Esper Reference

Version 5.2.0

by Esper Team and EsperTech Inc. [http://esper.codehaus.org]

Copyright 2006 - 2015 by EsperTech Inc.

http://esper.codehaus.org
http://esper.codehaus.org

|2 (=] = o1 <Y XXi

I = Tod g o] [Yo |V @ A =T VT 1
1.1. Introduction to CEP and event series analySiScoocveviiriiiiiiiieiiiiieeeee e 1
1.2. CEP and relational databasesc.uoiiiiiiiiiiiiiiiiie e 1
1.3. The Esper engine for CEP ... 2
1.4. Required 3rd Party LIDrariesccoooouiiiiiiii e 2

2. EVENt REPIESENTALIONS ...uiiiiii et 3
2.1. Event Underlying Java ODJECLSiiiiiiiii et 3
2.2, EVENE PrOPEITIES ..ottt ettt et e e ettt e e e e eeeab e 4

2.2.1. ESCAPE CharaCtEIScivviiiiii et e e e e e e e e 5
2.2.2. Expression as Key or Index Valuecoooiiiiiiiiiniiiii e 6
2.3. DyNamic EVENL PrOPEILIESccuuiiiiiiiie et e e e e aaa s 7
2.4. Fragment and Fragment TYPE ...cooouiiiiiiiii i 9
2.5. Plain-0Old Java ODbJECt EVENLSuuiiiiiiiiiii e e e e e 9
2.5.1. Java Object EVent Propertiesocoeuuiiiiiiiiieiiiii e 10
2.5.2. Property NAMESocuiiiiiiiiiie e 11
2.5.3. Parameterized TYPES ..coeeriieiiiii ettt 12
2.5.4. Setter Methods for Indexed and Mapped Propertiescccoeevveveviineennnnnns 12
2.5.5. KNOWN LIMITAtIONSuniieiiiiiiee e e e ea e 13
2.6. Java.Uti.Map EVENEScoouiiiiiii e e 13
DA T T @ =T VT PP 13
T V- Vo T o (o] 1= 4 (1= 14
2.6.3. MAP SUPEITYPES ..oeiieiieiiii ettt ettt et e e 15
2.6.4. Advanced Map Property TYPES ...cccuuieiiiieiiii e eee e e e e 16
2.7. Object-array (ODbJect[]) EVENLSccoouuiiiiiiiiieeie e e 18
A 8 T O Y= V= PSP 18
2.7.2. ObJeCt-Array PropPertie€Scoouuiiiiiiiiiieiiiii e 19
2.7.3. ODJECt-AIray SUPEIMYPE ...civiiiii e e e e e e aaees 20
2.7.4. Advanced Object-Array Property TYPESvveiiiiiieiiiiiieeeeiiiee e 21
2.8. org.w3c.dom.NOde XML EVENLSc.uiiiiiiiiiiiii e e e 23
2.8.1. Schema-Provided XML EVENLSooiiuiiiiiiiiiiiciie e e e e 25
2.8.2. No-Schema-Provided XML EVENLScocuviiiiiiiiiiiiiiii e 30
2.8.3. Explicitly-Configured Propertiesooveeuiiiiiiiiiieiiiece e 30
2.9. Additional Event RepresSentationsc..oviiiuiiiiiiiiiii i ee e e e e e 32
2.10. Updating, Merging and Versioning EVentsccccooviiiiiiiiii e 33
2.11. Coarse-GraiNed EVENISiiiiiiiiiieiiiii et e e e e e e e e e enenas 33
2.12. Event Objects Instantiated and Populated by Insert INtoccooveeeiiiiiiiiiinnnnes 34
2.13. Comparing Event REpresentationscvvviuiiiiiiieiiiieeiii e e e 35

3. Processing MOEIiiiiiiei e e e 37
0 I 1 1 (o To 11 T3 1o) o IR PP 37
3.2, INSEIT STIEAM ..enitiit et e ettt e et e e e e e e e e e aeen 37
3.3. Insert and REMOVE SIrEAMiiiiuiiiiiiiii et e r et e e eeaen s 38
3.4, Filters and WRNEIE-ClAUSESccuuuiiiiieiiieii e e e e aas 40
ST T L=V T (o 1 PP 42

Esper Reference

3.5.1. TIME WINAOW ...oiiiiiiiieie et e e et e e e e e 42
3.5.2. TIME BAICH .oiiiiiiiiiii e 43

T T = -1 o] I VAT Vo [1T 44
3.7. Aggregation and GrOUPINGccuuieiuiieeiiie et e e e e e e e e s e s e et e e et e e eaneeatnes 45
3.7.1. Insert and REMOVE StrEamMcccuiiiiiiiiiiieii e e e e e eens 45
3.7.2. Output for Aggregation and Group-BYcccoeeiiiiiiiiiiiiiiecin e, 46

3.8. Event Visibility and CUrrent TiMeooiiiiiiiiiiiiiieeee e 48
4. Context and Context PartitioNSviiiiiiiiiiiir e 49
s O 1 1 Yo [o 1o o PP 49
4.2, CoNteXt DECIAIALIONiiiiiiii e 50
4.2.1. Context-Provided Propertiesooveiiiiiiiiiiiiiieeei e 51
4.2.2. Keyed Segmented CONEXEcvuuiiiiiiiiiiie e e e e 51
4.2.3. Hash Segmented CONEXEuiiiiiinieiiiii e 55
4.2.4. Category Segmented CONEXEcvvviiiiiiiiie e 59
4.2.5. Non-Overlapping CONEXTcveuuiiiiiii et 60
4.2.6. OVerlapping CONEXLuiiiiiiiii e e e e e et e e e ees 63
4.2.7. Context CONAItIONS ...euuiiieiiiii e e e e e e e aaes 66

O T 0] o1 (=) A N LTS3 1] o 69
4.3.1. Built-In Nested Context Propertiescoouuiieiiiiiiieiiiiieeeei e 70

4.4, Partitioning Without Context Declarationccooeiiiiiiiiiiii e 71
4.5. Output When Context Partition Endscoouuiiiiiiiiiii e 72
4.6. Context and Named WINAOWoiiiiiiiiiiiiiine e eai e eeens 74
4.7. Context and TabIESoiiiiiii e 75
4.8. Context and Variablesoiiiiiiiiii 76
4.9. Operations on Specific Context Partitionscooeeiiiiiiiiiiiii e 77
5. EPL REfErenNCe: ClAUSES ...uuiiiiiiiiieiiiii ettt e et e ettt e e e et e e e eataeeeerenaeeeee 79
L0 o I 1) To 11 o3 1T o P 79
L o I o | = PP 80
5.2.1. Specifying Time Periodsoooiiiiiiiiiiiie e 81
5.2.2. USING COMMENTS ...uiiiiiiiiieiii e et e e e e e e e e e et e e e et e e et e e ean s 82
5.2.3. ReSErved KEYWOITSuiiiiiiiieeiiii ettt ettt e e et e e e 82
5.2.4. ESCAPING SIHNGS ©.uiiiniiiiieiiii e e e e e e e e e e e e et s eeaeeeanees 83
5.2.5, DAl TYPBS ittt 84
5.2.6. Using Constants and ENUM TYPEScccuuviiiiieiiiieeiiieeciieeeiie e e et e e ean 86
LI R A g T] = 11T o 87
5.2.8. EXPresSSion AlIBScc.uiiiiiiiiii i 93
5.2.9. EXpression DeClarationooiiiiiiiiiiiiiiiiieee e 94
5.2.10. Script DECIArationciiiiiiiiiiiiiiii e 96
5.2.11. Referring t0 @ CONEXEuiiiiiiii e 96

5.3. Choosing Event Properties And Events: the Select Clausecoccoevevieennnnn. 97
5.3.1. Choosing all event properties: Select * ..o, 97
5.3.2. Choosing specific event Propertiesccc.cviiiieiiiiiiiii e e 98
5.3.3. EXPIESSIONS ..eitiiieiiiiit ettt ettt 98
5.3.4. Renaming eVent ProPertie€Scccuuiiiiiiieiiiieiiiieei e e e e e e e e eae e 99

5.3.5. Choosing event properties and events in @ joincoovevineviiieviinneenneeenn, 99

5.3.6. Choosing event properties and events from a patternccoeeeevnnnis 101
5.3.7. Selecting insert and remove stream eventsc.cccevvveiiieiiieeiiineeineeann. 101
5.3.8. Qualifying property names and stream Namesccooeevveeiiiieviniernnnenns 102
5.3.9. SeleCt DISHNCE ...uciitiiii e e e 103
5.3.10. Transposing an Expression Result to a Streamccoooeeiviviineennne. 104
5.3.11. Selecting EventBean instead of Underlying Eventcccoooiviiininnnen. 104
5.4. Specifying Event Streams: the From ClauSeccoeeviiiiiiiiiiiieci e, 104
5.4.1. Filter-based EVent Streamsovviiiiiiiiiiiiiiec e 105
5.4.2. Pattern-based Event Streamsccoooviiiiiiiiiiiiiieeiiine e 109
5.4.3. SPECITYING VIBWS ...ttt ettt e e 110
5.4.4. Multiple Data WINAOW VIEWScouuiiiiiieiiiiicii e e e e e aens 111
5.4.5. Using the Stream NAMEeoiiiiiiiiiii e 112
5.5. Specifying Search Conditions: the Where Clauseccccocoiiiviiiiiiiicviin e, 114
5.6. Aggregates and grouping: the Group-by Clause and the Having Clause 114
5.6.1. Using aggregate fUNCLONScoiiiiiiiiii e 114
5.6.2. Organizing statement results into groups: the Group-by clause 116
5.6.3. Using Group-By with Rollup, Cube and Grouping Setscccoeevvvneennnn. 119
5.6.4. Specifying grouping for each aggregation functionccc.ocoeveenn. 123
5.6.5. Selecting groups of events: the Having clausec.cccoeveviiiiiiineninnens 125
5.6.6. How the stream filter, Where, Group By and Having clauses interact 126
5.6.7. Comparing Keyed Segmented Context, the Group By clause and the
SEAIGIOUPWIN VIEW .ottt ettt e e et eeeae s 126
5.7. Stabilizing and Controlling Output: the Output Clausec.cccovevviiieiiiniiieeenn. 128
5.7.1. Output Clause OPLIONSuiiiiiiiiiiiii e 128
5.7.2. Aggregation, Group By, Having and Output clause interaction 133
5.7.3. Runtime ConSiderationsScoceuiiiiiieiiieiiee e e e 135
5.8. Sorting Output: the Order By ClauSeccocoviiiiiiiiiiccee e, 135
5.9. Limiting Row Count: the Limit ClauSeccccoviiiiiiiiiiiec e 136
5.10. Merging Streams and Continuous Insertion: the Insert Into Clause 137
5.10.1. Transposing a Property TO & Streamccooveviiiiieiiiiinieiiiiiieeeei e 139
5.10.2. Merging Streams By EVENt TYPEouviiiniiiiiiiiie e 140
5.10.3. Merging Disparate Types of Events: Variant Streamsccoeevevnnnes 140
5.10.4. Decorated EVENLSccouuiiiiiiiiiieeei ettt 142
5.10.5. Event @s @ Propertycocoeiiiiii e 142
5.10.6. Instantiating and Populating an Underlying Event Object 143
5.10.7. Transposing an Expression Resultcooiiiiiiiiiiiii e, 143
5.10.8. Select-Clause Expression And Inserted-Into Column Event Type 143
B.11. SUBQUETIES ..ottt ettt e e e e 144
5.11.1. The 'eXiStS' KEYWOIdccuuuiiiiieiiii it e e e e e e 147
5.11.2. The 'in" and '"Not in' KEYWOITSoooiiiiiiiiiiiiieeeei e 148
5.11.3. The 'any' and 'some’ KEYWOIdScc.coeviiiiiiiiieiiiierin e e e e 148
5.11.4. The "all' KEYWOIdcooiiiiiiiiii ettt 149
5.11.5. Subquery With Group By ClauSeccoiiiiiiiiiiieciii e 150

Esper Reference

5.12.

5.13.

5.14.

5.15.

5.16.
5.17.

5.18.

5.19.

5.11.6. Multi-Column SeIeCtiONcoevuiiiiiiiee e 150
5.11.7. MUlti-ROW SEIECHIONciiiiiieiiiii e 151
5.11.8. Hints Related to SUDQUENIESc.ouiiiiiiiiii e 152
JOINING EVENE SIIEAMS ...iiviiii it e e e e e aa s 154
5.12.1. INtroduCiNg JOINSccieiiiieiiii ettt ettt 154
5.12.2. Inner (Default) JOINSccuiiiiiiiiiii e e 156
5.12.3. Outer, Left and Right JOINScoiiiiiiiiii e 157
5.12.4. Unidirectional JOINSoieiiiiiiieiiiiiee et e e e e e e e e e e e e 159
5.12.5. Hints Related t0 JOINScuuiiiiiiiiiicie e 160
Accessing Relational Data via SQLoovviiiiiiiiiiiie e 161
5.13.1. Joining SQL QUErY RESUILSccevtiiiiiiiiiieiei e 162
5.13.2. SQL Query and the EPL Where Clausecccccovvviiiieiiiieiiii e, 164
5.13.3. Outer Joins With SQL QUETIEScvivuiiiieiieei e 165
5.13.4. Using Patterns to Request (Poll) Datacccoeevviieiiiiiiiiieciieeeeeis 165
5.13.5. Polling SQL Queries via Iteratorccoveviiveiiiieii e 166
5.13.6. JDBC Implementation OVEIVIEWcccuuviiiiieiiieeiiiieeiiieeeineeeineeanaeeaens 166
5.13.7. Oracle Drivers and No-Metadata Workaroundccoevvviiiiinennnns 166
5.13.8. SQL Input Parameter and Column Output Conversionccceeeeen... 167
5.13.9. SQL ROW POJO CONVEISION ...eetiiiiiiieiiieeeiiieeiieeeineeeiaeeaeeeinaeeaneeenaees 168
Accessing Non-Relational Data via Method Invocationcccccceviviiiieinnn, 168
5.14.1. Joining Method Invocation RESUILScooviiiiiiiiiiiiiieccii e 169
5.14.2. Polling Method Invocation Results via Iteratorcccocceeeeviiiiiineennn... 170
5.14.3. Providing the Methodcooiiiiiii e 170
5.14.4. Using a Map REtUIMN TYPE ..iiuniiiiiiiiii e 172
5.14.5. Using a Object Array RetUrn TYPEcoouuiiiiiiiiieeiiii e 174
Declaring an Event Type: Create Schemacccocviiiiiii i 175
5.15.1. Declare an Event Type by Providing Names and Typesccccceeveeene. 176
5.15.2. Declare an Event Type by Providing a Class Nameccceeevvnneeen. 179
5.15.3. Declare a Variant Stre@mcoeeuieiiiieiiiiee e 179
Splitting and Duplicating StreamsSc..oviiiiiiiiiieiie e 180
Variables and CONSLANTScouuiiiiiii e e e e e e e 182
5.17.1. Creating Variables: the Create Variable clauseccooocvivevinennnnn. 183
5.17.2. Setting Variable Values: the On Set clauseccovvviiiiiiiiiiiiieeiis 185
5.17.3. USING Variablesooiiiiiiiiiiiiii e 186
5.17.4. Object-Type Variablescooiiiiiiiiiiii e 187
5.17.5. Class and Event-Type Variablesccooooiiiiiiiiiii e, 187
Declaring Global Expressions, Aliases And Scripts: Create Expression 189
5.18.1. Global EXPression AlIASEScc.iiiiiiiiiiiieiie e e e 189
5.18.2. Global Expression Declarationsccoveviiiiiiiiiiinieiiiiieeee e 190
LT S T €1 o] o T= S o] o £ P 191
Contained-Event SEIECHIONcooveiiiiie e e 192
5.19.1. Select-Clause in a Contained-Event Selectioncccooovvviiiieiiiinneneen, 194
5.19.2. Where Clause in a Contained-Event Selectioncccoceiviiiiiiinnenenn. 197
5.19.3. Contained-Event Selection and JOINSccooevvviiieiiiiiiieeiii e 197

Vi

5.19.4. Sentence and Word EXample ... 199

5.19.5. MOre EXAmPIEScouiiiiiiiiii e 200
5.19.6. Arrays returned by a Contained EXPressSioncoovvvviveeiiieiiineeinneennnn 201
5.19.7. Contained-Event LIMItatioNSooviiiiiiiiiiiiiiecciiieeee e 201
5.20. Updating an Insert Stream: the Update IStream Clausec.cccoevevvveennnnen. 202
5.20.1. Immutability and Updatesccoceuiiiiiiiiiii e 204
5.21. Controlling Event Delivery : The FOr ClauSeccooiviiiiiiniiiiiiiicci e, 204
6. EPL Reference: Named Windows And Tablescocoiiiiiiiiiiiiiiec e, 207
LR O 1YY YT P 207
6.1.1. Named WIiNAOW OVEIVIEWcceeuuuiieiiiiiiieeeeiineeeeetinee e et aeeeeiinaeeeeninneaees 207
6.1.2. TabIE OVEIVIEW ..ottt e e e e e et e e e e eanaes 207
6.1.3. Comparing Named Windows And Tablesccooeeiiiiiiniiniciiie e, 208

6.2. Named WINAOW USBJEcouuniiiiiiiieiiii et eaaans 209
6.2.1. Creating Named Windows: the Create Window clausecccc.cc.uv...e. 209
6.2.2. Inserting Into Named WINAOWScooiiiiiiiiiiiiiei e 213
6.2.3. Selecting From Named WINAOWSccccciiiiiiiiiiiiicciicceeeeee e 215

6.3, TADIE USBJE .. eeeiiiiiiiii e 217
6.3.1. Creating Tables: The Create Table clauseccooeeviiiiiiiiiiiicieeennn, 217
6.3.2. Aggregating Into Table Rows: The Into Table clausec.cccoevveenn. 220
6.3.3. Table Column Keyed-AcCcess EXPreSSionsccccevvviiieviineiiiieeiiieesaneens 223
6.3.4. Inserting INt0 TabIESiiiiiiii e 225
6.3.5. Selecting From Tablesooouiiiiiii e 226

6.4. Triggered Select: the On Select ClauSeooviiiiiiiiiiiii e 228
6.4.1. Notes on On-Select With Named WIindowsccccoevvviiiiiiiiiiineeniiinnnn, 230
6.4.2. Notes on On-Select With Tablescccooviiiiiiiii e, 230
6.4.3. On-Select Compared TO JOINcovuiiiiiieiiieei e e 230

6.5. Triggered Select+Delete: the On Select Delete clausecococoevviiiviiiieiinennnn. 231
6.6. Updating Data: the On Update ClausSeccoeevviiiiiiiiiiiieciin e 231
6.6.1. Notes on On-Update With Named WiNndOWSccoovvviieiiiieiiiniiiieeennnn, 235
6.6.2. Notes on On-Update With Tablescccoeiiiiiiiiiiiii e 235

6.7. Deleting Data: the On Delete ClaUSEc.uuiiiiiiiiiiiiiii e 235
6.7.1. Using Patterns in the On Delete ClausSec.coceuvveiiiiiiiiieiiiiiecie e, 237
6.7.2. Notes on On-Delete With Named WINdOWScccoovviiiiiiiiiiiinenineneen, 237
6.7.3. Notes on On-Update With Tablesccoeeiiiiiiiiiiiii e 238

6.8. Triggered Upsert using the On-Merge Clauseccooveiiiiiiiiiiineii e 238
6.8.1. Notes on On-Merge With Named Windowsccoevviviiiiiiiiiieiineeiiees 242
6.8.2. Notes on On-Merge With Tables ... 242

6.9. Explicitly Indexing Named Windows and Tablesccccooviiiiiii i, 243
6.10. Using Fire-And-Forget Queries with Named Windows and Tables 245
6.10.1. INSErtiNG DAtaccvvueiiiiiiiii e e 245
6.10.2. UPAAtiNG DALAeieeeiiieiiiiie ettt e 247
6.10.3. DEletiNg Datalcccvuiiiiieiiiieii e e e 247
6.11. Versioning and Revision Event Type Use with Named Windows 248
6.12. EVENES AS PrOPITY uiniiiiiiii et 250

Vii

Esper Reference

7. EPL ReferencCe: PatterNS ..ouuiiii ittt e e e et e e e eees 253
7.1. EVENt PatterN OVEIVIEWcieiiiieiiiiiiee it e et e et e e et s e e eett s e e eeae s eeeeaeaeaeees 253
7.2. HOW 10 USE PAEIMS ...ttt ettt e e e e en e 254

T.2. 1. PAterN SYNTAX .uvuiiiiiiiiiie e e e e 254
7.2.2. Patterns in EPL ... 255
7.2.3. Subscribing to Pattern EVENLSooviiiiiiiiiicie e 256
7.2.4. Pulling Data from Patternsocoeuuiiiiiiiiieiii e 256
7.2.5. Pattern Error REPOIINGcouuiiiiiiiii e eee e e e e e e e e 257
7.2.6. Suppressing Same-Event Matchescccoovviiiiiiiii 257
7.2.7. Discarding Partially Completed Patternsccooeeviiiiiiii i, 258
7.3. OPErator PreCEUBINCEuuiiiiii ettt ettt 259
7.4. Filter EXpressions IN Patternsooviiiiiiii e 260
7.4.1. Controlling Event CONSUMPLIONccouuiiiiiiiieieiie e 263
7.4.2. Use With Named Windows and Tablescccovvviiiiiiiiiiiniineeci, 264
7.5, PAttern OPEIALOISuiiieiieiiiieii ettt et e e e e e e ee 265
7. 5.0, EVBIY it 265
7.5.2. EVEIY-DISHINCEuiiiiiiiiiiii e 270
T.5.3. REPEAL ..ottt 272
7.5.4. RepPeat-UNtilcoouuiiiiii e 273
T.5.5. ANA .ot e 277
420571 T 278
T8 7. INOU Lo e 278
7.5.8. FOIOWEA-DY ..o 279
7.5.9. PAErN GUAIOSocoviniiiiiii e e et e et e e e 282
A ST =1 =] ¢ g TN (0] 1 S PP 286
0T O 11 (= N o] 3 T PR 286
7.6.2. Observer AtOMS OVEIVIEWcc.uiiiiieiieeei et e e e e e e e e e eeens 286
7.6.3. Interval (tIMer:interval)coooouiiiiiii e 286
7.6.4. Crontab (HMEFIAL)oieeiiii i e 287
7.6.5. Schedule (timer:schedule)ooiiiiiiiii i 289

8. EPL Reference: Match RECOGNIZEcooouuiiiiiiiii e 297
S I O 1= o T PSP 297
8.2. Comparison of Match Recognize and EPL Patternscccvevveiiiiinneieiiinneeenns 297
SR TS Y/ 0 = 0 PP 298

8.3.1. SyntaxX EXamPIE ... 299
8.4. Pattern and Pattern OPEratOrScc.iiiunieiiiieiiiieeiiiee e e e e e e et e e e eaaes 301
8.4.1. Operator PreCEUIBNCEccoouuuiiiiiiii ettt e eens 301
S N o] g (o= 1 (=] g - 11T ISP 301
SIS T 1Y 1 (=1 - 11T o 302
8.4.4. QUANLITIEIS OVEIVIEWiiiiiiiiiciiii e e e e e e e e aaa s 303
8.4.5. PerMULALIONS ...ccvutiiiiiiii e e e e 303
8.4.6. Variables Can be Singleton or Groupcc.oeeviiiiiiiiiiie e 304
8.4.7. Eliminating Duplicate MatChescoouuiiiiiiiiiii e 305
8.4.8. Greedy Or RelUCIANtcoiiiiiii i 306

viii

8.4.9. Quantifier - One Or More (+ and +?)ooouoiiiiiiiiiii e 307

8.4.10. Quantifier - Zero Or More (* and *?)ooveiiieiiici e 307
8.4.11. Quantifier - Zero Or One (? and 2?)cooeviiiiiiiiiieiii e 308
8.4.12. Repetition - Exactly N MatChesccooeiiiiiiiiiicii e 309
8.4.13. Repetition - N Or More MatChesoccevuiiiiiiiiiiiieiii e 310
8.4.14. Repetition - Between N and M Matchesccoooeviiiiiiiiiiiniiieceie, 310
8.4.15. Repetition - Between Zero and M Matchesccooeveiiviiiiiiniiiiiieeies 311
8.4.16. Repetition EQUIVAIENCEoiiiiiii i 312

8.5. DEfiNE ClAUSEuiiiiiiiii i e e e e e e 312
8.5.1. The PreV OPEratOruuiiiiiieiiieiie e e e e e e e e e e e e e e e eanees 313

8.6. MEASUIE CIAUSEeeiriiiiieei et et e e et e e e e e e et e e ea e e een s 314
8.7. DatawindoW-BOUNGuiiiiiiiiiii e e 314
S0 S T 11 (=T Y | 315
8.9. INterval-Or-TermMINALEAcoiiiiiiiiiii e 316
8.10. Use with Different EVENt TYPES ...coiiuiniiiiii et 317
S0 5 O I 0 1 = L o] S SPPPTSPN 318
9. EPL ReferenCe: OPEratOrS ...o.uuuiiiiiiiieiiiiii ettt ettt e e et eeeere e eeees 319
9.1. ArithmetiC OPEIAIOrS ... ccvueiiii i e r e e e aen 319
9.2. Logical And CompariSON OPETALOrSuuuieierrinieiiiiieeeeiiiaeeeeei e e et eeenii e eenn 319
9.2.1. Null-Value Comparison OPEratorsSccceuuveveiieeiiieeiiiieeiieeeieeeeieeraneen 319

9.3. ConcatenNation OPEIALOIScceuturieiiiti ettt ettt e e e e e et eeeaa s 320
o I T F= 1 VA O 0 1= = | (] ¢ 320
9.5. Array Definition OPEIALONcocuuuuiiiii ettt 321
0.6, DOt O PBIALION ..euiiiiie et 321
9.6.1. DUCK TYPING eertniiiiiiiieieei ettt ettt e et e e e e e e 322

9.7. The 'IN' KEYWOIiiiiiiiii e e e e e e e e e e e e e aaaaes 323
9.7.1. 'in' for Range SelecCtionccoouiiiiiiiiiiiii e 324

9.8. The 'hetween’ KEYWOIdccouuiiiiii i e e e e e e e e 325
9.9. The "lIKE" KEYWOIT ...t 326
9.10. The 'regexp’ KEYWOIcccuuiiiiiiiiii e e e e e e e e e e een 327
9.11. The 'any' and 'SOME’ KEYWOIASuiiiiiiiiiiiiiiie e 327
9.12. The "all' KEYWOTAooiiiiiiiciii e e e e e e e e e e et e e eanaees 328
9.13. The "MEW' KEYWOITcciiiiiieiiii et 329
9.13.1. Using 'new' To Populate A Data Structureccccceevieiieiiiiieiiineeinnens 329
9.13.2. Using 'new' To Instantiate An ODJECtcc.iviiiiiiiiiiiiii 330

10. EPL Reference: FUNCLIONS ..ot e et eeaaens 333
10.1. Single-row FUNCtion REfErenCecoouuiiiiiiiiii e 333
10.1.1. The Case Control FIow FUNCHONocovvviiiiiiiiiiiecii e 335
10.1.2. The Cast FUNCLONocuuiiiieiii e e e e e e ea e ees 336
10.1.3. The CoaleSCe FUNCHONioiiiiiiiieiiiii e e e 337
10.1.4. The Current_Evaluation_Context FUNCHONc.ccooeeiiiiiieiiiiinieeiiie, 337
10.1.5. The Current_Timestamp FUNCLONccoiiiiiiiiiiiiici e 338
10.1.6. The EXiStS FUNCHON ..o e 338
10.1.7. The Grouping FUNCLIONccovuiiiiiiii e 338

Esper Reference

10.1.8. The Grouping_Id FUNCLIONooiiiiiiiiiiii e 339
10.1.9. The Instance-Of FUNCHONuoiiiiiiiiiieiiii e 340
10.1.10. The Istream FUNCLONoiiiiiiiii e 341
10.1.11. The Min and MaxX FUNCHIONSccccuiiiiiiiiiiieiiiiine e 341
10.1.12. The Previous FUNCLONooiiiiii e 342
10.1.13. The Previous-Tail FUNCLIONcooiiiiiiiieiiiiieeci e 344
10.1.14. The Previous-Window FUNCLIONooveiiiiiiiiiiiee e 346
10.1.15. The Previous-Count FUNCLONccooviiiiiiiiiiii e 347
10.1.16. The Prior FUNCHONuuiiiici e 348
10.1.17. The Type-Of FUNCLONccoiiiii e e 349
10.2. AQQregation FUNCLONSooiiiuineiiiii ettt 350
10.2.1. SQL-Standard FUNCLIONSiiiiiiieiiieci e e e 351
10.2.2. Event Aggregation FUNCHONSc..uuiiiiiiiiieiiii e 353
10.2.3. Approximation Aggregation FUNCLIONScccooeiiiiiiiiiiiiii e 361
10.2.4. Additional Aggregation FUNCHONSc.c.uiiiiiiiiinieiiii e 364
10.3. User-Defined FUNCLONSoiiiiiiiiiiiii e e s 367
10.4. Select-Clause transSpoSe FUNCHONccuvuiiiiiiiiieeeii e 371
10.4.1. Transpose With INSErt-INt0cccoviiiiiiiiii e 371

11. EPL Reference: Enumeration Methodscoooiiiiiiiiiiiiiii e 373
30 O @Y= = PP 373
11.2. EXAMPIE EVENTS ...ouiiiiiiiiiei ittt 377
G T o [0 T (o T U PR 379
IR T | - O PP 379
11.3.2. Introductory EXamPpPIEScooviiiiiiiii i e 379
11.3.3. Input, Output and LiMitatioNSooeveeuiiieiiiieiiiieee e 380
Jd4 INPULS et 381
11.4.1. SUDQUETY RESUILS ...t 381
11.4.2. NaMEd WINAOW ...oouuiiiiiiiieiiiii ettt e et e e e 383
11.4.3. TADIE ..o 384
1144, EVENE PrOPOITY vttt 384
11.4.5. Event Aggregation FUNCHONc.iiiiiiiiiiiiiii e 385
11.4.6. prev, prevwindow and prevtail Single-Row Functions as Input 386
11.4.7. Single-Row Function, User-Defined Function and Enum Types 387
11.4.8. Declared EXPreSSIONc...iiiiiieiiiiciiii e e e e e e 388
e Y T =] P 389
11.4.10. SubSHItUtION PArameterscovuuiiieiiiiiieeeiiie e 389
11.4.11. Match-Recognize Group Variableccooooiiiiiiiiiiiii e 389
11.4.12. Pattern Repeat and Repeat-Until Operatorscccoceeeeviiieiiineeinnennnn, 390
L11.5. EXAMPIE oot 390
11.6. REIEIENCE ..oeiiie ettt et e e e eeans 391
T11.6.1. AQOIrEOALE ..ottt ettt 391
L0.6.2, Al e e aaa 392
1.6.3. ANY O i e aan 392

L0 8.4, AVBIAGE ittt 393

11.6.5. COUNLOT .ottt e 393

IO ST B 13 1] Tt (@) P 394
L1168, 7. EXCEPL et 395
S T) (@ PP 395
11.6.9. GrOUPBY ..ot 396
11.6.10. INEEISECL ...eeeniiteit e e e ettt e e e e e e e e 397
I T O = T PR 397
11.6.12. Le@StFreqUENT ... 398
I T T 1Y - PSP 398
L11.6.14. IMABXBY ..uuiiiiiiiiee ittt 399
50 0T 1Y 1 o TSP 399
O T G T 1Y T 0 = PR 400
11.6.17. MOSEFIEQUENT ..ottt e 401
11.6.18. OrderBy and OrderBYDESCccuuuiiiinieiiiieiiiieeiie e e e e e e 401
L0.6.19. REVEISE ..uiiiiiii e e e 402
11.6.20. SEIECIFIOM L.t e e e e e e 402
11.6.21. SEQUENCEEQUALcovviieiiiiii e 403
11.6.22. SUMOI L.ttt et e e e et e e a e 403
I T T I | S PSPPR 404
11.6.24. TAKELASE ..vuuiiiiii i 404
11.6.25. TAKEWNIIEciiiiiiciei e e e e ees 405
11.6.26. TAKEWRIIELASEuiiiiiii e 406
IO T o1V = T o PSRN 406
I T2 < T U 1o 1o T o PPN 407
I T I Y 1= = SR 407
12. EPL Reference: Date-Time MethodsSoviiiiiiiiiiiiiii e 409
N @ V=T VT PP 409
12.2. HOW 10 USE .oniiiiiiitie ettt ettt e e e e e e e e e e eanes 412
D Y | - VP 412
12.3. Calendar and Formatting Referencecoocoviiiiiiiiii i 414
G TR I = 1 A1 = PPt 414
12.3.2. FOIMMEL ..ottt et e e e e e e e e an e 415
12.3.3. Get (BY FIeld) ...oovvniiiiiiece e 415
12.3.4. Get (BY NAIME) ..uuiiiiiiiiiiii e e e e e e e e e e e e e aens 415
12.3.5. IMINUS ©.nciiii e e e e e e e e e e e e e aa et aaan 416
L12.3.8. PIUS oottt 416
12.3.7. ROUNACEIING oevtniiiiiiiee e e e 416
12.3.8. ROUNAFIOONviiiiiiiiiceie e e 417
12.3.9. ROUNAHAIf ... 417
12.3.10. Set (BY FIelt) ..uuieiiiiiieeiii et 417
e T I V1 o1 7 (P 418
12.3. 12, WINIMBX eivtiieeiii et e et e e e et e e e e aea s 418
12.3.13. WINIMIN oot e e e e e e e e 419
2 T V11 o T PPN 419

Xi

Esper Reference

2 T o1 @ 111 T - PP 419
12.3.16. TODALE ...oeeviiieiiei et 419
12.3.17. TOMIllISEC ...t e et e e e e ean e 420
12.4. Interval Algebra REfErENCEoiiuiiii i 420
12.4. 1. EXAMPIES oot e 420
12.4.2. Interval Algebra Parametersccoovviiiiiiiiiiiieeie e 421
e TR o T 0] 1 = g o N 421
2 I 4011 = LT o L PPN 422
12,45, AL i 422
T12.4.6. BEIOIE ..oeeiiiee e 423
o G @ o T o o = PP 424
2 T B 1H 1 oV O SUPPT 425
12.4.9. FINISNES e 426
12.4.10. FiNISNEA BY ..coiiiiiiiiiiii e 427
2 O 1 Tod (W T [T 428
L12.4.12. IMBELS .iiiiieieiii ettt e e e e et a et aaae 429
D Y = = PPN 430
O B @)= 4 - o 1P 430
12.4.15. OVErIapPed BYiiiiiiiiieiiii e 431
TS = Ly £ PPN 432
12.4.17. SEAMEU BY .ooieiiiiiiii et 433

13. EPL REfEIrENCE: VIBWS ..uuiiiiiiiieiiii ettt sttt e e et e e et e e e et e e eenens 435
13.1. A Note 0N VIEW Parameterscccuiiiiiiiiiiie et e e e e e e e e 438
13.2. Data WINAOW VIBWSiiiiiiiieiiiii ettt e et e et e et e e et e e e ena e e eenanns 439
13.2.1. Length window (Win:length)ccoiiiiiiiii e 439
13.2.2. Length batch window (win:length_batch)c..cooviiiiii 439
13.2.3. Time window (WIN:tMeE)coouuiiiiiiiieeiiii e 440
13.2.4. Externally-timed window (win:ext_timed)cccooeiiiiiiniiiiicie e, 440
13.2.5. Time batch window (win:time_batch)cccoooviiiiiiiiii e, 441
13.2.6. Externally-timed batch window (win:ext_timed_batch) 443
13.2.7. Time-Length combination batch window (win:time_length_batch) 444
13.2.8. Time-Accumulating window (win:time_accum)c.ccceeeviveiiineeennnennn. 445
13.2.9. Keep-All window (win:keepall)ocoouviiiiiiiii e, 446
13.2.10. First Length (win:firstlength)cocooiiiiiii e 446
13.2.11. First Time (WIin:firStiime)oioviiiii e 446
13.2.12. EXpiry EXPression (WIN:EXPI) ..uceeiieeiieeeiieeeieeeseeesieesaneestnaessnaesanneens 447
13.2.13. Expiry Expression Batch (win:expr_batch)cccooiiiiiiiiiin, 449
13.3. StANAArd VIEW ST ...iiiiiiiieiiii et e et e e e et e e et neeeeaeaeaeees 452
13.3.1. UNIqUe (SA:UNIQUE) ..evvneeiiiiieeeeii ettt ettt eeena e e e 452
13.3.2. Grouped Data Window (Std:groupwin)ccceuiveiiieeiiiieiiineeiineeeineeeaeeens 453
13.3.3. SiZ& (SUAISIZE) ..eeiiieiiii e 456
13.3.4. Last Event (Std:1asteVent)cc.viviiiiiiiie i 457
13.3.5. First Event (Std:firSteVENt)coouvniiiiiiiiei e 457
13.3.6. First Unique (Std:firStunique)coevviiiiiiiiii e 458

Xii

13.4. STALISHICS VIBWS ..euiieiiiiiii ettt e e e e e e e et e e et a e e e e an e eeeen 458
13.4.1. Univariate statistics (Stat:iUNi)ccceuuieriiieiiiiieiieec e e 459
13.4.2. Regression (StatiliNest)vveiiiiiieii e 460
13.4.3. Correlation (Stat:COITel)ociviiiiiii i 461
13.4.4. Weighted average (stat:weighted_avg)ccoooveviiiiiiiiiiiinieeieeeeinen 462

13.5. EXIENSION VIEW S ...iiiiiiiiieiiiiiiie ettt e et e e e 463
13.5.1. Sorted WIiNdOw VIEW (EXEISON)uuieieiriieieiii et 463
13.5.2. Ranked Window View (eXt:rank)ccccovieiiiieiiiieiiiieeiiieeeiee e e eaen 464
13.5.3. Time-Order View (eXt:tiMe_Order)c.oiveiiiiinieiiiiieeeei e 465

14. EPL Reference: Data FIOWoiiiiiiiiiiii e 467

I R 1o T [T o o P 467

T2, USAQgR vttt e 467
I R @ V=T V= 467
S Y] - V. QPSP 469

14.3. BUIlt-IN OPEIALOIS ...ceviiiiiiiii ettt et e e e s 474
14.3.1. BEACONSOUICEuieniiieineei e et e et e et et e e e e e e e e n e e et e eeeennas 474
14.3.2. EPSIAtEMENTSOUICEuiiiiiiiii ettt e e e aeans 476
14.3.3. EVENIBUSSINK ...uiiiiiiiiieiiiii ettt e e e e eaanns 477
14.3.4. EVENTBUSSOUICEoviiiiiiiieit ettt e et e e eans 478
I TR 11 R 479
e F T I To 1] PP 480
LA4.3.7. SEIECE ... 480

S L . U 482
14.4.1. Declaring a Data FIOWcccooiiiiiiiiii e e 482
14.4.2. Instantiating a Data FIOWooiiiiiiiiiii e 483
14.4.3. Executing a Data FIOWcooooiiiiiiiiii e 484
14.4.4. Instantiation OPLIONSeiiiuiiiieiiii e 485
TS = 1 A O T 1)Y= 485
14.4.6. Data Flow Punctuation with Markersccccooviiiiiiiiiiieii e, 486
14.4.7. Exception Handlingoiiiiiiiiiiiii e 487

LA.5. EXAMPIES ...ttt ettt et et a et e e e aae 487

14.6. Operator ImplemMeNntationcocouiiiiiii e e e 488
14.6.1. Sample Operator ACtiNG 8S SOUICEccccuuieiiiuiieiiiiiieeieiin e eenens 489
14.6.2. Sample TOKENIZEr OPEIALONccuueviieeiii e eeie e e e e 490
14.6.3. Sample Aggregator OPEratOruiieieiieeeii et 491

15, API REFEIENCE ..ouiiiiiii et e e 493

T o @Y= 1 PP 493

15.2. The Service Provider INtErfacecoovvveiiiiiiiiiiiieiien e 493

15.3. The Administrative INterfaceooiviiiiii i 495
15.3.1. Creating StatemMENTScccuiiiiiiiiii e e 495
15.3.2. Receiving Statement RESUILSccouuiiiiiiiiiiiiiii e 496
15.3.3. Setting a Subscriber ObJECtc.viiiiiii 497
15.3.4. AddING LISTENEISuuniiiiii it 502
15.3.5. USING ILErAtOrSvuiiiiiieiiiiei e e e e e e e e e e e e e e e ees 503

Xiii

Esper Reference

15.3.6. Managing StatemMeNtSiiiiiiiiiiiiiiiie e 505
15.3.7. Atomic Statement Managementccceuuieiiiiieiiieeiiirecie e 506
15.3.8. Runtime Configurationccuuiiiiiiiiiiiiii e e 506
15.4. The RUNtIME INTEITACEcievviiiiiii i 507
R I V=T o S Y= T [P 508
15.4.2. Receiving Unmatched EVENESccoooviiiiiiiiiiii e 509
15.5. On-Demand Fire-And-Forget Query EXECULIONcooeviviiiiiiiiiineeiiiineeeeiinne, 509
15.5.1. On-Demand Query Single EXECULIONc.ccvuveiiieeiiiiieiiee e 510
15.5.2. On-Demand Query Prepared Unparameterized Execution 511
15.5.3. On-Demand Query Prepared Parameterized Execution 511
15.6. Event and EVENT TYPE ..o 512
15.6.1. Event Type Metadatac..oeiuniiiiiiiiii e e e e 512
15.6.2. EVENE ODJECT .vvniiiiiii e 513
15.6.3. QUEINY EXAMPIE ...ivvniiii e 514
15.6.4. Pattern EXAmMPIEccoouuiiiiiii e 515
15.7. Engine Threading and CONCUITENCYccuuieiunieiiiieeiiieeiiieeeiee e e e eeeaieeeaneaees 517
15.7.1. Advanced TRreadingoveiiiiiiieiiiiiee e 519
15.7.2. Processing OFAEIcccuuiiiiiieiii e e e e e aaa s 521
15.8. Controlling TiMe-KEEPINGuuiiiiiiiiieiiii e eeee 522
15.8.1. Controlling Time Using Time Span EVentsccoocoiiiiiiiiiiiievineeie 524
15.8.2. Additional Time-Related APISc.viiiiiiiiiei e 525
15.9. TIME RESOIULION ..ouuiiiiiiiiiiee i e et e e e et e e e eatnneeeee 526
15.10. SErVICE ISOIAtION ...ciuiiiii e e e 526
15.00.1. OVEIVIEW ..ivviieiiiiiie ettt e e et e e et e et e e e et s e e et a e e e et e e e e et s 526
15.10.2. Example: Suspending a Statementccoiieiiiiiiiiiiiiin e 528
15.10.3. Example: Catching up a Statement from Historical Data 529
15.10.4. Isolation for INSErt-INtooveveiiiiiieii e 530
15.10.5. Isolation for Named Windows and Tablescccceeiviviiiiiieiiiiinnenenn, 530
15.10.6. Runtime ConSIderationsc.oviiuiieiiiieiii e e e 531
15.11. Exception Handlingcc.uoiiiiiiiiiiii e 531
15.12. Condition HANAIINGcouuiiiiiiii e 532
15.13. Statement Object MOElcoiiiiiiii i 532
15.13.1. Building an Object MOdelc.uiiiiiiiiiii e 533
15.13.2. BUIlding EXPreSSIONSouuiiiiiiiiiieiiii e e e e e e e et e e e e e e aae e 534
15.13.3. Building a Pattern Statementcoouiiiiiiiiiiiiiiiieee e 535
15.13.4. Building a Select Statementccoooviiiiiiiiiiii e 536
15.13.5. Building a Create-Variable and On-Set Statementcccccoeevevnnnnee. 536
15.13.6. Building Create-Window, On-Delete and On-Select Statements 537
15.14. Prepared Statement and Substitution Parametersccccooveviiiiniiiiiiinneeennnn, 538
15.15. Engine and Statement MetricsS REPOItiNGcccvvviiiieiiiiiiiiieee e 540
15.15.1. ENQINE MELIICS ..eevuiiiiiiii et 541
15.15.2. Statement MELIICSuuiiiiiiii e e e e e 542
15.16. Event Rendering to XML and JSONoiiiiiiiiiiiiiiii e 542
15.16.1. JSON Event Rendering Conventions and OptioNnsc.cccevevvvneennnn. 543

