, for
example, be an event property name that returns an event fragment, i.e. a property that can itself
be represented as an event by the underlying event representation. Simple values such as integer
or string are not fragments. The expression can also be any other expression such as a single-
row function or a script that returns either an array or a j ava. util . Col | ecti on of events.

Provide the @ ype(nane) annotation after the contained expression to name the event type of
events returned by the expression. The annotation is optional and not needed when the contained-
expression is an event property that returns a class or other event fragment.

The alias_name can be provided to assign a name to the expression result value rows.
The wher e clause and filter_expression is optional and may be used to filter out properties.

As an example event, consider a media order. A media order consists of order items as well as
product descriptions. A media order event can be represented as an object graph (POJO event
representation), or a structure of nested Maps (Map event representation) or a XML document
(XML DOM or Axiom event representation) or other custom plug-in event representation.

204

Contained-Event Selection

To illustrate, a sample media order event in XML event representation is shown below. Also, a
XML event type can optionally be strongly-typed with an explicit XML XSD schema that we don't
show here. Note that Map and POJO representation can be considered equivalent for the purpose
of this example.

Let us now assume that we have declared the event type Medi aOr der as being represented by
the root node <nedi aor der > of such XML snip:

<medi aor der >
<or der | d>PQ200901</ or der | d>
<itens>
<itenp
<i tem d>100001</item d>
<pr oduct | d>B001</ pr oduct | d>
<anount >10</ anount >
<price>11.95</ price>
</itenmp
</itenms>
<books>
<book>
<bookl d>B001</ bookl| d>
<aut hor >Hei nl ei n</ aut hor >
<revi ew>
<revi ew d>1</revi ew d>
<coment >best book ever</conment >
</revi ew>
</ book>
<book>
<bookl| d>B002</ bookl| d>
<aut hor >l saac Asi nov</ aut hor >
</ book>
</ books>
</ nedi aor der >

The next query utilizes the contained-event selection syntax to return each book:

sel ect * from Medi aOr der [books. book]

The result of the above query is one event per book. Output events contain only the book properties
and not any of the mediaorder-level properties.

Note that, when using listeners, the engine delivers multiple results in one invocation of each
listener. Therefore listeners to the above statement can expect a single invocation passing all
book events within one media order event as an array.

205

Chapter 5. EPL Reference: Clauses

To better illustrate the position of the contained-event selection syntax in a statement, consider
the next two queries:

sel ect * from Medi aOr der (order | d=" PO200901") [books. book]

The above query the returns each book only for media orders with a given order id. This query
illustrates a contained-event selection and a view:

sel ect count(*) from Medi aOr der[books. book] . st d: uni que(bookl d)

The sample above counts each book unique by book id.

Contained-event selection can be staggered. When staggering multiple contained-event
selections the staggered contained-event selection is relative to its parent.

This example demonstrates staggering contained-event selections by selecting each review of
each book:

sel ect * from Medi aOr der [books. book] [revi ew]

Listeners to the query above receive a row for each review of each book. Output events contain
only the review properties and not the book or media order properties.

The following is not valid:

/1 not valid
sel ect * from Medi aOr der [books. book. revi ew]

The book property in an indexed property (an array or collection) and thereby requires an index
in order to determine which book to use. The expression books. book[1] . revi ew is valid and
means all reviews of the second (index 1) book.

The contained-event selection syntax is part of the filter expression and may therefore occur in
patterns and anywhere a filter expression is valid.

A pattern example is below. The example assumes that a Cancel event type has been defined

that also has an or der | d property:

select * from pattern [c=Cancel -> books=Medi aOrder(orderld = c.orderld)
[books. book]]

206

Select-Clause in a Contained-Event Selection

When used in a pattern, a filter with a contained-event selection returns an array of events, similar
to the match-until clause in patterns. The above statement returns, in the books property, an array
of book events.

5.20.1. Select-Clause in a Contained-Event Selection

The optional sel ect clause provides control over which fields are available in output events. The
expressions in the select-clause apply only to the properties available underneath the property in
the f r omclause, and the properties of the enclosing event.

When no sel ect is specified, only the properties underneath the selected property are available
in output events.

In summary, the sel ect clause may contain:

1. Any expressions, wherein properties are resolved relative to the property in the f r omclause.

2. Use the wildcard (*) to provide all properties that exist under the property in the f r omclause.

3. Use the alias_name. * syntax to provide all properties that exist under a property in the from
clause.

The next query's sel ect clause selects each review for each book, and the order id as well as
the book id of each book:

select * from Medi aOrder[sel ect orderld, bookld from books. book][select * from
revi ew

/[l ... equivalent to ...

select * from Medi aOrder[sel ect orderld, bookld from books. book][review]

Listeners to the statement above receive an event for each review of each book. Each output event
has all properties of the review row, and in addition the bookl! d of each book and the or der | d of
the order. Thus bookl d and or der | d are found in each result event, duplicated when there are
multiple reviews per book and order.

The above query uses wildcard (*) to select all properties from reviews. As has been discussed
as part of the sel ect clause, the wildcard (*) and property alias. * do not copy properties
for performance reasons. The wildcard syntax instead specifies the underlying type, and
additional properties are added onto that underlying type if required. Only one wildcard (*) and
property_alias. * (unless used with a column rename) may therefore occur in the sel ect clause
list of expressions.