Xiv

15.16.2. XML Event Rendering Conventions and Optionsccccuviveeeeiinneees 544

ST A = 0T T o T I Y= o [P 544
15.18. Interrogating EPL ANNOLAtIONSuuiiiiiiiiiiiii e 545
15.19. Context Partition SeIeCtioncoouiiiiiiiiiiiiii e 546
BT B I = =T o] =P 547
15.20. Context Partition AAMINISIrationccoeeuiiiiiiiiiieiii e 548
15.21. Test and ASSErtion SUPPOITuuuiiiiiie ettt 549
15.21.1. EPAssertionUtIl SUMMAIYc.oooiiiiiiiiiiciii e 549
15.21.2. SupportUpdateListener SUMMANYcooeuiiieiiiiinieiiiiieeeeieeeeiieeees 550
15.21.3. USAQe EXAMPIE .ouiiiiiii i 550

16. CONFIQUIALION L.ttt e et e et e e et e e e eeba e eeees 553
16.1. Programmatic Configurationc.cc.oiiiiiiiiiiiicii e e e 553
16.2. Configuration via XML Filecooiiiiii e 554
16.3. XML Configuration Fileccouiiiiiiiiii e e e e e 554
16.4. Configuration ILEIMSoiiiiii e e 554
16.4.1. Events represented by Java ClasSSesccccvveiiiiiiiiiiiiiieeiiieecn e, 555
16.4.2. Events represented by java.util.LMapcccoovviiiiiiiiii 560
16.4.3. Events represented by Object[] (Object-array)ccooeevvveeviiieiinneninnnnns 562
16.4.4. Events represented by org.w3c.dom.Nodeccoeeiiiiiiiiiiiiiiiiineeeenn. 563
16.4.5. Events represented by Plug-in Event Representationsc......... 568
16.4.6. Class and package iMPOrtSccouuiiiiiiiiiiiiii e 569
16.4.7. Cache Settings for From-Clause Method Invocationscccc.ceuunee. 570
16.4.8. VaAlADIES ...conieiiii e 570
16.4.9. Relational Database ACCESSuuiiviiiiieeiiiiiiee e et e e e eeai e eeens 571
16.4.10. Engine Settings related to Concurrency and Threading 578
16.4.11. Engine Settings related to Event Metadataccccceeeeiiiiiiiniennns 582
16.4.12. Engine Settings related to View RESOUICESccoevviiiiiiiiiiiiiiiiineeeens 584
16.4.13. Engine Settings related to LOGQINGgoevvvieiiieiiiiieiin e 585
16.4.14. Engine Settings related to Variablesccoooiiiiii 588
16.4.15. Engine Settings related to Patternsccooveviviiiii i, 588
16.4.16. Engine Settings related t0 SCrPLSveviiiiiiiiiiiiiici e 589
16.4.17. Engine Settings related to Stream Selectioncccoceiveiiiiiiiiieeenns 589
16.4.18. Engine Settings related to TiMe SOUICEcccuvieiiiiiiiiiiiiieeeiiieeees 590
16.4.19. Engine Settings related to IMX MELICScovvveiiieiiiiieiii e 591
16.4.20. Engine Settings related to Metrics Reportingccooveveviiiiiiiiinnenenns 591
16.4.21. Engine Settings related to Language and Localeccooeevvneeennn. 593
16.4.22. Engine Settings related to Expression Evaluationcceeieeene. 594
16.4.23. Engine Settings related to Execution of Statementscccccceveeenn. 597
16.4.24. Engine Settings related to Exception Handlingccccoooeviiiieiinnnnnn. 601
16.4.25. Engine Settings related to Condition Handlingccc.ccoeviviienn. 601
16.4.26. ReVISION EVENE TYPE .ouuiiiiiiiieeeei et 602
16.4.27. Variant SIIEAIMuiiiiiiiiiee et e e e e et e eeeaie e e eene 604
16.5. TYPE NAIMES ..ottt ettt e e et et e eaneens 605
16.6. Runtime Configurationc..ciiiiiiiiiii e e e e e e e een 605

XV

Esper Reference

16.7. Logging Configurationooouuuiiiiiiie e 605
16.7.1. Log4j Logging Configurationcccceuieeiiiieiiiieiiie e e e e e 606

17. Development LIfECYCIE ..o 609
A A 11 T o 609
17,2, TOSHNG ettt ettt ettt et 609
A T 1= o 18 o o |1 o 609
17.3.1. @AUIt ANNOTALIONiviieii e 610
17.4. Packaging and Deploying OVEIVIEWveiuiiiiiiiiiiieeiii e e e e et e e 611
ST o I /T To [= 612
17.6. The Deployment Administrative INnterfacecccoovvviiiiiiiii i 613
17.6.1. Reading Module CONtENtcooiiiiiieiiiii e 614
17.6.2. Ordering Multiple ModUIESoiiiiiiiiic e 614
17.6.3. Deploying and UNdeployingcccuuiiiiiiiniiiiiieeeieeeee e 615
17.6.4. Listing DEPIOYMENLSciiiiiiii i e e e e e 615
17.6.5. State Transitioning @ Modulecciiiiiiiiiiii e 615
17.6.6. BESE PraCliCOS ...uvuiiiiiiiiieeiiii ettt et e e e e e e eees 616
17.7. J2EE Packaging and DeploymMENtcooeuuiiiiiiiiieiiii e 616
17.7.1. J2EE Deployment Considerationsccoevviiieiiieeiiiieiii e eeeieeeineeens 617
17.7.2. Servlet Context LISLENETo.uuiiieiiiiii e 617
17.8. Monitoring and JMX ... 619
18. Integration and EXTENSION ...ccoouuiiiiiiiiiee ettt e 621
B0 I @ Y= = PP 621
18.2. Virtual Data WINUOWoeuuiiiiiiii e e e e e e e et e e e e e e e eeens 622
18.2.1. HOW 10 USE ..eiiiiiiii et e e e 623
18.2.2. Implementing the FaCIONYoviiiiiiiiiiiiie e 625
18.2.3. Implementing the Virtual Data WINdOWcccciiiiiiiiiiinciineceeeieee 627
18.2.4. Implementing the LOOKUPccuuuiiiiiiieiii e 628
18.3. SiNgle-ROW FUNCHON .. .oouiii e 629
18.3.1. Implementing a Single-RowW FUNCLONcoouviiiiiiiiiiici e, 630
18.3.2. Configuring the Single-Row Function Nameccccooviiiiiiiiiiiieiinen, 630
18.3.3. Value CAChE ... 631
18.3.4. Single-Row Functions in Filter Predicate EXpressionscccoeeevvnnnnn. 631
18.3.5. Single-Row Functions Taking Events as Parametersccccceeveeennnn. 632
18.3.6. Receiving a Context ODJECEciiiiiiiiiii e 633
18.3.7. Exception HandliNgoooieiiiiiiiiiecee e 633
18.4. Derived-value and Data WIiNdOW VIEWccocveuiiiiiiiiiiiiiiiiinieeiin e 633
18.4.1. Implementing @ VIeW FaCIOIYoiiiiiiiiiiiii e 634
18.4.2. Implementing @ VIBWiiiiniiiii i e e e 636
18.4.3. VIEW CONTACT ..iieniiii et e e e e e e eanaeees 636
18.4.4. Configuring View Namespace and Namecccceceiveiiiieeiinneiinneeineennn. 637
18.4.5. Requirement for Data WINAdOW VIEWScccuuiiieiiiiiniiiiiiiieecci e 638
18.4.6. Requirement for Derived-Value VIEeWSccooveiiiiiiiiiiin e 638
18.4.7. Requirement for Grouped VIEWSocoeiiiiiiiiiiinieiiiiii e 638
18.5. Aggregation FUNCHONcouiiiii e e e e e e e e e ees 639

XVi

18.5.1. Aggregation Single-Function Developmentc.ccoocoviiiieiiiinneiiiinnnen. 640

18.5.2. Aggregation Multi-Function Developmentc.coooiiiiiiiiiiinecs 646
18.6. Pattern GUAIMiiiiieii e e e e e e e e e e 653
18.6.1. Implementing a Guard Factorycccoeevuiiiiiiiiiiii e, 654
18.6.2. Implementing @ GuAard CIaSScccuuuiiiiiiiiiiiiiiiiie e 655
18.6.3. Configuring Guard Namespace and Namecccooeevieeiiiieiinneeinneennn. 656
18.7. PAtern ODSEIVEL ...oeuiiiiiieie et e e anns 656
18.7.1. Implementing an ObSErver FACIOrYcccoveiiiieeiiieiiieeii e e e 657
18.7.2. Implementing an ObSErver Classcooveiiiiiiieiiiiiie e 658
18.7.3. Configuring Observer Namespace and Namecccoeevviveviineeinneennnn. 659
18.8. Event Type And EVent ODJECEc.uuiiiiiiii e 660
18.8.1. HOW It WOTKS ...t e s 660

IR TS (= o1 661
18.8.3. URI-based ReESOIULIONccvvuuiiiiiiiiiiieciiis e 661
18.8.4. EXAMPIE eeiiiii e 662

S S Y] g o) AT U] o o 1 Y AN 669
S I @ Y= V1= SR 669
T Y 1 - PP 669
1.3, EXAMPIES .ttt ettt e e e e e e e aae 670
19.4. Built-In EPL Script AttribDULESiiviiiii e e 671
19.5. Performance NOESc..iiiiiiiiiii et e e e e et e e e e e eanaees 671
19.6. AAAItIONA] NOLES ...cevieiiiiiii et e e e e e e et e e e e aen s 672
20. Examples, Tutorials, Case StUAIESocvuuiiiiiiiiiii e 673
20.1. EXAMPIES OVEIVIEW ...covuiiiiiiiiiiei et e e e e e e e e e e e e e e e e aaaas 673
20.2. RUNNING the EXAMPIESciiiiiiiiiii e 675
20.3. AULOID RFID REAUET ...ccuuiiiiiiiiiieeiii ettt ettt e e et e e e eat e e e eaenneeees 676
20.4. Runtime ConfigUurationcooeuiiiiiii e 676
20.5. IMS Server Shell and ClENtcooouiieiiiie e 676
20.5.1. OVEIVIEW .uuiiiiieeie ettt et e e et e e e e e e et e e et e e et s e e et e e eanaaeanaes 676
20.5.2. IMS Messages as EVENLSooiiiiiiiiiiii e 677
20.5.3. JMX for Remote Dynamic Statement Managementccccoveeeevnnneees 678
20.6. Market Data FEed MONITOTccuuiiiiiiii e eaeens 678
20.6.1. INPUE EVENES ...ouiiiiiiii ettt 678
20.6.2. Computing Rates Per FEEdcoocuuiiiiiiiiiii e 678
20.6.3. Detecting @ Fall-Offoiiiiiie e 679
20.6.4. EVENE QENEIALON ..iviiviiiiiiii i aa 679
20.7. OHLC PlUG-IN VIBW ...ttt e e e 679
20.8. Transaction 3-Event Challengeccooouiiiiiiii i 680
P I N L= YT o | £ 680
20.8.2. COMDINEA BVENEiiiiiieei e e e e e 680
20.8.3. Real time summary datacceuuuieiiiiiiiiiii e 681
20.8.4. FINd Problemsc..oiiiiiiiiii e 681
20.8.5. EVENE QENEIALONcitiiiiiiieiee et 681
20.9. Self-Service TerMINEAIuiiiiiiiiei e 682

XVii

Esper Reference

20.9. 0. BEVENES et 682
20.9.2. Detecting Customer Check-in ISSUESc.ccuviviiiiiiiiieiiie e 682
20.9.3. Absence Of Status EVENLScoviuiiiiieiiiicc e 683
20.9.4. Activity SUMMArY Dataccoeiiiiiiiiiici e e 683
20.9.5. Sample Application for J2EE Application Servercccccevevivineeiinnnnnn. 683
20.10. Assets Moving Across Zones - An RFID Examplecccooveiiiiiiiiinicieecennn, 685
O 0 I TS (0Tt I o = PPN 686
20.12. MAtCAMAKETiiiiii e 686
20.13. Named WINAOW QUETYiiiiiiieeiii ettt e 687
20.14. Sample Virtual Data WINAOWcccooiiiiiiiiiiieci e e e e e 687
20.15. Sample CyCle DELECHIONcceutiieiiii e 687
20.16. QuAlity Of SEIVICEciiiiiiii e e 687
20.17. Trivia GEEKS ClUD ...uiiiiie e 688
21, PeITOIMANCE .uniiiiiii ettt ettt e e e et e e et e e et e et e e ea e eeaaaes 689
21.1. PerformancCe RESUILScouuiiiiiiiiii e e e 689
21.2. PerformManCe TIPS ..vvuuiiiiniiiiiieei e e et e e e e e et e e e e e e e e e et e e et e e et e e et eeaaeeaens 689
21.2.1. Understand how to tune your Java virtual machinecc.c...cvenee. 689
21.2.2. Input and Output BOtHENECKSccovviiiiiiiiieei e 690
21.2.3. TREAAING ...ueieiii ettt e 690
21.2.4. Select the underlying event rather than individual fields 695
21.2.5. Prefer stream-level filtering over where-clause filteringcc.......... 695
21.2.6. Reduce the use of arithmetic in EXPresSionsccovevviveeiiieiiiieeeiieeeennn, 697
21.2.7. Remove Unneccessary CONSIIUCESovvviiieiiiiriieiineeiieeeieeeneeenen 697
21.2.8. End Pattern SUb-EXPreSSiONScc.oviiiiiiiiiiiiii e 698
21.2.9. Consider using EventPropertyGetter for fast access to event properties... 699
21.2.10. Consider casting the underlying eventcccccoiviiiiiiiiin i 700
21.2.11. Turn off l0gging and auditoooiiiiiiiiiiiii e 700
21.2.12. Disable VIEW Sharingccoeiiiiiiiiii e 700
21.2.13. Tune or disable delivery order guaranteesccccoevveeiiiinieeeiineeennns 701
21.2.14. Use a Subscriber Object to Receive EVentscccooevviiiiiiieiiineninens 701
21.2.15. Consider Data FIOWScc.uiiiiiiiiiiie e e 701
21.2.16. High-Arrival-Rate Streams and Single Statementsccccocevveeeenn... 702
21.2.17. Subqueries versus Joins And Where-clause And Data Windows 703
21.2.18. Patterns and Pattern Sub-Expression INStancesccccoccevevvnneennnn. 704
21.2.19. Pattern Sub-Expression Instance Versus Data Window Use 705
21.2.20. The Keep-All Data WINAOWcccouiiiiiiiiiieci e 706
21.2.21. Statement Design for Reduced Memory Consumption - Diagnosing
(@ 101117/ =10 0 o] Y/ =1 1 o] S 706
21.2.22. Performance, JVM, OS and hardwarecoocevveiiiieiieeiieeieeeeinn, 707
21.2.23. Consider using HINtSoiiiiiiiiiiic e 708
21.2.24. Optimizing Stream Filter EXPressionsocooivieiiiiiniiiiiiiineceiieeees 708
21.2.25. Statement and Engine Metric Reportingc.cccovevviiiiiiiieiiiieciineennnnn, 709
21.2.26. Expression Evaluation Order and Early EXitc.ocoeviiiiiiiiinniiininnnnn. 709
21.2.27. Large Number of Threadscccoiviiiiiiiiiciie e 710

Xviii

21.2.28. Filter Evaluation TUNINGcoouuuiiiiiiiieeiii et eei e 710

21.2.29. Context Partition Related Informationcc.ocoviiiiiiiiiiiiiiinn e, 710
21.2.30. Prefer Constant Variables over Non-Constant Variables 710
21.2.31. Prefer Object-array EVENLScocoviiiiiiiiiiiecie e eies 711
21.2.32. Composite or CompouNd KEYScciiuiiiiiiiiiiieiiiiiineeeei e 711
21.2.33. Notes on QuEery Planningc.ccuiieiiiieiiiiieiii e e e e e eaaeens 712
21.2.34. Query Planning Expression Analysis HINtScccooviviiiiiniiiiiineecennnn. 713
21.2.35. Query Planning IndexX HINSccciiiiiiiiiii e 715
21.2.36. Measuring Throughputccoiiiiiiiii e 716
21.2.37. Do not create the same EPL Statement X timescccoovvvvvviiereennnn. 716
21.2.38. Comparing Single-Threaded and Multi-Threaded Performance 716
21.2.39. Incremental Versus Recomputed Aggregation for Named Window
BV NS e e 717
21.2.40. When Does Memory Get Releasedcccoeeeeiiiiiiiiiiiii i 718
21.2.41. Measure throughput of non-matches as well as matches 719
21.3. Using the performance Kitoooiiiiiiiiii e 719
21.3.1. How to use the performance Kitccoooiiiiiiiiiiiii e, 719
21.3.2. How we use the performance Kitccooeviiiiiiiiiiiiii e, 723
A S U] (=] =] o] == 725
22.1. REEIENCE LIST ..uiiiiiiiiiiiii e e 725
A. Output Reference and SAmPIES ... 727
A.L. Introduction and Sample Datacccceuiiiiiiieiii e 727
A.2. Output for Un-aggregated and Un-grouped QUETIEScccuviieiiiiinieiiiiineeeiiinnnn, 729
A.2.1. No Output Rate LImitingcocuveiiiiiiiiiieii e e e e 729
A.2.2. Output Rate Limiting - Defaultooiiiiiiiii e 730
A.2.3. Output Rate Limiting - LAStc.iiiiiiiiii e 732
A.2.4. Output Rate Limiting - FirStoiiiiiiiiiiii e 733
A.2.5. Output Rate Limiting - SNapshotccoooiiiiiiiiii e 734
A.3. Output for Fully-aggregated and Un-grouped QUENIESccevvvvvivniviiiiiiiiieiins 736
A.3.1. No Output Rate LImitingcocuveiiiiiiiiieii e e e 736
A.3.2. Output Rate Limiting - Defaultcooiiiiiiiiii e 738
A.3.3. Output Rate Limiting - LAStc..oviiiiiiiii e 739
A.3.4. Output Rate Limiting - FirStoviiiiiiiiii e 740
A.3.5. Output Rate Limiting - SNapshotccoociiiiiiii e 741
A.4. Output for Aggregated and Un-grouped QUENIESoeeiiiinieiiiiiieeeiii e 743
A.4.1. No Output Rate LImitingcoeuieiiiiiiiiicii e 743
A.4.2. Output Rate Limiting - Defaultccooiiiiiiiii e 744
A.4.3. Output Rate Limiting - LAStovviiiiiiii e e 745
A.4.4. Output Rate Limiting - FirStiiiiiiiiiiiii e 747
A.4.5. Output Rate Limiting - SNapshotccoooiiiiiiiiii e 748
A.5. Output for Fully-aggregated and Grouped QUENEScc.vevvniiiiiiieiiniiiiiieeieeeann 750
A.5.1. No Output Rate LImitingcoeuveiiiiiiiiieii e e e e 750
A.5.2. Output Rate Limiting - Defaultcccooiiiiiiiiii e 751
A.5.3. Output Rate Limiting - All ... 753

XiX

Esper Reference

A.5.4. Output Rate Limiting - LASTuviiiiiiiiiiii e 754
A.5.5. Output Rate Limiting - Firstcccoiiiiiiiiiii e 756
A.5.6. Output Rate Limiting - SNapshotccciiiiiiiiii e, 757

A.6. Output for Aggregated and Grouped QUETIESveviieiiiiieiiiieeiieecin e eee s 758
A.6.1. No Output Rate LIMItiNgccuuieiiiiiiieiiiiie e 759
A.6.2. Output Rate Limiting - Defaultccoooiiiiii e 760
A.6.3. Output Rate Limiting - All ... 761
A.6.4. Output Rate Limiting - LAStc.iiiiiiiiii e 763
A.6.5. Output Rate Limiting - FirStoviiiiiiiiiiii e 764
A.6.6. Output Rate Limiting - SNapshotccoocviiiiiii e 766

A.7. Output for Fully-Aggregated, Grouped Queries With Rollupccceeveeiinnnnnn. 768
A.7.1. No Output Rate LImitingcceuveiiiiiiiiiiciii e e 768
A.7.2. Output Rate Limiting - Defaultcooviiiiiiiii e 769
A.7.3. Output Rate Limiting - All ... 771
A.7.4. Output Rate Limiting - LASTuviiiiiiiiiiii e 773
A.7.5. Output Rate Limiting - Firstcccoiiiiiiiiiii e 774
A.7.6. Output Rate Limiting - SNapshot ..o, 776

B. RESEIVEA KEYWOITSuiiiiiiiii i e e e e e e e e e e e e e e e et e e et e e eaaeeeeas 779

XX

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of
custom applications. Typically these applications must obtain the data to analyze, filter data,
derive information and then indicate this information through some form of presentation or
communication. Data may arrive with high frequency requiring high throughput processing. And
applications may need to be flexible and react to changes in requirements while the data is
processed. Esper is an event stream processor that aims to enable a short development cycle
from inception to production for these types of applications.

This document is a resource for software developers who develop event driven applications. It also
contains information that is useful for business analysts and system architects who are evaluating
Esper.

It is assumed that the reader is familiar with the Java programming language.

This document is relevant in all phases of your software development project: from design to
deployment and support.

If you are new to Esper, please follow these steps:
1. Read the tutorials, case studies and solution patterns available on the Esper public web site
at http://esper.codehaus. org

2. Read Section 1.1, “Introduction to CEP and event series analysis” if you are new to CEP and
ESP (complex event processing, event stream processing)

3. Read Chapter 2, Event Representations that explains the different ways of representing events
to Esper

4. Read Chapter 3, Processing Model to gain insight into EPL continuous query results
5. Read Section 5.1, “EPL Introduction” for an introduction to event stream processing via EPL
6. Read Section 7.1, “Event Pattern Overview” for an overview over event patterns

7. Read Section 8.1, “Overview” for an overview over event patterns using the match recognize
syntax.

8. Then glance over the examples Section 20.1, “Examples Overview”

9. Finally to test drive Esper performance, read Chapter 21, Performance

XXi

XXi

Chapter 1.

Chapter 1. Technology Overview

1.1. Introduction to CEP and event series analysis

The Esper engine has been developed to address the requirements of applications that analyze
and react to events. Some typical examples of applications are:

« Business process management and automation (process monitoring, BAM, reporting
exceptions)

» Finance (algorithmic trading, fraud detection, risk management)

* Network and application monitoring (intrusion detection, SLA monitoring)

» Sensor network applications (RFID reading, scheduling and control of fabrication lines, air
traffic)

What these applications have in common is the requirement to process events (or messages) in
real-time or near real-time. This is sometimes referred to as complex event processing (CEP) and
event series analysis. Key considerations for these types of applications are throughput, latency
and the complexity of the logic required.

 High throughput - applications that process large volumes of messages (between 1,000 to 100k
messages per second)

» Low latency - applications that react in real-time to conditions that occur (from a few milliseconds
to a few seconds)

« Complex computations - applications that detect patterns among events (event correlation),
filter events, aggregate time or length windows of events, join event series, trigger based on
absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

1.2. CEP and relational databases

Relational databases and the standard query language (SQL) are designed for applications in
which most data is fairly static and complex queries are less frequent. Also, most databases store
all data on disks (except for in-memory databases) and are therefore optimized for disk access.

To retrieve data from a database an application must issue a query. If an application need the
data 10 times per second it must fire the query 10 times per second. This does not scale well to
hundreds or thousands of queries per second.

Database triggers can be used to fire in response to database update events. However database
triggers tend to be slow and often cannot easily perform complex condition checking and
implement logic to react.

In-memory databases may be better suited to CEP applications than traditional relational database
as they generally have good query performance. Yet they are not optimized to provide immediate,
real-time query results required for CEP and event series analysis.

Chapter 1. Technology Overview

1.3. The Esper engine for CEP

The Esper engine works a bit like a database turned upside-down. Instead of storing the data and
running queries against stored data, the Esper engine allows applications to store queries and run
the data through. Response from the Esper engine is real-time when conditions occur that match
gueries. The execution model is thus continuous rather than only when a query is submitted.

Esper provides two principal methods or mechanisms to process events: event patterns and event
stream queries.

Esper offers an event pattern language to specify expression-based event pattern matching.
Underlying the pattern matching engine is a state machine implementation. This method of event
processing matches expected sequences of presence or absence of events or combinations of
events. It includes time-based correlation of events.

Esper also offers event series queries that address the event series analysis requirements of
CEP applications. Event series queries provide the windows, aggregation, joining and analysis
functions for use with streams of events. These queries are following the EPL syntax. EPL has
been designed for similarity with the SQL query language but differs from SQL in its use of views
rather than tables. Views represent the different operations needed to structure data in an event
series and to derive data from an event series.

Esper provides these two methods as alternatives through the same API.

1.4. Required 3rd Party Libraries

Esper requires the following 3rd-party libraries at runtime:

« ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EPL
syntax. Credit goes to Terence Parr at http://www.antlr.org. The ANTLR license is in the lib
directory. The library is required for compile-time only.

« CGLIB is the code generation library for fast method calls. This open source software is under
the Apache license. The Apache 2.0 license is in the lib directory.

« Apache commons logging is a logging API that works together with LOG4J and other logging
APIs. While Apache commons logging is required, the LOG4J log component is not required and
can be replaced with SLF4J or other loggers. This open source software is under the Apache
license. The Apache 2.0 license is in the lib directory.

Esper requires the following 3rd-party libraries at compile-time and for running the test suite:

» JUnitis a great unit testing framework. Its license has also been placed in the lib directory. The
library is required for build-time only.

* MySQL connector library is used for testing SQL integration and is required for running the
automated test suite.

Chapter 2.

Chapter 2. Event Representations

This section outlines the different means to model and represent events.

Esper uses the term event type to describe the type information available for an event
representation.

Your application may configure predefined event types at startup time or dynamically add event
types at runtime via APl or EPL syntax. See Section 16.4, “Configuration Items” for startup-time
configuration and Section 15.3.8, “Runtime Configuration” for the runtime configuration API.

The EPL create schema syntax allows declaring an event type at runtime using EPL, see
Section 5.15, “Declaring an Event Type: Create Schema”.

In Section 15.6, “Event and Event Type” we explain how an event type becomes visible in EPL
statements and output events delivered by the engine.

2.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. Event
properties capture the state information for an event.

In Esper, an event can be represented by any of the following underlying Java objects:

Table 2.1. Event Underlying Java Objects

Java Class Description

j ava. | ang. Qbj ect Any Java POJO (plain-old java object) with getter
methods following JavaBean conventions; Legacy
Java classes not following JavaBean conventions can
also serve as events .

java.util.Mp Map events are implementations of the
java. util . Map interface where each map entry is a
propery value.

Qbj ect[] (array of object) Object-array events are arrays of objects (type
Obj ect[]) where each array element is a property
value.

org. w3c. dom Node XML document object model (DOM).

or g. apache. axi om om OvDocument XML - Streaming API for XML (StAX) - Apache Axiom

or OVEl enent (provided by EsperlO package).

Application classes Plug-in event representation via the extension API.

Esper provides multiple choices for representing an event. There is no absolute need for you to
create new Java classes to represent an event.

Chapter 2. Event Representations

Event representations have the following in common:

« All event representations support nested, indexed and mapped properties (aka. property
expression), as explained in more detail below. There is no limitation to the nesting level.

« All event representations provide event type metadata. This includes type metadata for nested
properties.

« All event representations allow transposing the event itself and parts of all of its property graph
into new events. The term transposing refers to selecting the event itself or event properties that
are themselves nestable property graphs, and then querying the event's properties or nested
property graphs in further statements. The Apache Axiom event representation is an exception
and does not currently allow transposing event properties but does allow transposing the event
itself.

» The Java object, Map and Object-array representations allow supertypes.

The API behavior for all event representations is the same, with minor exceptions noted in this
chapter.

The benefits of multiple event representations are:

» For applications that already have events in one of the supported representations, there is no
need to transform events into a Java object before processing.

« Event representations are exchangeable, reducing or eliminating the need to change
statements when the event representation changes.

« Event representations are interoperable, allowing all event representations to interoperate in
same or different statements.

» The choice makes its possible to consciously trade-off performance, ease-of-use, the ability to
evolve and effort needed to import or externalize events and use existing event type metadata.

2.2. Event Properties

Event properties capture the state information for an event. Event properties be simple as well
as indexed, mapped and nested event properties. The table below outlines the different types of
properties and their syntax in an event expression. This syntax allows statements to query deep
JavaBean objects graphs, XML structures and Map events.

Table 2.2. Types of Event Properties

Type Description Syntax Example

Simple A property that has a single value
that may be retrieved.

nane sensorld

Indexed An indexed property stores an
ordered collection of objects (all
of the same type) that can be
individually accessed by an integer-
valued, non-negative index (or
subscript).

nane[i ndex] sensor [0]

Escape Characters

Type Description Syntax Example

Mapped A mapped property stores a keyed
collection of objects (all of the same
type).
Nested A nested property is a property that
lives within another property of an
event.

nane(' key') sensor (' light")

nane. nest ednanme sensor . val ue

Combinations are also possible. For example, a valid combination could be
per son. address(' home').street[0].

You may use any expression as a mapped property key or indexed property index by putting the
expression within parenthesis after the mapped or index property name. Please find examples
below.

2.2.1. Escape Characters

If your application usesj ava. util . Map, Qoj ect [] (object-array) or XML to represent events, then
event property names may themselves contain the dot (.") character. The backslash ('\') character
can be used to escape dot characters in property names, allowing a property name to contain
dot characters.

For example, the EPL as shown below expects a property by name part 1. par t 2 to exist on event
type MyEvent :

sel ect partl\.part2 from M/Event

Sometimes your event properties may overlap with EPL language keywords or contain spaces or
other special characters. In this case you may use the backwards apostrophe * (aka. back tick)
character to escape the property name.

The next example assumes a Quot e event that has a property by name or der, while or der is
also a reserved keyword:

select “order’, price as “price.for.goods’ from Quote

When escaping mapped or indexed properties, make sure the back tick character appears outside
of the map key or index.

The next EPL selects event properties that have names that contain spaces (e.g. candi date
book), have the tick special character (e.g. chil dren' s books), are an indexed property (e.g.
children's books[0]) and a mapped property that has a reserved keyword as part of the
property name (e.g. book sel ect('isbn')):

Chapter 2. Event Representations

sel ect “candidate book®™ , “children's books [0], “book select ('"isbn') from
MyEvent Type

2.2.2. Expression as Key or Index Value

The key or index expression must be placed in parenthesis. When using an expression as key for
a mapped property, the expression must return a St r i ng-typed value. When using an expression
as index for an indexed property, the expression must return an i nt -typed value.

This example below uses Java classes to illustrate;The same principles apply to all event
representations.

Assume a class declares these properties (getters not shown for brevity):

public class MyEvent Type {
String nmyMapKey;
i nt nmyl ndexVal ue;
int myl nner | ndexVal ue;
Map<String, |nnerType> innerTypesMap; // mapped property
I nner Type[] innerTypesArray; // indexed property

public class InnerType {
String nane;
int[] ids;

A sample EPL statement demonstrating expressions as map keys or indexes is:

sel ect innerTypesMap(' sonmekey'), // returns map value for 'sonekey'

i nner TypesMap(myMapKey) , /1 returns map value for nyMapKey val ue (an
expr essi on)
i nner TypesArray[1], /'l returns array value at index 1

i nner TypesArray(nyl ndexVal ue) /1 returns array value at index nylndexVal ue
(an expression)
from MyEvent Type

The dot-operator can be used to access methods on the value objects returned by the mapped or
indexed properties. By using the dot-operator the syntax follows the chained method invocation
described at Section 9.6, “Dot Operator”.

A sample EPL statement demonstrating the dot-operator as well as expressions as map keys or
indexes is:

Dynamic Event Properties

sel ect inner TypesMap(' somekey').ids[1],
i nner TypesMap(nyMapKey) . get | ds(myl ndexVal ue),
i nner TypesArray[1].ids[2],
i nner TypesArray(nyl ndexVal ue). getl ds(myl nner | ndexVal ue)
from MyEvent Type

Please note the following limitations:

» The square brackets-syntax for indexed properties does now allow expressions and requires
a constant index value.

* When using the dot-operator with mapped or indexed properties that have expressions as map
keys or indexes you must follow the chained method invocation syntax.

2.3. Dynamic Event Properties

Dynamic (unchecked) properties are event properties that need not be known at statement
compilation time. Such properties are resolved during runtime: they provide duck typing
functionality.

The idea behind dynamic properties is that for a given underlying event representation we don't
always know all properties in advance. An underlying event may have additional properties that
are not known at statement compilation time, that we want to query on. The concept is especially
useful for events that represent rich, object-oriented domain models.

The syntax of dynamic properties consists of the property name and a question mark. Indexed,
mapped and nested properties can also be dynamic properties:

Table 2.3. Types of Event Properties

Type Syntax

Dynamic Simple name?

Dynamic Indexed name[i ndex] ?

Dynamic Mapped ST (4)

Dynamic Nested nanme?. nest edPr opert yNane

Dynamic properties always return the j ava. | ang. Qbj ect type. Also, dynamic properties return a
nul | value if the dynamic property does not exist on events processed at runtime.

As an example, consider an OrderEvent event that provides an "item" property. The "item" property
is of type Obj ect and holds a reference to an instance of either a Service or Product.

Chapter 2. Event Representations

Assume that both Service and Product classes provide a property named "price". Via a dynamic
property we can specify a query that obtains the price property from either object (Service or
Product):

select itemprice? from O der Event

As a second example, assume that the Service class contains a "serviceName" property that
the Product class does not possess. The following query returns the value of the "serviceName"
property for Service objects. It returns a nul | -value for Product objects that do not have the
"serviceName" property:

sel ect item serviceNane? from O der Event

Consider the case where OrderEvent has multiple implementation classes, some of which have
a "timestamp" property. The next query returns the timestamp property of those implementations
of the OrderEvent interface that feature the property:

sel ect tinestanp? from O der Event

The query as above returns a single column named "timestamp?" of type Obj ect .

When dynamic properties are nested, then all properties under the dynamic property are also
considered dynamic properties. In the below example the query asks for the "direction" property
of the object returned by the "detail" dynamic property:

sel ect detail ?.direction from O der Event

Above is equivalent to:

sel ect detail?.direction? from O der Event

The functions that are often useful in conjunction with dynamic properties are:

e The cast function casts the value of a dynamic property (or the value of an expression) to a
given type.

» The exi st s function checks whether a dynamic property exists. It returns t r ue if the event has
a property of that name, or false if the property does not exist on that event.

Fragment and Fragment Type

e Theinstanceof function checks whether the value of a dynamic property (or the value of an
expression) is of any of the given types.

e The typeof function returns the string type name of a dynamic property.

Dynamic event properties work with all event representations outlined next: Java objects, Map-
based, Object-array-based and XML DOM-based events.

2.4. Fragment and Fragment Type

Sometimes an event can have properties that are itself events. Esper uses the term fragment and
fragment type for such event pieces. The best example is a pattern that matches two or more
events and the output event contains the matching events as fragments. In other words, output
events can be a composite event that consists of further events, the fragments.

Fragments have the same metadata available as their enclosing composite events. The metadata
for enclosing composite events contains information about which properties are fragments, or
have a property value that can be represented as a fragment and therefore as an event itself.

Fragments and type metadata can allow your application to navigate composite events without
the need for using the Java reflection API and reducing the coupling to the underlying event
representation. The APl is further described in Section 15.6, “Event and Event Type”.

2.5. Plain-Old Java Object Events

Plain-old Java object events are object instances that expose event properties through
JavaBeans-style getter methods. Events classes or interfaces do not have to be fully compliant to
the JavaBean specification; however for the Esper engine to obtain event properties, the required
JavaBean getter methods must be present or an accessor-style and accessor-methods may be
defined via configuration.

Esper supports JavaBeans-style event classes that extend a superclass or implement one or more
interfaces. Also, Esper event pattern and EPL statements can refer to Java interface classes and
abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state
change or action that occurred in the past, the relevant event properties should not be changeable.
However this is not a hard requirement and the Esper engine accepts events that are mutable
as well.

The hashCode and equal s methods do not need to be implemented. The implementation of these
methods by a Java event class does not affect the behavior of the engine in any way.

Please see Chapter 16, Configuration on options for naming event types represented by Java
object event classes. Java classes that do not follow JavaBean conventions, such as legacy
Java classes that expose public fields, or methods not following naming conventions, require
additional configuration. Via configuration it is also possible to control case sensitivity in property
name resolution. The relevant section in the chapter on configuration is Section 16.4.1.3, “Non-
JavaBean and Legacy Java Event Classes”.

Chapter 2. Event Representations

2.5.1. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans
specification, and some of which are uniquely supported by Esper:

« Simple properties have a single value that may be retrieved. The underlying property type might
be a Java language primitive (such as int, a simple object (such as a java.lang.String), or a
more complex object whose class is defined either by the Java language, by the application, or
by a class library included with the application.

» Indexed - An indexed property stores an ordered collection of objects (all of the same type) that
can be individually accessed by an integer-valued, non-negative index (or subscript).

* Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that
accepts a String-valued key a mapped property.

* Nested - A nested property is a property that lives within another Java object which itself is a
property of an event.

Assume there is an NewEnpl oyeeEvent event class as shown below. The mapped and indexed
properties in this example return Java objects but could also return Java language primitive types
(such as int or String). The Addr ess object and Enpl oyee can themselves have properties that
are nested within them, such as a street name in the Addr ess object or a name of the employee
in the Enpl oyee object.

public class NewEnpl oyeeEvent {
public String getFirstNane();
public Address get Address(String type);
publ i ¢ Enpl oyee get Subordi nate(int index);
publ i c Enpl oyee[] get Al |l Subordi nates();

}

Simple event properties require a getter-method that returns the property value. In this example,
the get Fi r st Nane getter method returns the fi r st Nane event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes
an integer-type key value and returns the property value, such as the get Subor di nat e method,
or a method that returns an array-type, or a class that implements | t er abl e. An example is the
get Al | Subor di nat es getter method, which returns an array of Employee but could also return
an lterabl e. In an EPL or event pattern statement, indexed properties are accessed via the
property[index] syntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns
the property value, such as the get Address method. In an EPL or event pattern statement,
mapped properties are accessed via the property(' key') syntax.

Nested event properties require a getter-method that returns the nesting object. The get Addr ess
and get Subor di nat e methods are mapped and indexed properties that return a nesting

10

Property Names

object. In an EPL or event pattern statement, nested properties are accessed via the
property. nest edProperty syntax.

All event pattern and EPL statements allow the use of indexed, mapped and nested properties (or
a combination of these) anywhere where one or more event property names are expected. The
below example shows different combinations of indexed, mapped and nested properties in filters
of event pattern expressions (each line is a separate EPL statement):

every NewEnpl oyeeEvent (first Nane=' nyNane')

every NewEnpl oyeeEvent (address(' hone'). street Name=' Park Avenue')

every NewEnpl oyeeEvent (subordi nat e[0] . name="' anot her Nane')

every NewEnpl oyeeEvent (al | Subor di nat es[1] . nane='t hat Nane')

every NewEnpl oyeeEvent (subor di nat e[0] . addr ess(' home'). street Nane=" Wt er
Street')

Similarly, the syntax can be used in EPL statements in all places where an event property name
is expected, such as in select lists, where-clauses or join criteria.

sel ect firstName, address('work'), subordinate[0].nanme, subordinate[1l].name
from NewkEnpl oyeeEvent
where address('work').streetName = ' Park Ave'

2.5.2. Property Names

Property names follows Java standards: the class j ava. beans. I ntrospector and method
get Beanl nf o returns the property names as derived from the name of getter methods. In addition,
Esper configuration provides a flag to turn off case-sensitive property names. A sample list of
getter methods and property names is:

Table 2.4. JavaBeans-style Getter Methods and Property Names

Method Property Name Example

get Price() price sel ect price from MyEvent
get NAME() NAME sel ect NAME from MyEvent

get I tenmDesc() itemDesc sel ect itenDesc from MyEvent
get) q sel ect g from MyEvent

get QN() QN

sel ect QN from MyEvent

11

Chapter 2. Event Representations

Method Property Name Example

getan() an sel ect gn from MyEvent

gets() S sel ect s from M/Event

2.5.3. Parameterized Types

When your getter methods or accessor fields return a parameterized type, for example
I t er abl e<MyEvent Dat a> for an indexed property or Map<St ri ng, MyEvent Dat a> for a mapped
property, then property expressions may refer to the properties available through the class that
is the type parameter.

An example event that has properties that are parameterized types is:

public class NeweEnpl oyeeEvent {
public String getName();
public Iterabl e<Educati onHi st ory> get Educati on();
public Map<String, Address> getAddresses();

A sample of valid property expressions for this event is shown next:

sel ect name, education, education[0].date, addresses('home').street
from NewEnpl oyeeEvent

2.5.4. Setter Methods for Indexed and Mapped Properties

An EPL statement may update indexed or mapped properties of an event, provided the event
class exposes the required setter method.

The setter method for indexed properties must be named set PropertyName and must take two
parameters: the i nt -type index and the Obj ect type new value.

The setter method for mapped properties must be named set PropertyName and must take two
parameters: the St ri ng-type map key and the bj ect type new map value.

The following is an example event that features a setter method for the pr ops mapped property
and for the ar r ay indexed property:

public class MyEvent {
private Map props = new HashMap();
private Qobject[] array = new Object[10];

12

Known Limitations

public void setProps(String nane, Object value) {
props. put (nane, val ue);

public void setArray(int index, Object value) {
array[index] = val ue;

}

/1 ... also provide regular JavaBean getters and setters for all properties
This sample statement updates mapped and indexed property values:

update i stream MyEvent Stream set props(' key') = "abc', array[2] = 100

2.5.5. Known Limitations

Esper employs byte code generation for fast access to event properties. When byte code
generation is unsuccessful, the engine logs a warning and uses Java reflection to obtain property
values instead.

A known limitation is that when an interface has an attribute of a particular type and the actual
event bean class returns a subclass of that attribute, the engine logs a warning and uses reflection
for that property.

2.6. java. util.vmp EVENts

2.6.1. Overview

Events can also be represented by objects that implement the j ava. uti | . Map interface. Event
properties of Map events are the values in the map accessible through the get method exposed
by the j ava. uti | . Map interface.

Similar to the Object-array event type, the Map event type takes part in the comprehensive type
system that can eliminate the need to use Java classes as event types, thereby making it easier
to change types at runtime or generate type information from another source.

A given Map event type can have one or more supertypes that must also be Map event types.
All properties available on any of the Map supertypes are available on the type itself. In addition,
anywhere within EPL that an event type name of a Map supertype is used, any of its Map subtypes
and their subtypes match that expression.

Your application can add properties to an existing Map event type during runtime using the
configuration operation updat eMapEvent Type. Properties may not be updated or deleted -
properties can only be added, and nested properties can be added as well. The runtime
configuration also allows removing Map event types and adding them back with new type
information.

13

Chapter 2. Event Representations

After your application configures a Map event type by providing a type name, the type name can
be used when defining further Map or Object-array event types by specifying the type name as
a property type or an array property type.

One-to-Many relationships in Map event types are represented via arrays. A property in a Map
event type may be an array of primitive, an array of Java object, an array of Map or an an array
of Object-array.

The engine can process java. util.Mp events via the sendEvent(Map map, String
event TypeNane) method on the EPRuntine interface. Entries in the Map represent event
properties. Keys must be of type j ava. util. String for the engine to be able to look up event
property names specified by pattern or EPL statements.

The engine does not validate Map event property names or values. Your application should ensure
that objects passed in as event properties match the creat e schema property names and types,
or the configured event type information when using runtime or static configuration.

2.6.2. Map Properties

Map event properties can be of any type. Map event properties that are Java application objects
or that are of type j ava. uti| . Map (or arrays thereof) or that are of type Obj ect [] (object-array)
(or arrays thereof) offer additional power:

» Properties that are Java application objects can be queried via the nested, indexed, mapped
and dynamic property syntax as outlined earlier.

» Properties that are of type Map allow Maps to be nested arbitrarily deep and thus can be used
to represent complex domain information. The nested, indexed, mapped and dynamic property
syntax can be used to query Maps within Maps and arrays of Maps within Maps.

» Properties that are of type bj ect[] (object-array) allow object-arrays to be nested arbitrarily
deep. The nested, indexed, mapped and dynamic property syntax can be used to query nested
Maps and object-arrays alike.

In order to use Map events, the event type name and property names and types must be made
known to the engine via Configuration or creat e schema EPL syntax. Please see examples in
Section 5.15, “Declaring an Event Type: Create Schema” and Section 16.4.2, “Events represented
by java.util.Map”.

The code snippet below defines a Map event type, creates a Map event and sends the event
into the engine. The sample defines the Car LocUpdat eEvent event type via runtime configuration
interface (creat e schena or static configuration could have been used instead).

/1 Define CarlLocUpdateEvent event type (exanple for runtine-configuration
interface)

Map<String, Object> def = new HashMap<String, Object>;

def . put ("carld", String.class);

14

Map Supertypes

def . put ("direction", int.class);

epSer vi ce. get EPAdmi ni strator (). get Configuration().
addEvent Type(" Car LocUpdat eEvent ", def);

The Car LocUpdat eEvent can now be used in a statement:

select carld from CarLocUpdat eEvent.win:time(1l mn) where direction =1

/| Create a CarLocUpdat eEvent event and send it into the engine for processing
Map<String, Object> event = new HashMap<String, bject>();

event.put("carld", carld);

event.put("direction", direction);

epRunti ne. sendEvent (event, "CarlLocUpdat eEvent");

The engine can also query Java objects as values in a Map event via the nested property syntax.
Thus Map events can be used to aggregate multiple data structures into a single event and query
the composite information in a convenient way. The example below demonstrates a Map event
with a transaction and an account object.

Map event = new HashMap();

event. put ("txn", txn);

event . put ("account", account);

epRunti ne. sendEvent (event, "TxnEvent");

An example statement could look as follows.

sel ect account.id, account.rate * txn.anount
from TxnEvent.win:ti me(60 sec)
group by account.id

2.6.3. Map Supertypes

Your Map event type may declare one or more supertypes when configuring the type at engine
initialization time or at runtime through the administrative interface.

Supertypes of a Map event type must also be Map event types. All property names and types
of a supertype are also available on a subtype and override such same-name properties of the
subtype. In addition, anywhere within EPL that an event type name of a Map supertype is used,
any of its Map subtypes also matches that expression (similar to the concept of interface in Java).

15

Chapter 2. Event Representations

This example assumes that the BaseUpdat e event type has been declared and acts as a supertype
to the Account Updat e event type (both Map event types):

epSer vi ce. get EPAdni ni strator (). get Configuration().
addEvent Type(" Account Updat e", account Updat eDef,
new String[] {"BaseUpdate"});

Your application EPL statements may select BaseUpdat e events and receive both BaseUpdat e
and Account Updat e events, as well as any other subtypes of BaseUpdat e and their subtypes.

/'l Receive BaseUpdate and any subtypes including subtypes of subtypes
sel ect * from BaseUpdate

Your application Map event type may have multiple supertypes. The multiple inheritance hierarchy
between Maps can be arbitrarily deep, however cyclic dependencies are not allowed. If using
runtime configuration, supertypes must exist before a subtype to a supertype can be added.

See Section 16.4.2, “Events represented by java.util.Map” for more information on configuring
Map event types.

2.6.4. Advanced Map Property Types

2.6.4.1. Nested Properties

Strongly-typed nested Map-within-Map events can be used to build rich, type-safe event types
on the fly. Use the addEvent Type method on Confi gurati on or Confi gurati onOperati ons for
initialization-time and runtime-time type definition, or the creat e schena EPL syntax.

Noteworthy points are:

« JavaBean (POJO) objects can appear as properties in Map event types.

« One may represent Map-within-Map and Map-Array within Map (same for object-array) using
the name of a previously registered Map (or object-array) event type.

e There is no limit to the number of nesting levels.

« Dynamic properties can be used to query Map-within-Map keys that may not be known in
advance.

e The engine returns a nul | value for properties for which the access path into the nested
structure cannot be followed where map entries do not exist.

For demonstration, in this example our top-level event type is an Account Updat e event, which
has an Updat edFi el dType structure as a property. Inside the Updat edFi el dType structure the
example defines various fields, as well as a property by name ‘history' that holds a JavaBean

16

Advanced Map Property Types

class Updat eHi st ory to represent the update history for the account. The code snippet to define
the event type is thus:

Map<String, Object> updatedFi el dDef = new HashMap<String, Object>();
updat edFi el dDef . put ("name", String.cl ass);
updat edFi el dDef . put (" addr essLi nel", String.class);
updat edFi el dDef . put (" hi story", UpdateHi story. cl ass);
epSer vi ce. get EPAdni ni strator (). get Configuration().
addEvent Type(" Updat edFi el dType", updat edFi el dDef) ;

Map<String, Object> accountUpdateDef = new HashMap<String, OCbject>();
account Updat eDef . put ("account 1 d", |ong.cl ass);

account Updat eDef . put ("fi el ds", "UpdatedFi el dType");

/1l the latter can also be: accountUpdateDef.put("fields", updatedFiel dDef);

epSer vi ce. get EPAdni ni strator (). get Configuration().
addEvent Type(" Account Updat e", account Updat eDef);

The next code snippet populates a sample event and sends the event into the engine:

Map<String, Object> updatedField = new Hashivap<String, Object>();
updat edFi el d. put ("nane", "Joe Doe");

updat edFi el d. put ("addressLi nel", "40 Popular Street");

updat edFi el d. put ("hi story", new UpdateHi story());

Map<String, Object> accountUpdate = new HashMap<String, Object>();
account Updat e. put ("account | d*, 10009901);
account Updat e. put ("fi el ds", updatedFiel d);

epServi ce. get EPRunt i ne() . sendEvent (account Updat e, "Account Update");

Last, a sample query to interrogate Account Updat e events is as follows:

sel ect accountld, fields.nane, fields.addressLinel, fields.history.|astUpdate
from Account Updat e

2.6.4.2. One-to-Many Relationships

To model repeated properties within a Map, you may use arrays as properties in a Map. You may
use an array of primitive types or an array of JavaBean objects or an array of a previously declared
Map or object-array event type.

When using a previously declared Map event type as an array property, the literal [] must be
appended after the event type name.

17

Chapter 2. Event Representations

This following example defines a Map event type by name Sal e to hold array properties of the
various types. It assumes a Sal esPer son Java class exists and a Map event type by name
Or der | t emwas declared:

Map<String, Object> sale = new HashMap<String, Object>();

sal e. put ("userids", int[].class);
sal e. put ("sal esPersons”, Sal esPerson[].cl ass);
sale.put("items", "Oderltenf]"); /!l The property type is the nane itself

appended by []

epSer vi ce. get EPAdni ni strator (). get Configuration().
addEvent Type(" Sal eEvent", sale);

The three properties that the above example declares are:

« An integer array of user ids.

* An array of Sal esPer son Java objects.

« An array of Maps for order items.

The next EPL statement is a sample query asking for property values held by arrays:

sel ect userids[0], sal esPersons[1].naneg,
itens[1], itens[1].price.anount from Sal eEvent

2.7. Object-array (mject[1) Events

2.7.1. Overview

An event can also be represented by an array of objects. Event properties of Coj ect[] events
are the array element values.

Similar to the Map event type, the object-array event type takes part in the comprehensive type
system that can eliminate the need to use Java classes as event types, thereby making it easier
to change types at runtime or generate type information from another source.

A given Object-array event type can have only a single supertype that must also be an Object-
array event type. All properties available on the Object-array supertype is also available on the
type itself. In addition, anywhere within EPL that an event type name of an Object-array supertype
is used, any of its Object-array subtypes and their subtypes match that expression.

Your application can add properties to an existing Object-array event type during runtime using
the configuration operation updat eObj ect Ar rayEvent Type. Properties may not be updated or

18

Object-Array Properties

deleted - properties can only be added, and nested properties can be added as well. The runtime
configuration also allows removing Object-array event types and adding them back with new type
information.

After your application configures an Object-array event type by providing a type name, the type
name can be used when defining further Object-array or Map event types by specifying the type
name as a property type or an array property type.

One-to-Many relationships in Object-array event types are represented via arrays. A property in
an Object-array event type may be an array of primitive, an array of Java object, an array of Map
or an array of Object-array.

The engine can process bject[] events via the sendEvent (Cbject[] array, String
event TypeNane) method on the EPRunt i me interface. Entries in the Object array represent event
properties.

The engine does not validate Object array length or value types. Your application must ensure
that Object array values match the declaration of the event type: The type and position of property
values must match property names and types in the same exact order and object array length must
match the number of properties declared via cr eat e schena or the static or runtime configuration.

2.7.2. Object-Array Properties

Object-array event properties can be of any type. Object-array event properties that are Java
application objects or that are of type java. util.Map (or arrays thereof) or that are of type
bj ect - array (or arrays thereof) offer additional power:

« Properties that are Java application objects can be queried via the nested, indexed, mapped
and dynamic property syntax as outlined earlier.

» Properties that are of type Qbj ect [] allow object-arrays to be nested arbitrarily deep and thus
can be used to represent complex domain information. The nested, indexed, mapped and
dynamic property syntax can be used to query object-array within object-arrays and arrays of
object-arrays within object-arrays.

» Properties that are of type Map allow Maps to be nested in object-array events and arbitrarily
deep. The nested, indexed, mapped and dynamic property syntax can be used to query nested
Maps and object-arrays alike.

In order to use (bj ect[] (object-array) events, the event type name and property names and
types, in a well-defined order that must match object-array event properties, must be made
known to the engine via configuration or creat e schema EPL syntax. Please see examples in
Section 5.15, “Declaring an Event Type: Create Schema” and Section 16.4.3, “Events represented
by Object[] (Object-array)”.

The code snippet below defines an Object-array event type, creates an Object-array event and
sends the event into the engine. The sample defines the Car LocUpdat eEvent event type via the

19

Chapter 2. Event Representations

runtime configuration interface (create schema or static configuration could have been used
instead).

/1 Define CarLocUpdateEvent event type (exanple for runtine-configuration
interface)

String[] propertyNanes = {"carld", "direction"}; /] order is inportant

oj ect[] propertyTypes = {String.class, int.class}; [// type order matches nanme
or der

epServi ce. get EPAdmi ni strator (). getConfiguration().
addEvent Type(" Car LocUpdat eEvent ", propertyNanes, propertyTypes);

The Car LocUpdat eEvent can now be used in a statement:

sel ect carld from CarLocUpdat eEvent.win:tine(1l min) where direction =1

/1 Send an event
oject[] event = {carld, direction};
epRunti me. sendEvent (event, "CarlLocUpdat eEvent");

The engine can also query Java objects as values in an Qbj ect [] event via the nested property
syntax. Thus Cbj ect[] events can be used to aggregate multiple data structures into a single
event and query the composite information in a convenient way. The example below demonstrates
a bj ect [] event with a transaction and an account object.

epRunti ne. sendEvent (new Obj ect[] {txn, account}, "TxnEvent");
An example statement could look as follows:

sel ect account.id, account.rate * txn.anmount
from TxnEvent.w n:ti me(60 sec)
group by account.id

2.7.3. Object-Array Supertype

Your Obj ect [] (object-array) event type may declare one supertype when configuring the type at
engine initialization time or at runtime through the administrative interface.

The supertype of a bj ect[] event type must also be an object-array event type. All property
names and types of a supertype are also available on a subtype and override such same-name

20

Advanced Object-Array Property Types

properties of the subtype. In addition, anywhere within EPL that an event type name of an Object-
array supertype is used, any of its Object-array subtypes also matches that expression (similar
to the concept of interface or superclass).

The properties provided by the top-most supertype must occur first in the object array. Subtypes
each append to the object array. The number of values appended must match the number of
properties declared by the subtype.

For example, assume your application declares the following two types:

create objectarray schema Super Type (pO string)

create objectarray schema SubType (pl string) inherits SuperType

The object array event objects that your application can send into the engine are shown by the
next code snippet:

epRunti nme. sendEvent (new Obj ect[] {"pO_value", "pl_value"}, "SubType");
epRunti ne. sendEvent (new Obj ect[] {"pO_val ue"}, "SuperType");

2.7.4. Advanced Object-Array Property Types

2.7.4.1. Nested Properties

Strongly-typed nested bj ect [] -within-Obj ect[] events can be used to build rich, type-
safe event types on the fly. Use the addEvent Type method on Configuration or
Confi gur ati onQper at i ons for initialization-time and runtime-time type definition, or the create
schema EPL syntax.

Noteworthy points are:

« JavaBean (POJO) objects can appear as properties in Obj ect [] event types.

* One may represent Object-array within Object-array and Object-Array-Array within Object-array
(same for Map event types) using the name of a previously registered Object-array (or Map)
event type.

» There is no limit to the number of nesting levels.

« Dynamic properties can be used to query Qoj ect [] -within-Cbj ect [] values that may not be
known in advance.

* The engine returns a nul | value for properties for which the access path into the nested
structure cannot be followed where entries do not exist.

21

Chapter 2. Event Representations

For demonstration, in this example our top-level event type is an Account Updat e event, which
has an Updat edFi el dType structure as a property. Inside the Updat edFi el dType structure the
example defines various fields, as well as a property by name ‘history' that holds a JavaBean
class Updat eHi st ory to represent the update history for the account. The code snippet to define
the event type is thus:

String[] propertyNanesUpdField = {"nane", "addressLinel", "history"};
oj ect[] propertyTypesUpdFi el d = {String.cl ass, String. cl ass,
Updat eHi st ory. cl ass};
epServi ce. get EPAdmi ni strator (). getConfiguration().
addEvent Type(" Updat edFi el dType", propert yNanmesUpdFi el d,
propertyTypesUpdFi el d) ;

String[] propertyNanesAccount Update = {"accountld", "fields"};
oj ect[] propertyTypesAccount Update = {l ong. cl ass, "Updat edFi el dType"};
epServi ce. get EPAdmi ni strator (). get Configuration().
addEvent Type(" Account Updat e", pr oper t yNanesAccount Updat e,
propertyTypesAccount Updat e) ;

The next code snippet populates a sample event and sends the event into the engine:

oj ect[] updatedField = {"Joe Doe", "40 Popul ar Street", new UpdateH story()};
oj ect[] account Update = {10009901, updatedFi el d};

epServi ce. get EPRunti ne() . sendEvent (account Updat e, "Account Update");

Last, a sample query to interrogate Account Updat e events is as follows:

sel ect accountld, fields.nane, fields.addressLinel, fields.history.|astUpdate
from Account Updat e

2.7.4.2. One-to-Many Relationships

To model repeated properties within an Object-array, you may use arrays as properties in an
Object-array. You may use an array of primitive types or an array of JavaBean objects or an array
of a previously declared Object-array or Map event type.

When using a previously declared Object-array event type as an array property, the literal [] must
be appended after the event type name.

This following example defines an Object-array event type by name Sal e to hold array properties
of the various types. It assumes a Sal esPer son Java class exists and an Object-array event type
by name O der | t emwas declared:

22

org.w3c.dom.Node XML Events

String[] propertyNames = {"userids", "sal esPersons”, "items"};
oject[] propertyTypes = {int[].class, SalesPerson[].class, "Oderlten{]");

epServi ce. get EPAdmi ni strator (). get Configuration().
addEvent Type(" Sal eEvent”, propertyNanmes, propertyTypes);

The three properties that the above example declares are:

* An integer array of user ids.
« An array of Sal esPer son Java objects.
« An array of Object-array for order items.

The next EPL statement is a sample query asking for property values held by arrays:

sel ect userids[0], sal esPersons[1].nane,
itens[1], itens[1].price.anmount from Sal eEvent

2.8. org.wac. dom node XML Events

Events can be represented as or g. w3c. dom Node instances and send into the engine via the
sendEvent method on EPRunt i me or via Event Sender . Please note that configuration is required
so the event type name and root element name is known. See Chapter 16, Configuration.

If a XML schema document (XSD file) can be made available as part of the configuration,
then Esper can read the schema and appropriately present event type metadata and validate
statements that use the event type and its properties. See Section 2.8.1, “Schema-Provided XML
Events”.

When no XML schema document is provided, XML events can still be queried, however the return
type and return values of property expressions are string-only and no event type metadata is
available other than for explicitly configured properties. See Section 2.8.2, “No-Schema-Provided
XML Events”.

In all cases Esper allows you to configure explicit XPath expressions as event properties. You
can specify arbitrary XPath functions or expressions and provide a property name and type by
which result values will be available for use in EPL statements. See Section 2.8.3, “Explicitly-
Configured Properties”.

Nested, mapped and indexed event properties are also supported in expressions against
or g. w3dc. dom Node events. Thus XML trees can conveniently be interrogated via the property
expression syntax.

23

Chapter 2. Event Representations

Only one event type per root element name may be configured. The engine recognizes each event
by its root element name or you may use Event Sender to send events.

This section uses the following XML document as an example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Sensor xm ns="Sensor Schena" >
<I D>urn: epc: 1: 4. 16. 36</ | D>
<Observati on Conmand="READ PALLET TAGS ONLY">
<| b>00000001</ | D>
<Tag>
<| D>ur n: epc: 1: 2. 24. 400</ | D>
</ Tag>
<Tag>
<I D>urn: epc: 1: 2. 24. 401</ | D>
</ Tag>
</ Gbservati on>
</ Sensor >

The schema for the example is:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema" >

<xs: el ement nanme="Sensor">
<xs: conpl exType>
<XS:sequence>
<xs: el enrent nanme="1D" type="xs:string"/>
<xs: el ement ref="Cbservation" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement name="Cbservation">
<xs:conpl exType>
<Xs:sequence>
<xs:el ement name="1D" type="xs:string"/>
<xs:el ement ref="Tag" maxQccurs="unbounded" />
</ xs: sequence>
<xs:attribute nane="Command" type="xs:string" use="required" />
</ xs: conpl exType>
</ xs: el ement >

<xs: el enent nanme="Tag" >
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="ID"' type="xs:string"/>

24

Schema-Provided XML Events

</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schenma>

2.8.1. Schema-Provided XML Events

If you have a XSD schema document available for your XML events, Esper can interrogate the
schema. The benefits are:

* New EPL statements that refer to event properties are validated against the types provided in
the schema.
» Event type metadata becomes available for retrieval as part of the Event Type interface.

2.8.1.1. Getting Started

The engine reads a XSD schema file from an URL you provide. Make sure files imported by the
XSD schema file can also be resolved.

The configuration accepts a schema URL. This is a sample code snippet to determine a schema
URL from a file in classpath:

URL schemaURL = this.getd ass().getd assLoader().get Resource("sensor.xsd");

Here is a sample use of the runtime configuration API, please see Chapter 16, Configuration for
further examples.

epServi ce = EPServi ceProvi der Manager . get Def aul t Provi der () ;
Confi gur ati onEvent TypeXM_.DOM sensor cfg = new Confi gurati onEvent TypeXM.DOV) ;
sensor cf g. set Root El enent Nane(" Sensor ") ;
sensor cf g. set SchemaResour ce(schemaURL. toString());
epServi ce. get EPAdni ni strator (). get Configuration()
. addEvent Type(" Sensor Event", sensorcfQ);

You must provide a root element name. This name is used to look up the event type for the
sendEvent (or g. w3c. Node node) method. An Event Sender is a useful alternative method for
sending events if the type lookup based on the root or document element name is not desired.

After adding the event type, you may create statements and send events. Next is a sample
statement:

sel ect I D, Qoservation. Command, Observation.| D,
Observation. Tag[0] .| D, Observation.Tag[1].1D

25

Chapter 2. Event Representations

from Sensor Event

As you can see from the example above, property expressions can query property values held in
the XML document's elements and attributes.

There are multiple ways to obtain a XML DOM document instance from a XML string. The next
code snippet shows how to obtain a XML DOM or g. w3c. Docunent instance:

| nput Sour ce source = new | nput Sour ce(new Stri ngReader (xm));

Document Bui | der Fact ory bui | der Fact ory = Documnent Bui | der Fact ory. newl nst ance() ;
bui | der Fact ory. set NanespaceAwar e(true);

Docunment doc = buil der Fact ory. newDocunent Bui | der (). par se(source);

Send the or g. w3c. Node or Docurrent object into the engine for processing:

epServi ce. get EPRunti ne() . sendEvent (doc) ;

2.8.1.2. Property Expressions and Namespaces

By default, property expressions such as Chser vat i on. Tag[0] . | Dare evaluated by a fast DOM-
walker implementation provided by Esper. This DOM-walker implementation is not namespace-
aware.

Should you require namespace-aware traversal of the DOM document, you must set the xpat h-
property-expr configuration option to true (default is false). This flag causes Esper to generate
namespace-aware XPath expressions from each property expression instead of the DOM-walker,
as described next. Setting the xpat h- property-expr option to true requires that you also
configure namespace prefixes as described below.

When matching up the property names with the XSD schema information, the engine determines
whether the attribute or element provides values. The algorithm checks attribute names first
followed by element names. It takes the first match to the specified property name.

2.8.1.3. Property Expression to XPath Rewrite

By setting the xpat h- propert y- expr option the engine rewrites each property expression as an
XPath expression, effectively handing the evaluation over to the underlying XPath implementation
available from classpath. Most JVM have a built-in XPath implementation and there are also
optimized, fast implementations such as Jaxen that can be used as well.

Set the xpat h- property- expr option if you need namespace-aware document traversal, such
as when your schema mixes several namespaces and element names are overlapping.

The below table samples several property expressions and the XPath expression generated for
each, without namespace prefixes to keep the example simple:

26

Schema-Provided XML Events

Table 2.5. Property Expression to XPath Expression

Property Expression Equivalent XPath

Cbserveration. | D / Sensor/ Cbservation/ I D

Gbserver ati on. Command / Sensor/ Cbser vat i on/ @omrand

Observeration. Tag[0]. 1D / Sensor/ OGbservat i on/ Tag[posi tion() =
1]/1D

For mapped properties that are specified via the syntax name(' key'), the algorithm looks for an
attribute by name i d and generates a XPath expression as napped[@ d=' key'] .

Finally, here is an example that includes all different types of properties and their XPath expression
equivalent in one property expression:

sel ect nested. mapped(' key').indexed[1].attribute from MyEvent

The equivalent XPath expression follows, this time including n0 as a sample namespace prefix:

/' n0: root el enent/ n0: nest ed/ n0: mapped][@ d=' key']/ n0: i ndexed[posi ti on() = 2]/
@ttribute

2.8.1.4. Array Properties

All elements that are unbound or have max occurs greater then 1 in the XSD schema are
represented as indexed properties and require an index for resolution.

For example, the following is not a valid property expression in the sample Sensor document:
CQbserver ati on. Tag. | D. As no index is provided for Tag, the property expression is not valid.

Repeated elements within a parent element in which the repeated element is a simple type also
are represented as an array.

Consider the next XML document:

<itenp
<book sku="8800090" >
<aut hor >l saac Asi nov</ aut hor >
<aut hor >Robert A Hei nl ei n</ aut hor >
</ book>
</itenmp

Here, the result of the expression book. aut hor is an array of type String and the result of
book. aut hor [0] is a String value.

27

Chapter 2. Event Representations

2.8.1.5. Dynamic Properties

Dynamic properties are not validated against the XSD schema information and their result value
is always or g. w3c. Node. You may use a user-defined function to process dynamic properties
returning Node. As an alternative consider using an explicit property.

An example dynamic property is Ori gi n?. | Dwhich will look for an element by name Ori gi n that

contains an element or attribute node by name Locat i onCode:

sel ect Origin?. Locati onCode from Sensor Event

2.8.1.6. Transposing Properties

When providing a XSD document, the default configuration allows to transpose property values
that are themselves complex elements, as defined in the XSD schema, into a new stream. This
behavior can be controlled via the flag aut o- f r agnent .

For example, consider the next query:

insert into CbservationStream
sel ect I D, Qoservation from Sensor Event

The Obser vat i on as a property of the Sensor Event gets itself inserted into a new stream by name
Qbservati onSt ream The Qbser vati onSt r eamthus consists of a string-typed | D property and a
complex-typed property named Qoser vat i on, as described in the schema.

A further statement can use this stream to query:

sel ect Cbservation. Command, Cbservation. Tag[0].ID from Gbservati onStream

Before continuing the discussion, here is an alternative syntax using the wildcard-select, that is
also useful:

insert into TaglLi stStream
select I D as sensorld, Observation.* from SensorEvent

The new TaglLi st St r eamhas a string-typed | D and Command property as well as an array of Tag
properties that are complex types themselves as defined in the schema.

Next is a sample statement to query the new stream:

28

Schema-Provided XML Events

sel ect sensorld, Conmand, Tag[O].ID from TagLi st Stream

Please note the following limitations:

« The XPath standard prescribes that XPath expressions against or g. w3c. Node are evaluated
against the owner document of the Node. Therefore XPath is not relative to the current node
but absolute against each node's owner document. Since Esper does not create new document
instances for transposed nodes, transposing properties is not possible when the xpat h-
property-expr flag is set.

« Complex elements that have both simple element values and complex child elements are not
transposed. This is to ensure their property value is not hidden. Use an explicit XPath expression
to transpose such properties.

Esper automatically registers a new event type for transposed properties. It generates the type
name of the new XML event type from the XML event type name and the property names used
in the expression. The synposis is type_name.property_name[.property _name...]. The type name
can be looked up, for example for use with Event Sender or can be created in advance.

2.8.1.7. Event Sender

An Event Sender sends events into the engine for a given type, saving a type lookup based on
element name.

This brief example sends an event via Event Sender :

Event Sender sender = epRunti ne. get Event Sender (" Sensor Event ") ;
sender . sendEvent (node) ;

The XML DOM event sender checks the root element name before processing the event. Use the
event - sender - val i dat es- r oot setting to disable validation. This forces the engine to process
XML documents according to any predefined type without validation of the root element name.

2.8.1.8. Limitations

The engine schema interrogation is based on the Xerces distribution packaged into Sun Java
runtimes. Your application may not replace the JRE's Xerces version and use XML schemas,
unless your application sets the DOM implementation registry as shown below before loading the
engine configuration:

Syst em set Property(DOM npl enent ati onRegi st ry. PROPERTY,
"com sun. or g. apache. xer ces. i nt er nal . dom DOMXSI npl enent at i onSour cel npl ") ;

29

Chapter 2. Event Representations

2.8.2. No-Schema-Provided XML Events

Without a schema document a XML event may still be queried. However there are important
differences in the metadata available without a schema document and therefore the property
expression results. These differences are outlined below.

All property expressions against a XML type without schema are assumed valid. There is no
validation of the property expression other than syntax validation. At runtime, property expressions
return string-type values or nul | if the expression did not yield a matching element or attribute
result.

When asked for property names or property metadata, a no-schema type returns empty array.

In all other aspects the type behaves the same as the schema-provided type described earlier.

2.8.3. Explicitly-Configured Properties

Regardless of whether or not you provide a XSD schema for the XML event type, you can always
fall back to configuring explicit properties that are backed by XPath expressions.

For further documentation on XPath, please consult the XPath standard or other online material.
Consider using Jaxen or Apache Axiom, for example, to provide faster XPath evaluation then your
Java VM built-in XPath provider may offer.

2.8.3.1. Simple Explicit Property
Shown below is an example configuration that adds an explicit property backed by a XPath

expression and that defines namespace prefixes:

epServi ce = EPServi ceProvi der Manager . get Def aul t Provi der () ;
Confi gur ati onEvent TypeXM.DOM sensorcfg = new Confi gurati onEvent TypeXM.DOV) ;

sensor cf g. addXPat hProperty("count Tags", "count (/ss: Sensor/ ss: Qbservati on/
ss: Tag) ",

XPat hConst ant s. NUMBER) ;
sensor cf g. addNanmespacePrefi x("ss", "SensorSchem");

sensor cf g. set Root El enent Nane(" Sensor ") ;
epServi ce. get EPAdni ni strator (). get Configuration()
. addEvent Type(" Sensor Event", sensorcfQ);

The count Tags property is now available for querying:

sel ect count Tags from Sensor Event

The XPath expression count (. ..) is a XPath built-in function that counts the number of nodes,
for the example document the result is 2.

30

Explicitly-Configured Properties

2.8.3.2. Explicit Property Casting and Parsing

Esper can parse or cast the result of your XPath expression to the desired type. Your property
configuration provides the type to cast to, like this:

sensor cf g. addXPat hProperty("count Tags", "count (/ss: Sensor/ ss: Qbservati on/
ss: Tag) ",
XPat hConst ant s. NUMBER, "int");

The type supplied to the property configuration must be one of the built-in types. Arrays of built-
in type are also possible, requiring the XPat hConst ant s. NODESET type returned by your XPath
expression, as follows:

sensor cf g. addXPat hProperty("idarray", "//ss:Tag/ss:I1D",
XPat hConst ant s. NODESET, "String[]");

The XPath expression //ss: Tag/ ss: | D returns all ID nodes under a Tag node, regardless of
where in the node tree the element is located. For the example document the result is 2 array
elements urn: epc: 1: 2. 24. 400 and ur n: epc: 1: 2. 24. 40.

2.8.3.3. Node and Nodeset Explicit Property

An explicit property may return XPat hConst ant s. NODE or XPat hConst ant s. NODESET and can
provide the event type name of a pre-configured event type for the property. The method name
to add such properties is addXPat hPr oper t yFr agnent .

This code snippet adds two explicit properties and assigns an event type name for each property:

sensor cf g. addXPat hProper t yFragnment ("t agOne", "//ss:Tag[position() = 1]",
XPat hConst ant s. NODE, "TagEvent");

sensor cf g. addXPat hPr opert yFragnment ("tagArray", "//ss:Tag",
XPat hConst ant s. NODESET, "TagEvent");

The configuration above references the TagEvent event type. This type must also be configured.
Prefix the root element name with "//" to cause the lookup to search the nested schema elements
for the definition of the type:

Confi gur ati onEvent TypeXM_.DOM t agcf g = new Confi gurati onEvent TypeXM.DOVW) ;
tagcf g. set Root El erent Nane("// Tag") ;
t agcf g. set SchemaResour ce(schemaURL) ;
epAdmi ni strator. getConfiguration()
. addEvent Type(" TagEvent", tagcfg);

31

Chapter 2. Event Representations

The tagOne and t agArray properties are now ready for selection and transposing to further
streams:

insert into TagOneStream sel ect tagOne.* from Sensor Event

Select from the new stream:

select ID from TagOneStream

An example with indexed properties is shown next:

insert into TagArrayStream sel ect tagArray as nytags from Sensor Event
Select from the new stream:

sel ect mytags[0].ID from TagArrayStream

2.9. Additional Event Representations

Part of the extension and plug-in features of Esper is an event representation API. This set of
classes allow an application to create new event types and event instances based on information
available elsewhere, statically or dynamically at runtime when EPL statements are created. Please
see Section 18.8, “Event Type And Event Object” for details.

Creating a plug-in event representation can be useful when your application has existing Java
classes that carry event metadata and event property values and your application does not want
to (or cannot) extract or transform such event metadata and event data into one of the built-in
event representations (POJO Java objects, Map, Object-array or XML DOM).

Further use of a plug-in event representation is to provide a faster or short-cut access path to
event data. For example, access to event data stored in a XML format through the Streaming
API for XML (StAX) is known to be very efficient. A plug-in event representation can also provide
network lookup and dynamic resolution of event type and dynamic sourcing of event instances.

Currently, EsperlO provides the following additional event representations:

« Apache Axiom: Streaming API for XML (StAX) implementation
Please see the EsperlO documentation for details on the above.

The chapter on Section 18.8, “Event Type And Event Object” explains how to create your own
custom event representation.

32

Updating, Merging and Versioning Events

2.10. Updating, Merging and Versioning Events

To summarize, an event is an immutable record of a past occurrence of an action or state change,
and event properties contain useful information about an event.

The length of time an event is of interest to the event processing engine (retention time) depends
on your EPL statements, and especially the data window, pattern and output rate limiting clauses
of your statements.

During the retention time of an event more information about the event may become available,
such as additional properties or changes to existing properties. Esper provides three concepts for
handling updates to events.

The first means to handle updating events is the updat e i st reamclause as further described in
Section 5.20, “Updating an Insert Stream: the Update IStream Clause”. It is useful when you need
to update events as they enter a stream, before events are evaluated by any particular consuming
statement to that stream.

The second means to update events is the on- mer ge and on- updat e clauses, for use with tables
and named windows only, as further described in Section 6.8, “Triggered Upsert using the On-
Merge Clause” and Section 6.6, “Updating Data: the On Update clause”. On-merge is similar to the
SQL ner ge clause and provides what is known as an "Upsert" operation: Update existing events
or if no existing event(s) are found then insert a new event, all in one atomic operation provided
by a single EPL statement. On-update can be used to update individual properties of rows held
in a table or named window.

The third means to handle updating events is the revision event types, for use with named windows
only, as further described in Section 6.11, “Versioning and Revision Event Type Use with Named
Windows”. With revision event types one can declare, via configuration only, multiple different
event types and then have the engine present a merged event type that contains a superset of
properties of all merged types, and have the engine merge events as they arrive without additional
EPL statements.

Note that patterns do not reflect changes to past events. For the temporal nature of patterns, any
changes to events that were observed in the past do not reflect upon current pattern state.

2.11. Coarse-Grained Events

Your application events may consist of fairly comprehensive, coarse-grained structures or
documents. For example in business-to-business integration scenarios, XML documents or other
event objects can be rich deeply-nested graphs of event properties.

To extract information from a coarse-grained event or to perform bulk operations on the rows
of the property graph in an event, Esper provides a convenient syntax: When specifying a filter
expression in a pattern or in a sel ect clause, it may contain a contained-event selection syntax,
as further described in Section 5.19, “Contained-Event Selection”.

33

Chapter 2. Event Representations

2.12. Event Objects Instantiated and Populated by insert

Into

The insert into clause can populate instantiate new instances of Java object events,
java.util.Mp events and Obj ect[] (object array) events directly from the results of sel ect
clause expressions and populate such instances. Simply use the event type name as the stream
name intheinsert into clause as described in Section 5.10, “Merging Streams and Continuous
Insertion: the Insert Into Clause”.

If instead you have an existing instance of a Java object returned by an expression, such as a
single-row function or static method invocation for example, you can transpose that expression
result object to a stream. This is described further in Section 5.10.7, “Transposing an Expression
Result” and Section 10.4, “Select-Clause transpose Function”.

The column names specified inthe sel ect andi nsert i nt o clause must match available writable
properties in the event object to be populated (the target event type). The expression result types
of any expressions in the sel ect clause must also be compatible with the property types of the
target event type.

If populating a POJO-based event type and the class provides a matching constructor, the
expression result types of expressions in the sel ect clause must be compatible with the
constructor parameters in the order listed by the constructor. The i nsert i nto clause column
names are not relevant in this case.

Consider the following example statement:

insert into com myconpany. NeweEnpl oyeeEvent
sel ect fnane as firstNanme, | nane as | ast Nane from HRSyst enmEvent

The above example specifies the fully-qualified class name of NewEnpl oyeeEvent . The engine
instantianes NewEnpl oyeeEvent for each result row and populates the fi r st Nanme and | ast Narme
properties of each instance from the result of sel ect clause expressions. The HRSyst enEvent in
the example is assumed to have | nane and f nanme properties, and either setter-methods and a
default constructor, or a matching constructor.

Note how the example uses the as-keyword to assign column names that match the property
names of the NewEnpl oyeeEvent target event. If the property names of the source and target
events are the same, the as-keyword is not required.

The next example is an alternate form and specifies property names within the i nsert into
clause instead. The example also assumes that NewEnpl oyeeEvent has been defined or imported
via configuration since it does not specify the event class package name:

i nsert into Newknpl oyeeEvent (firstNanme, |astNane)

34

Comparing Event Representations

sel ect fnanme, |name from HRSyst enEvent

Finally, this example populates HRSyst enEvent events. The example populates the value of a
t ype property where the event has the value 'NEW' and populates a new event object with the
value 'HIRED', copying the f name and | name property values to the new event object:

insert into HRSystenmEvent
sel ect fnanme, Iname, 'H RED as type from HRSystenEvent (type=" NEW)

The matching of the sel ect orinsert i nto-clause column names to target event type's property
names is case-sensitive. It is allowed to only populate a subset of all available columns in the
target event type. Wildcard (*) is also allowed and copies all fields of the events or multiple events
in ajoin.

For Java object events, your event class must provide setter-methods according to JavaBean
conventions or, alternatively, a matching constructor. If the event class provides setter methods
the class should also provide a default constructor taking no parameters. If the event class
provides a matching constructor there is no need for setter-methods. If your event class does not
have a default constructor and setter methods, or a matching constructor, your application may
configure a factory method via Confi gur ati onEvent TypeLegacy. If your event class does not
have a default constructor and there is no factory method provided, the engine uses in connection
with the Oracle JVM the sun.refl ect. Refl ecti onFact ory, noting that in this case member
variables do not get initialized to assigned defaults.

The engine follows Java standards in terms of widening, performing widening automatically in
cases where widening type conversion is allowed without loss of precision, for both boxed and
primitive types and including Biginteger and BigDecimal.

When inserting array-typed properties into a Java, Map-type or Object-array underlying event the
event definition should declare the target property as an array.

Please note the following limitations:

« Event types that utilize XML or g. w3c. dom Node underlying event objects cannot be target of
aninsert into clause.

2.13. Comparing Event Representations

Each of the event representations of Java object, Map and XML document has advantages and
disadvantages that are summarized in the table below:

35

Chapter 2. Event Representations

Table 2.6. Comparing Event Representations

Java Object
(POJO/Bean or

other)

Map

Object-array

XML Document

Performance Good Good Very Good Not comparable
and depending
on use of XPath

Memory Use Small Medium Small Depends on
DOM and XPath
implementation
used, can be
large

Call Method on| Yes Yes, if contains Yes, if contains No

Event Object(s) Object(s)

Nested, Indexed, | Yes Yes Yes Yes

Mapped and

Dynamic

Properties

Course-grained | Yes Yes Yes Yes

event syntax

Insert-into that | Yes Yes Yes No

Representation

Runtime Type Reloadclass, yes | Yes Yes Yes

Change

Create-schema | Yes Yes Yes No, runtime and

Syntax static
configuration

Object is Self-| Yes Yes No Yes

Descriptive

Supertypes Multiple Multiple Single No

36

Chapter 3.

Chapter 3. Processing Model

3.1. Introduction

The Esper processing model is continuous: Update listeners and/or subscribers to statements
receive updated data as soon as the engine processes events for that statement, according to the
statement's choice of event streams, views, filters and output rates.

As outlined in Chapter 15, APl Reference the interface for listeners is
com espertech. esper.client. UpdateLi stener. Implementations must provide a single
updat e method that the engine invokes when results become available:

(Updatel istener \

update(EvantBean]] newEvents,
EventBean[] aldEvents)

A second, strongly-typed and native, highly-performant method of result delivery is provided: A
subscriber object is a direct binding of query results to a Java object. The object, a POJO, receives
statement results via method invocation. The subscriber class need not implement an interface
or extend a superclass. Please see Section 15.3.3, “Setting a Subscriber Object”.

The engine provides statement results to update listeners by placing results in
com espertech. esper. client. Event Bean instances. A typical listener implementation queries
the Event Bean instances via getter methods to obtain the statement-generated results.

(EventBean w

get{String propertyName) : Object
getUnderlying) : Object

getEventType() : EventType

The get method on the Event Bean interface can be used to retrieve result columns by name. The
property name supplied to the get method can also be used to query nested, indexed or array
properties of object graphs as discussed in more detail in Chapter 2, Event Representations and
Section 15.6, “Event and Event Type”

The get Under | yi ng method on the Event Bean interface allows update listeners to obtain the
underlying event object. For wildcard selects, the underlying event is the event object that was
sent into the engine via the sendEvent method. For joins and select clauses with expressions,
the underlying object implements j ava. uti | . Map.

3.2. Insert Stream

In this section we look at the output of a very simple EPL statement. The statement selects an
event stream without using a data window and without applying any filtering, as follows:

37

Chapter 3. Processing Model

select * from Wt hdrawal

This statement selects all Wt hdr awal events. Every time the engine processes an event of type
W t hdr awal or any sub-type of W t hdr awal , it invokes all update listeners, handing the new event
to each of the statement's listeners.

The term insert stream denotes the new events arriving, and entering a data window or
aggregation. The insert stream in this example is the stream of arriving Withdrawal events, and
is posted to listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. The number in
parenthesis is the withdrawal amount, an event property that is used in the examples that discuss
filtering.

UpdateListener

Incoming Events New Events Old Events
| |
W1(500) —m Wy | |
| |
| |
W3(100) —= W2 | |
| |
| |
W4(200) ——m W : :
| |
Wa(50) ——m= Wa | |
| |
| |
Ws(150) ——t Ws : :
| |
We(300) — Ws | |
| |

Time

Figure 3.1. Output example for a simple statement

The example statement above results in only new events and no old events posted by the engine
to the statement's listeners.

3.3. Insert and Remove Stream

A length window instructs the engine to only keep the last N events for a stream. The next
statement applies a length window onto the Withdrawal event stream. The statement serves to
illustrate the concept of data window and events entering and leaving a data window:

38

Insert and Remove Stream

select * from Wthdrawal . w n: | ength(5)

The size of this statement's length window is five events. The engine enters all arriving Withdrawal
events into the length window. When the length window is full, the oldest Withdrawal event is
pushed out the window. The engine indicates to listeners all events entering the window as new
events, and all events leaving the window as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes events
leaving a data window, or changing aggregation values. In this example, the remove stream is
the stream of Withdrawal events that leave the length window, and such events are posted to
listeners as old events.

The next diagram illustrates how the length window contents change as events arrive and shows
the events posted to an update listener.

Incoming Events Length Window — 5 Events New Events Old Events

| |

W1(500) ——m Wi | |
| |

| |

W2(100) —pu Wa | |
| |

| |

W(200) — W | |
| |

| |

Wa(50) —pm Wy | |

| |

| |

Ws(150) —— w, | |
| |

| |

We(300) ——m Ws | Wy |
| |

Time

Figure 3.2. Output example for a length window

As before, all arriving events are posted as new events to listeners. In addition, when event W,
leaves the length window on arrival of event Wy, it is posted as an old event to listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time
period. A time window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds
pass, the time window actively pushes the oldest events out of the window resulting in one or
more old events posted to update listeners.

39

Chapter 3. Processing Model

Section 5.3.7, “Selecting insert and remove stream events”
Section 16.4.17, “Engine Settings

related to Stream Selection”

3.4. Filters and Where-clauses

Filters to event streams allow filtering events out of a given stream before events enter a data
window (if there are data windows defined in your query). The statement below shows a filter that
selects Withdrawal events with an amount value of 200 or more.

select * from Wt hdrawal (anbunt >=200) . wi n: | engt h(5)

With the filter, any Withdrawal events that have an amount of less then 200 do not enter the length
window and are therefore not passed to update listeners. Filters are discussed in more detail in
Section 5.4.1, “Filter-based Event Streams” and Section 7.4, “Filter Expressions In Patterns”.

; Filter: Length Window — 5 Events New Events Old Events
Incoming Events ;000 g | | |
Wi(E00) —) e |

| | |
| | |
W2(100) — gl >< | | |
| | |
| | |
W(200) — | | Ws | |
| | |
| | |
W(50) ——pf X I | |
| | |
| | |
We(150) — ol >< | | |
| | |
| | |
We(300) —pf | We | |
| | |
Time

Figure 3.3. Output example for a statement with an event stream filter

40

Filters and Where-clauses

The where-clause and having-clause in statements eliminate potential result rows at a later stage
in processing, after events have been processed into a statement's data window or other views.

The next statement applies a where-clause to Withdrawal events. Where-clauses are discussed
in more detail in Section 5.5, “Specifying Search Conditions: the Where Clause”.

select * from Wthdrawal .wi n:|ength(5) where amount >= 200

The where-clause applies to both new events and old events. As the diagram below shows,
arriving events enter the window however only events that pass the where-clause are handed to
update listeners. Also, as events leave the data window, only those events that pass the conditions
in the where-clause are posted to listeners as old events.

Updatel istener

Filter:
Incoming Events Length Window — 5 Events Amount==200 New Events Old Events
|
Wi(500) —— | W,
|
|
wil100) — X |
|
|
W3(200) — : Wa
|
Waf50) — ol >< |
|
|
Wi(150) —)4 |
|
|
Wp(300) ——pm | We W
|

Time

Figure 3.4. Output example for a statement with where-clause

The where-clause can contain complex conditions while event stream filters are more restrictive
in the type of filters that can be specified. The next statement's where-clause applies the cei |
function of the j ava. | ang. Mat h Java library class in the where clause. The insert-into clause
makes the results of the first statement available to the second statement:

insert into Wthdrawal Filtered select * from Wthdrawal where Mth. ceil (anbunt)
>= 200

41

Chapter 3. Processing Model

select * fromWthdrawal Filtered

3.5. Time Windows

In this section we explain the output model of statements employing a time window view and a
time batch view.

3.5.1. Time Window

A time window is a moving window extending to the specified time interval into the past based on
the system time. Time windows enable us to limit the number of events considered by a query,
as do length windows.