All the following queries produce an output event for each review of each book. The next sample
queries illustrate the options available to control the fields of output events.

The output events produced by the next query have all properties of each review and no other
properties available:

207

Chapter 5. EPL Reference: Clauses

sel ect * from Medi aOr der [books. book] [revi ew

The following query is not a valid query, since the order id and book id are not part of the contained-
event selection:

/1 Invalid select-clause: orderld and bookld not produced.
sel ect orderld, bookld from Medi aOr der[books. book] [revi ew]

This query is valid. Note that output events carry only the or der | d and bookl d properties and
no other data:

sel ect orderld, bookld from Medi aCrder[books. book][sel ect orderld, bookld from
revi ew

[/... equivalent to ...

select * from Medi aOrder[sel ect orderld, bookld from books. book][revi ew]

This variation produces output events that have all properties of each book and only revi ewl d
and comment for each review:

sel ect * from Medi aOrder[sel ect * frombooks. book] [sel ect reviewl d, conment from
revi ew

/[l ... equivalent to ...

sel ect * from Medi aOr der [books. book as book][sel ect book.*, reviewd, coment
fromreview

The output events of the next EPL have all properties of the order and only bookl d and revi ewl d
for each review:

sel ect * from Medi aOr der [books. book as book]
[sel ect medi aOrder.*, bookld, reviewid fromreview as nediaO der

This EPL produces output events with 3 columns: a column named nedi aOr der that is the order
itself, a column named book for each book and a column named r evi ewthat holds each review:

insert into ReviewStream sel ect * from Medi aOr der [books. book as book]
[select np.* as nedi aOrder, book.* as book, review * as review from revi ew
as review as no

208

Where Clause in a Contained-Event Selection

/1l .. and a sanpl e consuner of ReviewStream ..
sel ect medi aOrder.orderld, book.bookld, reviewreviewmd from Revi ewStream

Please note these limitations:

1. Sub-selects, aggregation functions and the prev and pri or operators are not available in
contained-event selection.

2. Expressions in the sel ect and wher e clause of a contained-event selection can only reference
properties relative to the current event and property.

5.20.2. Where Clause in a Contained-Event Selection

The optional wher e clause may be used to filter out properties at the same level that the where-
clause occurs.

The properties in the filter expression must be relative to the property in the f r omclause or the
enclosing event.

This query outputs all books with a given author:

sel ect * from Medi aOr der [books. book where author = 'Heinlein']

This query outputs each review of each book where a review comment contains the word 'good":

sel ect * from Medi aOr der[books. book] [revi ew where conmrent |ike 'good']

5.20.3. Contained-Event Selection and Joins

This section discusses contained-event selection in joins.

When joining within the same event it is not required that views are specified. Recall, in a join or
outer join there must be views specified that hold the data to be joined. For self-joins, no views
are required and the join executes against the data returned by the same event.

This query inner-joins items to books where book id matches the product id:

sel ect book. bookld, itemitemd

from Medi aOr der [books. book] as book,
Medi aOrder[itens.iten]i as item

where productld = bookld

209

Chapter 5. EPL Reference: Clauses

Query results for the above query when sending the media order event as shown earlier are:

book.bookld item.itemld

B0OO1 100001

The next example query is a left outer join. It returns all books and their items, and for books
without item it returns the book and a nul | value:

sel ect book. bookld, itemitemd
from Medi aOr der [books. book] as book
left outer join
Medi aOrder[itens.iten]i as item
on productld = bookld

Query results for the above query when sending the media order event as shown earlier are:

book.bookld item.itemld

B0OO1 100001
B002 null

A full outer join combines the results of both left and right outer joins. The joined table will contain
all records from both tables, and fill in nul | values for missing matches on either side.

This example query is a full outer join, returning all books as well as all items, and filling in nul |
values for book id or item id if no match is found:

sel ect orderld, book.bookld,itemitend
from Medi aOr der [books. book] as book
full outer join
Medi aOrder[sel ect orderld, * fromitens.iten] as item
on productld = bookld
order by bookld, itemitem d asc

As in all other continuous queries, aggregation results are cumulative from the time the statement
was created.

The following query counts the cumulative number of items in which the product id matches a
book id:

sel ect count (*)

from Medi aOr der [books. book] as book,
Medi aOrder[itens.iten]i as item

where productld = bookld

Sentence and Word Example

The uni di recti onal keyword in a join indicates to the query engine that aggregation state is not
cumulative. The next query counts the number of items in which the product id matches a book
id for each event:

sel ect count (*)

from Medi aOr der [books. book] as book unidirectional,
Medi aCrder[itens.item as item

where productld = bookld

5.20.4. Sentence and Word Example

The next example splits an event representing a sentence into multiple events in which each event
represents a word. It represents all events and the logic to split events into contained events as
Java code. The next chapter has additional examples that use Map-type events and put contained-
event logic into a separate expression or script.

The sentence event in this example is represented by a class declared as follows:

public class SentenceEvent {
private final String sentence;

publi ¢ SentenceEvent (String sentence) {
thi s. sentence = sentence;

public WrdEvent[] getWords() {
String[] split = sentence.split(" ");
WordEvent[] words = new WordEvent[split.length];
for (int i =0; i <split.length; i++) {
words[i] = new WordEvent (split[i]);
}

return words;

The sentence event as above provides an event property wor ds that returns each word event.