As a practical example, consider the need to determine all accounts where the average withdrawal
amount per account for the last 4 seconds of withdrawals is greater then 1000. The statement to
solve this problem is shown below.

sel ect account, avg(anount)
fromWthdrawal . win:tine(4 sec)
group by account

havi ng amount > 1000

The next diagram serves to illustrate the functioning of a time window. For the diagram, we assume
a query that simply selects the event itself and does not group or filter events.

select * fromWthdrawal .win:time(4 sec)

The diagram starts at a given time t and displays the contents of the time window att + 4 and
t + 5 seconds and so on.

42

Time Batch

UpdateListener

Time Window — 4 seconds

Incoming Events New Events Old Events
Att+d A 1+5 ALHHBS AL+
I

(\ | |
e | |
() | |
2 | |
| |
wa (\ | |
B S | |
N | N R |

w, (e \) || [V
(\ | |
Wa Wa Wa W | |
A = | |
:G | |
e |

Wy ———-

= | |
| |
—r 20 — : W :
| |

Figure 3.5. Output example for a statement with a time window

The activity as illustrated by the diagram:

1. Attimet + 4 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

2. Attimet + 5 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

3. Attimet + 6.5 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

4. Attimet + 8 seconds event W leaves the time window. The engine reports the event as an
old event to update listeners.

3.5.2. Time Batch

The time batch view buffers events and releases them every specified time interval in one update.
Time windows control the evaluation of events, as does the length batch window.

The next diagram serves to illustrate the functioning of a time batch view. For the diagram, we
assume a simple query as below:

select * fromWthdrawal . wi n:time_batch(4 sec)

43

Chapter 3. Processing Model

The diagram starts at a given time t and displays the contents of the time window att + 4 and
t + 5 seconds and so on.

UpdateListener
Time Batch — 4 seconds

Incoming Events New Events Old Events
Att+1 Att+3 Att+d AtH+6.5 AL+

Bl

'
R

+2

= || e

§E

/—\ (——-\ W and Wa

t+5
1+6

1+7

+a A A A J
- — W, and Wa

m W3

Figure 3.6. Output example for a statement with a time batch view

The activity as illustrated by the diagram:

1. Attimet + 1 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

2. Attimet + 3 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

3. Attimet + 4 seconds the engine processes the batched events and a starts a new batch.
The engine reports events W and W to update listeners.

4. Attimet + 6.5 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

5. Attimet + 8 seconds the engine processes the batched events and a starts a new batch.
The engine reports the event W as new data to update listeners. The engine reports the events
W and W as old data (prior batch) to update listeners.

3.6. Batch Windows

The built-in data windows that act on batches of events are the win:tinme_batch and the
wi n: | engt h_bat ch views, among others. The wi n:ti me_bat ch data window collects events

44

Aggregation and Grouping

arriving during a given time interval and posts collected events as a batch to listeners at the end
of the time interval. The wi n: | engt h_bat ch data window collects a given number of events and
posts collected events as a batch to listeners when the given number of events has collected.

Related to batch data windows is output rate limiting. While batch data windows retain events the
out put clause offered by output rate limiting can control or stabilize the rate at which events are
output, see Section 5.7, “Stabilizing and Controlling Output: the Output Clause”.

Let's look at how a time batch window may be used:
sel ect account, ampunt from Wthdrawal . wi n:tine_batch(1 sec)

The above statement collects events arriving during a one-second interval, at the end of which
the engine posts the collected events as new events (insert stream) to each listener. The engine
posts the events collected during the prior batch as old events (remove stream). The engine starts
posting events to listeners one second after it receives the first event and thereon.

For statements containing aggregation functions and/or a group by clause, the engine posts
consolidated aggregation results for an event batch. For example, consider the following
statement:

sel ect sun{anount) as mysum from Wthdrawal . win:time_batch(1l sec)

Note that output rate limiting also generates batches of events following the output model as
discussed here.

3.7. Aggregation and Grouping

3.7.1. Insert and Remove Stream

Statements that aggregate events via aggregation functions also post remove stream events as
aggregated values change.

Consider the following statement that alerts when 2 Withdrawal events have been received:
sel ect count(*) as nycount from Wthdrawal having count(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update
listeners. The value of the "mycount" property on that new event is 2. Additionally, when the engine
encounters the third Withdrawal event, it posts an old event to update listeners containing the
prior value of the count, if specifing the r st r eamkeyword in the select clause to select the remove
stream. The value of the "mycount" property on that old event is also 2.

45

Chapter 3. Processing Model

Note the statement above does not specify a data window and thereby counts all arriving events
since statement start. The statement above retains no events and its memory allocation is only
the aggregation state, i.e. a single long value to represent count (*) .

Thei st reamorr st r eamkeyword can be used to eliminate either new events or old events posted
to listeners. The next statement uses the i st r eamkeyword causing the engine to call the listener
only once when the second Withdrawal event is received:

sel ect istreamcount(*) as nycount from Wthdrawal having count(*) = 2

3.7.2. Output for Aggregation and Group-By

Following SQL (Standard Query Language) standards for queries against relational databases,
the presence or absence of aggregation functions and the presence or absence of the gr oup by
clause and gr oup_by named parameters for aggregation functions dictates the number of rows
posted by the engine to listeners. The next sections outline the output model for batched events
under aggregation and grouping. The examples also apply to data windows that don't batch events
and post results continously as events arrive or leave data windows. The examples also apply to
patterns providing events when a complete pattern matches.

In summary, as in SQL, if your query only selects aggregation values, the engine provides one row
of aggregated values. It provides that row every time the aggregation is updated (insert stream),
which is when events arrive or a batch of events gets processed, and when the events leave a data
window or a new batch of events arrives. The remove stream then consists of prior aggregation
values.

Also as in SQL, if your query selects non-aggregated values along with aggregation values in
the select clause, the engine provides a row per event. The insert stream then consists of the
aggregation values at the time the event arrives, while the remove stream is the aggregation value
at the time the event leaves a data window, if any is defined in your query.

EPL allows each aggregation function to specify its own grouping criteria. Please find further
information in Section 5.6.4, “Specifying grouping for each aggregation function”.

The documentation provides output examples for query types in Appendix A, Output Reference
and Samples, and the next sections outlines each query type.

3.7.2.1. Un-aggregated and Un-grouped

An example statement for the un-aggregated and un-grouped case is as follows:
select * fromWthdrawal .wi n:time_batch(1l sec)

At the end of a time interval, the engine posts to listeners one row for each event arriving during
the time interval.

46

Output for Aggregation and Group-By

The appendix provides a complete example including input and output events over time at
Section A.2, “Output for Un-aggregated and Un-grouped Queries”.

3.7.2.2. Fully Aggregated and Un-grouped

If your statement only selects aggregation values and does not group, your statement may look
as the example below:

sel ect sum(anount)
fromWthdrawal . win:tine_batch(1l sec)

At the end of a time interval, the engine posts to listeners a single row indicating the aggregation
result. The aggregation result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at
Section A.3, “Output for Fully-aggregated and Un-grouped Queries”.

If any aggregation functions specify the group_by parameter and a dimension, for example
sum(anount, group_by: account), the query executes as an aggregated and grouped query
instead.

3.7.2.3. Aggregated and Un-Grouped

If your statement selects non-aggregated properties and aggregation values, and does not group,
your statement may be similar to this statement:

sel ect account, sun(anount)
fromWthdrawal . win:tine_batch(1l sec)

At the end of a time interval, the engine posts to listeners one row per event. The aggregation
result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at
Section A.4, “Output for Aggregated and Un-grouped Queries”.

3.7.2.4. Fully Aggregated and Grouped

If your statement selects aggregation values and all non-aggregated properties in the sel ect
clause are listed in the group by clause, then your statement may look similar to this example:

sel ect account, sun{anount)
fromWthdrawal . win:tine_batch(1l sec)
group by account

47

Chapter 3. Processing Model

At the end of a time interval, the engine posts to listeners one row per unique account number.
The aggregation result aggregates per unique account.

The appendix provides a complete example including input and output events over time at
Section A.5, “Output for Fully-aggregated and Grouped Queries”.

If any aggregation functions specify the gr oup_by parameter and a dimension other than gr oup
by dimension(s), for example sun{anount, group_by: account Cat egory), the query executes
as an aggregated and grouped query instead.

3.7.2.5. Aggregated and Grouped

If your statement selects non-aggregated properties and aggregation values, and groups only
some properties using the group by clause, your statement may look as below:

sel ect account, accountNanme, sun{anount)
fromWthdrawal . win:tine_batch(1l sec)
group by account

At the end of a time interval, the engine posts to listeners one row per event. The aggregation
result aggregates per unique account.

The appendix provides a complete example including input and output events over time at
Section A.6, “Output for Aggregated and Grouped Queries”.

3.8. Event Visibility and Current Time

An event sent by your application or generated by statements is visible to all other statements in the
same engine instance. Similarly, current time (the time horizon) moves forward for all statements
in the same engine instance. Please see the Chapter 15, API Reference chapter for how to send
events and how time moves forward through system time or via simulated time, and the possible
threading models.

Within an Esper engine instance you can additionally control event visibility and current time on a
statement level, under the term isolated service as described in Section 15.10, “Service Isolation”.

An isolated service provides a dedicated execution environment for one or more statements.
Events sent to an isolated service are visible only within that isolated service. In the isolated
service you can move time forward at the pace and resolution desired without impacting other
statements that reside in the engine runtime or other isolated services. You can move statements
between the engine and an isolated service.

48

Chapter 4.

Chapter 4. Context and Context
Partitions

4.1. Introduction

This section discusses the notion of context and its role in the Esper event processing language
(EPL).

When you look up the word context in a dictionary, you may find: Context is the set of
circumstances or facts that surround a particular event, situation, etc..

Context-dependent event processing occurs frequently: For example, consider a requirement that
monitors banking transactions. For different customers your analysis considers customer-specific
aggregations, patterns or data windows. In this example the context of detection is the customer.
For a given customer you may want to analyze the banking transactions of that customer by using
aggregations, data windows, patterns including other EPL constructs.

In a second example, consider traffic monitoring to detect speed violations. Assume the speed
limit must be enforced only between 9 am and 5 pm. The context of detection is of temporal nature.

A context takes a cloud of events and classifies them into one or more sets. These sets are called
context partitions. An event processing operation that is associated with a context operates on
each of these context partitions independently. (Credit: Taken from the book "Event Processing
in Action" by Opher Etzion and Peter Niblett.)

A context is a declaration of dimension and may thus result in one or more context partitions.
In the banking transaction example there the context dimension is the customer and a context
partition exists per customer. In the traffic monitoring example there is a single context partition
that exists only between 9 am and 5 pm and does not exist outside of that daily time period.

In an event processing glossary you may find the term event processing agent. An EPL statement
is an event processing agent. An alternative term for context partition is event processing agent
instance.

Esper EPL allows you to declare contexts explicitly, offering the following benefits:

1. Context can apply to multiple statements thereby eliminating the need to duplicate context
dimensional information between statements.

2. Context partitions can be temporally overlapping.

3. Context partitions provide a fine-grained lifecycle that is independent of the lifecycle of
statement lifecycle.

4. Fine-grained lock granularity: The engine locks on the level of context partitions thereby
allowing very high concurrency, with a maximum (theoretical) degree of parallelism at 2°31-1

49

Chapter 4. Context and Contex...

(2,147,483,647) parallel threads working to process a single EPL statement under a hash
segmented context.

5. EPL can become easier to read as common predicate expressions can be factored out into
a context.

6. You may specify a nested context that is composed from two or more contexts. In particular a
temporal context type is frequently used in combination with a segmentation-oriented context.

7. Using contexts your application can aggregate events over time periods (overlapping or non-
overlapping) without retaining any events in memory.

8. Using contexts your application can coordinate time boundaries for multiple statements.

Esper EPL allows you to declare a context explicitly via the creat e cont ext syntax introduced
below.

After you have declared a context, one or more EPL statements can refer to that context by
specifying cont ext name. When an EPL statement refers to a context, all EPL-statement related
state such as aggregations, patterns or data windows etc. exists once per context partition.

If an EPL statement does not declare a context, it implicitly has a single context partition. The
single context partition lives as long as the EPL statement is started and ends when the EPL
statement is stopped.

For more information on locking and threading please see Section 15.7, “Engine Threading and
Concurrency”. For performance related information please refer to Chapter 21, Performance.

4.2. Context Declaration

The create context statement declares a context by specifying a context name and context
dimension information.

A context declaration by itself does not consume any resources or perform any logic until your
application starts at least one statement that refers to that context. Until then the context is inactive
and not in use.

When your application creates or starts the first statement that refers to the context, the engine
activates the context.

As soon as your application stops or destroys all statements that refer to the context, the context
becomes inactive again.

When your application stops or destroys a statement that refers to a context, the context partitions
associated to that statement also end (context partitions associated to other started statements
live on).

When your application stops or destroys the statement that declared the context and does not
also stop or destroy any statements that refer to the context, the context partitions associated to
each such statement do not end.

50

Context-Provided Properties

When your application destroys the statement that declared the context and destroys all
statements that refer to that context then the engine removes the context declaration entirely.

The creat e context statement posts no output events to listeners or subscribers and does not
return any rows when iterated.

4.2.1. Context-Provided Properties

Each of the context declarations makes available a set of built-in context properties as well as
initiating event or pattern properties, as applicable. You may select these context properties for
output or use them in any of the statement expressions.

Refer to built-in context properties as cont ext . property_name, wherein property_name refers to
the name of the built-in context property.

Refer to initiating event or pattern match event properties as
cont ext . stream_name.property_name, wherein stream_name refers to the name assigned to
the event or the tag name specified in a pattern and property_name refers to the name of the
initiating event or pattern match event property.

4.2.2. Keyed Segmented Context

This context assigns events to context partitions based on the values of one or more event
properties, using the value of these property(s) as a key that picks a unique context partition
directly. Each event thus belongs to exactly one context partition or zero context partitions if the
event does not match the optional filter predicate expression(s). Each context partition handles
exactly one set of key values.

The syntax for creating a keyed segmented context is as follows:

create context context_nanme partition [by]
event _property [and event _property [and ...]] from stream def
[, event _property [...] from stream def]

[, ...1

The context_name you assign to the context can be any identifier.

Following the context name is one or more lists of event properties and a stream definition for
each entry, separated by comma (;).

The event_property is the name(s) of the event properties that provide the value(s) to pick a unique
partition. Multiple event property names are separated by the and keyword.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions. The name
of a named window or table is not allowed.

51

Chapter 4. Context and Contex...

You may list multiple event properties for each stream definition. You may list multiple stream
definitions. Please refer to usage guidelines below when specifying multiple event properties and/
or multiple stream definitions.

The next statement creates a context Segment edByCust oner that considers the value of the
cust | d property of the BankTxn event type to pick the context partition to assign events to:

create context SegnentedByCustoner partition by custld from BankTxn

The following statement refers to the context created as above to compute a total withdrawal
amount per account for each customer:

cont ext Segnent edByCust oner
sel ect custld, account, sun{anount) from BankTxn group by account

The following statement refers to the context created as above and detects a withdrawal of more
then 400 followed by a second withdrawal of more then 400 that occur within 10 minutes of the
first withdrawal, all for the same customer:

cont ext Segnent edByCust oner
select * frompattern [

every a=BankTxn(anount > 400) -> b=BankTxn(anount > 400) where tiner:w thin(10
m nut es)

]

The EPL statement that refers to a keyed segmented context must have at least one filter
expression, at any place within the EPL statement that looks for events of any of the event types
listed in the context declaration.

For example, the following is not valid:

/'l Neither Logi nEvent nor LogoutEvent are listed in the context declaration
cont ext Segnent edByCust oner

select * frompattern [every a=Logi nEvent -> b=Logout Event where tiner:wthin(10
m nut es)]

4.2.2.1. Multiple Stream Definitions

If the context declaration lists multiple streams, each event type must be unrelated: You may not
list the same event type twice and you may not list a sub- or super-type of any event type already
listed.

52

Keyed Segmented Context

The following is not a valid declaration since the BankTxn event type is listed twice:

/1l Not valid
create context SegnentedByCustoner partition by custld from BankTxn, account
f rom BankTxn

If the context declaration lists multiple streams, the number of event properties provided for each
event type must also be the same. The value type returned by event properties of each event
type must match within the respective position it is listed in, i.e. the first property listed for each
event type must have the same type, the second property listed for each event type must have
the same type, and so on.

The following is not a valid declaration since the customer id of BankTxn and login time of
Logi nEvent is not the same type:

/'l Invalid: Type m smatch between properties
create context SegmentedByCustomer partition by custld from BankTxn, | oginTinme
from Logi nEvent

The next statement creates a context Segnment edByCust oner that also considers Logi nEvent and

Logout Event :

create context Segnment edByCustoner partition by
custld from BankTxn, loginld from Logi nEvent, |oginld from Logout Event

As you may have noticed, the above example refers to | ogi nl d as the event property name for
Logi nEvent and Logout Event events. The assumption is that the | ogi nl d event property of the
login and logout events has the same type and carries the same exact value as the cust 1 d of
bank transaction events, thereby allowing all events of the three event types to apply to the same
customer-specific context partition.

4.2.2.2. Filters

You may add a filter expression to each of the event types listed. The engine applies the filter
expression to the EPL statement that refers to the context and to the same event type.

The next statement creates a context Segnent edByCust oner that does not consider login events

that indicate that the login failed.

create context SegnentedByCustoner partition by
custld from BankTxn, loginld from Logi nEvent (f ai |l ed=f al se)

53

Chapter 4. Context and Contex...

4.2.2.3. Multiple Properties Per Event Type

You may assign events to context partitions based on the values of two or more event properties.
The engine thus uses the combination of values of these properties to pick a context partition.

An example context declaration follows:
create context ByCustoner AndAccount partition by custld and account from BankTxn

The next statement refers to the context and computes a total withdrawal amount, per account
and customer:

cont ext ByCustonmer AndAccount sel ect custld, account, sun{anount) from BankTxn

As you can see, the above statement does not need to specify gr oup by clause to aggregate per
customer and account, since events of each unique combination of customer id and account are
assigned to separate context partitions.

4.2.2.4. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a keyed
segmented context:

Table 4.1. Keyed Segmented Context Properties

Name Description

name The string-type context name.

id The integer-type internal context id that the engine assigns to the context
partition.

keyl The event property value for the first key.

keyN The event property value for the Nth key.

Assume the keyed segmented context is declared as follows:

create context ByCustoner AndAccount partition by custld and account from BankTxn

You may, for example, select the context properties as follows:

cont ext ByCust omer AndAccount
sel ect context.nane, context.id, context.keyl, context.key2 from BankTxn

54

Hash Segmented Context

4.2.2.5. Examples of Joins

This section discusses the impact of contexts on joins to provide further samples of use and
deepen the understanding of context partitions.

Consider a context declared as follows:
create context ByCust partition by custld from BankTxn

The following statement matches, within the same customer id, the current event with the last 30
minutes of events to determine those events that match amounts:

cont ext ByCust
select * from BankTxn as t1 unidirectional, BankTxn.wi n:tine(30) t2
where t1.anpbunt = t 2. anmount

Note that the wher e-clause in the join above does not mention customer id. Since each BankTxn
applies to a specific context partition the join evaluates within that single context partition.

Consider the next statement that matches a security event with the last 30 minutes of transaction
events for each customer:

cont ext ByCust
select * from SecurityEvent as t1 unidirectional, BankTxn.w n:time(30) t2
where t1.customerName = t 2. custoner Nane

When a security event comes in, it applies to all context partitions and not any specific context
partition, since the Securi t yEvent event type is not part of the context declaration.

4.2.3. Hash Segmented Context

This context assigns events to context partitions based on result of a hash function and modulo
operation. Each event thus belongs to exactly one context partition or zero context partitions if the
event does not match the optional filter predicate expression(s). Each context partition handles
exactly one result of hash value modulo granularity.

The syntax for creating a hashed segmented context is as follows:

create context context_nanme coal esce [by]
hash_f unc_nane(hash_func_paran) from stream def
[, hash_func_nanme(hash_func_param) from stream def]

[...

granul arity granularity_val ue

55

Chapter 4. Context and Contex...

[preal | ocat €]

The context_name you assign to the context can be any identifier.

Following the context name is one or more lists of hash function name and parameters pairs and
a stream definition for each entry, separated by comma (,).

The hash_func_name can either be consi st ent _hash_crc32 or hash_code or a plug-in single-
row function. The hash_func_param is a list of parameter expressions.

« If you specify consi st ent _hash_cr ¢32 the engine computes a consistent hash code using the
CRC-32 algorithm.

« If you specify hash_code the engine uses the Java object hash code.

« If you specify the name of a plug-in single-row function your function must return an integer
value that is the hash code. You may use the wildcard (*) character among the parameters to
pass the underlying event to the single-row function.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions. The name
of a named window or table is not allowed.

You may list multiple stream definitions. Please refer to usage guidelines below when specifying
multiple stream definitions.

The granul arity is required and is an integer number that defines the maximum number of
context partitions. The engine computes hash code modulo granularity hash(params) nod
granularity to determine the context partition. When you specify the hash_code function the engine
uses the object hash code and the computation is params.hashCode() %granularity.

Since the engine locks on the level of context partition to protect state, the granularity defines
the maximum degree of parallelism. For example, a granularity of 1024 means that 1024 context
partitions handle events and thus a maximum 1024 threads can process each assigned statement
concurrently.

The optional pr eal | ocat e keyword instructs the engine to allocate all context partitions at once
at the time a statement refers to the context. This is beneficial for performance as the engine
does not need to determine whether a context partition exists and dynamically allocate, but may
require more memory.

The next statement creates a context Segnent edByCust omer Hash that considers the CRC-32
hash code of the cust | d property of the BankTxn event type to pick the context partition to assign
events to, with up to 16 different context partitions that are preallocated:

create context Segnment edByCust oner Hash
coal esce by consistent_hash _crc32(custld) from BankTxn granularity 16
preal | ocate

56

Hash Segmented Context

The following statement refers to the context created as above to compute a total withdrawal
amount per account for each customer:

cont ext Segment edByCust oner Hash
sel ect custld, account, sun{amount) from BankTxn group by custld, account

Note that the statement above groups by cust | d: Since the events for different customer ids can
be assigned to the same context partition, it is necessary that the EPL statement also groups by
customer id.

The context declaration shown next assumes that the application provides a conput eHash single-
row function that accepts BankTxn as a parameter, wherein the result of this function must be an
integer value that returns the context partition id for each event:

create context MyHashCont ext
coal esce by conput eHash(*) from BankTxn granularity 16 preall ocate

The EPL statement that refers to a hash segmented context must have at least one filter
expression, at any place within the EPL statement that looks for events of any of the event types
listed in the context declaration.

For example, the following is not valid:

/1 Neither Logi nEvent nor LogoutEvent are listed in the context declaration

cont ext Segment edByCust oner Hash

select * frompattern [every a=Logi nEvent -> b=Logout Event where timer:w thin(10
m nut es) |

4.2.3.1. Multiple Stream Definitions

If the context declaration lists multiple streams, each event type must be unrelated: You may not
list the same event type twice and you may not list a sub- or super-type of any event type already
listed.

If the context declaration lists multiple streams, the hash code function should return the same
hash code for the related keys of all streams.

The next statement creates a context HashedByCust oner that also considers Logi nEvent and
Logout Event :

create context HashedByCustomer as coal esce
consi stent _hash_crc32(custld) from BankTxn,
consi stent _hash_crc32(1 ogi nld) from Logi nEvent,

57

Chapter 4. Context and Contex...

consi stent _hash_crc32(1 ogi nld) from Logout Event
granul arity 32 preallocate

4.2.3.2. Filters

You may add a filter expression to each of the event types listed. The engine applies the filter
expression to the EPL statement that refers to the context and to the same event type.

The next statement creates a context HashedByCust oner that does not consider login events

that indicate that the login failed.

create context HashedByCust oner
coal esce consi stent_hash_crc32(loginld) from Logi nEvent(failed = fal se)
granul arity 1024 preallocate

4.2.3.3. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a keyed
segmented context:

Table 4.2. Keyed Segmented Context Properties

Name Description

nane ‘ The string-type context name.
id The integer-type internal context id that the engine assigns to the context
partition.

Assume the hashed segmented context is declared as follows:

create context ByCustonerHash coal esce consistent_hash_crc32(custld) from
BankTxn granul arity 1024

You may, for example, select the context properties as follows:

cont ext ByCust omer Hash
sel ect context.nane, context.id from BankTxn

4.2.3.4. Performance Considerations

The hash_code function based on the Java object hash code is generally faster then the
CRC32 algorithm. The CRC32 algorithm, when used with a non-String parameter or with multiple

58

Category Segmented Context

parameters, requires the engine to serialize all expression results to a byte array to compute the
CRC32 hash code.

We recommend keeping the granularity small (1k and under) when using pr eal | ocat e.

When specifying a granularity greater then 65536 (64k) the engine switches to a Map-based
lookup of context partition state which can slow down statement processing.

4.2.4. Category Segmented Context

This context assigns events to context partitions based on the values of one or more event
properties, using a predicate expression(s) to define context partition membership. Each event
can thus belong to zero, one or many context partitions depending on the outcome of the predicate
expression(s).

The syntax for creating a category segmented context is as follows:

create context context_nane
group [by] group_expression as category_| abel
[, group [by] group_expression as category_| abel]

L.

from stream def

The context_name you assign to the context can be any identifier.

Following the context name is a list of groups separated by the gr oup keyword. The list of group
is followed by the f r omkeyword and a stream definition.

The group_expression is an expression that categorizes events. Each group expression must be
followed by the as keyword and a category label which can be any identifier.

Group expressions are predicate expression and must return a Boolean true or false when applied
to an event. For a given event, any number of the group expressions may return true thus
categories can be overlapping.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions.

The next statement creates a context Cat egor yBy Tenp that consider the value of the t enper at ure
property of the Sensor Event event type to pick context partitions to assign events to:

create context CategoryByTenp
group tenp < 65 as cold,
group tenp between 65 and 85 as nornal,
group tenp > 85 as | arge
from Sensor Event

59

Chapter 4. Context and Contex...

The following statement simply counts, for each category, the number of events and outputs the
category label and count:

cont ext CategoryByTenp sel ect context.label, count(*) from SensorEvent

4.2.4.1. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a category
segmented context:

Table 4.3. Category Segmented Context Properties

Name Description

name The string-type context name.

id The integer-type internal context id that the engine assigns to the context
partition.

| abel The category label is the string identifier value after the as keyword that is
specified for each group.

You may, for example, select the context properties as follows:

cont ext Cat egoryByTenp
sel ect context.nane, context.id, context.|abel from Sensor Event

4.2.5. Non-Overlapping Context

You may declare a non-overlapping context that exists once or that repeats in a regular fashion
as controlled by start and end conditions. The number of context partitions is always either one
or zero: Context partitions do not overlap.

The syntax for creating a non-overlapping context is as follows:

create context context_name
start (@ow | start_condition)
end end_condition

The context_name you assign to the context can be any identifier.

Following the context name is the start keyword, either @ow or a start_condition, the end
keyword and an end_condition.

Both the start (if specified) and end condition can be an event filter, a pattern, a crontab or a time
period. The syntax of start and end conditions is described in Section 4.2.7, “Context Conditions”.

60

Non-Overlapping Context

Once the start condition occurs, the engine no longer observes the start condition and begins
observing the end condition. Once the end condition occurs, the engine observes the start
condition again. If you specified @ow instead of a start condition, the engine begins observing
the end condition instead.

If you specified an event filter as the start condition, then the event also counts towards the
statement(s) that refer to that context. If you specified a pattern as the start condition, then the
events that may constitute the pattern match can also count towards the statement(s) that refer
to the context provided that @ ncl usi ve and event tags are both specified (see below).

At the time of context activation when your application creates a statement that utilizes the context,
the engine checks whether the start and end condition are crontab expressions. The engine
evaluates the start and end crontab expressions and determines whether the current time is a time
between start and end. If the current time is between start and end times, the engine allocates
the context partition and waits for observing the end time. Otherwise the engine waits to observe
the start time and does not allocate a context partition.

The built-in context properties that are available are the same as described in Section 4.2.6.2,
“Built-In Context Properties”.

The next statement creates a context Ni neToFi ve that declares a daily time period that starts at
9 am and ends at 5 pm:

create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

The following statement outputs speed violations between 9 am and 5 pm, considering a speed
of 100 or greater as a violation:

context NineToFive select * from TrafficEvent(speed >= 100)

The example that follows demonstrates the use of an event filter as the start condition and a
pattern as the end condition.

The next statement creates a context Power Qut age that starts when the first Power Qut ageEvent

event arrives and that ends 5 seconds after a subsequent Power OnEvent arrives:

create context PowerCQutage start PowerQutageEvent end pattern [Power OnEvent -
> tinmer:interval (5)]

The following statement outputs the temperature during a power outage and for 5 seconds after
the power comes on:

61

Chapter 4. Context and Contex...

cont ext Power Qutage sel ect * from Tenper at ureEvent

To output only the last value when a context partition ends (terminates, expires), please read on
to the description of output rate limiting.

The next statement creates a context Ever y15M nut es that starts immediately and lasts for 15
minutes, repeatedly allocating a new context partition at the end of 15 minute intervals:

create context Everyl5M nutes start @ow end after 15 m nutes

Tip

A non-overlapping context with @ow is always-on: A context partition is always
allocated at any given point in time. Only if @ow is specified will a context partition
always exist at any point in time.

create context MyCtx start MyStartEvent end MyEndEvent

context MyCtx select count(*) as cnt from M/EndEvent output when
term nat ed

62

Overlapping Context

4.2.6. Overlapping Context

This context initiates a new context partition when an initiating condition occurs, and terminates
one or more context partitions when the terminating condition occurs. The engine maintains
as many context partitions as the initiating condition fired, and discards context partitions that
terminate when the termination condition fires.

The syntax for creating an overlapping context is as follows:

create context context_nane
initiated [by] [distinct (distinct_value expr [,...])] [@wow
and] initiating_condition
terminated [by] term nating_condition

The context_name you assign to the context can be any identifier.

Following the context name is the i ni ti at ed keyword. After the i ni ti at ed keyword you can
optionally specify the di sti nct keyword and, within parenthesis, list one or more distinct value
expressions. After the i ni ti at ed keyword you can also specify @ow and as explained below.

After the i ni ti at ed keyword you must specify the initiating condition. It follows the t er mi nat ed
keyword followed by the terminating condition.

Both the initiating and terminating condition can be an event filter, a pattern, a crontab or a time
period. The syntax of initiating and terminating conditions is described in Section 4.2.7, “Context
Conditions”.

If you specified @ow and before the initiating condition then the engine initiates a new context
partition immediately. The @owis only allowed in conjunction with initiation conditions that specify
a pattern, crontab or time period and not with event filters.

If you specified an event filter for the initiating condition, then the event that initiates a new context
partition also counts towards the statement(s) that refer to that context. If you specified a pattern
to initiate a new context partition, then the events that may constitute the pattern match can also
count towards the statement(s) that refer to the context provided that @ ncl usi ve and event tags
are both specified (see below).

The next statement creates a context &t xTr ai nEnt er that allocates a new context partition when
a train enters a station, and that terminates each context partition 5 minutes after the time the
context partition was allocated:

create context CtxTrai nEnter
initiated by Trai nEnterEvent as te
termnated after 5 m nutes

The context declared above assigns the stream name t e. Thereby the initiating event's properties
can be accessed, for example, by specifying cont ext . te. trai nl d.

63

Chapter 4. Context and Contex...

The following statement detects when a train enters a station as indicated by a Tr ai nEnt er Event ,
but does not leave the station within 5 minutes as would be indicated by a matching
Trai nLeaveEvent :

context CtxTrainEnter
select t1 frompattern [

t1=Trai nEnterEvent -> tiner:interval (5 mn) and not Trai nLeaveEvent (trainld
= context.te.trainld)

]

Since the Trai nEnter Event that initiates a new context partition also counts towards the
statement, the first part of the pattern (the t 1=Tr ai nEnt er Event) is satisfied by that initiating
event.

The next statement creates a context Ct xEachM nut e that allocates a new context partition
immediately and every 1 minute, and that terminates each context partition 1 minute after the time
the context partition was allocated:

create context CtxEachM nute
initiated @ow and pattern [every tiner:interval (1 m nute)]
termnated after 1 m nutes

The statement above specifies @ow to instruct the engine to allocate a new context partition
immediately as well as when the pattern fires. Without the @ow the engine would only allocate a
new context partition when the pattern fires after 1 minute and every minute thereafter.

The following statement averages the temperature, starting anew every 1 minute and outputs the
aggregate value continuously:

context CtxEachM nute sel ect avg(tenp) from SensorEvent

To output only the last value when a context partition ends (terminates, expires), please read on
to the description of output rate limiting.

/ Note

If you specified an event filter or pattern as the termination condition for a context
partition, and statements that refer to the context specify an event filter or pattern
that matches the same conditions, use @Priority to instruct the engine whether
the context management or the statement evaluation takes priority (see below for
configuring prioritized execution). See the note above for more information.

64

Overlapping Context

4.2.6.1. Distinct Events for the Initiating Condition

If your initiating condition is a filter context condition, you may specify the di sti nct keyword
followed by one or more distinct-value expressions.

The following sample EPL specifies a context that initiates a context partition for distinct order id

values, remembering that order id until the time the context partition terminates:

create context O derContext
initiated by distinct(orderld) NewOrderEvent as newOrder
term nated by C oseOrderEvent (cl oseOrderld = newOrder. orderld)

The engine allocates a new context partition only when a context partition does not already
exist for a given order|d value of NewOr der Event . When the context partition terminates at
the time a C oseOr der Event arrives, the engine forgets about the or der | d, allowing the next
NewOr der Event event for the same or der | d to allocate a new context partition.

Please note the following limitations:

e Thedi stinct keyword requires the initiating condition to be an event stream (and not a crontab
or pattern, for example) and a stream name must be assigned using the as keyword.

» Subqueries, aggregations and the special pr ev and pri or functions are not allowed among the
distinct-value expressions.

4.2.6.2. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a context:

Table 4.4. Context Properties

Name Description

nane The string-type context name.

start Ti me The start time of the context partition.

endTi me The end time of the context partition. This field is only available in the case that
it can be computed from the crontab or time period expression that is provided.

You may, for example, select the context properties as follows:

context Ni neToFi ve
sel ect context.nanme, context.startTine, context.endTine from TrafficEvent (speed
>= 100)

65

Chapter 4. Context and Contex...

The following statement looks for the next train leave event for the same train id and selects a
few of the context properties:

context CtxTrainEnter
select *, context.te.trainld, context.id, context.nane
from Trai nLeaveEvent (trainld = context.te.trainld)

4.2.7. Context Conditions

Context start/initiating and end/terminating conditions are for use with overlapping and non-
overlapping contexts. Any combination of conditions may be specified.

4.2.7.1. Filter Context Condition

Use the syntax described here to define the stream that starts/initiates a context partition or that
ends/terminates a context partition.

The syntax is:

event _streamnane [(filter _criteria)] [as stream nane]

The event_stream_name is either the name of an event type or name of an event stream populated
by an insert into statement. The filter_criteria is optional and consists of a list of expressions
filtering the events of the event stream, within parenthesis after the event stream name.

Two examples are:

/1 A non-overl appi ng context that starts when MyStart Event arrives and ends when
M/EndEvent arrives
create context MyContext start MyStartEvent end MyEndEvent

/1 An overl appi ng context where each MyEvent with | evel greater zero
/[l initiates a new context partition that term nates after 10 seconds
create context MyContext initiated M/Event (level > 0) ternmi nated after 10 seconds

You may correlate the start/initiating and end/terminating streams by providing a stream name
following the as keyword, and by referring to that stream name in the filter criteria of the end
condition.

Two examples that correlate the start/initiating and end/terminating condition are:

/1 A non-overl appi ng context that starts when MyEvent arrives
/1 and ends when a matching MyEvent arrives (sane id)

66

Context Conditions

create context MyContext
start MyEvent as nyevent
end MyEvent (i d=nyevent . i d)

/1 An overlapping context where each MilInitEvent initiates a new context
partition

/1 that termi nates when a matching MyTernEvent arrives

create context M/Context

initiated by MyInitEvent as el

term nated by MyTernEvent (id=el.id, level <> el.level)

4.2.7.2. Pattern Context Condition

You can define a pattern that starts/initiates a context partition or that ends/terminates a context
partition.

The syntax is:

pattern [pattern_expression] [@nclusive]

The pattern_expression is a pattern at Chapter 7, EPL Reference: Patterns.

Specify @ ncl usi ve after the pattern to have those same events that constitute the pattern match
also count towards any statements that are associated to the context. You must also provide a
tag for each event in a pattern that should be included.

Examples are:

/'l A non-overlapping context that starts when either StartEventOne or
Start Event Two arrive
// and that ends after 5 seconds.
/'l Here neither StartEventOne or StartEvent Two count towards any statements
/1 that are referring to the context.
create context M/Context
start pattern [StartEvent One or StartEvent Two]
end after 5 seconds

/] Same as above.
/! Here both StartEventOne or StartEvent Two do count towards any statenents
// that are referring to the context.
create context MyContext
start pattern [a=StartEventOne or b=StartEvent Two] @ ncl usive
end after 5 seconds

67

Chapter 4. Context and Contex...

/1 An over | appi ng cont ext where each di stinct Myl nitEvent initiates a new context
/1 and each context partition term nates after 20 seconds
/1 W use @nclusive to say that the sane MylnitEvent that fires the pattern
/Il also applies to statenents that are associated to the context.
create context M/Context
initiated by pattern [every-distinct(a.id, 20 sec) a=MlnitEvent] @ ncl usi ve
termnated after 20 sec

/1 An overl appi ng context where each pattern match initiates a new context

/1l and all context partitions term nate when MyTernEvent arrives.

/'l The MylnitEvent and MyQt her Event that trigger the pattern are thensel ves not
i ncl uded

/'l in any statenents that are associated to the context.

create context M/Context
initiated by pattern [every Myl nitEvent -> MyQt her Event where tiner:w thin(5)]
term nated by MyTernEvent

You may correlate the start and end streams by providing tags as part of the pattern, and by
referring to the tag name(s) in the filter criteria of the end condition.

An example that correlates the start and end condition is:

/1 A non-overlapping context that starts when either StartEventOne or
Start Event Two arrive
/1 and that ends when either a matchi ng EndEvent One or EndEvent Two arrive
create context M/Context

start pattern [a=StartEvent One or b=StartEvent Two] @ ncl usi ve

end pattern [EndEvent One(id=a.id) or EndEvent Two(id=b.id)]

4.2.7.3. Crontab Context Condition

Crontab expression are described in Section 7.6.4, “Crontab (timer:at)”.
Examples are:
/1 A non-overl appi ng context started daily between 9 amto 5 pm

// and not started outside of these hours:
create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

/1 An overl appi ng context where crontab initiates a new context every 1 m nute
/1 and each context partition term nates after 10 seconds:

68

Context Nesting

create context MyContext initiated (*, *, *, *, *) terminated after 10 seconds

4.2.7.4. Time Period Context Condition

You may specify a time period that the engine observes before the condition fires. Time period
expressions are described in Section 5.2.1, “Specifying Time Periods”.

The syntax is:

after time_period_expression

Examples are:

/1 A non-overl appi ng context started after 10 seconds
/1 that ends 1 minute after it starts and that again starts 10 seconds t hereafter.
create context NonOverl aplOSecFor1M n start after 10 seconds end after 1 minute

/1 An overl apping context that starts a new context partition every 5 seconds
/1 and each context partition lasts 1 minute

create context Overl ap5SecForlMn initiated after 5 seconds termnated after 1
m nut e

4.3. Context Nesting

A nested context is a context that is composed from two or more contexts.

The syntax for creating a nested context is as follows:

create context context_nane
cont ext nested_context_nanme [as] nested_context_definition ,
context nested_context_nane [as] nested context_definition [, ...]

The context_name you assign to the context can be any identifier.

Following the context name is a comma-separated list of nested contexts. For each nested context
specify the cont ext keyword followed a nested context name and the nested context declaration.
Any of the context declarations as outlined in Section 4.2, “Context Declaration” are allowed for
nested contexts. The order of nested context declarations matters as outlined below. The nested
context names have meaning only in respect to built-in properties and statements may not be
assigned to nested context names.

The next statement creates a nested context Ni neToFi veSegnent ed that, between 9 am and 5
pm, allocates a new context partition for each customer id:

69

Chapter 4. Context and Contex...

create context N neToFi veSegnent ed
context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *),
cont ext Segnent edByCustoner partition by custld from BankTxn

The following statement refers to the nested context to compute a total withdrawal amount per
account for each customer but only between 9 am and 5 pm:

context N neToFi veSegnent ed
sel ect custld, account, sun{anount) from BankTxn group by account

Esper implements nested contexts as a context tree: The context declared first controls the
lifecycle of the context(s) declared thereafter. Thereby, in the above example, outside of the
9am-to-5pm time the engine has no memory and consumes no resources in relationship to bank
transactions or customer ids.

When combining segmented contexts, the set of context partitions for the nested context
effectively is the Cartesian product of the partition sets of the nested segmented contexts.

When combining temporal contexts with other contexts, since temporal contexts may overlap and
may terminate, it is important to understand that temporal contexts control the lifecycle of sub-
contexts (contexts declared thereafter). The order of declaration of contexts in a nested context
can thereby change resource usage and output result.

The next statement creates a context that allocates context partition only when a train enters a
station and then for each hash of the tag id of a passenger as indicated by PassengerScanEvent
events, and terminates all context partitions after 5 minutes:

create context CtxNestedTrainEnter
context InitCtx initiated by Trai nEnterEvent as te terninated after 5 mnutes,
cont ext HashCt x coal esce by consi stent _hash_crc32(t agl d) from
Passenger ScanEvent
granularity 16 preallocate

In the example above the engine does not start tracking PassengerScanEvent events or hash
codes or allocate context partitions until a TrainEnterEvent arrives.

4.3.1. Built-In Nested Context Properties

Context properties of all nested contexts are available for use. Specify
cont ext . nested_context_name. property _name or if nested context declaration provided stream
names or tags for patterns then cont ext . nested_context_name. stream_name. property_name.

For example, consider the Ct xNestedTrai nEnter context declared earlier. The following
statement selects a few of the context properties:

70

Partitioning Without Context Declaration

cont ext CtxNestedTrai nEnter
sel ect context.IlnitCx.te.trainld, context.HashCx.id,
tagld, count(*) from Passenger ScanEvent group by tagld

In a second example, consider the Ni neToFi veSegnent ed context declared earlier. The following
statement selects a few of the context properties:

context N neToFi veSegnent ed
sel ect cont ext. Ni neToFi ve. start Ti e, cont ext . Segnent edByCust oner . keyl from
BankTxn

The following context properties are available in your EPL statement when it refers to a nested
context:

Table 4.5. Nested Context Properties

Name Description

nane ‘ The string-type context name.
id The integer-type internal context id that the engine assigns to the context
partition.

This example selects the nested context name and context partition id:

context N neToFi veSegnented sel ect context.nanme, context.id from BankTxn

4.4, Partitioning Without Context Declaration

You do not need to declare a context to partition data windows, aggregation values or patterns
themselves individually. You may mix-and-match partitioning as needed.

The table below outlines other partitioning syntax supported by EPL:

Table 4.6. Partition in EPL without the use of Context Declaration

Partition Description Example

Type

Grouped Partitions at the level of dat

Data window, only applies to appender // Length window of 2 events per
Window data window(s). e

select * from

Syntax: st d: gr oupby(...)
BankTxn. st d: gr oupwi n(cust1d).w n:|ength(2)

71

Chapter 4. Context and Contex...

Partition Description Example

Type
Grouped Partitons at the level ¢

Aggregation aggregation, only applies to an Se€l ect avg(price), w ndow(*)
aggregations from BankTxn group by custld

Syntax: group by

Pattern Partitions pattern subexpressions.
select * frompattern [

Syntax: every or every-di sti ncl every a=BankTxn -> BankTxn(custld
= a.custld)...]

Match- Partitions match-recogniz
Recognize patterns. select * from match_recogni ze
partition by custld

Syntax: partition by

Join and Partitions join and subqueries.
Subquery select * from ... where a.custld =

Syntax: where ... b.custld

4.5. Output When Context Partition Ends

You may use output rate limiting to trigger output when a context partition ends, as further
described in Section 5.7, “Stabilizing and Controlling Output: the Output Clause”.

Consider the fixed temporal context: A new context partition gets allocated at the designated start
time and the current context partition ends at the designated end time. To trigger output when the
context partition ends and before it gets removed, read on.

The same is true for the initiated temporal context: That context starts a new context partition when
trigger events arrive or when a pattern matches. Each context partition expires (ends, terminates)
after the specified time period passed. To trigger output at the time the context partition expires,
read on.

You may use the when t er mi nat ed syntax with output rate limiting to trigger output when a context
partition ends. The following example demonstrates the idea by declaring an initiated temporal
context.