The declaration of word event is also a class:
public class WrdEvent {
private final String word,;

public WrdEvent (String word) {
this.word = word;

211

Chapter 5. EPL Reference: Clauses

public String getWord() {
return word;

The EPL statement to populate a stream of words from a sentence event is:
insert into WrdStream sel ect * from Sent enceEvent [wor ds]
Finally, the API call to send a sentence event to the engine is shown here:

epServi ce. get EPRunti ne() . sendEvent (new SentenceEvent("Hello Wrd Contained
Events"));

5.20.5. More Examples

The examples herein are not based on the POJO events of the prior example. They are meant to
demonstrate different types of contained-event expressions and the use of @ ype(type_name) to
identify the event type of the return values of the contained-event expression.

The example first defines a few sample event types:

create schema Sent enceEvent (sentence String)

create schena WordEvent (word String)

create schenm CharacterEvent (char String)

The following EPL assumes that your application defined a plug-in single-row function by name
spl i t Sent ence that returns an array of Map, producting output events that are Wr dEvent events:

i nsert into Wor dSt ream sel ect * from
Sent enceEvent [spl it Sent ence(sent ence) @ype(Wr dEvent)]

The example EPL shown next invokes a JavaScript function which returns some events of type
Wor dEvent :

212

Contained-Event Limitations

expression Collection js:splitSentencelS(sentence) [

i mpor t Package(j ava. util);

var words = new Arraylist();

wor ds. add(Col | ecti ons. si ngl etonMap(' word', 'wordOne'));
wor ds. add(Col | ecti ons. si ngl etonMap(' word', 'wordTwo'));
wor ds;

]

sel ect * from SentenceEvent[splitSentencelS(sentence) @ype(WrdEvent)]

In the next example the sentence event first gets split into words and then each word event gets
split into character events via an additional spl i t Wr d single-row function, producing events of
type Char act er Event :

sel ect * from Sent enceEvent
[splitSentence(sentence) @ype(WrdEvent)]
[splitwrd(word) @ype(CharacterEvent)]

5.20.6. Contained-Event Limitations

The following restrictions apply to contained-event selection:

« When selecting contained events from a named window in a join, the stream must be marked
as uni directional .
» Selecting contained events from a named window in a correlated subquery is not allowed.

5.21. Updating an Insert Stream: the Update IStream
Clause

The updat e i stream statement allows declarative modification of event properties of events
entering a stream. Update is a pre-processing step to each new event, modifying an event before
the event applies to any statements.

The synopsis of updat e i st reamis as follows:

update i stream event type [as stream nane]
set property nane = set_expression [, property nane = set_expression]

[oon]

[wher e where_expressi on]

The event_type is the name of the type of events that the updat e applies to. The optional as
keyword can be used to assign a hame to the event type for use with subqueries, for example.
Following the set keyword is a comma-separated list of property names and expressions that
provide the event properties to change and values to set.

213

Chapter 5. EPL Reference: Clauses

The optional wher e clause and expression can be used to filter out events to which to apply
updates.

Listeners to an updat e statement receive the updated event in the insert stream (new data) and
the event prior to the update in the remove stream (old data). Note that if there are multiple update
statements that all apply to the same event then the engine will ensure that the output events
delivered to listeners or subscribers are consistent with the then-current updated properties of
the event (if necessary making event copies, as described below, in the case that listeners are
attached to update statements). Iterating over an update statement returns no events.

As an example, the below statement assumes an Al ert Event event type that has properties
named severity and reason:

update istream Al ert Event
set severity = 'H gh'
where severity = 'Medium and reason like '9%ithdrawal |imt%

The statement above changes the value of the severi t y property to "High" for Al ert Event events
that have a medium severity and contain a specific reason text.

Update statements apply the changes to event properties before other statements receive the
event(s) for processing, e.g. "sel ect * from Al ert Event " receives the updated Al ert Event.
This is true regardless of the order in which your application creates statements.

When multiple update statements apply to the same event, the engine executes updates in the
order in which update statements are created. We recommend the @i ori t y EPL annotation to
define a deterministic order of processing updates, especially in the case where update statements
get created and destroyed dynamically or multiple update statements update the same fields. The
update statement with the highest @ri ori ty value applies last.

The updat e clause can be used on streams populated viai nsert i nt o, as this example utilizing
a pattern demonstrates:

insert into Doubl eWthdrawal Stream
select a.id, b.id, a.account as account, 0 as m ni mum
frompattern [a=Wthdrawal -> b=Wthdrawal (id = a.id)]

updat e i stream Doubl eW t hdr awal St reamset m ni rum= 1000 where account in (10002,
10003)

When using updat e with named windows, any changes to event properties apply before an event
enters the named window.

214

Updating an Insert Stream: the Update 1Stream Clause

Consider the next example (shown here with statement names in @Name EPL annotation,
multiple EPL statements):

@Nane(" Creat eW ndow') create wi ndow MyW ndow. wi n: ti me(30 sec) as Al ertEvent

@Nane(" Updat eStreant’) update istream MyW ndow set severity = 'Low where reason
= '%ut of paper%

@\anme(" Il nsert Wndow') insert into MyWndow sel ect * from Al ert Event

@Nane(" Sel ect Wndow') sel ect * from MyW ndow

The Updat eSt r eamstatement specifies an updat e clause that applies to all events entering the
named window. Note that updat e does not apply to events already in the named window at the
time an application creates the Updat eSt r eamstatement, it only applies to new events entering
the named window (after an application created the updat e statement).