The next statement creates a context Ct xEachM nut e that initiates a new context partition every
1 minute, and that expires each context partition after 5 minutes:

create context CtxEachM nute
initiated by pattern [every tiner:interval (1 mn)]
ternminated after 5 m nutes

72

Output When Context Partition Ends

The following statement computes an ongoing average temperature however only outputs the last
value of the average temperature after 5 minutes when a context partition ends:

context CtxEachM nute
sel ect context.id, avg(tenp) from SensorEvent output snapshot when terninated

The when t erni nat ed syntax can be combined with other output rates.

The next example outputs every 1 minute and also when the context partition ends:

context CtxEachM nute
sel ect context.id, avg(tenp) from SensorEvent output snapshot every 1 minute
and when term nated

In the case that the end/terminating condition of the context partition is an event or pattern, the
context properties contain the information of the tagged events in the pattern or the single event
that ended/terminated the context partition.

For example, consider the following context wherein the engine initializes a new context partition
for each arriving MySt art Event event and that terminates a context partition when a matching
M/EndEvent arrives:

create context CtxSanple
initiated by MyStart Event as startevent
term nated by MyEndEvent (id = startevent.id) as endevent

The following statement outputs the id property of the initiating and terminating event and only
outputs when a context partition ends:

context CtxSanple
sel ect context.startevent.id, context.endevent.id, count(*) from M/Event
out put snapshot when terninated

You may in addition specify a termination expression that the engine evaluates when a context
partition terminates. Only when the terminaton expression evaluates to true does output occur.
The expression may refer to built-in properties as described in Section 5.7.1.1, “Controlling Output
Using an Expression”. The syntax is as follows:

...output when term nated and terni nati on_expression

73

Chapter 4. Context and Contex...

The next example statement outputs when a context partition ends but only if at least two events
are available for output:

context CtxEachM nute
sel ect * from Sensor Event out put when terninated and count _i nsert >= 2

The final example EPL outputs when a context partition ends and sets the variable nyvar to a
new value:

context CtxEachM nute
sel ect * from Sensor Event output when termnated then set nyvar=3

4.6. Context and Named Window

Named windows are globally-visible data window that may be referred to by multiple statements.
You may refer to named windows in statements that declare a context without any special
considerations.

You may also create a named window and declare a context for the named window. In this case
the engine in effect manages separate named windows, one for each context partition. Limitations
apply in this case that we discuss herein.

For example, consider the 9 am to 5 pm fixed temoral context as shown earlier:
create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

You may create a named window that only exists between 9 am and 5 pm:

context NineToFive create w ndow SpeedingEventslHour.win:tine(30 min) as
Traf fi cEvent

You can insert into the named window:
insert into Speedi ngEvent slHour select * from Traffi cEvent (speed > 100)
Any on-merge, on-select, on-update and on-delete statements must however declare the same

context.

The following is not a valid statement as it does not declare the same context that was used to
declare the named window:

74

Context and Tables

/1 You nust declare the same context for on-trigger statenents
on Truncat eEvent del ete from Speedi ngEvent s1Hour

The following is valid:

context Ni neToFive on Truncat eEvent del ete from Speedi ngEvent s1Hour

For context declarations that require specifying event types, such as the hash segmented context
and keyed segmented context, please provide the named window underlying event type.

The following sample EPL statements define a type for the named window, declare a context and
associate the named window to the context:

create schema ScoreCycle (userld string, keyword string, productld string, score
| ong)

create context HashByUserCtx as
coal esce by consistent_hash_crc32(userld) from ScoreCycle granularity 64

context HashByUserCtx create w ndow ScoreCycleW ndow. std: uni que(productld,
keyword) as ScoreCycle

4.7. Context and Tables

Tables are globally-visible data structures that hold rows organized by primary key(s) and that
may be referred to by multiple statements.

You may also create a table and declare a context for the table. In this case the engine in effect
manages separate tables, one for each context partition. Limitations apply in this case that we
discuss herein.

For example, consider the 9 am to 5 pm fixed temoral context as shown earlier:

create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

You may create a table that only exists between 9 am and 5 pm:

context N neToFive create table AverageSpeedTabl e (

75

Chapter 4. Context and Contex...

carld string primary key,
avgSpeed avg(doubl e))

You can aggregate-into the table only if the aggregating statement declares the same context:

/'l declare the sane context as for the table
context N neToFive into table AverageSpeedTabl e
sel ect avg(speed) as avgSpeed

from Traf fi cEvent

group by carld

When you declare a context for a table, any select, on-merge, on-select, on-update and on-delete
statements as well as statements that subquery the table must declare the same context.

For example, this EPL truncates the AverageSpeedTable:

context Ni neToFive on Truncat eEvent del ete from AverageSpeedTabl e

4.8. Context and Variables

A variable is a scalar, object or event value that is available for use in all statements. Variables
can be either global variables or context variables.

The value of a global variable is the same for all context partitions. The next example declares
a global threshold variable:

create variabl e integer var_gl obal threshold = 100

For context variables, there is a variable value per context partition. The next example declares
a context and a context variable:

create context ParkinglLotContext initiated by CarArrival Event as cae termn nated
by CarDepartureEvent(lot = cae.lot)

cont ext Par ki ngLot Context create variabl e i nteger var_parKkingl ot _threshold = 100

The variable var _par ki ngl ot _t hr eshol d is a context variable. Each context partition can have
its own value for the variable.

76

Operations on Specific Context Partitions

For more information on variables, please refer to Section 5.17, “Variables and Constants”.

Context variables can only be used in statements that associated to the same context.

4.9. Operations on Specific Context Partitions

Selecting specific context partitions and interrogating context partitions is useful for:

1. Iterating a specific context partition or a specific set of context partitions. Iterating a statement
is described in Section 15.3.5, “Using Iterators”.

2. Executing an on-demand (fire-and-forget) query against specific context partition(s). On-
demand queries are described in Section 15.5, “On-Demand Fire-And-Forget Query
Execution”.

Esper provides APIs to identify, filter and select context partitions for statement iteration and on-
demand queries. The APIs are described in detail at Section 15.19, “Context Partition Selection”.

For statement iteration, your application can provide context selector objects to the iterate
and saf el t er at e methods on EPSt at erent . If your code does not provide context selectors the
iteration considers all context partitions. At the time of iteration, the engine obtains the current set
of context partitions and iterates each independently. If your statement has an order-by clause,
the order-by clause orders within the context partition and does not order across context partitions.

For on-demand queries, your application can provide context selector objects to the
execut eQuer y method on EPRunt i me and to the execut e method on EPOnDenandPr epar edQuery.
If your code does not provide context selectors the on-demand query considers all context
partitions. At the time of on-demand query execution, the engine obtains the current set of context
partitions and queries each independently. If the on-demand query has an order-by clause, the
order-by clause orders within the context partition and does not order across context partitions.

77

78

Chapter 5.

Chapter 5. EPL Reference: Clauses

5.1. EPL Introduction

The Event Processing Language (EPL) is a SQL-standard language with extensions, offering
SELECT, FROM WHERE, GROUP BY, HAVI NG and ORDER BY clauses. Streams replace tables as the
source of data with events replacing rows as the basic unit of data. Since events are composed
of data, the SQL concepts of correlation through joins, filtering and aggregation through grouping
can be effectively leveraged.

The | NSERT | NTO clause is recast as a means of forwarding events to other streams for further
downstream processing. External data accessible through JDBC may be queried and joined with
the stream data. Additional clauses such as the PATTERN and QUTPUT clauses are also available
to provide the missing SQL language constructs specific to event processing.

The purpose of the UPDATE clause is to update event properties. Update takes place before an
event applies to any selecting statements or pattern statements.

EPL statements are used to derive and aggregate information from one or more streams of events,
and to join or merge event streams. This section outlines EPL syntax. It also outlines the built-in
views, which are the building blocks for deriving and aggregating information from event streams.

EPL statements contain definitions of one or more views. Similar to tables in a SQL statement,
views define the data available for querying and filtering. Some views represent windows over
a stream of events. Other views derive statistics from event properties, group events or handle
unigue event property values. Views can be staggered onto each other to build a chain of views.
The Esper engine makes sure that views are reused among EPL statements for efficiency.

The built-in set of views is:

1. Data window views: win:length, win:length batch, win:time, win:tinme_batch,
win:time_length_batch, wn:tinme_accum w n:ext_timed, w n:ext_tinmed_batch,
ext:sort, ext:rank, ext:time_order, std:unique, std:groupwin, std:lastevent,
std:firstevent,std:firstunique,win:firstlength,win:firsttine.

2. Views that derive statistics: std:size, stat:uni, stat:linest, stat:correl,
stat: wei ghted_avg.

EPL provides the concept of named window. Named windows are data windows that can be
inserted-into and deleted-from by one or more statements, and that can queried by one or more
statements. Named windows have a global character, being visible and shared across an engine
instance beyond a single statement. Use the CREATE W NDOWCclause to create named windows.
Use the ON MERGE clause to atomically merge events into named window state, the | NSERT | NTO
clause to insert data into a named window, the ON DELETE clause to remove events from a named
window, the ON UPDATE clause to update events held by a nhamed window and the ON SELECT

79

Chapter 5. EPL Reference: Clauses

clause to perform a query triggered by a pattern or arriving event on a named window. Finally, the
name of the named window can occur in a statement's FROMclause to query a named window or
include the named window in a join or subquery.

EPL provides the concept of table. Tables are globally-visible data structures that typically have
primary key columns and that can hold aggregation state. You can create tables using CREATE
TABLE. An overview of named windows and tables, and a comparison between them, can be found
at Section 6.1, “Overview”. The aforementioned ON SELECT/ MERGE/ UPDATE/ | NSERT/ DELETE,
I NSERT | NTOas well as joins and subqueries can be used with tables as well.

EPL allows execution of on-demand (fire-and-forget, non-continuous, triggered by API) queries
against named windows and tables through the runtime API. The query engine automatically
indexes named window data for fast access by ON SELECT/ MERGE/ UPDATE/ | NSERT/ DELETE
without the need to create an index explicitly, or can access explicit (secondary) table indexes for
operations on tables. For fast on-demand query execution via runtime API use the CREATE | NDEX
syntax to create an explicit index for the named window or table in question.

Use CREATE SCHEMA to declare an event type.

Variables can come in handy to parameterize statements and change parameters on-the-fly and
in response to events. Variables can be used in an expression anywhere in a statement as well
as in the output clause for dynamic control of output rates.

Esper can be extended by plugging-in custom developed views and aggregation functions.

5.2. EPL Syntax

EPL queries are created and stored in the engine, and publish results to listeners as events are
received by the engine or timer events occur that match the criteria specified in the query. Events
can also be obtained from running EPL queries via the safelterator and iterator methods
that provide a pull-data API.

The sel ect clause in an EPL query specifies the event properties or events to retrieve. The f rom
clause in an EPL query specifies the event stream definitions and stream names to use. The wher e
clause in an EPL query specifies search conditions that specify which event or event combination
to search for. For example, the following statement returns the average price for IBM stock ticks
in the last 30 seconds.

sel ect avg(price) from StockTick.win:tinme(30 sec) where synbol =' | BM

EPL queries follow the below syntax. EPL queries can be simple queries or more complex queries.
A simple select contains only a sel ect clause and a single stream definition. Complex EPL
queries can be build that feature a more elaborate select list utilizing expressions, may join multiple
streams, may contain a wher e clause with search conditions and so on.

[annot ati ons]

80

Specifying Time Periods

[expressi on_decl arati ons]

[cont ext cont ext nane]

[into table table_nane]

[insert into insert _into_def]

sel ect select_list

fromstreamdef [as nane] [, streamdef [as nane]] [,...]
[where search_conditions]

[group by groupi ng_expression_list]
[havi ng groupi ng_search_conditi ons]
[out put out put _specification]
[order by order_by expression_|ist]
[lTmt numrows]

5.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter.
Time periods follow the syntax below.

tinme-period : [year-part] [nonth-part] [week-part] [day-part] [hour-part]

[mM nute-part] [seconds-part] [ml|liseconds-part]
year-part : (nunber|variable_nane) ("years" | "year")
nmont h-part : (nunber|variable_nane) ("nonths" | "nonth")
week-part : (nunber|variable_nane) ("weeks" | "week")
day-part : (nunber|variabl e_nane) ("days" | "day")
hour-part : (nunber|variable_nane) ("hours" | "hour")
m nute-part : (nunber|variable_nane) ("mnutes" | "mnute" | "mn")
seconds-part : (nunber|variabl e _nane) ("seconds" | "second" | "sec")
m | liseconds-part : (nunber|variable_nane) ("mlliseconds"” | "mllisecond"
"msec")

Some examples of time periods are:

10 seconds

10 m nutes 30 seconds

20 sec 100 nsec

1 day 2 hours 20 m nutes 15 seconds 110 nilliseconds
0.5 minutes

1 year

1 year 1 nonth

Variable names and substitution parameters '?' for prepared statements are also allowed as part
of a time period expression.

The engine uses calendar operations when the time period specifies a month or year. The engine
uses milliseconds when the time period does not specify a month or year.

81

Chapter 5. EPL Reference: Clauses

7 Note
[When the time period has a month or year part, all values must be integer-type

e
values.

5.2.2. Using Comments

Comments can appear anywhere in the EPL or pattern statement text where whitespace is
allowed. Comments can be written in two ways: slash-slash (// ...) comments and slash-star
(/* ... */)comments.

Slash-slash comments extend to the end of the line:

I/ This comment extends to the end of the |ine.
I/ Two forward slashes with no whitespace between them begin such comments.

select * from M/Event // this is a slash-slash coment

/1 Al of this text together is a valid statenent.
Slash-star comments can span multiple lines:

/* This comment is a "slash-star" comment that spans nultiple lines.
* |t begins with the slash-star sequence with no space between the '/' and
'*' characters.

* By convention, subsequent |ines can begin with a star and are aligned, but
this is

* not required.

*/

select * from MyEvent /* this also works */
Comments styles can also be mixed:

select fieldl, // first coment
/* second comment*/ field2
from MyEvent

5.2.3. Reserved Keywords

Certain words such as sel ect, del et e or set are reserved and may not be used as identifiers.
Please consult Appendix B, Reserved Keywords for the list of reserved keywords and permitted
keywords.

82

Escaping Strings

Names of built-in functions and certain auxiliary keywords are permitted as event property names
and in the rename syntax of the sel ect clause. For example, count is acceptable.

Consider the example below, which assumes that ' | ast' is an event property of MyEvent:

/1 valid
sel ect last, count(*) as count from MyEvent

This example shows an incorrect use of a reserved keyword:

I/ invalid
sel ect insert from MyEvent

EPL offers an escape syntax for reserved keywords: Event properties as well as event or stream
names may be escaped via the backwards apostrophe * (ASCII 96) character.
The next example queries an event type by name O der (a reserved keyword) that provides a

property by name i nsert (areserved keyword):

/1l valid
select “insert” from Oder’

5.2.4. Escaping Strings

You may surround string values by either double-quotes (") or single-quotes (*). When your string
constant in an EPL statement itself contains double quotes or single quotes, you must escape
the quotes.

Double and single quotes may be escaped by the backslash (\) character or by unicode notation.
Unicode 0027 is a single quote (*) and 0022 is a double quote ().

Escaping event property names is described in Section 2.2.1, “Escape Characters”.
The sample EPL below escapes the single quote in the string constant John' s, and filters out

order events where the name value matches:

sel ect * from O der Event (nane='John\'s")
/'l ...equivalent to...
sel ect * from Order Event (nanme="' John\ u0027s"')

The next EPL escapes the string constant Quote "Hel | 0":

83

Chapter 5. EPL Reference: Clauses

select * from Order Event (description |ike "Quote \"Hello\"")
/1 is equivalent to
select * from OrderEvent (description |ike "Quote \u0022Hel | o\ u0022")

When building an escape string via the API, escape the backslash, as shown in below code
shippet:

epServi ce. get EPAdmi ni strator().createEPL("sel ect * from O der Event (name="'John\
Vs
/1 ... and for double quotes...
epServi ce. get EPAdm ni strator().createEPL("sel ect * from O der Event (
description like \"Quote \\\"Hello\\\"\")");

5.2.5. Data Types

EPL honors all Java built-in primitive and boxed types, including j ava. mat h. Bi gl nt eger and

j ava. mat h. Bi gDeci nal .

EPL also follows Java standards in terms of widening, performing widening automatically in cases
where widening type conversion is allowed without loss of precision, for both boxed and primitive
types and including Bi gl nt eger and Bi gDeci mal :

. byte to short, int, long, float, double, Biginteger or BigDecimal
. short to int, long, float, or double, Biginteger or BigDecimal

. char to int, long, float, or double, Biginteger or BigDecimal

. int to long, float, or double, Biginteger or BigDecimal

. long to float or double, Biginteger or BigDecimal

. float to double or BigDecimal

. double to BigDecimal

~N O OB~ WN P

In cases where loss of precision is possible because of narrowing requirements, EPL compilation
outputs a compilation error.

EPL supports casting via the cast function.

EPL returns double-type values for division regardless of operand type. EPL can also be
configured to follow Java rules for integer arithmetic instead as described in Section 16.4.22,
“Engine Settings related to Expression Evaluation”.

Division by zero returns positive or negative infinity. Division by zero can be configured to return
null instead.

5.2.5.1. Data Type of Constants

84

Data Types

An EPL constant is a number or a character string that indicates a fixed value. Constants can
be used as expressions in many EPL statements, including variable assignment and case-when
statements. They can also be used as parameter values for many built-in objects and clauses.
Constants are also called literals.

EPL supports the standard SQL constant notation as well as Java data type literals.

The following are types of EPL constants:

Table 5.1. Types of EPL constants

Type ‘ Description Examples

string A single character to an unlimited number ¢
characters. Valid delimiters are the single quot: S€l éct "volune’ as fiel dl,

() or double quote (*). "sleep" as field2,
"\u0041" as uni codeA

boolean A boolean value.
select true as fieldil,

false as field2

integer An integer value (4 byte).
select 1 as fieldil,

-1 as field2,
le2 as field3

long A long value (8 byte). Use the "L" ¢

"I" (lowercase L) suffix. select 1L as fieldil,
1l as field2

double A double-precision 64-bit IEEE 754 floatin
point. sel ect 1.67 as fieldl,

167e-2 as field2,
1.67d as field3

float A single-precision 32-bit IEEE 754 floating poin
Use the "f* suffix. select 1.2f as fieldil,

1.2F as field2

byte A 8-bit signed two's complement integer.
sel ect 0x10 as fieldl

EPL does not have a single-byte character data type for its literals. Single character literals are
treated as string.

Internal byte representation and boundary values of constants follow the Java standard.

85

Chapter 5. EPL Reference: Clauses

5.2.5.2. BigInteger and BigDecimal

EPL automatically performs widening of numbers to Bi gl nt eger and Bi gDeci nal as required,
and employs the respective equal s, conpar eTo and arithmetic methods provided by Bi gl nt eger
and Bi gDeci mal .

To explicitly create Bi gl nt eger and Bi gDeci mal constants in EPL, please use the cast syntax :
cast (value, Biglnteger).

Note that since Bi gDeci mal . val ueXf (1. 0) is not the same as Bi gDeci mal . val ueX (1) (in
terms of equality through equal s), care should be taken towards the consistent use of scale.

When using aggregation functions for Bi gl nt eger and Bi gDeci nal values, please note these

limitations:

1. The nedi an, stddev and avedev aggregation functions operate on the double value of the
object and return a double value.

2. All other aggregation functions return Bi gDeci mal or Bi gl nt eger values (except count).

For Bi gDeci mal precision and rounding, please see Section 16.4.22.6, “Math Context”. For
division operations with BigDecimal number we recommend configuring a math context.

5.2.6. Using Constants and Enum Types

This chapter is about Java language constants and enum types and their use in EPL expressions.

Java language constants are public static final fields in Java that may participate in expressions
of all kinds, as this example shows:

select * from MyEvent where property = MyConstant Cl ass. Fl ELD VALUE
Event properties that are enumeration values can be compared by their enum type value:
select * from MyEvent where enunProp = EnunCl ass. ENUM VALUE 1

Event properties can also be passed to enum type functions or compared to an enum type method
result:

select * from MyEvent where soneval ue = EnunCl ass. ENUM VALUE_ 1. get SoneVal ue()
or EnuntCl ass. ENUM VALUE 2. anal yze(soneot herval ue)

Enum types have a val ueOf method that returns the enum type value:

86

Annotation

select * from MyEvent where enunProp = Enun(Cl ass. val ueO (' ENUM VALUE 1')

If your application does not import, through configuration, the package that contains the
enumeration class, then it must also specify the package name of the class. Enum types that are
inner classes must be qualified with $ following Java conventions.

For example, the Color enum type as an inner class to MyEvent in package or g. nyor g can be
referenced as shown:

sel ect * from MyEvent (enunProp=org. myorg. MyEvent $Col or . GREEN) . std: fi rst event ()

Instance methods may also be invoked on event instances by specifying a stream name, as shown
below:

sel ect myevent. conput eSonet hi ng() as result from MyEvent as nyevent

Chaining instance methods is supported as this example shows:

sel ect myevent. get Comput er For (' books', 'novies').calculate() as result
from M/Event as nyevent

5.2.7. Annotation

An annotation is an addition made to information in a statement. Esper provides certain built-in
annotations for defining statement name, adding a statement description or for tagging statements
such as for managing statements or directing statement output. Other than the built-in annotations,
applications can provide their own annotation classes that the EPL compiler can populate.

An annotation is part of the statement text and precedes the EPL select or pattern statement.
Annotations are therefore part of the EPL grammar. The syntax for annotations follows the host
language (Java, .NET) annotation syntax:

@nnot ati on_nane [(annotati on_paraneters)]

An annotation consists of the annotation name and optional annotation parameters. The
annotation_name is the simple class name or fully-qualified class name of the annotation class.
The optional annotation_parameters are a list of key-value pairs following the syntax:

@nnot ati on_nane (attribute_nane = attribute_val ue, [nanme=value, ...])

87

Chapter 5. EPL Reference: Clauses

The attribute_name is an identifier that must match the attributes defined by the annotation class.
An attribute_value is a constant of any of the primitive types or string, an array, an enum type
value or another (nested) annotation. Null values are not allowed as annotation attribute values.
Enumeration values are supported in EPL statements and not support in statements created via
the cr eat ePat t er n method.

Use the get Annot at i ons method of EPSt at enent to obtain annotations provided via statement
text.

5.2.7.1. Application-Provided Annotations

Your application may provide its own annotation classes. The engine detects and populates
annotation instances for application annotation classes.

The name of application-provided annotations is case-sensitive.

To enable the engine to recognize application annotation classes, your annotation name must
include the package name (i.e. be fully-qualified) or your engine configuration must import the
annotation class or package via the configuration API.

For example, assume that your application defines an annotation in its application code as follows:

public @nterface Processhonitor {
String processNane();
bool ean i sLongRunni ng default fal se;
int[] subProcesslds;

Shown next is an EPL statement text that utilizes the annotation class defined earlier:

@r ocessMoni t or (processNanme=' Credi t Approval ',
i sLongRunni ng=true, subProcesslds = {1, 2, 3})

sel ect count(*) from ProcessEvent(processid in (1, 2, 3).w n:tine(30)

Above example assumes the ProcessMonitor annotation class is imported via configuration
XML or API. Here is an example API call to import annotations provided by a package
com myconpany. myannot at i ons:

epSer vi ce. get EPAdmi ni strat or (). get Configuration().addl nport("com myconpany. myannotations.*");

5.2.7.2. Built-In Statement Annotations

The name of built-in annotations is not case-sensitive, allowing both @GNAVE or @ane, for example.

88

Annotation

The list of built-in EPL statement-level annotations is:

Table 5.2. Built-In EPL Statement Annotations

Name Purpose and Attributes Example
Name Provides a statement name. Attribute
are: @Nanme(" My St at enent Nane")

value : Statement name.

Description Provides a statement textual descriptior
Attributes are: @escription("Place
st at enent
value : Statement description. description here.")
Tag For tagging a statement with additione
information. Attributes are: @ag(name="MWTagNane",

val ue="MyTagVal ue")
name : Tag name.

value : Tag value.

Priority Applicable when an event (or schedule
matches filter criteria for multipl @riority(10)
statements: Defines the order c.
statement processing (requires an
engine-level setting).

Attributes are:

value : priority value.

Drop Applicable when an event (or schedule
matches filter criteria for multipl @ 0P
statements, drops the event afte.
processing the statement (requires an
engine-level setting).

No attributes.

Hint For providing one or more hints toward
how the engine should execute . @fnt('iterate only")
statement. Attributes are:

value : A comma-separated list of one or
more case-insensitive keywords.

Hook Use this annotation to register one ¢
more statement-specific hooks providine @#00k(type=HookType. SQLCOL,

a hook type for each individual hook, sucl
hook="' MyDBTypeConvertor')

89

Chapter 5. EPL Reference: Clauses

Name Purpose and Attributes Example

as for SQL parameter, column or row
conversion.

Attributes are the hook t ype and the hook
itself (usually a import or class name):

Audit Causes the engine to output detaile
processing information for a statement. @wudi t

optional value : A comma-separated list of
one or more case-insensitive keywords.

EventRepresentation Causes the engine to use object-arra
event representation, if possible, fc @VventRepresentation(array=true)

output and internal event types.

IterableUnbound For use when iterating statements wit|
unbound streams, instructs the engine t @t erabl eUnbound
retain the last event for iterating.

The following example statement text specifies some of the built-in annotations in combination:

@Nane(" RevenuePer Cust oner ")

@escription("Qutputs revenue per custonmer considering all events encountered
so far.")

@ag(nanme="groupi ng", val ue="customner")

sel ect custonerld, sum(revenue) from Custoner RevenueEvent

5.2.7.3. @Name

Use the @Name EPL annotation to specify a statement name within the EPL statement itself, as
an alternative to specifying the statement name via API.

If your application is also providing a statement name through the API, the statement name
provided through the API overrides the annotation-provided statement name.

Example:

@Name("SecurityFilterl") select * from SecurityFilter(ip="127.0.0.1")

5.2.7.4. @Description

Use the @Description EPL annotation to add a statement textual description.

Example:

90

Annotation

@escription(' This st at enent filters | ocal host. ") sel ect * from
SecurityFilter(ip="127.0.0.1")

5.2.7.5. @Tag

Use the @Tag EPL annotation to tag statements with name-value pairs, effectively adding a
property to the statement. The attributes nane and val ue are of type string.

Example:

@ag(nanme="ip_sensitive', value="Y")
@ag(nanme="author', value="Jim)
select * from SecurityFilter(ip="127.0.0.1")

5.2.7.6. @Priority

This annotation only takes effect if the engine-level setting for prioritized execution is set
via configuration, as described in Section 16.4.23, “Engine Settings related to Execution of
Statements”.

Use the @Priority EPL annotation to tag statements with a priority value. The default priority value
is zero (0) for all statements. When an event (or single timer execution) requires processing the
event for multiple statements, processing begins with the highest priority statement and ends with
the lowest-priority statement.

Example:

@riority(10) select * from SecurityFilter(ip="127.0.0.1")

5.2.7.7. @Drop

This annotation only takes effect if the engine-level setting for prioritized execution is set
via configuration, as described in Section 16.4.23, “Engine Settings related to Execution of
Statements”.

Use the @Drop EPL annotation to tag statements that preempt all other same or lower-priority
statements. When an event (or single timer execution) requires processing the event for multiple
statements, processing begins with the highest priority statement and ends with the first statement
marked with @Drop, which becomes the last statement to process that event.

Unless a different priority is specified, the statement with the @Drop EPL annotation executes at
priority 1. Thereby @Drop alone is an effective means to remove events from a stream.

91

Chapter 5. EPL Reference: Clauses

Example:

@xop select * from SecurityFilter(ip="127.0.0.1")

5.2.7.8. @Hint

A hint can be used to provide tips for the engine to affect statement execution. Hints change
performance or memory-use of a statement but generally do not change its output.

The string value of a H nt annotation contains a keyword or a comma-separated list of multiple
keywords. Hint keywords are case-insensitive. A list of hints is available in Section 21.2.23,
“Consider using Hints”.

Example:
@i nt (' di sabl e_recl ai m group')

sel ect ipaddress, count(*) from SecurityFilter.win:tinme(60 sec) group by
i paddr ess

5.2.7.9. @Hook

A hook is for attaching a callback to a statement.

The type value of a @ook annotation defines the type of hook and the hook value is an imported
or fully-qualified class name providing the callback implementation.

5.2.7.10. @Audit

Causes the engine to output detailed information about the statements processing. Described in
more detail at Section 17.3.1, “@Audit Annotation”.

5.2.7.11. @EventRepresentation

Use the @vent Repr esent at i on annotation with cr eat e schema and cr eat e wi ndow statements
to instruct the engine to use a specific event representation for the schema or named window.

Use the @vent Repr esent at i on annotation with sel ect statements to instruct the engine to use
a specific event representation for output events.

When no @vent Repr esent ati on annotation is specified, the engine uses the default event
representation as configured, see Section 16.4.11.1, “Default Event Representation”.

Use @vent Represent ati on(array=true) to instruct the engine to use object-array events.

Use @vent Repr esent ati on(array=f al se) to instruct the engine to use Map events.

92

Expression Alias

5.2.7.12. @lterableUnbound

Causes the engine, for statements with unbound streams, to retain the last event for the purpose
of iterating using the iterator API. An engine-wide configuration is also available as described in
Section 16.4.12.2, “Iterator Behavior For Unbound Streams”.

5.2.8. Expression Alias

An expression alias simply assigns a name to an expression. The alias hame can be used in other
expressions to refer to that expression, without the need to duplicate the expression.

The expression alias obtains its scope from where it is used. Parameters cannot be provided.
A second means to sharing expressions is the expression declaration as described next, which
allows passing parameters and is more tightly scoped.

An EPL statement can contain and refer to any number of expression aliases. For expressions
aliases that are visible across multiple EPL statements please consult Section 5.18.1, “Global
Expression Aliases” that explains the cr eat e expr essi on clause.

The syntax for an expression alias is:

expressi on expression_nanme alias for { expression }

An expression alias consists of the expression name and an expression in curly braces. The
return type of the expression is determined by the engine and need not be specified. The scope
is automatic and determined by where the alias name is used therefore parameters cannot be
specified.

This example declares an expression alias t woPI that substitutes Mat h. Pl * 2:

expression twoPl alias for { Math.Pl * 2}
sel ect twoPl from Sanpl eEvent

The next example specifies an alias count Peopl e and uses the alias in the sel ect -clause and
the havi ng-clause:

expressi on count People alias for { count(*) }
sel ect count Peopl e from Ent er RoonEvent.wi n:ti me(10 seconds) havi ng count Peopl e
> 10

When using the expression alias in an expression, empty parentheses can optionally be specified.
In the above example, count Peopl e() can be used instead and equivalently.

The following scope rules apply for expression aliases:

93

Chapter 5. EPL Reference: Clauses

1. Expression aliases do not remove implicit limitations: For example, aggregation functions
cannot be used in a filter expression even if assigned an alias.

5.2.9. Expression Declaration

An EPL statement can contain expression declarations. Expressions that are common to multiple
places in the same EPL statement can be moved to a named expression declaration and reused
within the same statement without duplicating the expression itself.

For declaring expressions that are visible across multiple EPL statements i.e. globally visible
expressions please consult Section 5.18.2, “Global Expression Declarations” that explains the
create expression clause.

An expression declaration follows the lambda-style expression syntax. This syntax was chosen
as it typically allows for a shorter and more concise expression body that can be easier to read
then most procedural code.

The syntax for an expression declaration is:

expressi on expressi on_nane { expression_body }

An expression declaration consists of the expression name and an expression body. The
expression_name is any identifier. The expression_body contains optional parameters and the
expression. The parameter types and the return type of the expression is determined by the engine
and do not need to be specified.

Parameters to a declared expression can be a stream name, pattern tag name or wildcard (*).
Use wildcard to pass the event itself to the expression. In a join or subquery, or more generally
in an expression where multiple streams or pattern tags are available, the EPL must specify the
stream name or pattern tag name and cannot use wildcard.

In the expression body the => lambda operator reads as "goes to" (-> may be used and is
equivalent). The left side of the lambda operator specifies the input parameters (if any) and the
right side holds the expression. The lambda expression x => x * x is read "x goes to x times x".

In the expression body, if your expression takes no parameters, you may simply specify the
expression and do not need the => lambda operator.

If your expression takes one parameters, specify the input parameter name followed by the
=> lambda operator and followed by the expression. The synopsis for use with a single input
parameter is:

expr essi on_body: i nput _param nane => expression
If your expression takes two or more parameters, specify the input parameter names in

parenthesis followed by the => lambda operator followed by the expression. The synopsis for use
with a multiple input parameter is:

94

Expression Declaration

expr essi on_body: (i nput _param [, i nput_param|[,...]]) => expression

The following example declares an expression that returns two times PI (ratio of the circumference
of a circle to its diameter) and demonstrates its use in a select-clause:

expression twoPl { Math.Pl * 2} select twoPl () from Sanpl eEvent

The parentheses are optional when the expression accepts no parameters. The below is
equivalent to the previous example:

expression twoPl { Math.Pl * 2} select twoPl from Sanpl eEvent

The next example declares an expression that accepts one parameter: a MarketData event. The
expression computes a new "mid" price based on the buy and sell price:

expression mdPrice { x => (x.buy + x.sell) / 2}

sel ect midPrice(nd) from Market Dat aEvent as nd

The variable name can be left off if event property names resolve without ambiguity.

This example EPL removes the variable name x:

expression mdPrice { x => (buy + sell) / 2}
sel ect m dPrice(nd) from Mrket Dat aEvent as nd

The next example EPL specifies wildcard instead:

expression mdPrice { x => (buy + sell) / 2}
sel ect mdPrice(*) from Market Dat aEvent

A further example that demonstrates two parameters is listed next. The example joins two streams
and uses the price value from MarketDataEvent and the sentiment value of NewsEvent to compute
a weighted sentiment:

expressi on wei ghtedSentinent { (x, y) => x.price * y.sentinent }
sel ect wei ght edSenti ment (md, news)
from Mar ket Dat aEvent . std: | astevent () as nd, NewsEvent.std:|astevent() news

95

Chapter 5. EPL Reference: Clauses

Any expression can be used in the expression body including aggregations, variables, subqueries
or further declared or alias expressions. Sub-queries, when used without i n or exi st s, must be
placed within parenthesis.

An example subquery within an expression declaration is shown next:

expressi on newsSubgq { nd ->
(sel ect sentinment fromNewsEvent. std: uni que(synbol) where synbol = nd. synbol)

}
sel ect newsSubg(ndstream

from Mar ket Dat aEvent ndstream

When using expression declarations please note these limitations:

1. Parameters to a declared expression can only be a stream name, pattern tag name or wildcard
(*).

2. Expression declarations do not remove implicit limitations: For example, aggregation functions
cannot be used in a filter expression even if using an expression declaration.

The following scope rules apply for declared expressions:

1. The scope of the expression body of a declared expression only includes the parameters
explicitly listed. Consider using an expression alias instead.

5.2.10. Script Declaration

Esper allows the use of scripting languages within EPL. Any scripting language that supports JSR
223 and also the MVEL scripting language can be specified in EPL.

Please see Chapter 19, Script Support for more information.
5.2.11. Referring to a Context

You may refer to a context in the EPL text by specifying the cont ext keyword followed by a context
name. Context are described in more detail at Chapter 4, Context and Context Partitions

The effect of referring to a context is that your statement operates according to the context
dimensional information as declared for the context.

The synopsis is:
cont ext context_nanme ...

You may refer to a context in all statements except for the following types of statements:

1. creat e schemn for declaring event types.

96

Choosing Event Properties And Events: the Select Clause

2. create vari abl e for declaring a variable.
3. creat e i ndex for creating an index on a named window or table.

4. updat e i st reamfor updating insert stream events.

5.3. Choosing Event Properties And Events: the Select
Clause

The sel ect clause is required in all EPL statements. The sel ect clause can be used to select all
properties via the wildcard *, or to specify a list of event properties and expressions. The sel ect
clause defines the event type (event property names and types) of the resulting events published
by the statement, or pulled from the statement via the iterator methods.

The sel ect clause also offers optional i stream irstreamand rstreamkeywords to control
whether input stream, remove stream or input and remove stream events are posted to
Updat eLi st ener instances and observers to a statement. By default, the engine provides only the
insert stream to listener and observers. See Section 16.4.17, “Engine Settings related to Stream
Selection” on how to change the default.

The syntax for the sel ect clause is summarized below.

select [istream | irstream| rstrean] [distinct] * | expression_list

The i streamkeyword is the default, and indicates that the engine only delivers insert stream
events to listeners and observers. The i r st r eamkeyword indicates that the engine delivers both
insert and remove stream. Finally, the r st r eamkeyword tells the engine to deliver only the remove
stream.

The di sti nct keyword outputs only unique rows depending on the column list you have specified
after it. It must occur after the sel ect and after the optional stream keywords, as described in
more detail below.

5.3.1. Choosing all event properties: select *

The syntax for selecting all event properties in a stream is:

sel ect * from stream def

The following statement selects StockTick events for the last 30 seconds of IBM stock ticks.
select * from StockTick(symbol="1BM).wi n:time(30 sec)

You may well be asking: Why does the statement specify a time window here? First, the statement
is meant to demonstrate the use of * wildcard. When the engine pushes statement results to your
listener and as the statement does not select remove stream events via r st r eamkeyword, the

97

Chapter 5. EPL Reference: Clauses

listener receives only new events and the time window could be left off. By adding the time window
the pull API (iterator API or JDBC driver) returns the last 30 seconds of events.

The * wildcard and expressions can also be combined in a sel ect clause. The combination
selects all event properties and in addition the computed values as specified by any additional
expressions that are part of the sel ect clause. Here is an example that selects all properties
of stock tick events plus a computed product of price and volume that the statement names
'pricevolume’:

select *, price * volume as pricevol une from St ockTi ck

When using wildcard (*), Esper does not actually read or copy your event properties out of your
event or events, neither does it copy the event object. It simply wraps your native type in an
Event Bean interface. Your application has access to the underlying event object through the
get Under | yi ng method and has access to the property values through the get method.

In a join statement, using the sel ect * syntax selects one event property per stream to hold the
event for that stream. The property name is the stream name in the f r omclause.

5.3.2. Choosing specific event properties

To choose the particular event properties to return:

sel ect event _property [, event_property] [, ...] from stream def

The following statement simply selects the symbol and price properties of stock ticks, and the total
volume for stock tick events in a 60-second time window.

sel ect symbol, price, sum(volune) from StockTick(synmbol ="I1BM).win:tinme(60 sec)

The following statement declares a further view onto the event stream of stock ticks: the univariate
statistics view (st at : uni). The statement selects the properties that this view derives from the
stream, for the last 100 events of IBM stock ticks in the length window.

sel ect datapoints, total, average, variance, stddev, stddevpa
from St ockTi ck(synbol =" I BM). wi n: | engt h(100) . st at: uni (vol une)

5.3.3. Expressions

The sel ect clause can contain one or more expressions.

sel ect expression [, expression] [, ...] from stream def

98

Renaming event properties

The following statement selects the volume multiplied by price for a time batch of the last 30
seconds of stock tick events.

sel ect volune * price from StockTick.w n:tine_batch(30 sec)

5.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

sel ect [event _property | expression] [as] identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for
the resulting column.

sel ect volune * price as vol Price from StockTi ck

Identifiers cannot contain the "." (dot) character, i.e. "vol.price" is not a valid identifier for the
rename syntax.

The as keyword is optional. The following EPL is therefore equivalent to above:

sel ect volunme * price volPrice from StockTi ck

5.3.5. Choosing event properties and events in a join

If your statement is joining multiple streams, your may specify property names that are unique
among the joined streams, or use wildcard (*) as explained earlier.

In case the property hame in your sel ect or other clauses is not unique considering all joined
streams, you will need to use the name of the stream as a prefix to the property.

This example is a join between the two streams StockTick and News, respectively named as 'tick’
and 'news'. The example selects from the StockTick event the symbol value using the 'tick' stream
name as a prefix:

sel ect tick.synbol fromStockTick.w n:time(10) as tick, News.w n:time(10) as news
where news. synmbol = tick.synbol

Use the wildcard (*) selector in a join to generate a property for each stream, with the property
value being the event itself. The output events of the statement below have two properties: the
‘tick' property holds the StockTick event and the 'news' property holds the News event:

99

Chapter 5. EPL Reference: Clauses

select * from StockTick.wi n:tinme(10) as tick, News.w n:tinme(10) as news

The following syntax can also be used to specify what stream's properties to select:

sel ect streamnane.* [as nane] from...

The selection of ti ck. * selects the StockTick stream events only:

select tick.* from StockTick.win:time(10) as tick, News.wi n:tinme(10) as news
where tick.symbol = news.synbol

The next example uses the as keyword to name each stream's joined events. This instructs the
engine to create a property for each named event:

select tick.* as stocktick, news.* as news
from St ockTick.win:tinme(10) as tick, News.w n:tinme(10) as news
wher e stock.synbol = news. synbol

The output events of the above example have two properties 'stocktick' and 'news' that are the
StockTick and News events.

The stream name itself, as further described in Section 5.4.5, “Using the Stream Name”, may be
used within expressions or alone.

This example passes events to a user-defined function named conput e and also shows i nsert -
i nt o to populate an event stream of combined events:

insert into TickNewStreamsel ect tick, news, MyLib.conpute(news, tick) as result
from St ockTi ck.win:tinme(10) as tick, News.w n:tinme(10) as news
where tick.synmbol = news. synbol

/'l second statenent that uses the Ti ckNewStream stream
select tick.price, news.text, result from Ti ckNewStream

In summary, the stream_name.* streamname wildcard syntax can be used to select a stream
as the underlying event or as a property, but cannot appear within an expression. While the
stream_name syntax (without wildcard) always selects a property (and not as an underlying
event), and can occur anywhere within an expression.

100

Choosing event properties and events from a pattern

5.3.6. Choosing event properties and events from a pattern

If your statement employs pattern expressions, then your pattern expression tags events with a
tag name. Each tag name becomes available for use as a property in the sel ect clause and all
other clauses.

For example, here is a very simple pattern that matches on every StockTick event received within
30 seconds after start of the statement. The sample selects the symbol and price properties of
the matching events:

sel ect tick.synbol as synmbol, tick.price as price
frompattern[fevery tick=StockTick where timer:within(10 sec)]

The use of the wildcard selector, as shown in the next statement, creates a property for each
tagged event in the output. The next statement outputs events that hold a single 'tick' property
whose value is the event itself:

select * frompattern[every tick=StockTick where timer:wi thin(10 sec)]

You may also select the matching event itself using the ti ck. * syntax. The engine outputs the
StockTick event itself to listeners:

select tick.* frompattern[every tick=StockTick where tiner:w thin(10 sec)]

A tag name as specified in a pattern is a valid expression itself. This example uses the i nsert
i nt o clause to make available the events matched by a pattern to further statements:

/'l make a new stream of ticks and news avail abl e

insert into StockTi ckAndNews

sel ect tick, news from pattern [every tick=St ockTi ck ->
news=News(synmbol =t i ck. synbol)]

/'l second statenment to select fromthe streamof ticks and news
select tick.synmbol, tick.price, news.text from StockTi ckAndNews

5.3.7. Selecting insert and remove Stream events

The optional i stream i rstreamand r st r eamkeywords in the sel ect clause control the event
streams posted to listeners and observers to a statement.

101

Chapter 5. EPL Reference: Clauses

If neither keyword is specified, and in the default engine configuration, the engine posts only insert
stream events via the newEvent s parameter to the updat e method of Updat eLi st ener instances
listening to the statement. The engine does not post remove stream events, by default.

The insert stream consists of the events entering the respective window(s) or stream(s) or
aggregations, while the remove stream consists of the events leaving the respective window(s) or
the changed aggregation result. See Chapter 3, Processing Model for more information on insert
and remove streams.

The engine posts remove stream events to the ol dEvent s parameter of the updat e method only
if the i r st r eamkeyword occurs in the sel ect clause. This behavior can be changed via engine-
wide configuration as described in Section 16.4.17, “Engine Settings related to Stream Selection”.

By specifying the i st r eamkeyword you can instruct the engine to only post insert stream events
via the newEvent s parameter to the updat e method on listeners. The engine will then not post
any remove stream events, and the ol dEvent s parameter is always a null value.

By specifying the i r st r eamkeyword you can instruct the engine to post both insert stream and
remove stream events.

By specifying the r st r eamkeyword you can instruct the engine to only post remove stream events
via the newEvent s parameter to the updat e method on listeners. The engine will then not post
any insert stream events, and the ol dEvent s parameter is also always a null value.