Therefore, in the above example listeners to the Sel ect Wndow statement as well as the
Cr eat eW ndow statement receive the updated event, while listeners to the InsertW ndow
statement receive the original Al ert Event event (and not the updated event).

Subqueries can also be used in all expressions including the optional wher e clause.

This example demonstrates a correlated subquery in an assignment expression and also
demonstrates the optional as keyword. It assigns the phone property of an Al ert Event event
a new value based on the lookup within all unique PhoneEvent events (according to an enpi d
property) correlating the Al ert Event property r epor t er with the enpi d property of PhoneEvent :

update istream Al ert Event as ae
set phone =
(sel ect phone from PhoneEvent. std: uni que(enpi d) where enpid = ae.reporter)

When updating indexed properties use the syntax propertyName[index] value with the
index value being an integer number. When updating mapped properties use the syntax
propertyName(key) = value with the key being a string value.

When using updat e, please note these limitations:

1. Expressions may not use aggregation functions.

2. The prev and pri or functions may not be used.

3. For underlying event representations that are Java objects, a event object class mustimplement
the j ava.io. Seri al i zabl e interface as discussed below.

4. When using an XML underlying event type, event properties in the XML document
representation are not available for update.

215

Chapter 5. EPL Reference: Clauses

5. Nested properties are not supported for update. Revision event types and variant streams may
also not be updated.

5.21.1. Immutability and Updates

When updating event objects the engine maintains consistency across statements. The engine
ensures that an update to an event does not impact the results of statements that look for or
retain the original un-updated event. As a result the engine may need to copy an event object to
maintain consistency.

In the case your application utilizes Java objects as the underlying event representation and an
updat e statement updates properties on an object, then in order to maintain consistency across
statements it is necessary for the engine to copy the object before changing properties (and thus
not change the original object).

For Java application objects, the copy operation is implemented by serialization. Your event object
must therefore implement the j ava. i 0. Seri al i zabl e interface to become eligible for update. As
an alternative to serialization, you may instead configure a copy method as part of the event type
configuration via Conf i gur ati onEvent TypelLegacy.

5.22. Controlling Event Delivery : The ror Clause

The engine delivers all result events of a given statement to the statement's listeners and
subscriber (if any) in a single invocation of each listener and subscriber's updat e method passing
an array of result events. For example, a statement using a time-batch view may provide many
result events after a time period passes, a pattern may provide multiple matching events or in a
join the join cardinality could be multiple rows.

For statements that typically post multiple result events to listeners the f or keyword controls the
number of invocations of the engine to listeners and subscribers and the subset of all result events
delivered by each invocation. This can be useful when your application listener or subscriber code
expects multiple invocations or expects that invocations only receive events that belong together
by some additional criteria.

The f or keyword is a reserved keyword. It is followed by either the gr ouped_del i very keyword
for grouped delivery or the di scret e_del i very keyword for discrete delivery. The f or clause is
valid after any EPL select statement.

The synopsis for grouped delivery is as follows:

for grouped_delivery (group_expression [, group_expression] [,...])

The group_expression expression list provides one or more expressions to apply to result events.
The engine invokes listeners and subscribers once for each distinct set of values returned by
group_expression expressions passing only the events for that group.

The synopsis for discrete delivery is as follows:

216

Controlling Event Delivery : The For Clause

for discrete_delivery

With discrete delivery the engine invokes listeners and subscribers once for each result event
passing a single result event in each invocation.

Consider the following example without f or -clause. The time batch data view collects RFIDEvent
events for 10 seconds and posts an array of result events:

select * from RFI DEvent.w n:tinme_batch(10 sec)

Let's consider an example event sequence as follows:

Table 5.7. Sample Sequence of Events for For Keyword

RFIDEvent(id:1, zone:'A")
RFIDEvent(id:2, zone:'B")
RFIDEvent(id:3, zone:'A")

Without f or -clause and after the 10-second time period passes, the engine delivers an array of
3 events in a single invocation to listeners and the subscriber.

The next example specifies the f or -clause and grouped delivery by zone:

sel ect * from RFl DEvent.w n:time_batch(10 sec) for grouped_delivery (zone)

With grouped delivery and after the 10-second time period passes, the above statement delivers
result events in two invocations to listeners and the subscriber: The first invocation delivers an
array of two events that contains zone A events with id 1 and 3. The second invocation delivers
an array of 1 event that contains a zone B event with id 2.

The next example specifies the f or -clause and discrete delivery:

sel ect * from RFI DEvent.w n:time_batch(10 sec) for discrete_delivery

With discrete delivery and after the 10-second time period passes, the above statement delivers
result events in three invocations to listeners and the subscriber: The first invocation delivers an
array of 1 event that contains the event with id 1, the second invocation delivers an array of 1
event that contains the event with id 2 and the third invocation delivers an array of 1 event that
contains the event with id 3.

217

Chapter 5. EPL Reference: Clauses

Remove stream events are also delivered in multiple invocations, one for each group, if your
statement selects remove stream events explicitly via i r st r eamor r st r eamkeywords.

Theinsert i nto for inserting events into a stream is not affected by the f or -clause.

The delivery order respects the natural sort order or the explicit sort order as provided by the
order by clause, if present.

The following are known limitations:

1. The engine validates group_expression expressions against the output event type, therefore
all properties specified in group_expression expressions must occur in the sel ect clause.

218

Chapter 6.

Chapter 6. EPL Reference: Patterns

6.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition.
Patterns can also be time-based.

Pattern expressions consist of pattern atoms and pattern operators:

1. Pattern atoms are the basic building blocks of patterns. Atoms are filter expressions, observers
for time-based events and plug-in custom observers that observe external events not under
the control of the engine.

2. Pattern operators control expression lifecycle and combine atoms logically or temporally.

The below table outlines the different pattern atoms available:

Table 6.1. Pattern Atoms

Pattern Atom SET] o] [

Filter expressions specify an event t

look for. St ockTi ck(synbol =" ABC , price > 100)

Time-based event observers specify tim

intervals or time schedules. timer:interval (10 seconds)

timer:at(*, 16, *, *, *)

Custom plug-in observers can ad
pattern language syntax for observing Mvapplication: nyobserver("http://
application-specific events. SEMEEEILI)

There are 4 types of pattern operators:

1. Operators that control pattern sub-expression repetition: every, every-di sti nct, [nuni and
unti |

2. Logical operators: and, or, not

3. Temporal operators that operate on event order: - > (followed-by)

4. Guards are where-conditions that control the lifecycle of subexpressions. Examples are
timer:w thin,timer:w thi nmax and whi | e-expression. Custom plug-in guards may also be
used.

Pattern expressions can be nested arbitrarily deep by including the nested expression(s) in ()
round parenthesis.

219

Chapter 6. EPL Reference: Pat...

Underlying the pattern matching is a state machine that transitions between states based on
arriving events and based on time advancing. A single event or advancing time may cause a
reaction in multiple parts of your active pattern state.

6.2. How to use Patterns

6.2.1. Pattern Syntax

This is an example pattern expression that matches on every Servi ceMeasur enent events
in which the value of the |atency event property is over 20 seconds, and on every
Servi ceMeasur ement event in which the success property is false. Either one or the other
condition must be true for this pattern to match.

every (
spi ke=Ser vi ceMeasur enent (| at ency>20000)
or
error=Servi ceMeasur enent (success=f al se)

In the example above, the pattern expression starts with an every operator to indicate that the
pattern should fire for every matching events and not just the first matching event. Within the
every operator in round brackets is a nested pattern expression using the or operator. The left
hand of the or operator is a filter expression that filters for events with a high latency value. The
right hand of the operator contains a filter expression that filters for events with error status. Filter
expressions are explained in Section 6.4, “Filter Expressions In Patterns”.

The example above assigned the tags spi ke and error to the events in the pattern. The tags
are important since the engine only places tagged events into the output event(s) that a pattern
generates, and that the engine supplies to listeners of the pattern statement. The tags can further
be selected in the select-clause of an EPL statement as discussed in Section 5.4.2, “Pattern-
based Event Streams”.

Patterns can also contain comments within the pattern as outlined in Section 5.2.2, “Using
Comments”.

Pattern statements are created via the EPAdnmi ni strator interface. The EPAdmi ni strat or
interface allows to create pattern statements in two ways: Pattern statements that want to make
use of the EPL sel ect clause or any other EPL constructs use the cr eat eEPL method to create
a statement that specifies one or more pattern expressions. EPL statements that use patterns
are described in more detail in Section 5.4.2, “Pattern-based Event Streams”. Use the syntax as
shown in below example.

EPAdmi ni st rat or admi n =
EPSer vi cePr ovi der Manager . get Def aul t Provi der () . get EPAdmi ni strator () ;

220

Patterns in EPL

String event Nanme = Servi ceMeasurenent. cl ass. get Name() ;

EPSt at ement nyTrigger = admi n.createEPL("select * frompattern [" +
"every (spike=" + eventName + "(latency>20000) or error=" + eventNane +
"(success=false))]");

Pattern statements that do not need to make use of the EPL sel ect clause or any other EPL
constructs can use the cr eat ePat t er n method, as in below example.

EPSt at enent nyTri gger = adm n. createPattern(
"every (spike=" + eventName + "(latency>20000) or error=" + eventNane +
"(success=false))");

6.2.2. Patterns in EPL

A pattern may appear anywhere in the from clause of an EPL statement including joins and
subqueries. Patterns may therefore be used in combination with the wher e clause, group by
clause, havi ng clause as well as output rate limiting and i nsert i nto.

In addition, a data window view can be declared onto a pattern. A data window declared onto a
pattern only serves to retain pattern matches. A data window declared onto a pattern does not
limit, cancel, remove or delete intermediate pattern matches of the pattern when pattern matches
leave the data window.