The following statement selects only the events that are leaving the 30 second time window.
select rstream* from StockTi ck.w n:tine(30 sec)

The i st reamand r st r eamkeywords in the sel ect clause are matched by same-name keywords
available in the i nsert i nto clause. While the keywords in the sel ect clause control the event
stream posted to listeners to the statement, the same keywords in the i nsert i nt o clause specify
the event stream that the engine makes available to other statements.

5.3.8. Qualifying property names and stream names

Property or column names can optionally be qualified by a stream name and the provider URI.
The syntax is:

[[provider URI.]stream nane.]property_name

The provider_URI is the URI supplied to the EPSer vi cePr ovi der Manager class, or the string
def aul t for the default provider.

This example assumes the provider is the default provider:

sel ect MyEvent. nyProperty from MyEvent

102

Select Distinct

/[l ... equivalent to ...
sel ect default. MyEvent. nyProperty from M/Event

Stream names can also be qualified by the provider URI. The syntax is:

[provider _URI.]stream name

The next example assumes a provider URI by name of Processor:

sel ect Processor. MyEvent. myProperty from Processor. MyEvent

5.3.9. Select bistinct

The optional di sti nct keyword removes duplicate output events from output. The keyword must
occur after the sel ect keyword and after the optional i r st r eamkeyword.

The di sti nct keyword in your sel ect instructs the engine to consolidate, at time of output, the
output event(s) and remove output events with identical property values. Duplicate removal only
takes place when two or more events are output together at any one time, therefore di sti nct
is typically used with a batch data window, output rate limiting, on-demand queries, on-select or
iterator pull API.

If two or more output event objects have same property values for all properties of the event, the
di sti nct removes all but one duplicated event before outputting events to listeners. Indexed,
nested and mapped properties are considered in the comparison, if present in the output event.

The next example outputs sensor ids of temperature sensor events, but only every 10 seconds
and only unique sensor id values during the 10 seconds:

sel ect distinct sensorld from Tenperat ureSensor Event output every 10 seconds

Use di stinct with wildcard (*) to remove duplicate output events considering all properties of
an event.

This example statement outputs all distinct events either when 100 events arrive or when 10
seconds passed, whichever occurs first:

select distinct * from TenperatureSensor Event.w n:tine_| engt h_bat ch(10, 100)

When selecting nested, indexed, mapped or dynamic properties in a sel ect clause with
di stinct, it is relevant to know that the comparison uses hash code and the Java equal s
semantics.

103

Chapter 5. EPL Reference: Clauses

5.3.10. Transposing an Expression Result to a Stream

For transposing an instance of a Java object returned by an expression to a stream use the
transpose function as described in Section 10.4, “Select-Clause transpose Function”.

5.3.11. Selecting EventBean instead of Underlying Event

By default, for certain select-clause expressions that output events or a collection of events, the
engine outputs the underlying event objects. With outputs we refer to the data passed to listeners,
subscribers and inserted-into into another stream via insert-into.

The select-clause expressions for which underlying event objects are output by default are:

» Event Aggregation Functions (including extension API)

e The previ ous family of single-row functions

» Subselects that select events

» Declared expressions and enumeration methods that operate on any of the above

To have the engine output Event Bean instance(s) instead, add @vent bean to the relevant
expressions of the sel ect -clause.

The sample EPL shown below outputs current data window contents as Event Bean instances into
the stream Qut St r eam thereby statements consuming the stream may operate on such instances:

insert into QutStream
sel ect prevw ndow(s0) @ventbean as wn
from MWEvent.w n:length(2) as sO

The next EPL consumes the stream and selects the last event:
select win.lastOf () from Qut Stream

It is not necessary to use @vent bean if an event type by the same name (Qut Streamin the
example) is already declared and a property exist on the type by the same name (wi n in this
example) and the type of the property is the event type (MyEvent in the example) returned by the
expression. This is further described in Section 5.10.8, “Select-Clause Expression And Inserted-
Into Column Event Type”.

5.4. Specifying Event Streams: the From Clause

The f r omclause is required in all EPL statements. It specifies one or more event streams, named
windows or tables. Each event stream, named window or table can optionally be given a name
by means of the as keyword.

104

Filter-based Event Streams

fromstreamdef [as nane] [unidirectional] [retain-union | retain-
i ntersection]
[, streamdef [as streamnnane]] [, ...]

The event stream definition stream_def as shown in the syntax above can consists of either a
filter-based event stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins between pattern-based
and filter-based event streams are also supported. Joins and the uni di recti onal keyword are
described in more detail in Section 5.12, “Joining Event Streams”.

Esper supports joins against relational databases for access to historical or reference data as
explained in Section 5.13, “Accessing Relational Data via SQL”. Esper can also join results
returned by an arbitrary method invocation, as discussed in Section 5.14, “Accessing Non-
Relational Data via Method Invocation”.

The stream_name is an optional identifier assigned to the stream. The stream name can itself
occur in any expression and provides access to the event itself from the named stream. Also, a
stream name may be combined with a method name to invoke instance methods on events of
that stream.

For all streams with the exception of historical sources your query may employ data window views
as outlined below. The r et ai n-i nt er secti on (the default) and r et ai n- uni on keywords build a
union or intersection of two or more data windows as described in Section 5.4.4, “Multiple Data
Window Views”.

5.4.1. Filter-based Event Streams

The stream_def syntax for a filter-based event stream is as below:

event _streamnane [(filter_criteria)] [contained_selection] [.view spec]
[.view spec] [...]

The event_stream_name is either the name of an event type or name of an event stream populated
by aninsert into statement or the name of a named window or table.

The filter_criteria is optional and consists of a list of expressions filtering the events of the event
stream, within parenthesis after the event stream name. Filter criteria cannot be specified for
tables.

The contained_selection is optional and is for use with coarse-grained events that have properties
that are themselves one or more events, see Section 5.19, “Contained-Event Selection” for the
synopsis and examples. Contained-event cannot be specified for tables.

The view_spec are optional view specifications, which are combinable definitions for retaining
events and for deriving information from events. Views cannot be specified for tables.

The following EPL statement shows event type, filter criteria and views combined in one statement.
It selects all event properties for the last 100 events of IBM stock ticks for volume. In the

105

Chapter 5. EPL Reference: Clauses

example, the event type is the fully qualified Java class hame or g. esper . exanpl e. St ockTi ck.
The expression filters for events where the property synbol has a value of "IBM". The optional
view specifications for deriving data from the StockTick events are a length window and a view
for computing statistics on volume. The name for the event stream is "volumeStats".

select * from
or g. esper. exanpl e. St ockTi ck(synbol =" 1 BM). wi n: | engt h(100) . stat: uni (vol une) as
vol umeSt at s

Esper filters out events in an event stream as defined by filter criteria before it sends events to
subsequent views. Thus, compared to search conditions in a wher e clause, filter criteria remove
unneeded events early. In the above example, events with a symbol other than IBM do not enter
the time window.

5.4.1.1. Specifying an Event Type

The simplest form of filter is a filter for events of a given type without any conditions on the event
property values. This filter matches any event of that type regardless of the event's properties.
The example below is such a filter.

sel ect * from com nypackage. nyevents. Rfi dEvent

Instead of the fully-qualified Java class name any other event name can be mapped via
Configuration to a Java class, making the resulting statement more readable:

select * from Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example
| Rf i dReadabl e is an interface class.

select * fromorg.nyorg.rfid.|RfidReadabl e

5.4.1.2. Specifying Filter Criteria

The filtering criteria to filter for events with certain event property values are placed within
parenthesis after the event type name:

select * from Rfi dEvent (cat egory="Peri shabl e")

106

Filter-based Event Streams

All expressions can be used in filters, including static methods that return a boolean value:

select * from com nmyconpany. Rfi dEvent (MyRFI DLi b. i sl nRange(x, y) or (x < 0 and
y <0))

Filter expressions can be separated via a single comma ', '. The comma represents a logical AND
between filter expressions:

select * from Rfi dEvent (zone=1, category=10)
...is equivalent to...
sel ect * from Rfi dEvent (zone=1 and cat egor y=10)

The following operators are highly optimized through indexing and are the preferred means of
filtering in high-volume event streams and especially in the presence of a larger number of filters
or statements:

e equals =

* notequals!=

e comparison operators < , >, >=, <=

* ranges
» use the bet ween keyword for a closed range where both endpoints are included
» usethein keywordandround () orsquare brackets[] to control how endpoints are included
« for inverted ranges use the not keyword and the bet ween or i n keywords

« list-of-values checks using the i n keyword or the not in keywords followed by a comma-
separated list of values

* single-row functions that have been registered and are invoked via function name (see user-
defined functions) and that either return a boolean value or that have their return value compared
to a constant

 the and and or logical operators

At compile time as well as at run time, the engine scans new filter expressions for sub-expressions
that can be indexed. Indexing filter values to match event properties of incoming events enables
the engine to match incoming events faster, especially if your application creates a large number
of statements or requires many similar filters. The above list of operators represents the set of
operators that the engine can best convert into indexes. The use of comma or logical and in filter
expressions does not impact optimizations by the engine.

5.4.1.3. Filtering Ranges

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates
whether an endpoint is included or excluded. The low point and the high-point of the range are
separated by the colon : character.

107

Chapter 5. EPL Reference: Clauses

« Open ranges that contain neither endpoint (| ow: hi gh)

» Closed ranges that contain both endpoints [| ow: hi gh] . The equivalent 'between' keyword also
defines a closed range.

» Half-open ranges that contain the low endpoint but not the high endpoint [| ow: hi gh)
» Half-closed ranges that contain the high endpoint but not the low endpoint (| ow: hi gh]

The next statement shows a filter specifying a range for x and y values of RFID events. The range
includes both endpoints therefore uses [] hard brackets.

nypackage. Rfi dEvent (x in [100:200], y in [0:100])

The bet ween keyword is equivalent for closed ranges. The same filter using the bet ween keyword
is:

nypackage. Rf i dEvent (x between 100 and 200, y between 0 and 50)

The not keyword can be used to determine if a value falls outside a given range:
nypackage. Rfi dEvent (x not in [0:100])

The equivalent statement using the bet ween keyword is:

nypackage. Rfi dEvent (x not between 0 and 100)

5.4.1.4. Filtering Sets of Values

The i n keyword for filter criteria determines if a given value matches any value in a list of values.

In this example we are interested in RFID events where the category matches any of the given
values:

nypackage. Rfi dEvent (category in ('Perishable', 'Container'))

By using the not in keywords we can filter events with a property value that does not match
any of the values in a list of values:

nypackage. Rf i dEvent (category not in (' Household', 'Electrical'))

108

Pattern-based Event Streams

5.4.1.5. Filter Limitations

The following restrictions apply to filter criteria:

* Range and comparison operators require the event property to be of a numeric or string type.

» Aggregation functions are not allowed within filter expressions.

» The prev previous event function and the pri or prior event function cannot be used in filter
expressions.

5.4.2. Pattern-based Event Streams

Event pattern expressions can also be used to specify one or more event streams in an EPL
statement. For pattern-based event streams, the event stream definition stream_def consists of
the keyword pat t ern and a pattern expression in brackets []. The syntax for an event stream
definition using a pattern expression is below. As in filter-based event streams, an optional list of
views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view spec] [.view spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade
events. The example tags stock tick events with the name "tick" and trade events with the name
"trade".

select * frompattern [every tick=StockTi ckEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types.
The generated events resemble a map with "tick" and "trade" keys. For stock tick events, the "tick"
key value is the underlying stock tick event, and the "trade" key value is a null value. For trade
events, the "trade" key value is the underlying trade event, and the "tick" key value is a null value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock
tick or trade events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sum(tick.price) + sunm(trade.price) as total
frompattern [every tick=StockTi ckEvent or every trade=TradeEvent].w n:ti nme(30
sec)

Note that in the statement above ti ckPri ce and t radePri ce can each be null values depending
on the event processed. Therefore, an aggregation function such as sum(tick.price +
trade. price)) would always return null values as either of the two price properties are always
a null value for any event matching the pattern. Use the coal esce function to handle null values,
for example: sun{ coal esce(tick.price, 0) + coal esce(trade.price, 0)).

109

Chapter 5. EPL Reference: Clauses

5.4.3. Specifying Views

Views are used to specify an expiry policy for events (data window views) and also to derive data.
Views can be staggered onto each other. See the section Chapter 13, EPL Reference: Views
on the views available that also outlines the different types of views: Data Window views and
Derived-Value views.

Views can optionally take one or more parameters. These parameters are expressions themselves
that may consist of any combination of variables, arithmetic, user-defined function or substitution
parameters for prepared statements, for example.

The example statement below outputs a count per expressway for car location events (contains
information about the location of a car on a highway) of the last 60 seconds:

sel ect expressway, count(*) from CarLocEvent.w n:tine(60)
group by expressway

The next example serves to show staggering of views. It uses the st d: gr oupwi n view to create
a separate length window per car id:

sel ect cardld, expressway, direction, segnent, count(*)
from Car LocEvent. st d: groupwi n(carld).w n: | ength(4)
group by carld, expressway, direction, segnent

The first view st d: gr oupwi n(carld) groups car location events by car id. The second view
wi n: | engt h(4) keeps a length window of the 4 last events, with one separate length window for
each car id. The example reports the number of events per car id and per expressway, direction
and segment considering the last 4 events for each car id only.

Note that the gr oup by syntax is generally preferable over st d: gr oupwi n for grouping information
as it is SQL-compliant, easier to read and does not create a separate data window per group. The
st d: groupwi n in above example creates a separate data window (length window in the example)
per group, demonstrating staggering views.

When views are staggered onto each other as a chain of views, then the insert and remove stream
received by each view is the insert and remove stream made available by the view (or stream)
earlier in the chain.

The special keep-all view keeps all events: It does not provide a remove stream, i.e. events are not
removed from the keep-all view unless by means of the on- del et e syntax or by revision events.

110

Multiple Data Window Views

5.4.4. Multiple Data Window Views

Data window views provide an expiry policy that indicates when to remove events from the data
window, with the exception of the keep-all data window which has no expiry policy and the
st d: gr oupwi n grouped-window view for allocating a new data window per group.

EPL allows the freedom to use multiple data window views onto a stream and thus combine expiry
policies. Combining data windows into an intersection (the default) or a union can achieve a useful
strategy for retaining events and expiring events that are no longer of interest. Named windows,
tables and the on- del et e syntax provide an additional degree of freedom.

In order to combine two or more data window views there is no keyword required. The retain-
intersection keyword is the default and the retain-union keyword may instead be provided for a
stream.

The concept of union and intersection come from Set mathematics. In the language of Set
mathematics, two sets A and B can be "added" together: The intersection of A and B is the set of
all things which are members of both A and B, i.e. the members two sets have "in common". The
union of A and B is the set of all things which are members of either A or B.

Use the retain-intersection (the default) keyword to retain an intersection of all events as defined
by two or more data windows. All events removed from any of the intersected data windows are
entered into the remove stream. This is the default behavior if neither retain keyword is specified.

Use the retain-union keyword to retain a union of all events as defined by two or more data
windows. Only events removed from all data windows are entered into the remove stream.

The next example statement totals the price of OrderEvent events in a union of the last 30 seconds

and unigue by product name:

select sum(price) from OderEvent.win:tinme(30 sec).std:unique(productNanme)
retai n-uni on

In the above statement, all OrderEvent events that are either less then 30 seconds old or that are
the last event for the product name are considered.

Here is an example statement totals the price of OrderEvent events in an intersection of the last

30 seconds and unique by product name:

select sum(price) from OderEvent.win:tine(30 sec).std:unique(productNane)
retain-intersection

In the above statement, only those OrderEvent events that are both less then 30 seconds old and
are the last event for the product name are considered. The number of events that the engine

111

Chapter 5. EPL Reference: Clauses

retains is the number of unique events per product name in the last 30 seconds (and not the
number of events in the last 30 seconds).

For an intersection the engine retains the minimal number of events representing that intersection.
Thus when combining a time window of 30 seconds and a last-event window, for example, the
number of events retained at any time is zero or one event (and not 30 seconds of events).

When combining a batch window into an intersection with another data window the combined
data window gains batching semantics: Only when the batch criteria is fulfilled does the engine
provide the batch of intersecting insert stream events. Multiple batch data windows may not be
combined into an intersection.

In below table we provide additional examples for data window intersections:

Table 5.3. Intersection Data Window Examples

Example Description

wi n:time(30).std:firstuni que(keys) Retains 30 seconds of events unique per keys
value (first event per value).

win:firstlength(3).std:firstuni que(keys)Retains the first 3 events that are also unique
per keys value.

w n:time_batch(N Posts a batch every N seconds that contains
seconds) . st d: uni que(keys) the last of each unique event per keys value.
wi n:time_batch(N Posts a batch every N seconds that contains
seconds) . std: firstuni que(keys) the first of each unique event per keys value.

wi n: | engt h_bat ch(N). std: uni que(keys) Posts a batch of unique events (last event per
value) when N unique events per keys value
are encountered.

wi n: | engt h_bat ch(N). std: firstuni que(keydosts a batch of unique events (first event per
value) when N unique events per keys value
are encountered.

For advanced users and for backward compatibility, it is possible to configure Esper to
allow multiple data window views without either of the retain keywords, as described in
Section 16.4.12.3, “Configuring Multi-Expiry Policy Defaults”.

5.4.5. Using the Stream Name

Your f r omclause may assign a name to each stream. This assigned stream name can serve any
of the following purposes.

First, the stream name can be used to disambiguate property names. The
stream nane. property_nanme syntax uniquely identifies which property to select if property
names overlap between streams. Here is an example:

112

Using the Stream Name

sel ect prod. productld, ord. productld fromProduct Event as prod, OrderEvent as ord

Second, the stream name can be used with a wildcard (*) character to select events in a join, or
assign new names to the streams in a join:

/'l Sel ect ProductEvent only
sel ect prod.* from Product Event as prod, OrderEvent

/1l Assign colum names 'product’ and 'order' to each event
select prod.* as product, ord.* as order from Product Event as prod, O derEvent
as ord

Further, the stream name by itself can occur in any expression: The engine passes the event itself
to that expression. For example, the engine passes the ProductEvent and the OrderEvent to the
user-defined function 'checkOrder":

sel ect prod. productld, MyFunc.checkOrder(prod, ord)
from Product Event as prod, O derEvent as ord

Last, you may invoke an instance method on each event of a stream, and pass parameters to the
instance method as well. Instance method calls are allowed anywhere in an expression.
The next statement demonstrates this capability by invoking a method '‘computeTotal' on

OrderEvent events and a method 'getMultiplier' on ProductEvent events:

sel ect ord.conputeTotal (prod.getMiltiplier()) from ProductEvent as prod,
Order Event as ord

Instance methods may also be chained: Your EPL may invoke a method on the result returned
by a method invocation.

Assume that your product event exposes a method get Zone which returns a zone object. Assume
that the Zone class declares a method checkZone. This example statement invokes a method
chain:

sel ect prod. get Zone().checkZone("zone 1") from Product Event as prod

113

Chapter 5. EPL Reference: Clauses

5.5. Specifying Search Conditions: the Where Clause

The wher e clause is an optional clause in EPL statements. Via the wher e clause event streams
can be joined and correlated.

Tip

For filtering events in order to remove unwanted events, use the from clause
instead as described in Section 5.4.1, “Filter-based Event Streams” or for patterns
in Section 7.4, “Filter Expressions In Patterns”.

Place expressions that remove unwanted events into parenthesis right after the
event type, like ... from OrderEvent(fraud.severity = 5 and anpunt >
500)There isrelated information at Section 3.4, “Filters and Where-clauses”
and Section 21.2.5, “Prefer stream-level filtering over where-clause filtering”.

Any expression can be placed in the wher e clause. Typically you would use comparison operators
= <, >, >, <= I= <> is null, is not null and logical combinations via and and
or for joining, correlating or comparing events. The wher e clause introduces join conditions as
outlined in Section 5.12, “Joining Event Streams”.

Some examples are listed below.

...where settlenent.orderld = order.orderld

...where exists (select orderld from Settlenent.win:tine(l mn) where
settlement.orderld = order. orderld)

5.6. Aggregates and grouping: the Group-by Clause
and the Having Clause

5.6.1. Using aggregate functions

The aggregate functions are further documented in Section 10.2, “Aggregation Functions”. You
can use aggregate functions to calculate and summarize data from event properties.

For example, to find out the total price for all stock tick events in the last 30 seconds, type:

sel ect sum(price) from StockTi ckEvent.w n:tine(30 sec)

114

Using aggregate functions

Aggregation functions do not require the use of data windows. The examples herein specify data
windows for the purpose of example. An alternative means to instruct the engine when to start
and stop aggregating and on what level to aggregate is via context declarations.

For example, to find out the total price for all stock tick events since statement start, type:

sel ect sum(price) from StockTi ckEvent

Here is the syntax for aggregate functions:

aggregate_function([all | distinct] expression [,expression [,...]]
[, group_by:local _group_by])

You can apply aggregate functions to all events in an event stream window or other view, or to
one or more groups of events. From each set of events to which an aggregate function is applied,
Esper generates a single value.

Expr essi on is usually an event property name. However it can also be a constant, function, or any
combination of event property names, constants, and functions connected by arithmetic operators.

You can provide a grouping dimension for each aggregation function by providing the optional
group_by parameter as part of aggregation function parameters. Please refer to Section 5.6.4,
“Specifying grouping for each aggregation function”.

For example, to find out the average price for all stock tick events in the last 30 seconds if the
price was doubled:

sel ect avg(price * 2) from StockTi ckEvent. wi n:tinme(30 seconds)

You can use the optional keyword di sti nct with all aggregate functions to eliminate duplicate
values before the aggregate function is applied. The optional keyword al | which performs the
operation on all events is the default.

You can use aggregation functions in a sel ect clause and in a havi ng clause. You cannot use
aggregate functions in a wher e clause, but you can use the wher e clause to restrict the events to
which the aggregate is applied. The next query computes the average and sum of the price of stock
tick events for the symbol IBM only, for the last 10 stock tick events regardless of their symbol.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent . w n: | engt h(10)
where synbol =' | BM

115

Chapter 5. EPL Reference: Clauses

In the above example the length window of 10 elements is not affected by the wher e clause, i.e.
all events enter and leave the length window regardless of their symbol. If we only care about the
last 10 IBM events, we need to add filter criteria as below.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent (synbol =' I BM). wi n: | engt h(10)
where synbol =' | BM

You can use aggregate functions with any type of event property or expression, with the following
exceptions:

1. You can use sum avg, nedian, stddev, avedev with numeric event properties only

Esper ignores any null values returned by the event property or expression on which the aggregate
function is operating, except for the count (*) function, which counts null values as well. All
aggregate functions return null if the data set contains no events, or if all events in the data set
contain only null values for the aggregated expression.

5.6.2. Organizing statement results into groups: the Group-by
clause

The group by clause is optional in all EPL statements. The group by clause divides the output
of an EPL statement into groups. You can group by one or more event property names, or by
the result of computed expressions. When used with aggregate functions, gr oup by retrieves the

calculations in each subgroup. You can use group by without aggregate functions, but generally
that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in
the last 30 seconds:

sel ect synbol, sun(price) from StockTi ckEvent.wi n:tine(30 sec) group by synbol

The syntax of the gr oup by clause is:
group by aggregate free_expression [, aggregate_free_expression] [, ...]

Esper places the following restrictions on expressions in the gr oup by clause:

1. Expressions in the gr oup by cannot contain aggregate functions.

2. When grouping an unbound stream, i.e. no data window is specified onto the stream providing
groups, or when using output rate limiting with the ALL keyword, you should ensure your group-
by expression does not return an unlimited number of values. If, for example, your group-by

116

Organizing statement results into groups: the Group-by clause

expression is a fine-grained timestamp, group state that accumulates for an unlimited number
of groups potentially reduces available memory significantly. Use a @Hint as described below
to instruct the engine when to discard group state.

You can list more then one expression in the gr oup by clause to nest groups. Once the sets are
established with gr oup by the aggregation functions are applied. This statement posts the median
volume for all stock tick events in the last 30 seconds per symbol and tick data feed. Esper posts
one event for each group to statement listeners:

sel ect synbol, tickDataFeed, medi an(vol une)
from St ockTi ckEvent.wi n:ti ne(30 sec)
group by synbol, tickDataFeed

In the statement above the event properties in the sel ect list (symbol, tickDataFeed) are also
listed in the gr oup by clause. The statement thus follows the SQL standard which prescribes that
non-aggregated event properties in the sel ect list must match the gr oup by columns.

Esper also supports statements in which one or more event properties in the sel ect list are not
listed in the group by clause. The statement below demonstrates this case. It calculates the
standard deviation since statement start over stock ticks aggregating by symbol and posting for
each event the symbol, tickDataFeed and the standard deviation on price.

sel ect symbol, tickDataFeed, stddev(price) from StockTi ckEvent group by synbol

The above example still aggregates the pri ce event property based on the synbol , but produces
one event per incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the gr oup by
clause are not listed in the sel ect list. This is an example that calculates the mean deviation per
synmbol and ti ckDat aFeed and posts one event per group with symbol and mean deviation of
price in the generated events. Since tickDataFeed is not in the posted results, this can potentially
be confusing.

sel ect synbol, avedev(price)
from St ockTi ckEvent.wi n:ti ne(30 sec)
group by synbol, tickDataFeed

Expressions are also allowed in the group by list:

sel ect synmbol * price, count(*) from StockTi ckEvent.win:tine(30 sec) group by
synbol * price

117

Chapter 5. EPL Reference: Clauses

If the group by expression resulted in a null value, the null value becomes its own group.
All null values are aggregated into the same group. If you are using the count (expr essi on)
aggregate function which does not count null values, the count returns zero if only null values
are encountered.

You can use awher e clause in a statement with gr oup by. Events that do not satisfy the conditions
in the wher e clause are eliminated before any grouping is done. For example, the statement below
posts the number of stock ticks in the last 30 seconds with a volume larger then 100, posting one
event per group (symbol).

sel ect synbol, count(*) from StockTi ckEvent.w n:tine(30 sec) where volume > 100
group by synbol

5.6.2.1. Hints Pertaining to Group-By

The Esper engine reclaims aggregation state agressively when it determines that a group has no
data points, based on the data in the data windows. When your application data creates a large
number of groups with a small or zero number of data points then performance may suffer as state
is reclaimed and created anew. Esper provides the @1 nt (' di sabl e_recl ai m group') hint that
you can specify as part of an EPL statement text to avoid group reclaim.

When aggregating values over an unbound stream (i.e. no data window is specified onto the
stream) and when your group-by expression returns an unlimited number of values, for example
when a timestamp expression is used, then please note the next hint.

A sample statement that aggregates stock tick events by timestamp, assuming the event type
offers a property by name t i mest anp that, reflects time in high resolution, for example arrival or
system time:

/1 Note the bel ow statenment could | ead to an out-of-nmenory probl em
sel ect synbol, sum(price) from StockTi ckEvent group by tinmestanp

As the engine has no means of detecting when aggregation state (sums per symbol) can be
discarded, you may use the following hints to control aggregation state lifetime.

The @Hint("recl ai m gr oup_aged=age_in_seconds") hint instructs the engine to discard
aggregation state that has not been updated for age_in_seconds seconds.

The optional @Hint("r ecl ai m gr oup_f r eq=sweep_frequency_in_seconds"”) can be used in
addition to control the frequency at which the engine sweeps aggregation state to determine
aggregation state age and remove state that is older then age_in_seconds seconds. If the hint is
not specified, the frequency defaults to the same value as age_in_seconds.

The updated sample statement with both hints:

118

Using Group-By with Rollup, Cube and Grouping Sets

/] Instruct engine to renove state ol der then 10 seconds and sweep every 5 seconds
@i nt (' recl ai m_group_aged=10, recl ai m group_freq=5")
sel ect synbol, sum(price) from StockTi ckEvent group by tinmestanp

Variables may also be wused to provide values for age_in_seconds and
sweep_frequency_in_seconds.

This example statement uses a variable nhamed var Age to control how long aggregation state
remains in memory, and the engine defaults the sweep frequency to the same value as the variable
provides:

@i nt (' recl ai m group_aged=var Age')
sel ect synbol, sun{price) from StockTi ckEvent group by timestanp

5.6.3. Using Group-By with Rollup, Cube and Grouping Sets

EPL supports the SQL-standard r ol | up, cube and gr oupi ng sets keywords. These keywords
are available only in the group- by clause and instruct the engine to compute higher-level (or
super-aggregate) aggregation values, i.e. to perform multiple levels of analysis (groupings) at the
same time.

EPL also supports the SQL-standard gr oupi ng and gr oupi ng_i d functions. These functions can
be used in the sel ect -clause, havi ng-clause or or der by-clause to obtain information about the
current row's grouping level in expressions. Please see Section 10.1.7, “The Grouping Function”.

Detailed examples and information in respect to output rate limiting can be found in Section A.7,
“Output for Fully-Aggregated, Grouped Queries With Rollup”.

Use the rol | up keyword in the gr oup- by lists of expressions to compute the equivalent of an
OLAP dimension or hierarchy.

For example, the following statement outputs for each incoming event three rows. The first row
contains the total volume per symbol and feed, the second row contains the total volume per
symbol and the third row contains the total volume overall. This example aggregates across all
events for each aggregation level (3 groupings) since it declares no data window:

sel ect synbol, tickDataFeed, sun{volune) from StockTi ckEvent
group by rollup(synbol, tickDataFeed)

The value of ti ckDat aFeed is nul | for the output row that contains the total per symbol and the
output row that contains the total volume overall. The value of both synbol andti ckDat aFeed is
nul | for the output row that contains the overall total.

Use the cube keyword in the gr oup- by lists of expressions to compute a cross-tabulation.

119

Chapter 5. EPL Reference: Clauses

The following statement outputs for each incoming event four rows. The first row contains the total
volume per symbol and feed, the second row contains the total volume per symbol, the third row
contains the total volume per feed and the forth row contains the total volume overall (4 groupings):

sel ect synbol, tickDataFeed, sun{volune) from StockTi ckEvent
group by cube(synbol, tickDataFeed)

The gr oupi ng set s keywords allows you to specify only the groupings you want. It can thus be
used to generate the same groupings that simple gr oup- by expressions, r ol | up or cube would
produce.

In this example each incoming event causes the engine to compute two output rows: The first
row contains the total volume per symbol and the second row contains the total volume per feed
(2 groupings):

sel ect synbol, tickDataFeed, sun{vol unme) from StockTi ckEvent
group by grouping sets(synbol, feed)

Your gr oup- by expression can list grouping expressions and use rol | up, cube and gr oupi ng
set s keywords in addition or in combination.
This statement outputs the total per combination of symbol and feed and the total per symbol (2

groupings):

sel ect synbol, tickDataFeed, sun{volune) from StockTi ckEvent
group by synbol, rollup(tickDataFeed)

You can specify combinations of expressions by using parenthesis.

The next statement is equivalent and also outputs the total per symbol and feed and the total per
symbol (2 groupings, note the parenthesis):

sel ect synbol, tickDataFeed, sunm(volune) from StockTi ckEvent
group by grouping sets ((synbol, tickDataFeed), symnbol)

Use empty parenthesis to aggregate across all dimensions.

This statement outputs the total per symbol, the total per feed and the total overall (3 groupings):

sel ect synbol, tickDataFeed, sun{volune) from StockTi ckEvent

120

Using Group-By with Rollup, Cube and Grouping Sets

group by grouping sets (synbol, tickDataFeed, ())

The order of any output events for both insert and remove stream data is well-defined and exactly
as indicated before. For example, specifying groupi ng sets ((), synbol, tickDataFeed)
outputs a total overall, a total by symbol and a total by feed in that order. If the statement has an
or der - by-clause then the ordering criteria of the or der - by-clause take precedence.

You can use rol | up and cube within gr oupi ng sets.

This statement outputs the total per symbol and feed, the total per symbol, the total overall and
the total by feed (4 groupings):

sel ect synbol, tickDataFeed, sun{volunme) from StockTi ckEvent
group by grouping sets (rollup(synbol, tickDataFeed), tickDataFeed)

/| Note

- In order to use any of the rol | up, cube and groupi ng sets keywords the
statement must be fully-aggregated. All non-aggregated properties in the sel ect -
clause, havi ng-clause or or der - by-clause must also be listed in the group by
clause.

5.6.3.1. Grouping Dimension Examples

This section provides additional examples of gr oup- by-clauses and groupings or dimensions.
The examples use event properties a, b, c, d, e to keep the examples easy to read. Empty
parenthesis () stand for aggregation overall (across all dimensions).

If a statement provides no or der - by clause, its order of output events is exactly as indicated
below. Otherwise or der - by takes precedence and within the same ordering criteria the order of
output events is as indicated below.

Table 5.4.
G oup- By Clause Grouping
group by a, b, c a, b, c

group by rollup(a, b, c)

S oo

~

121

Chapter 5. EPL Reference: Clauses

G oup- By Clause Grouping

group by a, rollup(b, c) , b, ¢c
b

SR I)

group by rollup(a, b), rollup(c a,b,c,d

d) a, b, c
a, b
a,c,d
a,c
a
c,d
c

Q)

group by cube(a, b, c)

(¢}

O T T

S oo oo o
(]

~

group by cube(a, b, c, d) a,b,c,d
a, b, c
a, b, d
a, b
a,c,d
a,c
a,d

b,c,d
b, c
b, d

c,d

0

group by grouping sets(a, b, c) a

122

Specifying grouping for each aggregation function

G oup- By Clause Grouping
C

group by grouping sets((a, b) a,b
rol lup(c, d)) c,d
c

0

The following table outlines sample equivalent gr oup- by-clauses.

Table 5.5. Equivalent G oup- By-Clause Expressions

Expression Equivalent

group by a, b group by grouping
sets((a, b))

group by rollup(a, group by grouping

b) sets((a, b), a, ()

group by cube(a, b) group by grouping
sets((a, b), a, b, ()

group by a, b, group by grouping

rollup(c, d) sets((a, b, c, d), (a,
b, ¢), (a, b))

group by rollup((a, group by grouping

b), ¢) sets((a, b, ¢), (a, b),
0)

group by grouping group by grouping

sets((a)) sets(a)

5.6.3.2. Rollup Usage Notes

The prev and pri or functions returns the previous event's property values and since they are
not aggregation functions return the same value for each grouping. Declared or alias expressions
and correlated subqueries also receive the same value for each grouping.

Context partitions operate on a higher level then rollups, i.e. rollups are never across context
partitions.

5.6.4. Specifying grouping for each aggregation function

EPL allows each aggregation function to specify its own grouping criteria. This is useful for
aggregating across multiple dimensions.

The syntax for the gr oup_by parameter for use with aggregation functions is:

123

Chapter 5. EPL Reference: Clauses

group_by: ([expression [,expression [,...]]])

The group_by identifier can occur at any place within the aggregation function parameters. It
follows a colon and within parenthesis an optional list of grouping expressions. The parenthesis
are not required when providing a single expression. For grouping on the top level (overall
aggregation) please use () empty parenthesis.

The presence of gr oup_by aggregation function parameters, the grouping expressions as well
as the gr oup- by clause determine the number of output rows for queries as further described in
Section 3.7.2, “Output for Aggregation and Group-By”.

For un-grouped queries (without a group by clause), if any aggregation function specifies a
gr oup_by other than the () overall group, the query executes as aggregated and un-grouped.

For example, the next statement is an aggregated (but not fully aggregated) and ungrouped query
and outputs various totals for each arriving event:

sel ect sun(price, group_by:()) as total PriceQverall,

sun(price, group_by:account) as total PricePerAccount,

sun(price, group_by: (account, feed)) as total PricePer Account AndFeed
from Orders

For grouped queries (with a group by clause), if all aggregation functions specifiy either
no group_by or group_by criteria that subsume the criteria in the group by clause, the
query executes as a fully-aggregated and grouped query. Otherwise the query executes as an
aggregated and grouped query.

The next example is fully-aggregated and grouped and it computes, for the last one minute of
orders, the ratio of orders per account compared to all orders:

sel ect count(*)/count(*, group_by:()) as ratio
fromOders.win:tine(1l mn) group by account

The next example is an aggregated (and not fully-aggregated) and grouped query that in addition
outputs a count per order category:

sel ect count(*) as cnt, count(*, group_by:()) as cntOverall, count(*, group_by:
(category)) as cntPerCategory
fromOders.win:tine(1l mn) group by account

Please note the following restrictions:

1. Expressions in the gr oup_by cannot contain aggregate functions.

124

Selecting groups of events: the Having clause

2. Hints pertaining to group-by are not available when a statement specifies aggregation functions
with gr oup_by.

3. The group_by aggregation function parameters are not available in subqueries, match-
recognize, statements that aggregate into tables using i nto tabl e or in combination with
rol | up and gr oupi ng sets.

5.6.5. Selecting groups of events: the Having clause

Use the havi ng clause to pass or reject events defined by the gr oup- by clause. The havi ng
clause sets conditions for the group by clause in the same way wher e sets conditions for the
sel ect clause, except wher e cannot include aggregate functions, while havi ng often does.

This statement is an example of a havi ng clause with an aggregate function. It posts the total
price per symbol for the last 30 seconds of stock tick events for only those symbols in which the
total price exceeds 1000. The havi ng clause eliminates all symbols where the total price is equal
or less then 1000.

sel ect synbol, sun{price)

from St ockTi ckEvent.wi n:ti ne(30 sec)
group by synbol

havi ng sum(price) > 1000

To include more then one condition in the havi ng clause combine the conditions with and, or or
not . This is shown in the statement below which selects only groups with a total price greater then
1000 and an average volume less then 500.

sel ect symbol, sum(price), avg(vol ume)

from St ockTi ckEvent.wi n:ti ne(30 sec)

group by synbol

havi ng sum(price) > 1000 and avg(vol unme) < 500

A statement with the havi ng clause should also have a group by clause. If you omit gr oup- by,
all the events not excluded by the wher e clause return as a single group. In that case havi ng acts
like a wher e except that havi ng can have aggregate functions.

The havi ng clause can also be used without gr oup by clause as the below example shows. The
example below posts events where the price is less then the current running average price of all
stock tick events in the last 30 seconds.

sel ect synbol, price, avg(price)
from St ockTi ckEvent.wi n:ti ne(30 sec)
havi ng price < avg(price)

125

Chapter 5. EPL Reference: Clauses

5.6.6. How the stream filter, Where, Group By and Having
clauses interact

When you include filters, the wher e condition, the group by clause and the havi ng condition in
an EPL statement the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is
used). The filter discards any events not meeting filter criteria.

2. The wher e clause excludes events that do not meet its search condition.
3. Aggregate functions in the select list calculate summary values for each group.
4. The havi ng clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and havi ng clauses in one
statement with a sel ect clause containing an aggregate function.

sel ect tickDat aFeed, stddev(price)

from St ockTi ckEvent (synmbol ="' | BM). wi n: | engt h(10)
where vol ume > 1000

group by tickDat aFeed

havi ng stddev(price) > 0.8

Esper filters events using the filter criteria for the event stream St ockTi ckEvent . In the example
above only events with symbol IBM enter the length window over the last 10 events, all other
events are simply discarded. The where clause removes any events posted by the length
window (events entering the window and event leaving the window) that do not match the
condition of volume greater then 1000. Remaining events are applied to the st ddev standard
deviation aggregate function for each tick data feed as specified in the gr oup by clause. Each
ti ckDat aFeed value generates one event. Esper applies the havi ng clause and only lets events
pass for t i ckDat aFeed groups with a standard deviation of price greater then 0.8.

5.6.7. Comparing Keyed Segmented Context, the Group By
clause and the std:groupwin view

The keyed segmented context create context ... partition by and the group by clause as well as
the built-in std:groupwin view are similar in their ability to group events but very different in their
semantics. This section explains the key differences in their behavior and use.

The keyed segmented context as declared with create context ... partition by and context
select ... creates a new context partition per key value(s). The engine maintains separate
data window views as well as separate aggregations per context partition; thereby the keyed
segmented context applies to both. See Section 4.2.2, “Keyed Segmented Context” for additional
examples.

126

Comparing Keyed Segmented Context, the Group By clause and the std:groupwin view

The group by clause works together with aggregation functions in your statement to produce an
aggregation result per group. In greater detail, this means that when a new event arrives, the
engine applies the expressions in the group by clause to determine a grouping key. If the engine
has not encountered that grouping key before (a new group), the engine creates a set of new
aggregation results for that grouping key and performs the aggregation changing that new set of
aggregation results. If the grouping key points to an existing set of prior aggregation results (an
existing group), the engine performs the aggregation changing the prior set of aggregation results
for that group.

The std:groupwin view is a built-in view that groups events into data windows. The view is
described in greater detail in Section 13.3.2, “Grouped Data Window (std:groupwin)”. Its primary
use is to create a separate data window per group, or more generally to create separate instances
of all its sub-views for each grouping key encountered.

The table below summarizes the point:

Table 5.6. Grouping Options

Option Description

Keyed Segmented Context Separate context partition per key value.

Affects all of data windows, aggregations, patterns, etc. (except
variables which are global).

Grouped Data Window | Separate data window per key value.

(std:groupwin)
Affects only the data window that is declared next to it.

Group By Clause (group by) | Separate aggregation values per key value.

Affects only aggregation values.

Please review the performance section for advice related to performance or memory-use.

The next example shows queries that produce equivalent results. The query using the group by
clause is generally preferable as is easier to read. The second form introduces the st at : uni view
which computes univariate statistics for a given property:

sel ect synbol, avg(price) from StockTi ckEvent group by symnbol
/Il ... is equivalent to ...
sel ect synbol, average from St ockTi ckEvent. std: groupwi n(synbol). stat: uni (price)

The next example shows two queries that are NOT equivalent as the length window is ungrouped
in the first query, and grouped in the second query:

sel ect synbol, sum(price) from StockTi ckEvent.w n: | ength(10) group by symnbol
/1 ... NOT equivalent to ...

127

Chapter 5. EPL Reference: Clauses

sel ect symbol , sun(price) from
St ockTi ckEvent . st d: groupwi n(synbol). wi n: | engt h(10)

The key difference between the two statements is that in the first statement the length window is
ungrouped and applies to all events regardless of group. While in the second query each group
gets its own instance of a length window. For example, in the second query events arriving for
symbol "ABC" get a length window of 10 events, and events arriving for symbol "DEF" get their
own length window of 10 events.

5.7. Stabilizing and Controlling Output: the Output
Clause

5.7.1. Output Clause Options

The out put clause is optional in Esper and is used to control or stabilize the rate at which events
are output and to suppress output events. The EPL language provides for several different ways
to control output rate.

Here is the syntax for the out put clause that specifies a rate in time interval or number of events:

out put [after suppression_def]
[[all | first | last | snapshot] every output_rate [seconds | events]]
[and when term nated]

An alternate syntax specifies the time period between output as outlined in Section 5.2.1,
“Specifying Time Periods” :

out put [after suppression_def]
[[all | first | last | snapshot] every time_peri od]
[and when terninated]

A crontab-like schedule can also be specified. The schedule parameters follow the pattern
observer parameters and are further described in Section 7.6.4, “Crontab (timer:at)” :

out put [after suppression_def]

[[all | first | last | snapshot] at

(m nutes, hours, days of nonth, nonths, days of week [, seconds])]
[and when term nated]

For use with contexts, in order to trigger output only when a context partition terminates, specify
when terni nat ed as further described in Section 4.5, “Output When Context Partition Ends”:

out put [after suppression_def]
[[all | first | last | snapshot] when term nated
[and term nati on_expression]

128

Output Clause Options

[then set variable_nane = assign_expression [, variable_nanme =
assign_expression [,...]]]

]

Last, output can be controlled by an expression that may contain variables, user-defined functions
and information about the number of collected events. Output that is controlled by an expression
is discussed in detail below.

The after keyword and suppression_def can appear alone or together with further output
conditions and suppresses output events.

For example, the following statement outputs, every 60 seconds, the total price for all orders in
the 30-minute time window:

sel ect sun(price) from OrderEvent.win:tine(30 mn) output snapshot every 60
seconds

The al | keyword is the default and specifies that all events in a batch should be output, each
incoming row in the batch producing an output row. Note that for statements that group via the
group by clause, the al I keyword provides special behavior as below.

The first keyword specifies that only the first event in an output batch is to be output. Using
the first keyword instructs the engine to output the first matching event as soon as it arrives,
and then ignores matching events for the time interval or number of events specified. After the
time interval elapsed, or the number of matching events has been reached, the next first matching
event is output again and the following interval the engine again ignores matching events. For
statements that group via the group by clause, the first keywords provides special behavior
as below.