This example statement demonstrates the idea by selecting a total price per customer over pairs of
events (ServiceOrder followed by a ProductOrder event for the same customer id within 1 minute),
occuring in the last 2 hours, in which the sum of price is greater than 100, and using a where
clause to filter on name:

sel ect a.custld, sunm{a.price + b.price)
frompattern [every a=Servi ceOrder ->
b=Pr oduct Order (custld = a.custld) wheretimer:within(l mn)].win:tine(2 hour)
where a.nanme in ('Repair', b.nane)
group by a.custld
havi ng sum(a.price + b.price) > 100

6.2.3. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The
listener interface is the com espert ech. esper. cli ent. Updat eLi st ener interface.

The example below shows an anonymous implementation of the
com espertech. esper. client. UpdateLi st ener interface. We add the anonymous listener

221

Chapter 6. EPL Reference: Pat...

implementation to the nmyPat t er n statement created earlier. The listener code simply extracts the
underlying event class.

nmyPat t er n. addLi st ener (new Updat eLi st ener () {
public void update(EventBean[] newkvents, EventBean[] ol dEvents) ({
Servi ceMeasur ement spi ke = (Servi ceMeasur enent) newEvent s[0] . get ("spi ke");
Servi ceMeasurenent error = (Servi ceMeasurenent) newEvents[O0].get("error");
/'l either spike or error can be null, dependi ng on which occurred
// add nore |ogic here

}
1),

Listeners receive an array of Event Bean instances in the newEvent s parameter. There is one
Event Bean instance passed to the listener for each combination of events that matches the pattern
expression. At least one Event Bean instance is always passed to the listener.

The properties of each Event Bean instance contain the underlying events that caused the pattern
to fire, if events have been named in the filter expression via the name=event Type syntax. The
property name is thus the name supplied in the pattern expression, while the property type is the
type of the underlying class, in this example Ser vi ceMeasur enent .

6.2.4. Pulling Data from Patterns

Data can also be obtained from pattern statements via the safelterator() anditerator()
methods on EPSt at enent (the pull API). If the pattern had fired at least once, then the iterator
returns the last event for which it fired. The hasNext () method can be used to determine if the
pattern had fired.

if (myPattern.iterator().hasNext()) ({

Ser vi ceMeasur enent event = (Servi ceMeasur erment)
view. iterator().next().get("alert");

/1 some nore code here to process the event

}
el se {
/1 no matching events at this tine

Further, if a data window is defined onto a pattern, the iterator returns the pattern matches
according to the data window expiry policy.

This pattern specifies a length window of 10 elements that retains the last 10 matches of A and
B events, for use via iterator or for use in a join or subquery:

222

Pattern Error Reporting

select * frompattern [every (A or B).w n:length(10)

6.2.5. Pattern Error Reporting

While the pattern compiler analyzes your pattern and verifies its integrity, it may not detect certain
pattern errors that may occur at runtime. Sections of this pattern documentation point out common
cases where the pattern engine will log a runtime error. We recommend turning on the log warning

level at project development time to inspect and report on warnings logged. If a statement name
is assigned to a statement then the statement name is logged as well.

6.3. Operator Precedence

The operators at the top of this table take precedence over operators lower on the table.

Table 6.2. Pattern Operator Precedence

Precedenc Operator Description Example
1 guard where tiner:wthi
postfix and whil. MEvent where timer:wthin(l sec)

(expression) (inc..
withinmax and plug-ir

pattern guard) a=MyEvent while (a.price between 1 and
10)
2 unary every, not, every.
di sti nct every MyEvent

timer:interval (5 mn) and not MyEvent

3 repeat [nuni, until

[5] MyEvent

[1..3] MyEvent until MyQtherEvent
4 and and

every (MyEvent and MyQt her Event)
5 or or

every (MyEvent or MyQt her Event)
6 followed- |->

by every (MyEvent -> MyQt her Event)

223

Chapter 6. EPL Reference: Pat...

If you are not sure about the precedence, please consider placing parenthesis () around your
subexpressions. Parenthesis can also help make expressions easier to read and understand.

The following table outlines sample equivalent expressions, with and without the use of
parenthesis for subexpressions.

Table 6.3. Equivalent Pattern Expressions

Expression Equivalent Reason

every Aor B (every A) or B The every operator has higher precedence then the
or operator.

every A->BorC (everyA)->(BorC) | The or operator has higher precedence then the
f ol | owed- by operator.

A->BorB->A A->(BorB)->A | The or operator has higher precedence then the
f ol | owed- by operator, specify as (A -> B) or (B ->
A) instead.

AandBorC (AandB) or C The and operator has higher precedence then the or
operator.

A->BuntiC->D A->(BuntilC)->D | Theuntil operator has higher precedence then the
f ol | owed- by operator.

[5]AorB (5] A) or B The [nuni repeat operator has higher precedence
then the or operator.

every A where every (A where | The where postfix has higher precedence then the
timer:within(10) timer:within(10)) every operator.

6.4. Filter Expressions In Patterns

The simplest form of filter is a filter for events of a given type without any conditions on the event
property values. This filter matches any event of that type regardless of the event's properties.
The example below is such a filter. Note that this event pattern would stop firing as soon as the
first RfidEvent is encountered.

com nypackage. myevent s. Rf i dEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the every
keyword.

every com mypackage. nyevents. Rf i dEvent

224

Filter Expressions In Patterns

The example above specifies the fully-qualified Java class name as the event type. Via
configuration, the event pattern above can be simplified by using the name that has been defined
for the event type.

every Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example
| Rf i dReadabl e is an interface class, and the statement matches any event that implements this
interface:

every org.myorg.rfid.|Rfi dReadabl e

The filtering criteria to filter for events with certain event property values are placed within
parenthesis after the event type name:

Rfi dEvent (cat egor y="Peri shabl e")

All expressions can be used in filters, including static method invocations that return a boolean
value:

Rfi dEvent (com nyconpany. MyRFI DLi b. i sl nRange(x, y) or (x<O0 and y < 0))

Filter expressions can be separated via a single comma ', '. The comma represents a logical AND
between expressions:

Rfi dEvent (zone=1, category=10)
...is equivalent to...
Rfi dEvent (zone=1 and cat egor y=10)

The following set of operators are highly optimized through indexing and are the preferred means
of filtering high-volume event streams:

e equals =

e notequals! =

e comparison operators< , >, >=, <=

* ranges
» use the bet ween keyword for a closed range where both endpoints are included
» usethein keywordandround () orsquare brackets[] to control how endpoints are included
« for inverted ranges use the not keyword and the bet ween or i n keywords

225

Chapter 6. EPL Reference: Pat...

« list-of-values checks using the i n keyword or the not in keywords followed by a comma-
separated list of values

At compile time as well as at run time, the engine scans new filter expressions for subexpressions
that can be indexed. Indexing filter values to match event properties of incoming events enables
the engine to match incoming events faster. The above list of operators represents the set of
operators that the engine can best convert into indexes. The use of comma or logical and in filter
expressions does not impact optimizations by the engine.

For more information on filters please see Section 5.4.1, “Filter-based Event Streams”. Contained-
event selection on filters in patterns is further described in Section 5.20, “Contained-Event
Selection”.

Filter criteria can also refer to events matching prior named events in the same expression. Below
pattern is an example in which the pattern matches once for every RfidEvent that is preceded by
an RfidEvent with the same asset id.

every el=Rfi dEvent -> e2=Rfi dEvent (assetl d=el. asset| d)

The syntax shown above allows filter criteria to reference prior results by specifying the event
name tag of the prior event, and the event property name. The tag names in the above example
were el and e2. This syntax can be used in all filter operators or expressions including ranges
and the i n set-of-values check:

every el=RfidEvent ->
e2=Rfi dEvent (M/Li b.i sl nRadi us(el.x, el.y, x, y) and zone in (1, el.zone))

An arriving event changes the truth value of all expressions that look for the event. Consider the
pattern as follows:

every (RfidEvent(zone > 1) and Rfi dEvent(zone < 10))

The pattern above is satisfied as soon as only one event with zone in the interval [2, 9] is received.

6.4.1. Controlling Event Consumption

An arriving event applies to all filter expressions for which the event matches. In other words, an
arriving event is not consumed by any specify filter expression(s) but applies to all active filter
expressions of all pattern sub-expressions.

You may provide the @onsune annotation as part of a filter expression to control consumption of
an arriving event. If an arriving event matches the filter expression marked with @onsune it is ho
longer available to other filter expressions of the same pattern that also match the arriving event.

226

Pattern Operators

The @onsume can include a level number in parenthesis. A higher level number consumes the
event first. The default level number is 1. Multiple filter expressions with the same level number
for @onsune all match the event.

Consider the next sample pattern:
a=Rfi dEvent (zone='Z71"') and b=Rfi dEvent (asset|d="0001")

This pattern fires when a single RfidEvent event arrives that has zone 'Z1' and assetld '0001'. The
pattern also matches when two RfidEvent events arrive, in any order, wherein one has zone 'Z1'
and the other has assetld '0001'.

Mark a filter expression with @onsune to indicate that if an arriving event matches multiple filter
expressions that the engine prefers the marked filter expression and does not match any other
filter expression.

This updated pattern statement uses @onsumne to indicate that a match against zone is preferred:
a=Rfi dEvent (zone='Z1') @onsune and b=Rfi dEvent (asset|d=' 0001")

This pattern no longer fires when a single RfidEvent arrives that has zone 'Z1' and assetld '0001',
because when the first filter expression matches the pattern engine consumes the event. The
pattern only matches when two RfidEvent events arrive in any order. One event must have zone
'Z1' and the other event must have a zone other then 'Z1' and an assetld '0001".

The next sample pattern provides a level number for each @onsune:

a=Rfi dEvent (zone='Z1') @onsune(2)
or b=Rfi dEvent (assetld="'0001"') @onsune(1)
or c=Rfi dEvent (cat egory='perishable'))

The pattern fires when an RfidEvent arrives with zone 'Z1'". In this case the output event populates
property 'a' but not properties 'b' and 'c'. The pattern also fires when an RfidEvent arrives with a
zone other then 'Z1' and an asset id of '0001". In this case the output event populates property 'b'
but not properties 'a’' and 'c'. The pattern also fires when an RfidEvent arrives with a zone other
then 'Z1' and an asset id other then '0001' and a category of 'perishable’. In this case the output
event populates property 'c' but not properties 'a’ and 'b'.

6.5. Pattern Operators

6.5.1. Every

227

Chapter 6. EPL Reference: Pat...

The every operator indicates that the pattern sub-expression should restart when the
subexpression qualified by the every keyword evaluates to true or false. Without the every
operator the pattern sub-expression stops when the pattern sub-expression evaluates to true or
false.