The | ast keyword specifies to only output the last event at the end of the given time interval or
after the given number of matching events have been accumulated. Again, for statements that
group via the group by clause the | ast keyword provides special behavior as below.

The snapshot keyword is often used with unbound streams and/or aggregation to output
current aggregation results. While the other keywords control how a batch of events between
output intervals is being considered, the snapshot keyword outputs current state of a statement
independent of the last batch. Its output is comparable to the iterat or method provided by
a statement. More information on out put snapshot can be found in Section 5.7.1.3, “Output
Snapshot”.

The output_rate is the frequency at which the engine outputs events. It can be specified in terms
of time or number of events. The value can be a number to denote a fixed output rate, or the
name of a variable whose value is the output rate. By means of a variable the output rate can be
controlled externally and changed dynamically at runtime.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert
and remove stream output for the various out put clause keywords.

129

Chapter 5. EPL Reference: Clauses

For use with contexts you may append the keywords and when ter ni nat ed to trigger output at
the rate defined and in addition trigger output when the context partition terminates. Please see
Section 4.5, “Output When Context Partition Ends” for details.

The time interval can also be specified in terms of minutes; the following statement is identical
to the first one.

select * from StockTi ckEvent output every 1.5 minutes

A second way that output can be stabilized is by batching events until a certain number of events
have been collected:

sel ect * from StockTi ckEvent output every 5 events

Additionally, event output can be further modified by the optional | ast keyword, which causes
output of only the last event to arrive into an output batch.

select * from StockTi ckEvent output |ast every 5 events

Using the first keyword you can be notified at the start of the interval. The allows to watch for
situations such as a rate falling below a threshold and only be informed every now and again after
the specified output interval, but be informed the moment it first happens.

select * from TickRate where rate<100 output first every 60 seconds

A sample statement using the Unix "crontab"-command schedule is shown next. See
Section 7.6.4, “Crontab (timer:at)” for details on schedule syntax. Here, output occurs every 15
minutes from 8am to 5:45pm (hours 8 to 17 at 0, 15, 30 and 45 minutes past the hour):

sel ect synbol, sum(price) from StockTi ckEvent group by synbol output at
(=i, & 17, =, =, %)

5.7.1.1. Controlling Output Using an Expression

Output can also be controlled by an expression that may check variable values, use user-defined
functions and query built-in properties that provide additional information. The synopsis is as
follows:

out put [after suppression_def]
[[all | first | last | snapshot] when trigger_expression

130

Output Clause Options

[then set variable_nane = assign_expression [, variable_name
= assign_expression [,...]]]
[and when term nated
[and term nation_expression]
[then set variable_nane = assign_expression [, variable_nanme =
assi gn_expression [,...]]1]

]

The when keyword must be followed by a trigger expression returning a boolean value of true
or false, indicating whether to output. Use the optional t hen keyword to change variable values
after the trigger expression evaluates to true. An assignment expression assigns a new value to
variable(s).

For use with contexts you may append the keywords and when terninated to also trigger
output when the context partition terminates. Please see Section 4.5, “Output When Context
Partition Ends” for details. You may optionally specify a termination expression. If that expression
is provided the engine evaluates the expression when the context partition terminates: The
evaluation result of t r ue means output occurs when the context partition terminates, f al se means
no output occurs when the context partition terminates. You may specify t hen set followed by a
list of assignments to assign variables. Assignments are executed on context partition termination
regardless of the termination expression, if present.

Lets consider an example. The next statement assumes that your application has defined a
variable by name OutputTriggerVar of boolean type. The statement outputs rows only when the
OutputTriggerVar variable has a boolean value of true:

sel ect sun(price) from StockTi ckEvent output when Qutput Tri ggerVar = true

The engine evaluates the trigger expression when streams and data views post one or more
insert or remove stream events after considering the wher e clause, if present. It also evaluates
the trigger expression when any of the variables used in the trigger expression, if any, changes
value. Thus output occurs as follows:

1. When there are insert or remove stream events and the when trigger expression evaluates to
true, the engine outputs the resulting rows.

2. When any of the variables in the when trigger expression changes value, the engine evaluates
the expression and outputs results. Result output occurs within the minimum time interval of
timer resolution (100 milliseconds).

By adding a t hen part to the EPL, we can reset any variables after the trigger expression evaluated
to true:

sel ect sun(price) from StockTi ckEvent
out put when CQutput Tri ggerVar = true
then set QutputTriggerVar = fal se

131

Chapter 5. EPL Reference: Clauses

Expressions in the when and t hen may, for example, use variables, user defined functions or any
of the built-in named properties that are described in the below list.

The following built-in properties are available for use:

Table 5.7. Built-In Properties for Use with Output When

Built-In Property Name Description

| ast _out put _ti mestanp | Timestamp when the last output occurred for the statement; Initially
set to time of statement creation

count _insert Number of insert stream events

count _i nsert _t ot al Number of insert stream events in total (not reset when output
occurs).

count _renove Number of remove stream events

count _renove_t ot al Number of remove stream events in total (not reset when output
occurs).

The values provided by count _i nsert and count _renmove are non-continues: The number
returned for these properties may ‘jump' up rather then count up by 1. The counts reset to zero
upon output.

The following restrictions apply to expressions used in the output rate clause:

« Event property names cannot be used in the output clause.

» Aggregation functions cannot be used in the output clause.

e The prev previous event function and the pri or prior event function cannot be used in the
output clause.

5.7.1.2. Suppressing Output With after

The af t er keyword and its time period or number of events parameters is optional and can occur
after the out put keyword, either alone or with output conditions as listed above.

The synopsis of af t er is as follows:

output after tine_period | nunber events [...]

When using af t er either alone or together with further output conditions, the engine discards all
output events until the time period passed as measured from the start of the statement, or until
the number of output events are reached. The discarded events are not output and do not count
towards any further output conditions if any are specified.

For example, the following statement outputs every minute the total price for all orders in the 30-
minute time window but only after 30 minutes have passed:

132

Aggregation, Group By, Having and Output clause interaction

sel ect sunm(price) from OrderEvent.win:time(30 min) output after 30 mi n snapshot
every 1 mn

An example in which af t er occur alone is below, in a statement that outputs total price for all
orders in the last minute but only after 1 minute passed, each time an event arrives or leaves
the data window:

sel ect sun(price) fromOderEvent.win:time(1l nmin) output after 1 mn

To demonstrate af t er when used with an event count, this statement find pairs of orders with the
same id but suppresses output for the first 5 pairs:

select * from pattern[every o=OrderEvent->p=COrderEvent(id=o0.id)] output after
5 events

5.7.1.3. Output Snapshot

For fully aggregated and un-grouped statements, out put snapshot outputs a single row with
current aggregation value(s).

For aggregated ungrouped and grouped statements, as well as for unaggregated statements,
out put snapshot considers events held by the data window and outputs a row for each event. If
the statement specifies no data window or a join results in no rows, the output is no rows.

For fully aggregated and grouped statements that select from a single stream (or pattern, non-
joining) and that do not specify a data window, the engine outputs current aggregation results
for all groups. For fully aggregated and grouped statements with a join and/or data windows the
output consists of aggregation values according to events held in the data window (single stream)
or that are join results (join).

When the f r omclause lists only tables, use out put snapshot to output table contents.

5.7.2. Aggregation, Group By, Having and Output clause
Interaction

Remove stream events can also be useful in conjunction with aggregation and the out put
clause: When the engine posts remove stream events for fully-aggregated queries, it presents the
aggregation state before the expiring event leaves the data window. Your application can thus
easily obtain a delta between the new aggregation value and the prior aggregation value.

The engine evaluates the having-clause at the granularity of the data posted by views. That is, if
you utilize a time window and output every 10 events, the havi ng clause applies to each individual
event or events entering and leaving the time window (and not once per batch of 10 events).

133

Chapter 5. EPL Reference: Clauses

The out put clause interacts in two ways with the group by and havi ng clauses. First, in the
output every n events case, the number n refers to the number of events arriving into the
group by cl ause. Thatis, if the gr oup by clause outputs only 1 event per group, or if the arriving
events don't satisfy the havi ng clause, then the actual number of events output by the statement
could be fewer than n.

Second, the | ast, al | and first keywords have special meanings when used in a statement
with aggregate functions and the gr oup by clause:

* When no keyword is specified, the engine produces an output row for each row in the batch
or when using group-by then an output per group only for those groups present in the batch,
following Section 3.7.2, “Output for Aggregation and Group-By”.

e The all keyword (the default) specifies that the most recent data for all groups seen so far
should be output, whether or not these groups' aggregate values have just been updated

« Thel ast keyword specifies that only groups whose aggregate values have been updated with
the most recent batch of events should be output.

e The first keyword specifies that only groups whose aggregate values have been updated
with the most recent batch of events should be output following the defined frequency, keeping
frequency state for each group.

e The snapshot keyword does not consider the recent batch and has special behavior as
discussed in Section 5.7.1.3, “Output Snapshot”.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert
and remove stream output for aggregation and group-by.

By adding an output rate limiting clause to a statement that contains a group by clause we can
control output of groups to obtain one row for each group, generating an event per group at the
given output frequency.

The next statement outputs total price per symbol cumulatively (no data window was used here).
As it specifies the al | keyword, the statement outputs the current value for all groups seen so far,
regardless of whether the group was updated in the last interval. Output occurs after an interval
of 5 seconds passed and at the end of each subsequent interval:

sel ect synmbol, sun{price) from StockTi ckEvent group by synbol output all every
5 seconds

The below statement outputs total price per symbol considering events in the last 3 minutes.
When events leave the 3-minute data window output also occurs as new aggregation values are
computed. The | ast keyword instructs the engine to output only those groups that had changes.
Output occurs after an interval of 10 seconds passed and at the end of each subsequent interval:

sel ect synbol, sun(price) from StockTi ckEvent.win:tine(3 mn)

134

Runtime Considerations

group by synbol output |ast every 10 seconds

This statement also outputs total price per symbol considering events in the last 3 minutes. The
first keyword instructs the engine to output as soon as there is a new value for a group. After
output for a given group the engine suppresses output for the same group for 10 seconds and
does not suppress output for other groups. Output occurs again for that group after the interval
when the group has new value(s):

sel ect synbol, sum(price) from StockTi ckEvent.wi n:time(3 mn)
group by synbol output first every 10 seconds

5.7.3. Runtime Considerations

Output rate limiting provides output events to your application in regular intervals. Between
intervals, the engine uses a buffer to hold events until the output condition is reached. If your
application has high-volume streams, you may need to be mindful of the memory needs for output
rates.

The out put clause with the snapshot keyword does not require a buffer, all other output keywords
do consume memory until the output condition is reached.

5.8. Sorting Output: the Order By Clause

The order by clause is optional. It is used for ordering output events by their properties, or by
expressions involving those properties. .

For example, the following statement outputs batches of 5 or more stock tick events that are sorted
first by price ascending and then by volume ascending:

sel ect synbol from StockTi ckEvent.w n:tine(60 sec)
out put every 5 events
order by price, volune

Here is the syntax for the or der by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

If the or der by clause is absent then the engine still makes certain guarantees about the ordering
of output:

« If the statement is not a join, does not group via gr oup by clause and does not declare grouped
data windows via st d: gr oupwi n view, the order in which events are delivered to listeners and
through the i t er at or pull API is the order of event arrival.

135

Chapter 5. EPL Reference: Clauses

« If the statement is a join or outer join, or groups, then the order in which events are delivered
to listeners and through the i t er at or pull APl is not well-defined. Use the or der by clause if
your application requires events to be delivered in a well-defined order.

Esper places the following restrictions on the expressions in the or der by clause:
1. All aggregate functions that appear in the order by clause must also appear in the sel ect
expression.

Otherwise, any kind of expression that can appear in the sel ect clause, as well as any name
defined in the sel ect clause, is also valid in the order by clause.

By default all sort operations on string values are performed via the conmpar e method and are
thus not locale dependent. To account for differences in language or locale, see Section 16.4.21,
“Engine Settings related to Language and Locale” to change this setting.

5.9. Limiting Row Count: the Limit Clause

The l'i mi t clause is typically used together with the order by and out put clause to limit your
query results to those that fall within a specified range. You can use it to receive the first given
number of result rows, or to receive a range of result rows.

There are two syntaxes for the | i mi t clause, each can be parameterized by integer constants or
by variable names. The first syntax is shown below:

limt row count [offset offset_count]

The required row_count parameter specifies the number of rows to output. The row_count can be
an integer constant and can also be the name of the integer-type variable to evaluate at runtime.

The optional offset_count parameter specifies the number of rows that should be skipped (offset)
at the beginning of the result set. A variable can also be used for this parameter.

The next sample EPL query outputs the top 10 counts per property 'uri' every 1 minute.

select uri, count(*) from WbEvent
group by uri

out put snapshot every 1 mnute
order by count(*) desc

limt 10

The next statement demonstrates the use of the of f set keyword. It outputs ranks 3 to 10 per
property 'uri* every 1 minute:

sel ect uri, count(*) from WbEvent

136

Merging Streams and Continuous Insertion: the Insert Into Clause

group by uri

out put snapshot every 1 mnute
order by count(*) desc

limt 8 offset 2

The second syntax for the I i mi t clause is for SQL standard compatibility and specifies the offset
first, followed by the row count:

limt offset_count[, row_ count]

The following are equivalent:

limt 8 offset 2
/Il ...equivalent to
limt 2, 8

A negative value for row_count returns an unlimited number or rows, and a zero value returns
no rows. If variables are used, then the current variable value at the time of output dictates the
row count and offset. A variable returning a null value for row_count also returns an unlimited
number or rows.

A negative value for offset is not allowed. If your variable returns a negative or null value for offset
then the value is assumed to be zero (i.e. no offset).

The i terator pull APl also honors the li nit clause, if present.

5.10. Merging Streams and Continuous Insertion: the
Insert Into Clause

The insert into clause is optional in Esper. The clause can be specified to make the results
of a statement available as an event stream for use in further statements, or to insert events into
a named window or table. The clause can also be used to merge multiple event streams to form
a single stream of events.

The syntax for the i nsert i nto clause is as follows:

insert [istream| irstream| rstrean] into event_stream nanme
[(property nane [, property_nane]) |

The i st r eam(default) and r st r eamkeywords are optional. If no keyword or the i st r eamkeyword
is specified, the engine supplies the insert stream events generated by the statement. The insert
stream consists of the events entering the respective window(s) or stream(s). If the rstream
keyword is specified, the engine supplies the remove stream events generated by the statement.
The remove stream consists of the events leaving the respective window(s).

137

Chapter 5. EPL Reference: Clauses

If your application specifies i r st r eam the engine inserts into the new stream both the insert and
remove stream. This is often useful in connection with the i st r eambuilt-in function that returns an
inserted/removed boolean indicator for each event, see Section 10.1.10, “The Istream Function”.

The event _st ream nane is an identifier that names the event stream (and also implicitly names
the types of events in the stream) generated by the engine. It may also specify a named window
name or a table name. The identifier can be used in further statements to filter and process events
of that event stream, unless inserting into a table. The i nsert i nt o clause can consist of just an
event stream name, or an event stream name and one or more property names.

The engine also allows listeners to be attached to a statement that contain ani nsert i nt o clause.
Listeners receive all events posted to the event stream.

To merge event streams, simply use the same event _st r eam nane identifier in all EPL statements
that merge their result event streams. Make sure to use the same number and names of event
properties and event property types match up.

Esper places the following restrictions on the i nsert i nto clause:

1. The number of elements inthe sel ect clause must match the number of elementsinthei nsert
i nt o clause if the clause specifies a list of event property names

2. If the event stream name has already been defined by a prior statement or configuration, and
the event property names and/or event types do not match, an exception is thrown at statement
creation time.

The following sample inserts into an event stream by name CombinedEvent:

insert into Conbi nedEvent

sel ect A custonmerld as custld, A timestanp - B.tinestanp as |atency
fromEventAwin:tine(30 nin) A EventB.win:time(30 nin) B

where A txnld = B.txnld

Each event in the Conbi nedEvent event stream has two event properties named "custld" and
"latency”. The events generated by the above statement can be used in further statements, such
as shown in the next statement:

sel ect custld, sun(latency)
from Conbi nedEvent . wi n: ti me(30 m n)
group by custld

The example statement below shows the alternative form of the i nsert i nt o clause that explicitly
defines the property names to use.

insert into Conmbi nedEvent (custld, |atency)

138

Transposing a Property To a Stream

sel ect A custonerld, A tinmestanp - B.tinestanp

The r st reamkeyword can be useful to indicate to the engine to generate only remove stream
events. This can be useful if we want to trigger actions when events leave a window rather
then when events enter a window. The statement below generates Conbi nedEvent events when
EventA and EventB leave the window after 30 minutes.

insert rstreaminto Combi nedEvent

sel ect A custonmerld as custld, A timestanp - B.tinestanp as | atency
fromEventAwin:tine(30 nmin) A EventB.win:time(30 nin) B

where A txnld = B.txnld

The i nsert into clause can be used in connection with patterns to provide pattern results to
further statements for analysis:

insert into ReUpEvent

select linkUp.ip as ip

from pattern [every | i nkDown=Li nkDownEvent ->
I i nkUp=Li nkUpEvent (i p=l i nkDown. i p)]

5.10.1. Transposing a Property To a Stream

Sometimes your events may carry properties that are themselves event objects. Therefore EPL
offers a special syntax to insert the value of a property itself as an event into a stream:

insert into streamnane sel ect property nane.* from...

This feature is only supported for JavaBean events and for Map and Object-array (Cbj ect []) event
types that associate an event type name with the property type. It is not supported for XM events.
Nested property names are also not supported.

In this example, the class Sunmar y with properties bi d and ask that are of type Quot e is:

public class Summary {
private Quote bid;
private Quote ask;

The statement to populate a stream of Quot e events is thus:

139

Chapter 5. EPL Reference: Clauses

insert into MyBi dStream sel ect bid.* from Sumrary

5.10.2. Merging Streams By Event Type

The insert into clause allows to merge multiple event streams into a event single stream.
The clause names an event stream to insert into by specifing an event_stream_name. The first
statement that inserts into the named stream defines the stream's event types. Further statements
that insert into the same event stream must match the type of events inserted into the stream as
declared by the first statement.

One approach to merging event streams specifies individual colum names either in the sel ect
clause orin the i nsert i nto clause of the statement. This approach has been shown in earlier
examples.

Another approach to merging event streams specifies the wildcard (*) in the sel ect clause (or the
stream wildcard) to select the underlying event. The events in the event stream must then have
the same event type as generated by the f r omclause.

Assume a statement creates an event stream named MergedStream by selecting OrderEvent
events:

insert into MergedStream select * from O der Event
A statement can use the stream wildcard selector to select only OrderEvent events in a join:
insert into MergedStream sel ect ord.* fromltenScanEvent, O derEvent as ord

And a statement may also use an application-supplied user-defined function to convert events to
OrderEvent instances:

insert into MergedStream sel ect MyLib.convert(item) fromltenScanEvent as item

Esper specifically recognizes a conversion function as follows: A conversion function must be
the only selected column, and it must return either a Java object or j ava. uti | . Map or Qoj ect []
(object array). Your EPL should not use the as keyword to assign a column name.

5.10.3. Merging Disparate Types of Events: Variant Streams

A variant stream is a predefined stream into which events of multiple disparate event types can
be inserted.

140

Merging Disparate Types of Events: Variant Streams

A variant stream name may appear anywhere in a pattern or f romclause. In a pattern, a filter
against a variant stream matches any events of any of the event types inserted into the variant
stream. In a f r omclause including for named windows, views declared onto a variant stream may
hold events of any of the event types inserted into the variant stream.

A variant stream is thus useful in problems that require different types of event to be treated the
same.

Variant streams can be declared by means of creat e vari ant schena or can be predefined via
runtime or initialization-time configuration as described in Section 16.4.27, “Variant Stream”. Your
application may declare or predefine variant streams to carry events of a limited set of event types,
or you may choose the variant stream to carry any and all types of events. This choice affects
what event properties are available for consuming statements or patterns of the variant stream.

Assume that an application predefined a variant stream named O der Stream to carry only
Servi ceOrder and Product Order events. Aninsert i nto clause inserts events into the variant
stream:

insert into OrderStream select * from Servi ceOrder

insert into OrderStream sel ect * from Product O der

Here is a sample statement that consumes the variant stream and outputs a total price per
customer id for the last 30 seconds of Ser vi ceOr der and Pr oduct Or der events:

select custonerld, sum(price) from O-derStreamw n:tinme(30 sec) group by
custonerld

If your application predefines the variant stream to hold specific type of events, as the sample
above did, then all event properties that are common to all specified types are visible on the variant
stream, including nested, indexed and mapped properties. For access to properties that are only
available on one of the types, the dynamic property syntax must be used. In the example above,
the cust oner I d and pri ce were properties common to both Servi ceOr der and Pr oduct Or der
events.

For example, here is a consuming statement that selects a ser vi ce dur acti on property that only
Servi ceOr der events have, and that must therefore be casted to double and null values removed
in order to aggregate:

sel ect custonerld, sunmcoal esce(cast(servicebDuraction?, double), 0))
fromOderStreamwi n:ti ne(30 sec) group by custonerld

141

Chapter 5. EPL Reference: Clauses

If your application predefines a variant stream to hold any type of events (the any type variance),
then all event properties of the variant stream are effectively dynamic properties.

For example, an application may define an Qut goi ngEvent s variant stream to hold any type of
event. The next statement is a sample consumer of the Qut goi ngEvent s variant stream that looks
for the desti nati on property and fires for each event in which the property exists with a value
of ' email":

sel ect * from Cut goi ngEvents(destination = "emil"')

5.10.4. Decorated Events

Your sel ect clause may use the *' wildcard together with further expressions to populate a stream
of events. A sample statement is:

insert into OrderStream sel ect *, price*units as linePrice from PurchaseOr der

When using wildcard and selecting additional expression results, the engine produces what is
called decorating events for the resulting stream. Decorating events add additional property values
to an underlying event.

In the above example the resulting OrderStream consists of underlying PurchaseOrder events
decorated by a | i nePri ce property that is a result of the pri ce*uni t s expression.

Inordertouseinsert into toinsertinto an existing stream of decorated events, your underlying
event type must match, and all additional decorating property hames and types of the sel ect
clause must also match.

5.10.5. Event as a Property

Your sel ect clause may use the stream name to populate a stream of events in which each event
has properties that are itself an event. A sample statement is:

insert into ConpositeStream sel ect order, service, order.price+service.price as
total Price

from PurchaseOrder.std:|astevent() as order, ServiceEvent:std:|astevent() as
service

When using the stream name (or tag in patterns) in the select-clause, the engine produces
composite events: One or more of the properties of the composite event are events themselves.

142

Instantiating and Populating an Underlying Event Object

In the above example the resulting CompositeStream consists of 3 columns: the PurchaseOrder
event, the ServiceEvent event and the t ot al Pri ce property that is a result of the order. price
+servi ce. pri ce expression.

In order to use i nsert into toinsertinto an existing stream of events in which properties are
themselves events, each event column's event type must match, and all additional property names
and types of the sel ect clause must also match.

5.10.6. Instantiating and Populating an Underlying Event Object

Yourinsert into clause may also directly instantiate and populate application underlying event
objects or Map or Obj ect [] event objects. This is described in greater detail in Section 2.12, “Event
Objects Instantiated and Populated by Insert Into”.

If instead you have an expression that returns an event object, please read on to the next section.

5.10.7. Transposing an Expression Result

You can transpose an object returned as an expression result into a stream using the t r anspose
function as described further in Section 10.4, “Select-Clause transpose Function”.

5.10.8. Select-Clause Expression And Inserted-Into Column
Event Type

When you declare the inserted-into event type in advance to the statement that inserts, the engine
compares the inserted-into event type information to the return type of expressions in the select-
clause. The comparison uses the column alias assigned to each select-clause expression using
the as keyword.

When the inserted-into column type is an event type and when using a subquery or the new
operator, the engine compares column names assigned to subquery columns or new operator
columns.

For example, assume a Pur chaseQr der event type that has a property called i t ens that consists

of I t emrows:

create schema Itenm(name string, price double)

create schenm PurchaseOrder(orderld string, itens lteni])
Declare a statement that inserts into the Pur chaseOr der stream:

insert into PurchaseOr der

143

Chapter 5. EPL Reference: Clauses

select '001' as orderld, new {name='i1l', price=10} as itens
from Tri gger Event

The alias assigned to the first and second expression in the select-clause, namely or der I d and
i tens, both match the event property names of the Pur chase O der event type. The column
names provided to the new operator also both match the event property names of the | t emevent

type.

When the event type declares the column as a single value (and not an array) and when the
select-clause expression produces a multiple rows, the engine only populate the first row.

Consider a Pur chaseOr der event type that has a property called i t emthat consists of a single
It emevent:

create schema PurchaseOrder(orderld string, items Item

The sample subquery below populates only the very first event, discarding remaining subquery
result events, since the i t ens property above is declared as holding a single 1t emtyped event
only (versus I teni] to hold multiple I t emtyped events).

insert into PurchaseOrder select
(select "il" as nanme, 10 as price fromH storyEvent.win:length(2)) as itens
from Tri gger Event

Consider using a subquery with filter, or one of the enumeration methods to select a specific
subquery result row.

5.11. Subqueries

A subquery is asel ect within another statement. Esper supports subqueries inthe sel ect clause,
wher e clause, havi ng clause and in stream and pattern filter expressions. Subqueries provide an
alternative way to perform operations that would otherwise require complex joins. Subqueries can
also make statements more readable then complex joins.

Esper supports both simple subqueries as well as correlated subqueries. In a simple subquery,
the inner query is not correlated to the outer query. Here is an example simple subguery within
a sel ect clause:

sel ect assetld, (select zone fromZoneC osed. std: | astevent()) as | astd osed from
RFI DEvent

144

Subqueries

If the inner query is dependent on the outer query, we will have a correlated subquery. An example
of a correlated subquery is shown below. Notice the wher e clause in the inner query, where the
condition involves a stream from the outer query:

select * from Rfi dEvent as RFID where 'Dock 1' =
(sel ect nane from Zones. std: uni que(zoneld) where zoneld = RFID. zonel d)

The example above shows a subquery in the wher e clause. The statement selects RFID events
in which the zone name matches a string constant based on zone id. The statement uses the
view st d: uni que to guarantee that only the last event per zone id is held from processing by
the subquery.

The next example is a correlated subquery within a sel ect clause. In this statement the sel ect
clause retrieves the zone name by means of a subquery against the Zones set of events correlated
by zone id:

sel ect zoneld, (select nane from Zones. std: uni que(zonel d)
where zoneld = RFID. zoneld) as nane from RFI DEvent

Note that when a simple or correlated subquery returns multiple rows, the engine returns a nul |
value as the subquery result. To limit the number of events returned by a subquery consider using
one of the views st d: | ast event, st d: uni que and st d: gr oupwi n or aggregation functions or the
multi-row and multi-column selects as described below.

The sel ect clause of a subquery also allows wildcard selects, which return as an event property
the underlying event object of the event type as defined in the f r omclause. An example:

select (select * from MarketData. std: | astevent()) as nd
frompattern [every tinmer:interval (10 sec)]

The output events to the statement above contain the underlying MarketData event in a property
named "md". The statement populates the last MarketData event into a property named "md"
every 10 seconds following the pattern definition, or populates a nul | value if no MarketData
event has been encountered so far.

Aggregation functions may be used in the sel ect clause of the subselect as this example outlines:

sel ect * from Market Dat a
where price > (sel ect max(price) fromMarket Dat a(synbol = GOOG). std: | astevent())

145

Chapter 5. EPL Reference: Clauses

As the sub-select expression is evaluated first (by default), the query above actually never fires
for the GOOG symbol, only for other symbols that have a price higher then the current maximum
for GOOG. As a sidenote, the i nsert i nto clause can also be handy to compute aggregation
results for use in multiple subqueries.

When using aggregation functions in a correlated subselect the engine computes the aggregation
based on data window (if provided), named window or table contents matching the where-clause.

The following example compares the quantity value provided by the current order event against
the total quantity of all order events in the last 1 hour for the same client.

select * from Order Event oe

where qty >
(select sun(qty) from OrderEvent.win:tine(1l hour) pd
where pd.client = oe.client)

Filter expressions in a pattern or stream may also employ subqueries. Subqueries can be
uncorrelated or can be correlated to properties of the stream or to properties of tagged events in
a pattern. Subqueries may reference named windows and tables as well.

The following example filters Bar Dat a events that have a close price less then the last moving
average (field movAgv) as provided by stream SMA20St r eam(an uncorrelated subquery):

select * from BarData(ticker="MSFT', closePrice <
(sel ect nmovAgv from SMA20Strean(ticker="MSFT').std:|astevent()))

A few generic examples follow to demonstrate the point. The examples use short event and
property names so they are easy to read. Assume A and B are streams and DNanedW ndow is a
named window, and ETabl e is a table and propertiesa_id, b_id, d_id, e_id, a_val, b_val,
d_val, e_val respectively:

/1 Sanple correl ated subquery as part of streamfilter criteria
select * fromA(a_val in
(select b_val fromB.std:unique(b_val) as b where a.a_id = b.b_id)) as a

/1 Sanple correl ated subquery agai nst a named w ndow
select * fromA(a_val in
(sel ect d_val from DNanedW ndow as d where a.a_id = d.d_id)) as a

/1 Sample correlated subquery in the filter criteria as part of a pattern,
querying a named w ndow

146

The 'exists' Keyword

select * frompattern [
a=A -> b=B(bval ue =
(select d_val from DNamedW ndow as d where d.d_id = b.b_id and d.d_id =
a.a_id))
]

/1 Sanple correl ated subquery against a table
select * fromA(a_val in
(select e _val fromETable as e where a.a_id = e.e_id)) as a

Subquery state starts to accumulate as soon as a statement starts (and not only when a pattern-
subexpression activates).

The following restrictions apply to subqueries:

1. Subqueries can only consist of a sel ect clause, a f romclause, a wher e clause and a gr oup
by clause. The havi ng clause, as well as joins, outer-joins and output rate limiting are not
permitted within subqueries.

2. If using aggregation functions in a subquery, note these limitations:

a. None of the properties of the correlated stream(s) can be used within aggregation functions.
b. The properties of the subselect stream must all be within aggregation functions.

3. With the exception of subqueries against named windows and tables and subqueries that are
both uncorrelated and fully-aggregated, the subquery stream definition must define a data
window to limit subquery results, for the purpose of identifying the events held for subquery
execution.

The order of evaluation of subqueries relative to the containing statement is guaranteed: If the
containing statement and its subqueries are reacting to the same type of event, the subquery will
receive the event first before the containing statement's clauses are evaluated. This behavior can
be changed via configuration. The order of evaluation of subqueries is not guaranteed between
subqueries.

Performance of your statement containing one or more subqueries principally depends on two
parameters. First, if your subquery correlates one or more columns in the subquery stream with
the enclosing statement's streams, the engine automatically builds the appropriate indexes for fast
row retrieval based on the key values correlated (joined). The second parameter is the number of
rows found in the subquery stream and the complexity of the filter criteria (wher e clause), as each
row in the subquery stream must evaluate against the wher e clause filter.

5.11.1. The 'exists' Keyword

The exi st s condition is considered "to be met" if the subquery returns at least one row. The not
exi st s condition is considered true if the subquery returns no rows.

The synopsis for the exi st s keyword is as follows:

147

Chapter 5. EPL Reference: Clauses

exi sts (subquery)

Let's take a look at a simple example. The following is an EPL statement that uses the exi st's
condition:

sel ect assetld from RFI DEvent as RFID
where exists (select * from Asset.std:unique(assetld) where assetld =
RFI D. asset | d)

This select statement will return all RFID events where there is at least one event in Assets unique
by asset id with the same asset id.

5.11.2. The 'in" and 'not in' Keywords

The i n subquery condition is true if the value of an expression matches one or more of the values
returned by the subquery. Consequently, the not i n condition is true if the value of an expression
matches none of the values returned by the subquery.

The synopsis for the i n keyword is as follows:

expression in (subquery)

The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the i n subquery condition:

sel ect assetld from RFl DEvent
where zone in (sel ect zone fromZoneUpdate(status = 'closed').win:time(10 mn))

The above statement demonstrated the i n subquery to select RFID events for which the zone
status is in a closed state.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of the i n construct will be null, not false (or true for
not - i n). This is in accordance with SQL's normal rules for Boolean combinations of null values.

5.11.3. The 'any' and 'sore’ Keywords

The any subquery condition is true if the expression returns true for one or more of the values
returned by the subquery.

The synopsis for the any keyword is as follows:

expressi on operator any (subquery)

148

The "all' Keyword

expressi on operator sonme (subquery)

The left-hand expression is evaluated and compared to each row of the subquery result using
the given operator, which must yield a Boolean result. The result of any is "true" if any true result
is obtained. The result is "false" if no true result is found (including the special case where the
subquery returns no rows).

The operator can be any of the following values: =, =, <>, <, <=, >, >=,
The sone keyword is a synonym for any. The i n construct is equivalent to = any.
The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the any subquery condition:

sel ect * from ProductOrder as ord
where quantity < any
(select mnimunuantity from M ni munQuantity. wi n: keepal | ())

The above query compares ProductOrder event's quantity value with all rows from the
MinimumQuantity stream of events and returns only those ProductOrder events that have a
quantity that is less then any of the minimum quantity values of the MinimumQuantity events.

Note that if there are no successes and at least one right-hand row yields null for the operator's
result, the result of the any construct will be null, not false. This is in accordance with SQL's normal
rules for Boolean combinations of null values.

5.11.4. The ‘a1’ Keyword

The al | subquery condition is true if the expression returns true for all of the values returned by
the subquery.

The synopsis for the al | keyword is as follows:

expressi on operator all (subquery)

The left-hand expression is evaluated and compared to each row of the subquery result using
the given operator, which must yield a Boolean result. The result of al | is "true” if all rows yield
true (including the special case where the subquery returns no rows). The result is "false" if any
false result is found. The result is nul | if the comparison does not return false for any row, and
it returns nul | for at least one row.

The operator can be any of the following values: =, =, <>, <, <=, >, >=,
The not i n construct is equivalentto ! = al | .

The right-hand side subquery must return exactly one column.

149

Chapter 5. EPL Reference: Clauses

The next statement demonstrates the use of the al | subquery condition:

sel ect * from Product Order as ord
where quantity < all
(select mnimunuantity from M ni munQuantity. wi n: keepal | ())

The above query compares ProductOrder event's quantity value with all rows from the
MinimumQuantity stream of events and returns only those ProductOrder events that have a
quantity that is less then all of the minimum quantity values of the MinimumQuantity events.

5.11.5. Subquery With aoup By Clause

The optional gr oup by clause in subqueries works the same way as the group-by clause outside
of subqueries, except that it impacts only those aggregations within the subquery.

The following restrictions apply:

1. Expressions in the group-by clause cannot contain aggregate functions, subqueries or the pr ev
and pri or functions.

2. Subqueries only support the fully-aggregated case when using group-by: All hon-aggregated
properties in the select clause must be listed in the group by clause.

3. The group-by expressions cannot be correlated. All properties in the gr oup by must be provided
by the subselect stream.

5.11.6. Multi-Column Selection

Your subquery may select multiple columns in the sel ect clause including multiple aggregated
values from a data window or named window or table.

The following example is a correlated subquery that selects wildcard and in addition selects the
bi d and of f er properties of the last Mar ket Dat a event for the same symbol as the arriving
O der Event :

sel ect *,
(select bid, offer from MarketData. std: uni que(synbol) as nd
where nd. synbol = oe.synbol) as bidoffer

from Order Event oe

Output events for the above query contain all properties of the original Or der Event event. In
addition each output event contains a bi dof f er nested property that itself contains the bi d
and of f er properties. You may retrieve the bid and offer from output events directly via the
bi dof f er. bi d property name syntax for nested properties.

The next example is similar to the above query but instead selects aggregations and selects
from a named window by name O der NanmedW ndow (creation not shown here). For each arriving

150

Multi-Row Selection

Or der Event it selects the total quantity and count of all order events for the same client, as
currently held by the named window:

sel ect *,
(select sun(qty) as sunmPrice, count(*) as count Rows
from O der NamedW ndow as onw
where onw. client = oe.client) as pastOderTotal s
from Order Event as oe

The next EPL statement computes a prorated quantity considering the maximum and minimum
quantity for the last 1 minute of order events:

expressi on subqg {
(sel ect max(quantity) as maxq, mn(quantity) as ming fromO-derEvent.win:tine(l
nmin))
}
sel ect (quantity - nming) / (subqg().maxg - subq().m ng) as prorated
from O der Event

Output events for the above query contain all properties of the original O der Event event. In
addition each output event contains a past Or der Tot al s nested property that itself contains the
sunPri ce and count Rows properties.

5.11.7. Multi-Row Selection

While a subquery cannot change the cardinality of the selected stream, a subquery can return
multiple values from the selected data window or named window or table. This section shows
examples of the wi ndow aggregation function as well as the use of enumeration methods with
subselects.

Consider using an inner join, outer join or unidirectional join instead to achieve a 1-to-many
cardinality in the number of output events.

The next example is an uncorrelated subquery that selects all current ZoneEvent events
considering the last ZoneEvent per zone for each arriving RFl DEvent .

sel ect assetl d,
(sel ect window(z.*) as wi nzones from ZoneEvent. std: uni que(zone) as z) as zones
from RFI DEvent

Output events for the above query contain two properties: the asset | d property and the zones
property. The latter property is a nested property that contains the wi nzones property. You may

151

Chapter 5. EPL Reference: Clauses

retrieve the zones from output events directly via the zones. wi nzones property name syntax for
nested properties.

In this example for a correlated subquery against a named window we assume that the
Or der NanmedW ndow has been created and contains order events. The query returns for each
Mar ket Dat a event the list of order ids for orders with the same symbol:

sel ect price,
(sel ect wi ndow(orderld) as w norders
from O der NamedW ndow onw
where onw. synbol = nd.synbol) as orderlds
from Mar ket Dat a nd

Output events for the above query contain two properties: the pri ce property and the or der | ds
property. The latter property is a nested property that contains the wi nor der s property of type
array.

Another option to reduce selected rows to a single value is through the use of enumeration
methods.

sel ect price,

(select * from O der NanedW ndow onw

where onw. synbol = nd.synbol). sel ectFromv => v) as ordersSynbol
from Mar ket Data nd

Output events for the above query also contain a Collection of underlying events in the
or der sSynbol property.

5.11.8. Hints Related to Subqueries

The following hints are available to tune performance and memory use of subqueries.

Use the @i nt (' set _noi ndex') hint for a statement that utilizes one or more subqueries. It
instructs the engine to always perform a full scan. The engine does not build an implicit index or
use an explicitly-created index when this hint is provided. Use of the hint may result in reduced
memory use but poor statement performance.

The following hints are available to tune performance and memory use of subqueries that select
from named windows (does not apply to tables).

Named windows are globally-visible data windows. As such an application may create explicit
indexes as discussed in Section 6.9, “Explicitly Indexing Named Windows and Tables”. The engine
may also elect to create implicit indexes (no create-index EPL required) for index-based lookup
of rows when executing on- sel ect, on- ner ge, on- updat e and on- del et e statements and for
statements that subquery a named window.

152

Hints Related to Subqueries

By default and without specifying a hint, each statement that subqueries a named window also
maintains its own index for looking up events held by the named window. The engine maintains
the index by consuming the named window insert and remove stream. When the statement is
destroyed it releases that index.

Specify the @i nt (' enabl e_wi ndow_subquery_i ndexshare') hint to enable subquery index
sharing for named windows. When using this hint, indexes for subqueries are maintained by the
named window itself (and not each statement context partition), are shared between one or more
statements and may also utilize explicit indexes. Specify the hint once as part of the create
wi ndow statement.

This sample EPL statement creates a named window with subquery index sharing enabled:

@i nt (' enabl e_wi ndow_subquery_i ndexshare')
create wi ndow O der sNamedW ndow. wi n: keepal | () as O der MapEvent Type

When subquery index sharing is enabled, performance may increase as named window stream
consumption is no longer needed for correlated subqueries. You may also expect reduced memory
use especially if a large number of EPL statements perform similar subqueries against a named
window. Subquery index sharing may require additional short-lived object creation and may slightly
increase lock held time for named windows.

The following statement performs a correlated subquery against the named window above. When
a settlement event arrives it select the order detail for the same order id as provided by the
settlement event:

sel ect
(select * from O der sNamedW ndow as onw
where onw. orderld = se.orderld) as orderDetail
from Settl enent Event as se

With subquery index sharing enabled the engine maintains an index of order events by order id for
the named window, and shares that index between additional statements until the time all utilizing
statements are destroyed.

You may disable subquery index sharing for a specific statement by specifying the
@i nt (' di sabl e_wi ndow_subquery_i ndexshare') hint, as this example shows, causing the
statement to maintain its own index:

@i nt (' di sabl e_wi ndow_subquery_i ndexshare')
sel ect
(select * from O dersNamedW ndow as onw
where onw. orderld = se.orderld) as orderDetail

153

Chapter 5. EPL Reference: Clauses

from Settl ement Event as se

5.12. Joining Event Streams

5.12.1. Introducing Joins

Two or more event streams can be part of the f r omclause and thus both (all) streams determine
the resulting events. This section summarizes the important concepts. The sections that follow
present more detail on each topic.

The default join is an inner join which produces output events only when there is at least one
match in all streams.

Consider the sample statement shown next:
select * from Ti ckEvent.std: | astevent (), NewsEvent.std:|astevent()

The above statement outputs the last TickEvent and the last NewsEvent in one output event when
either a TickEvent or a NewsEvent arrives. If no TickEvent was received before a NewsEvent
arrives, no output occurs. Similarly when no NewsEvent was received before a TickEvent arrives,
no output occurs.

The wher e-clause lists the join conditions that Esper uses to relate events in the two or more
streams.

The next example statement retains the last TickEvent and last NewsEvent per symbol, and joins
the two streams based on their symbol value:

select * from TickEvent.std: uni que(synbol) as t, NewsEvent.std:uni que(synbol)
as n
where t.synmbol = n.synbol

As before, when a TickEvent arrives for a symbol that has no matching NewsEvent then there
is no output event.

An outer join does not require each event in either stream to have a matching event. The full outer
join is useful when output is desired when no match is found. The different outer join types (full,
left, right) are explained in more detail below.

This example statement is an outer-join and also returns the last TickEvent and last NewsEvent
per symbol:

select * from Ti ckEvent. std: uni que(synbol) as t

154

Introducing Joins

full outer join NewsEvent.std: unique(synbol) as n on t.synmbol = n.synbol

In the sample statement above, when a TickEvent arrives for a symbol that has no matching
NewsEvent, or when a NewsEvent arrives for a symbol that has no matching TickEvent, the
statement still produces an output event with a null column value for the missing event.

Note that each of the sample queries above defines a data window. The sample queries above
use the last-event data window (std:lastevent) or the unique data window (std:unique). A data
window serves to indicate the subset of events to join from each stream and may be required
depending on the join.

In above queries, when either a TickEvent arrives or when a NewsEvent arrives then the query
evaluates and there is output. The same holds true if additional streams are added to the f r om
clause: Each of the streams in the f r omclause trigger the join to evaluate.

The uni di recti onal keyword instructs the engine to evaluate the join only when an event arrives
from the single stream that was marked with the uni di recti onal keyword. In this case no data
window should be specified for the stream marked as uni di rect i onal since the keyword implies
that the current event of that stream triggers the join.

Here is the sample statement above with uni di recti onal keyword, so that output occurs only
when a TickEvent arrives and not when a NewsEvent arrives:

select * fromTickEvent as t unidirectional, NewsEvent.std: uni que(synbol) as n
where t.synmbol = n.synbol

It is oftentimes the case that an aggregation (count, sum, average) only needs to be calculated
in the context of an arriving event or timer. Consider using the uni di recti onal keyword when
aggregating over joined streams.

An EPL pattern is a normal citizen also providing a stream of data consisting of pattern matches. A
time pattern, for example, can be useful to evaluate a join and produce output upon each interval.

This sample statement includes a pattern that fires every 5 seconds and thus triggers the join to
evaluate and produce output, computing an aggregated total quantity per symbol every 5 seconds:

sel ect synbol , sunm(qty) from pattern[every timer:interval (5 sec)]
uni di rectional ,
Ti ckEvent . st d: uni que(synbol) t, NewsEvent.std: uni que(synbol) as n
where t.synbol = n.synbol group by symnbol

Named windows as well as reference and historical data such as stored in your relational
database, and data returned by a method invocation, can also be included in joins as discussed in
Section 5.13, “Accessing Relational Data via SQL” and Section 5.14, “Accessing Non-Relational
Data via Method Invocation”.