As a side note, please be aware that a single invocation to the Updat eLi st ener interface may
deliver multiple events in one invocation, since the interface accepts an array of values.

Thus the every operator works like a factory for the pattern sub-expression contained within.
When the pattern sub-expression within it fires and thus quits checking for events, the every
causes the start of a new pattern sub-expression listening for more occurrences of the same event
or set of events.

Every time a pattern sub-expression within an every operator turns true the engine starts a new
active subexpression looking for more event(s) or timing conditions that match the pattern sub-
expression. If the every operator is not specified for a subexpression, the subexpression stops
after the first match was found.

This pattern fires when encountering an A event and then stops looking.

This pattern keeps firing when encountering A events, and doesn't stop looking.
every A

When using every operator with the - > followed-by operator, each time the every operator
restarts it also starts a new subexpression instance looking for events in the followed-by
subexpression.

Let's consider an example event sequence as follows.

Al Bl Cl Bz A2 Dl A3 B3 El A4 Fl B4

Table 6.4. 'Every' operator examples

Example Description

Detect an A event followed by a B event. At the time when B occurs
every (A->B) the pattern matches, then the pattern matcher restarts and looks for
the next A event.

1. Matches on B, for combination {A1, B4}
2. Matches on B3 for combination {A,, B3}
3. Matches on B, for combination {A4, B4}

228

Every

Example Description

The pattern fires for every A event followed by a B event.
every A->B

1. Matches on B4 for combination {Aq, B4}
2. Matches on B3 for combination {A,, B3} and {Az, B3}
3. Matches on B4 for combination {A,4, B4}

The pattern fires for an A event followed by every B event.
A -> every B

1. Matches on B, for combination {A;, B4}.
2. Matches on B, for combination {A;, B,}.
3. Matches on B3 for combination {A;, B3}
4. Matches on B, for combination {A;, B4}

The pattern fires for every A event followed by every B event.
every A -> every B

1. Matches on B4 for combination {A;, B4}

2. Matches on B, for combination {A4, B,}.

3. Matches on B3 for combination {A4, Bz} and {A,, B3} and {A3, B3}

4. Matches on B, for combination {A1, B4} and {A,, B4} and {Az, B4}
and {A4, B4}

The examples show that it is possible that a pattern fires for multiple combinations of events that
match a pattern expression. Each combination is posted as an Event Bean instance to the updat e
method in the Updat eLi st ener implementation.

Let's consider the ever y operator in conjunction with a subexpression that matches 3 events that
follow each other:

every (A->B->0

The pattern first looks for A events. When an A event arrives, it looks for a B event. After the B
event arrives, the pattern looks for a C event. Finally, when the C event arrives the pattern fires.
The engine then starts looking for an A event again.

Assume that between the B event and the C event a second A, event arrives. The pattern would
ignore the A, event entirely since it's then looking for a C event. As observed in the prior example,
the ever y operator restarts the subexpression A -> B -> Conly when the subexpression fires.

In the next statement the ever y operator applies only to the A event, not the whole subexpression:

every A->B ->C

229

Chapter 6. EPL Reference: Pat...

This pattern now matches for each A event that is followed by a B event and then a C event,
regardless of when the A event arrives. Note that for each A event that arrives the pattern engine
starts a new subexpression looking for a B event and then a C event, outputting each combination
of matching events.

6.5.1.1. every Operator Equivalence

A pattern that only has the every operator and a single filter expression is equivalent to selecting
the same filter in the f r omclause:

sel ect * from StockTi ckEvent (synbol =" GE') /1 Prefer this
/1l ... equivalent to ...
select * frompattern[every StockTi ckEvent (synbol =" GE')]

6.5.1.2. Limiting Subexpression Lifetime

As the introduction of the ever y operator states, the operator starts new subexpression instances
and can cause multiple matches to occur for a single arriving event.

New subexpressions also take a very small amount of system resources and thereby your
application should carefully consider when subexpressions must end when designing patterns.
Use the ti mer: wi t hi n construct and the and not constructs to end active subexpressions. The
data window onto a pattern stream does not serve to limit pattern sub-expression lifetime.

Lets look at a concrete example. Consider the following sequence of events arriving:

A1 A2 By

This pattern matches on arrival of B; and outputs two events (an array of length 2 if using a
listener). The two events are the combinations {A;, B} and {A,, B.}:

every a=A -> b=B

The and not operators are used to end an active subexpression.

The next pattern matches on arrival of B; and outputs only the last A event which is the combination
{A2, B1}:

every a=A -> (b=B and not A)

The and not operators cause the subexpression looking for {A;, B?} to end when A, arrives.

230

Every

Similarly, in the pattern below the engine starts a new subexpression looking for a B event every
1 second. After 5 seconds there are 5 subexpressions active looking for a B event and 5 matches
occur at once if a B event arrives after 5 seconds.

every tinmer:interval (1 sec) -> b=B

Again the and not operators can end subexpressions that are not intended to match any longer:

every timer:interval (1 sec) -> (b=B and not timer:interval (1 sec))
/1 equivalent to
every tiner:interval (1 sec) -> (b=B where tiner:within(l sec))

6.5.1.3. every Operator Ex