155

Chapter 5. EPL Reference: Clauses

Related to joins are subqueries: A subquery is a sel ect within another statement, see
Section 5.11, “Subqueries”

The engine performs extensive query analysis and planning, building internal indexes and
strategies as required to allow fast evaluation of many types of queries.

5.12.2. Inner (Default) Joins

Each point in time that an event arrives to one of the event streams, the two event streams are
joined and output events are produced according to the wher e clause when matching events are
found for all joined streams.

This example joins 2 event streams. The first event stream consists of fraud warning events for
which we keep the last 30 minutes. The second stream is withdrawal events for which we consider
the last 30 seconds. The streams are joined on account number.

sel ect fraud.account Nunber as accntNum fraud.warning as warn, w thdraw anount
as anount,
max(fraud.timestanp, withdraw.tinmestanp) as tinmestanp, 'wthdraw Fraud'
as desc
from com espertech. esper. exanpl e. at m Fr audWar ni ngEvent . win:time(30 nin) as
fraud,
com espertech. esper. exanpl e.atm Wt hdrawal Event.win:ti me(30 sec) as
wi t hdr aw
wher e fraud. account Number = wi t hdraw. account Nunber

Joins can also include one or more pattern statements as the next example shows:

sel ect * from FraudWarni ngEvent.win:tine(30 nmin) as fraud,
pattern [every w=W t hdr awal Event ->
PI NChangeEvent (acct =w. acct)].std: |l astevent() as w t hdraw
wher e fraud. account Number = withdraw. w. account Nunber

The statement above joins the last 30 minutes of fraud warnings with a pattern. The pattern
consists of every withdrawal event that is followed by a PIN change event for the same account
number. It joins the two event streams on account number. The last-event view instucts the join
to only consider the last pattern match.

In a join and outer join, your statement must declare a data window view or other view onto each
stream. Streams that are marked as unidirectional and named windows and tables as well as
database or methods in a join are an exception and do not require a view to be specified. If you
are joining an event to itself via contained-event selection, views also do not need to be specified.
The reason that a data window must be declared is that a data window specifies which events are
considered for the join (i.e. last event, last 10 events, all events, last 1 second of events etc.).

156

Outer, Left and Right Joins

The next example joins all FraudWarningEvent events that arrived since the statement was
started, with the last 20 seconds of PINChangeEvent events:

sel ect * from FraudWar ni ngEvent . wi n: keepal | () as fraud,
Pl NChangeEvent . wi n: ti me(20 sec) as pin
where fraud. account Nunber = pin. account Nunber

The above example employed the special keep-all view that retains all events.

5.12.3. Outer, Left and Right Joins

Esper supports left outer joins, right outer joins, full outer joins and inner joins in any combination
between an unlimited number of event streams. Outer and inner joins can also join reference and
historical data as explained in Section 5.13, “Accessing Relational Data via SQL”", as well as join
data returned by a method invocation as outlined in Section 5.14, “Accessing Non-Relational Data
via Method Invocation”.

The keywords 1 eft, right, full andinner control the type of the join between two streams.
The optional on clause specifies one or more properties that join each stream. The synopsis is
as follows:

...from stream def [as nane]

((left|right|full outer) | inner) join stream def
[on property = property [and property = property ...]]
[((left|right|[full outer) | inner) join streamdef [on ...]]...

If the outer join is a left outer join, there will be an output event for each event of the stream on
the left-hand side of the clause. For example, in the left outer join shown below we will get output
for each event in the stream RfidEvent, even if the event does not match any event in the event
stream OrderList.

select * fromRfidEvent.win:tine(30 sec) as rfid
left outer join
OrderList.w n:length(10000) as orderlist
on rfid.itemd = orderList.itenld

Similarly, if the join is a Right Outer Join, then there will be an output event for each event of the
stream on the right-hand side of the clause. For example, in the right outer join shown below we
will get output for each event in the stream OrderList, even if the event does not match any event
in the event stream RfidEvent.

select * fromRfidEvent.win:tine(30 sec) as rfid
right outer join

157

Chapter 5. EPL Reference: Clauses

OrderList.w n:length(10000) as orderli st
on rfid.itemd = orderList.itenmd

For all types of outer joins, if the join condition is not met, the select list is computed with the event
properties of the arrived event while all other event properties are considered to be null.

The next type of outer join is a full outer join. In a full outer join, each point in time that an event
arrives to one of the event streams, one or more output events are produced. In the example below,
when either an RfidEvent or an OrderList event arrive, one or more output event is produced. The
next example shows a full outer join that joins on multiple properties:

select * fromRfidEvent.win:tine(30 sec) as rfid
full outer join
OrderList.w n:length(10000) as orderli st
on rfid.itemd = orderList.itemd and rfid.assetld = orderlList.assetld

The last type of join is an inner join. In an inner join, the engine produces an output event for each
event of the stream on the left-hand side that matches at least one event on the right hand side
considering the join properties. For example, in the inner join shown below we will get output for
each eventin the RfidEvent stream that matches one or more events in the OrderList data window:

select * fromRfidEvent.win:tine(30 sec) as rfid
inner join
Order List.w n:length(10000) as orderli st
on rfid.itemd = orderList.itemlid and rfid.assetld = orderlList.assetld

Patterns as streams in a join follow this rule: If no data window view is declared for the pattern
then the pattern stream retains the last match. Thus a pattern must have matched at least once for
the last row to become available in a join. Multiple rows from a pattern stream may be retained by
declaring a data window view onto a pattern using the pattern [...]. view_specification syntax.

This example outer joins multiple streams. Here the RfidEvent stream is outer joined to both
ProductName and LocationDescription via left outer join:

select * fromRfidEvent.win:tine(30 sec) as rfid
| eft outer join ProductNane.w n: keepal |l () as refprod
on rfid.productld = refprod. prodld
| eft outer join LocationDescription.w n:keepall () as refdesc
on rfid.location = refdesc.locld

158

Unidirectional Joins

If the optional on clause is specified, it may only employ the = equals operator and property names.
Any other operators must be placed in the wher e-clause. The stream names that appear in the
on clause may refer to any stream in the f r omclause.

Your EPL may also provide no on clause. This is useful when the streams that are joined do not
provide any properties to join on, for example when joining with a time-based pattern.

The next example employs a unidirectional left outer join such that the engine, every 10 seconds,
outputs a count of the number of RfidEvent events in the 60-second time window.

sel ect count(*) from
pattern[every tinmer:interval (1)] unidirectional
left outer join
Rfi dEvent.wi n:ti me(60 sec)

5.12.4. Unidirectional Joins

In a join or outer join your statement lists multiple event streams, views and/or patterns in the f r om
clause. As events arrive into the engine, each of the streams (views, patterns) provides insert and
remove stream events. The engine evaluates each insert and remove stream event provided by
each stream, and joins or outer joins each event against data window contents of each stream,
and thus generates insert and remove stream join results.

The direction of the join execution depends on which stream or streams are currently providing an
insert or remove stream event for executing the join. A join is thus multidirectional, or bidirectional
when only two streams are joined. A join can be made unidirectional if your application does not
want new results when events arrive on a given stream or streams.

The uni di rectional keyword can be used in the fromclause to identify a single stream that
provides the events to execute the join. If the keyword is present for a stream, all other streams
in the fr omclause become passive streams. When events arrive or leave a data window of a
passive stream then the join does not generate join results.

For example, consider a use case that requires us to join stock tick events (TickEvent) and
news events (NewsEvent). The uni di recti onal keyword allows to generate results only when
TickEvent events arrive, and not when NewsEvent arrive or leave the 10-second time window:

select * from Ti ckEvent unidirectional, NewsEvent.w n:tine(10 sec)
where tick. synmbol = news. synbol

Aggregation functions in a unidirectional join aggregate within the context of each
unidirectional event evaluation and are not cumulative. Thereby aggregation functions when used
with uni di rect i onal may evaluate faster as they do not need to consider a remove stream (data
removed from data windows or named windows).

159

Chapter 5. EPL Reference: Clauses

The count function in the next query returns, for each TickEvent, the number of matching
NewEvent events:

sel ect count(*) from Ti ckEvent unidirectional, NewsEvent.w n:time(10 sec)
where tick. symbol = news. symbol

The following restrictions apply to unidirectional joins:

1. The uni di recti onal keyword can only be specified for a single stream in the f r omclause.

2. Receiving data from a unidirectional join via the pull API (i t er at or method) is not allowed.
This is because the engine holds no state for the single stream that provides the events to
execute the join.

3. The stream that declares the uni di r ect i onal keyword cannot declare a data window view or
other view for that stream, since remove stream events are not processed for the single stream.

5.12.5. Hints Related to Joins

When joining 3 or more streams (including any relational or non-relational sources as below) it
can sometimes help to provide the query planner instructions how to best execute the join. The
engine compiles a query plan for the EPL statement at statement creation time. You can output
the query plan to logging (see configuration).

An outer join that specifies only i nner keywords for all streams is equivalent to an default (inner)
join. The following two statements are equivalent:

select * from Ti ckEvent.std: | astevent(),
NewsEvent . std: | astevent () where tick.synbol = news. synbol

Equivalent to:

select * from Ti ckEvent.std: | astevent ()
inner join NewsEvent.std:|astevent() on tick.synbol = news.synbol

For all types of joins, the query planner determines a query graph: The term is used here for all
the information regarding what properties or expressions are used to join the streams. The query
graph thus includes the where-clause expressions as well as outer-join on-clauses if this statement
is an outer join. The query planner also computes a dependency graph which includes information
about all historical data streams (relational and non-relational as below) and their input needs.

For default (inner) joins the query planner first attempts to find a path of execution as a nested
iteration. For each stream the query planner selects the best order of streams available for the
nested iteration considering the query graph and dependency graph. If the full depth of the join

160

Accessing Relational Data via SQL

is achievable via nested iteration for all streams without full table scan then the query planner
uses that nested iteration plan. If not, then the query planner re-plans considering a merge join
(Cartesian) approach instead.

Specify the @Hint('prefer_merge_join') to instruct the query planner to prefer a merge join plan
instead of a nested iteration plan. Specify the @Hint('force_nested_iter") to instruct the query
planner to always use a nested iteration plan.

For example, consider the below statement. Depending on the number of matching rows in
OrderBookOne and OrderBookTwo (named windows in this example, and assumed to be defined
elsewhere) the performance of the join may be better using the merge join plan.

@Hint (' prefer_nerge_join')
select * from TickEvent.std:lastevent() t,
Or der BookOne obl, O der BookOne ob2
where obl. synmbol = t.synmbol and ob2.synbol = t.synbol
and obl.price between t.buy and t.sell and ob2.price between t.buy and t.sell

For outer joins the query planner considers nested iteration and merge join (Cartesian) equally
and above hints don't apply.

5.13. Accessing Relational Data via SQL

This chapter outlines how reference data and historical data that are stored in a relational database
can be queried via SQL within EPL statements.

Esper can access via join and outer join as well as via iterator (poll) API all types of event streams
to stored data. In order for such data sources to become accessible to Esper, some configuration
is required. The Section 16.4.9, “Relational Database Access” explains the required configuration
for database access in greater detail, and includes information on configuring a query result cache.

Esper does not parse or otherwise inspect your SQL query. Therefore your SQL can make use of
any database-specific SQL language extensions or features that your database provides.

If you have enabled query result caching in your Esper database configuration, Esper retains SQL
query results in cache following the configured cache eviction policy.

Also if you have enabled query result caching in your Esper database configuration and provide
EPL wher e clause and/or on clause (outer join) expressions, then Esper builds indexes on the
SQL query results to enable fast lookup. This is especially useful if your queries return a large
number of rows. For building the proper indexes, Esper inspects the expression found in your EPL
query wher e clause, if present. For outer joins, Esper also inspects your EPL query on clause.
Esper analyzes the EPL on clause and wher e clause expressions, if present, looking for property
comparison with or without logical AND-relationships between properties. When a SQL query
returns rows for caching, Esper builds and caches the appropriate index and lookup strategies
for fast row matching against indexes.

161

Chapter 5. EPL Reference: Clauses

Joins or outer joins in which only SQL statements or method invocations are listed in the from
clause and no other event streams are termed passive joins. A passive join does not produce an
insert or remove stream and therefore does not invoke statement listeners with results. A passive
join can be iterated on (polled) using a statement's saf el t erat or and i t er at or methods.

There are no restrictions to the number of SQL statements or types of streams joined. The
following restrictions currently apply:

« Sub-views on an SQL query are not allowed; That is, one cannot create a time or length window
on an SQL query. However one can use the i nsert i nt o syntax to make join results available
to a further statement.

« Your database software must support JDBC prepared statements that provide statement meta
data at compilation time. Most major databases provide this function. A workaround is available
for databases that do not provide this function.

« JDBC drivers must support the getMetadata feature. A workaround is available as below for
JDBC drivers that don't support getting metadata.

The next sections assume basic knowledge of SQL (Structured Query Language).

5.13.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of
the database and a parameterized SQL query. The syntax to use in the f romclause of an EPL
statement is:

sql : dat abase_nane [" paraneterized_sql _query "]

The engine uses the database name identifier to obtain configuration information in order to
establish a database connection, as well as settings that control connection creation and removal.
Please see Section 16.4.9, “Relational Database Access” to configure an engine for database
access.

Following the database name is the SQL query to execute. The SQL query can contain one or
more substitution parameters. The SQL query string is placed in single brackets [and] . The SQL
query can be placed in either single quotes (') or double quotes (*). The SQL query grammer is
passed to your database software unchanged, allowing you to write any SQL query syntax that
your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${ expression} . The engine resolves
expression at statement execution time to the actual expression result by evaluating the events
in the joined event stream or current variable values, if any event property references or variables
occur in the expression. An expression may not contain EPL substitution parameters.

The engine determines the type of the SQL query output columns by means of the result set
metadata that your database software returns for the statement. The actual query results are
obtained via the get Obj ect onj ava. sql . Resul t Set .

162

Joining SQL Query Results

The sample EPL statement below joins an event stream consisting of Cust oner Cal | Event events
with the results of an SQL query against the database named MyCust oner DB and table Cust oner :

sel ect custld, cust_name from CustonerCall Event,
sqgl : MyCustoner DB [' sel ect cust_nane from Cust onmer where cust_id = ${custld} ']

The example above assumes that Cust oner Cal | Event supplies an event property named
custld. The SQL query selects the customer name from the Customer table. The where
clause in the SQL matches the Customer table column cust _id with the value of custld
in each CustonerCal | Event event. The engine executes the SQL query for each new
Cust orer Cal | Event encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event.
Else the engine generates one output event for each row returned by the SQL query. An outer
join as described in the next section can be used to control whether the engine should generate
output events even when the SQL query returns no rows.

The next example adds a time window of 30 seconds to the event stream Cust oner Cal | Event . It
also renames the selected properties to customerName and customerld to demonstrate how the
naming of columns in an SQL query can be used in the sel ect clause in the EPL query. And the
example uses explicit stream names via the as keyword.

sel ect custonerld, custonerName from
Cust oner Cal | Event . wi n: ti me(30 sec) as cce,
sql : MyCustonerDB ["select cust_id as custonerld, cust_nane as custoner Nane
from Cust omer
where cust_id = ${cce.custld}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events
enter the window, and remove stream (rstream) events as events leave the window. The engine
executes the given SQL query for each Cust orer Cal | Event in both the insert stream and the
remove stream. As a performance optimization, the i st r eamor r st r eamkeywords in the sel ect
clause can be used to instruct the engine to only join insert stream or remove stream events,
reducing the number of SQL query executions.

Since any expression may be placed within the ${. ..} syntax, you may use variables or user-
defined functions as well.

The next example assumes that a variable by name var Lower Li ni t is defined and that a user-
defined function get Li ni t exists on the MyLi b imported class that takes a Li nit Event as a
parameter:

select * fromLimtEvent |e,
sql : MyCustoner DB [' sel ect cust_nane from Custoner where

163

Chapter 5. EPL Reference: Clauses

anmount > ${max(varLowerLimt, MyLib.getLimt(le))} ']

The example above takes the higher of the current variable value or the value returned by the user-
defined function to return only those customer names where the amount exceeds the computed
limit.

5.13.2. SQL Query and the EPL were Clause

Consider using the EPL wher e clause to join the SQL query result to your event stream. Similar
to EPL joins and outer-joins that join event streams or patterns, the EPL wher e clause provides
join criteria between the SQL query results and the event stream (as a side note, an SQL wher e
clause is a filter of rows executed by your database on your database server before returning
SQL query results).

Esper analyzes the expression in the EPL wher e clause and outer-join on clause, if present, and
builds the appropriate indexes from that information at runtime, to ensure fast matching of event
stream events to SQL query results, even if your SQL query returns a large number of rows. Your
applications must ensure to configure a cache for your database using Esper configuration, as
such indexes are held with regular data in a cache. If you application does not enable caching of
SQL query results, the engine does not build indexes on cached data.

The sample EPL statement below joins an event stream consisting of Or der Event events with the
results of an SQL query against the database named MyRef DB and table Synbol Ref er ence:

sel ect synbol, synbol Desc from Order Event as orders,
sqgl : MyRef DB [' sel ect synbol Desc from Synbol Ref erence'] as reference
wher e reference. synbol = orders. synbol

Notice how the EPL wher e clause joins the Or der Event stream to the Synbol Ref er ence table.
In this example, the SQL query itself does not have a SQL wher e clause and therefore returns
all rows from table Synbol Ref er ence.

If your application enables caching, the SQL query fires only at the arrival of the first Or der Event
event. When the second Or der Event arrives, the join execution uses the cached query result. If
the caching policy that you specified in the Esper database configuration evicts the SQL query
result from cache, then the engine fires the SQL query again to obtain a new result and places
the result in cache.

If SQL result caching is enabled and your EPL wher e clause, as show in the above example,
provides the properties to join, then the engine indexes the SQL query results in cache and retains
the index together with the query result in cache. Thus your application can benefit from high
performance index-based lookups as long as the SQL query results are found in cache.

The SQL result caches operate on the level of all result rows for a given parameter set. For
example, if your query returns 10 rows for a certain set of parameter values then the cache treats

164

Outer Joins With SQL Queries

all 10 rows as a single entry keyed by the parameter values, and the expiry policy applies to all
10 rows and not to each individual row.

It is also possible to join multiple autonomous database systems in a single query, for example:

sel ect synbol, synbol Desc from Order Event as orders,
sgl: My_Oracle_DB ['sel ect synbol Desc from Synbol Ref erence'] as reference,
sql : My_M/SQL_DB ['sel ect orderlList fromorderHistory'] as history
where reference. synbol = orders. synbol
and history. synbol = orders. synbol

5.13.3. Outer Joins With SQL Queries

You can use outer joins to join data obtained from an SQL query and control when an event is
produced. Use a left outer join, such as in the next statement, if you need an output event for each
event regardless of whether or not the SQL query returns rows. If the SQL query returns no rows,
the join result populates null values into the selected properties.

sel ect custld, custName from
Cust oner Cal | Event as cce
left outer join
sql : MyCustonerDB ["sel ect cust_id, cust_nanme as cust Nane
from Customer where cust_id = ${cce.custld}"] as cq
on cce.custld = cq.cust_id

The statement above always generates at least one output event for each Cust oner Cal | Event ,
containing all columns selected by the SQL query, even if the SQL query does not return any
rows. Note the on expression that is required for outer joins. The on acts as an additional filter
to rows returned by the SQL query.

5.13.4. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can also be applied together in useful ways. One such use
is to poll or request data from a database at regular intervals or following the schedule of the
crontab-like ti mer: at .

The next statement is an example that shows a pattern that fires every 5 seconds to query the
NewOrder table for new orders:

insert into NewOrders
sel ect orderld, orderAnmount from
pattern [every tiner:interval (5 sec)],
sql : MyCustoner DB [’ sel ect orderld, orderAmunt from NewOrders']

165

Chapter 5. EPL Reference: Clauses

5.13.5. Polling SQL Queries via lterator

Usually your SQL query will take part in a join and thus be triggered by an event or pattern
occurrence. Instead, your application may need to poll a SQL query and thus use Esper query
execution and caching facilities and obtain event data and metadata.

Your EPL statement can specify an SQL statement without a join. Such a stand-alone SQL
statement does not post new events, and may only be queried via the i t er at or poll API. Your
EPL and SQL statement may still use variables.

The next statement assumes that a pri ce_var variable has been declared. It selects from the
relational database table named NewOr der all rows in which the pri ce column is greater then the
current value of the pri ce_var EPL variable:

select * from sqgl: M/CustonerDB ['select * from NewOrder where ${price_var} >
price']

Use thei terat or and saf el t er at or methods on EPSt at enment to obtain results. The statement
does not post events to listeners, it is strictly passive in that sense.

5.13.6. JIDBC Implementation Overview

The engine translates SQL queries into JDBC j ava. sql . Prepar edSt at enent statements by
replacing ${name} parameters with '?' placeholders. It obtains name and type of result columns
from the compiled Pr epar edSt at ement meta data when the EPL statement is created.

The engine supplies parameters to the compiled statement via the set Obj ect method on
Pr epar edSt at ement . The engine uses the get Gbj ect method on the compiled statement
Pr epar edSt at enent to obtain column values.

5.13.7. Oracle Drivers and No-Metadata Workaround

Certain JDBC database drivers are known to not return metadata for precompiled prepared SQL
statements. This can be a problem as metadata is required by Esper. Esper obtains SQL result
set metadata to validate an EPL statement and to provide column types for output events. JDBC
drivers that do not provide metadata for precompiled SQL statements require a workaround. Such
drivers do generally provide metadata for executed SQL statements, however do not provide the
metadata for precompiled SQL statements.

Please consult the Chapter 16, Configuration for the configuration options available in relation to
metadata retrieval.

To obtain metadata for an SQL statement, Esper can alternatively fire a SQL statement which
returns the same column names and types as the actual SQL statement but without returning
any rows. This kind of SQL statement is referred to as a sample statement in below workaround

166

SQL Input Parameter and Column Output Conversion

description. The engine can then use the sample SQL statement to retrieve metadata for the
column names and types returned by the actual SQL statement.

Applications can provide a sample SQL statement to retrieve metadata via the et adat asq|l
keyword:

sql : dat abase_nane ["paraneterized_sql _query" netadatasqgl "sql _neta query"]

The sql_meta_query must be an SQL statement that returns the same number of columns, the
same type of columns and the same column names as the parameterized_sql_query, and does
not return any rows.

Alternatively, applications can choose not to provide an explicit sample SQL statement. If the EPL
statement does not use the net adat asgl syntax, the engine applies lexical analysis to the SQL
statement. From the lexical analysis Esper generates a sample SQL statement adding a restrictive
clause "where 1=0" to the SQL statement.

Alternatively, you can add the following tag to the SQL statement: ${ $ESPER- SAMPLE- WHERE} .
If the tag exists in the SQL statement, the engine does not perform lexical analysis and simply
replaces the tag with the SQL wher e clause "where 1=0". Therefore this workaround is applicable
to SQL statements that cannot be correctly lexically analyzed. The SQL text after the placeholder
is not part of the sample query. For example:

sel ect mycol from sql:nyDB [
"select nycol from nytesttabl e ${$ESPER- SAMPLE- WHERE} where'],

If your parameterized_sql_query SQL query contains vendor-specific SQL syntax, generation of
the metadata query may fail to produce a valid SQL statement. If you experience an SQL error
while fetching metadata, use any of the above workarounds with the Oracle JDBC driver.

5.13.8. SQL Input Parameter and Column Output Conversion

As part of database access configuration you may optionally specify SQL type mappings. These
mappings apply to all queries against the same database identified by name.

If your application must perform SQL-query-specific or EPL-statement-specific mapping or
conversion between types, the facility to register a conversion callback exists as follows.

Use the @look instruction and HookType. SQLCOL as part of your EPL statement text
to register a statement SQL parameter or column conversion hook. Implement the
interface com espert ech. esper. cli ent. hook. SQLCol unnTypeConver si on to perform the input
parameter or column value conversion.

A sample statement with annotation is shown:

@Hook(t ype=HookType. SQLCOL, hook=" MyDBTypeConvertor')

167

Chapter 5. EPL Reference: Clauses

select * fromsql: MDB ['select * from M/Event Tabl €]

The engine expects MyDBTypeConvert or to resolve to a class (considering engine imports) and
instantiates one instance of MyDBTypeConvertor for each statement.

5.13.9. SQL Row POJO Conversion

Your application may also directly convert a SQL result row into a Java class which is an
opportunity for your application to interrogate and transform the SQL row result data freely before
packing the data into a Java class. Your application can additionally indicate to skip SQL result
rows.

Use the @iook instruction and HookType. SQLROW as part of your EPL statement text
to register a statement SQL output row conversion hook. Implement the interface
com espertech. esper. client. hook. SQLQut put RowConver si on to perform the output row
conversion.

A sample statement with annotation is shown:

@Hook(t ype=HookType. SQLRON hook=" MyDBRowConvertor")
select * fromsql: WDB ['select * from MyEvent Tabl €]

The engine expects MyDBRowConver t or to resolve to a class (considering engine imports) and
instantiates one MyDBRowConvertor instance for each statement.

5.14. Accessing Non-Relational Data via Method
Invocation

Your application may need to join data that originates from a web service, a distributed cache, an
object-oriented database or simply data held in memory by your application. One way to join in
external data is by means of method invocation (or procedure call or function) in the f r omclause
of a statement.

The results of such a method invocation in the f r omclause plays the same role as a relational
database table in an inner and outer join in SQL. The role is thus dissimilar to the role of a user-
defined function, which may occur in any expression such as in the sel ect clause or the where
clause. Both are backed by one or more static methods provided by your class library.

Esper can join and outer join an unlimited number and all types of event streams to the data
returned by your method invocation. In addition, Esper can be configured to cache the data
returned by your method invocations.

Joins or outer joins in which only SQL statements or method invocations are listed in the from
clause and no other event streams are termed passive joins. A passive join does not produce an

168

Joining Method Invocation Results

insert or remove stream and therefore does not invoke statement listeners with results. A passive
join can be iterated on (polled) using a statement's saf el t erat or and i t er at or methods.

The following restrictions currently apply:

» Sub-views on a method invocations are not allowed; That is, one cannot create a time or length
window on a method invocation. However one can use the i nsert i nto syntax to make join
results available to a further statement.

5.14.1. Joining Method Invocation Results

The syntax for a method invocation in the f r omclause of an EPL statement is:

met hod: cl ass_or _vari abl e_nane. net hod_nane[(par anet er _expr essi ons) |

The nmet hod keyword denotes a method invocation. It is followed by a class or variable name
and a method name separated by a dot (.) character. If you have parameters to your method
invocation, these are placed in parentheses after the method name. Any expression is allowed
as a parameter, and individual parameter expressions are separated by a comma. Expressions
may also use event properties of the joined stream.

In the sample join statement shown next, the method | ookupAsset provided by class (or variable)
MyLookupLi b returns one or more rows based on the asset id (a property of the Asset MoveEvent)
that is passed to the method:

select * from Asset MoveEvent, nethod: MyLookupLi b. | ookupAsset (asset | d)

The following statement demonstrates the use of the wher e clause to join events to the rows
returned by a method invocation, which in this example does not take parameters:

sel ect assetld, assetDesc from Asset MoveEvent as asset,
met hod: MyLookuplLi b. get Asset Descri ptions() as desc
where asset.assetid = desc. assetid

Your method invocation may return zero, one or many rows for each method invocation. If you
have caching enabled through configuration, then Esper can avoid the method invocation and
instead use cached results. Similar to SQL joins, Esper also indexes cached result rows such that
join operations based on the wher e clause or outer-join on clause can be very efficient, especially
if your method invocation returns a large number of rows.

If the time taken by method invocations is critical to your application, you may configure local
caches as Section 16.4.7, “Cache Settings for From-Clause Method Invocations” describes.

Esper analyzes the expression in the EPL wher e clause and outer-join on clause, if present, and
builds the appropriate indexes from that information at runtime, to ensure fast matching of event

169

Chapter 5. EPL Reference: Clauses

stream events to method invocation results, even if your method invocation returns a large number
of rows. Your applications must ensure to configure a cache for your method invocation using
Esper configuration, as such indexes are held with regular data in a cache. If you application does
not enable caching of method invocation results, the engine does not build indexes on cached
data.

5.14.2. Polling Method Invocation Results via Iterator

Usually your method invocation will take part in a join and thus be triggered by an event or pattern
occurrence. Instead, your application may need to poll a method invocation and thus use Esper
query execution and caching facilities and obtain event data and metadata.

Your EPL statement can specify a method invocation in the from clause without a join. Such
a stand-alone method invocation does not post new events, and may only be queried via the
i terator poll API. Your EPL statement may still use variables.

The next statement assumes that a cat egory_var variable has been declared. It polls the
get Asset Descri pti ons method passing the current value of the cat egory_var EPL variable:

sel ect * from met hod: MyLookuplLi b. get Asset Descri ptions(category_var)]

Use thei t erat or and saf el t er at or methods on EPSt at ement to obtain results. The statement
does not post events to listeners, it is strictly passive in that sense.

5.14.3. Providing the Method

You application can provide a public static method or can provide an instance method of an
existing object. The method must accept the same number and type of parameters as listed in
the parameter expression list.

The examples herein mostly use public static methods. For a detail description of instance
methods please see Section 5.17.5, “Class and Event-Type Variables” and below example.

If your method invocation returns either no row or only one row, then the return type of the method
can be a Java class, j ava. uti| . Map or bj ect[] (object-array). If your method invocation can
return more then one row, then the return type of the method must be an array of Java class,
array of Map, bj ect[][] (object-array 2-dimensional) or Col | ecti on or I terat or (or subtypes
thereof).

If you are using a Java class, an array of Java class or a Coll ecti on<d ass> or an
I terator<C ass> as the return type, then the class must adhere to JavaBean conventions: it
must expose properties through getter methods.

If you are using j ava. uti | . Map or an array of Map or a Col | ecti on<Map> or an | t er at or <Map>
as the return type, please note the following:

170

Providing the Method

» Your application must provide a second method that returns event property metadata, as the
next section outlines.

« Each map instance returned by your method should have St ri ng-type keys and object values
(Map<String, Object>).

If you are using Object[] (object-array) or Ooject[][] (object-array 2-dimensional) or
Col | ection<(bj ect[]>orlterator<Cbject[] > as the return type, please note the following:
* Your application must provide a second method that returns event property metadata, as the

next section outlines.

« Each object-array instance returned by your method should have the exact same array position
for values as the property metadata indicates and the array length must be the same as the
number of properties.

Your application method must return either of the following:

1. Anul | value or an empty array to indicate an empty result (no rows).
2. A Java object or Map or oj ect [] to indicate a zero (null) or one-row result.
3. Return multiple result rows by returning either:

* An array of Java objects.

* An array of Map instances.

« An array of Qoj ect [] instances.

e A Col | ection of Java objects.

* A Col | ection of Map instances.

e A Col |l ection of Object[] instances.

e Anlterator of Java objects.

* Anlterator of Map instances.

 Anlterator of Object[] instances.

As an example, consider the method 'getAssetDescriptions' provided by class 'MyLookupLib' as
discussed earlier:

sel ect assetld, assetDesc from Asset MoveEvent as asset,
met hod: com nmypackage. MyLookupLi b. get Asset Descri ptions() as desc
where asset.assetid = desc. assetid

171

Chapter 5. EPL Reference: Clauses

The 'getAssetDescriptions' method may return multiple rows and is therefore declared to return
an array of the class 'AssetDesc'. The class AssetDesc is a POJO class (not shown here):

public class MyLookupLib {
public static AssetDesc[] getAssetDescriptions() {

return new AssetDesc[] {...};

The example above specifies the full Java class name of the class 'MyLookupLib' class in the EPL
statement. The package name does not need to be part of the EPL if your application imports the
package using the auto-import configuration through the API or XML, as outlined in Section 16.4.6,
“Class and package imports”.

Alternatively the example above could return a Col | ecti on wherein the method declares
as public static Col | ecti on<Asset Desc> get Asset Descri ptions() {...} or
an Iterator wherein the method declares as public static |terator<AssetDesc>
get Asset Descriptions() {...}.

5.14.3.1. Providing an Instance Method

If you application has an existing object instance such as a service or a dependency injected bean
then it must make the instance available as a variable. Please see Section 5.17.5, “Class and
Event-Type Variables” for more information.

For example, assuming you provided a st at eChecker variable that points to an object instance
that provides a public get Mat chi ngAsset s instance method and that returns property asset I ds,
you may use the state checker service in the f r omclause as follows:

sel ect asset | ds from Asset MoveEvent ,
met hod: st at eChecker . get Mat chi ngAsset s(asset Desc)

5.14.4. Using a wap Return Type

Your application may return j ava. uti | . Map or an array of Map from method invocations. If doing
S0, your application must provide metadata about each row: it must declare the property name
and property type of each Map entry of a row. This information allows the engine to perform type
checking of expressions used within the statement.

You declare the property names and types of each row by providing a method that returns property
metadata. The metadata method must follow these conventions:

1. The method name providing the property metadata must have same method name appended
by the literal Met adat a.

172

Using a Map Return Type

2. The method must have an empty parameter list and must be declared public and static.

3. The method providing the metadata must return a Map of Stri ng property name keys and
j ava.l ang. d ass property name types (Map<String, C ass>).

In the following example, a class 'MyLookupLib' provides a method to return historical data based
on asset id and asset code:

sel ect assetld, location, x_coord, y_coord from Asset MoveEvent as asset,
met hod: com nmypackage. MyLookuplLi b. get Asset Hi story(asset| d, asset Code) as
hi story

A sample implementation of the class 'MyLookupLib' is shown below.

public class MyLookupLib {

/! For each colum in a row, provide the property name and type

/Il

public static Map<String, C ass> getAssetHi storyMetadata() {
Map<String, C ass> propertyNames = new HashMap<String, O ass>();
propertyNanes. put ("l ocation", String.class);

propertyNanes. put ("x_coord", Integer.class);
propertyNanes. put ("y_coord", Integer.class);
return propertyNanes;

/1 Lookup rows based on assetld and asset Code
/1
public static Map<String, Object>[] getAssetHi story(String assetld, String
asset Code) {
Map rows = new Map[2]; // this sanple returns 2 rows
for (int i =0; i <2; i++) {
rows[i] = new HashMap();
rows[i].put("location", "soneval ue");
rows[i].put("x_coord", 100);
/1l ... set nore values for each row

}

return rows,;

In the example above, the 'getAssetHistoryMetadata' method provides the property metadata: the
names and types of properties in each row. The engine calls this method once per statement to
determine event typing information.

The 'getAssetHistory' method returns an array of Map objects that are two rows. The
implementation shown above is a simple example. The parameters to the method are the assetld

173

Chapter 5. EPL Reference: Clauses

and assetCode properties of the AssetMoveEvent joined to the method. The engine calls this
method for each insert and remove stream event in AssetMoveEvent.

To indicate that no rows are found in a join, your application method may return either a nul |
value or an array of size zero.

Alternatively the example above could return a Col | ecti on wherein the method declares as
public static Collection<Map> getAssetHistory() {...} oranlIterator wherein the
method declares as public static Iterator<Map> getAssetHistory() {...}.

5.14.5. Using a Object Array Return Type

Your application may return Coj ect[] (object-array) or an array of Obj ect[] (object-array 2-
dimensional) from method invocations. If doing so, your application must provide metadata about
each row: it must declare the property name and property type of each array entry of a row in the
exact same order as provided by value rows. This information allows the engine to perform type
checking of expressions used within the statement.

You declare the property names and types of each row by providing a method that returns property
metadata. The metadata method must follow these conventions:

1. The method name providing the property metadata must have same method name appended
by the literal Met adat a.

2. The method must have an empty parameter list and must be declared public and static.

3. The method providing the metadata must return a Li nkedHashMap of Stri ng property name
keys and j ava. | ang. d ass property hame types (Map<String, C ass>).

In the following example, a class 'MyLookupLib' provides a method to return historical data based
on asset id and asset code:

sel ect assetld, location, x_coord, y_coord from Asset MoveEvent as asset,
met hod: com nmypackage. MyLookuplLi b. get Asset Hi story(assetld, asset Code) as
hi story

A sample implementation of the class '‘MyLookupLib' is shown below.

public class MyLookupLib {

/1 For each colum in a row, provide the property name and type
11
public static LinkedHashMap<String, C ass> getAssetH storyMetadata() {
Li nkedHashMap<String, C ass> propertyNames = new LinkedHashMap<Stri ng,
G ass>();
propertyNanes. put ("l ocation", String.class);

174

Declaring an Event Type: Create Schema

propertyNanes. put ("x_coord", Integer.class);
propertyNanes. put ("y_coord", Integer.class);
return propertyNanes;
}
/'l Lookup rows based on assetld and asset Code
/1
public static Object[][] getAssetH story(String assetld, String assetCode) {
Qbject[][] rows = new Qbject[5][]; // this sanple returns 5 rows
for (int i =0; i <5; i++) {
rows[i] = new Qbject[2]; // single row has 2 fields
rows[i][0] = "soneval ue";
rows[i][1] = 100;
/1l ... set nore values for each row
}
return rows;
}

In the example above, the 'getAssetHistoryMetadata' method provides the property metadata: the
names and types of properties in each row. The engine calls this method once per statement to
determine event typing information.

The 'getAssetHistory' method returns an Object[][] that represents five rows. The
implementation shown above is a simple example. The parameters to the method are the assetld
and assetCode properties of the AssetMoveEvent joined to the method. The engine calls this
method for each insert and remove stream event in AssetMoveEvent.

To indicate that no rows are found in a join, your application method may return either a nul |
value or an array of size zero.

Alternatively the example above could return a Col | ecti on wherein the method declares as
public static Collection<Object[]> getAssetH story() {...} oranlterator wherein
the method declares as public static Iterator<Object[]> getAssetH story() {...}.

5.15. Declaring an Event Type: Create Schema

EPL allows declaring an event type via the cr eat e schena clause and also by means of the static
or runtime configuration APl addEvent Type functions. The term schema and event type has the
same meaning in EPL.

Your application can declare an event type by providing the property names and types or by
providing a class name. Your application may also declare a variant stream schema.

When using the cr eat e schema syntax to declare an event type, the engine automatically removes
the event type when there are no started statements referencing the event type, including the
statement that declared the event type. When using the configuration API, the event type stays
cached even if there are no statements that refer to the event type and until explicitly removed
via the runtime configuration API.

175

Chapter 5. EPL Reference: Clauses

5.15.1. Declare an Event Type by Providing Names and Types

The synopsis of the cr eat e schema syntax providing property names and types is:

create [map | objectarray] schema schema_nane [as]

(property_nanme property type [,property_nane property type [,...])
[inherits inherited _event _type[, inherited_event type] [,...]]
[starttinestanp tinmestanp_property_nane]

[endtimestanp tinmestanp_property_nane]
[copyfrom copy_type name [, copy_type_name] [,...]]

The cr eat e keyword can be followed by nap to instruct the engine to represent events of that type
by the Map event representation, or obj ect ar r ay to denote an Object-array event type. If neither
the map or obj ect array keywords are provided, the engine-wide default event representation
applies.

After creat e schenm follows a schema_name. The schema name is the event type name.

The property_name is an identifier providing the event property name. The property type is also
required for each property. Valid property types are listed in Section 5.17.1, “Creating Variables:
the Create Variable clause” and in addition include:

1. Any Java class name, fully-qualified or the simple class name if imports are configured.
2. Add left and right square brackets [] to any type to denote an array-type event property.
3. Use an event type name as a property type.

4. The nul | keyword for a null-typed property.

The optional i nheri t s keywords is followed by a comma-separated list of event type names that
are the supertypes to the declared type.

The optional st art t i mest anp keyword is followed by a property name. Use this to tell the engine
that your event has a timestamp. The engine checks that the property name exists on the declared
type and returns a date-time value. Declare a timestamp property if you want your events to
implicitly carry a timestamp value for convenient use with interval algebra methods as a start
timestamp.

The optional endti nest anp keyword is followed by a property name. Use this together with
starttimestamp to tell the engine that your event has a duration. The engine checks that
the property name exists on the declared type and returns a date-time value. Declare an
endtimestamp property if you want your events to implicitly carry a duration value for convenient
use with interval algebra methods.

The optional copyf r omkeyword is followed by a comma-separate list of event type names. For
each event type listed, the engine looks up that type and adds all event property definitions to the
newly-defined type, in addition to those listed explicitly (if any).

A few example event type declarations follow:

176

Declare an Event Type by Providing Names and Types

/! Declare type SecurityEvent
create schema SecurityEvent as (i pAddress string, userld String, numAttenpts int)

/1l Declare type AuthorizationEvent with the roles property being an array of
String

/1 and the hostinfo property being a PQJO object

create schema AuthorizationEvent(group String, roles String[], hostinfo
com nmyconpany. Host Nanel nf o)

/| Declare type ConpositeEvent in which the innerEvents property is an array
of SecurityEvent
create schema ConpositeEvent (group String, innerEvents SecurityEvent[])

/| Decl are type WebPageVi sit Event that inherits all properties fromPageHitEvent
create schena WebPageVi si t Event (userld String) inherits PageH t Event

/! Declare a type with start and end tinestanp (i.e. event with duration).
create schena Roboti cArmvbvenent (robotld string, startts |ong, endts |ong)
starttinmestanp startts endti nestanp endts

/]l Create a type that has all properties of SecurityEvent plus a user Nane property
create schena ExtendedSecurityEvent (userName string) copyfrom SecurityEvent

/Il Create a type that has all properties of SecurityEvent
create schema Sim|arSecurityEvent () copyfrom SecurityEvent

I/l Create a type that has all properties of SecurityEvent and WebPageVi sit Event
pl us a userNanme property

create schema WebSecurityEvent (userName string) copyfrom SecurityEvent,
WebPageVi si t Event

To elaborate on the i nheri t s keyword, consider the following two schema definitions:

create schema Foo as (string propl)

create schema Bar() inherits Foo

Following above schema, Foo is a supertype or Bar and therefore any Bar event also fulfills Foo
and matches where Foo matches. An EPL statement such as sel ect * from Foo returns any Foo
event as well as any event that is a subtype of Foo such as all Bar events. When your EPL queries
don't use any Foo events there is no cost, thus i nheri t s is generally an effective way to share
properties between types. The start and end timestamp are also inherited from any supertype that
has the timestamp property names defined.

177

Chapter 5. EPL Reference: Clauses

The optional copyf r omkeyword is for defining a schema based on another schema. This keyword
causes the engine to copy property definitions: There is no inherits, extends, supertype or subtype
relationship between the types listed.

To define an event type Bar that has the same properties as Foo:

create schema Foo as (string propl)

create schema Bar () copyfrom Foo

To define an event type Bar that has the same properties as Foo and that adds its own property
prop2:

create schena Foo as (string propl)

create schema Bar(string prop2) copyfrom Foo

If neither the map or obj ect array keywords are provided, and if the create-schema statement
provides the @vent Repr esent ati on(array=true) annotation the engine expects object array
events. If the statement provides the @vent Represent ati on(array=fal se) annotation the
engine expects Map objects as events. If neither annotation is provided, the engine uses
the configured default event representation as discussed in Section 16.4.11.1, “Default Event
Representation”.

The following two EPL statements both instructs the engine to represent Foo events as object
arrays. When sending Foo events into the engine use the sendEvent (CObj ect[] data, String
t ypeNane) footprint.

create objectarray schema Foo as (string propl)

@vent Representati on(array=true) create schema Foo as (string propl)

The next two EPL statements both instructs the engine to represent Foo events as Maps. When
sending Foo events into the engine use the sendEvent (Map data, String typeNane) footprint.

create map schema Foo as (string propl)

178

Declare an Event Type by Providing a Class Name

@vent Representati on(array=fal se) create schema Foo as (string propl)

5.15.2. Declare an Event Type by Providing a Class Name

When using Java classes as the underlying event representation your application may simply
provide the class name:

create schema schema_nane [as] class_nane
[starttimestanp tinestanp_property_nane]
[endtimestanp tinmestanp_property_ nane]

The class_name must be a fully-qualified class name (including the package name) if imports are
not configured. If you application configures imports then the simple class name suffices without
package name.

The optional st artti mest anp and endt i mest anp keywords have a meaning as defined earlier.

The next example statements declare an event type based on a class:

/1l Shows the use of a fully-qualified class name to declare the Logi nEvent
event type

create schema Logi nEvent as com myconpany. Logi nVal ue

/1 \When the configuration includes inports, the declaration does not need a

package name
create schema Logout Event as SignoffVal ue

5.15.3. Declare a Variant Stream

A variant stream is a predefined stream into which events of multiple disparate event types can
be inserted. Please see Section 5.10.3, “Merging Disparate Types of Events: Variant Streams”
for rules regarding property visibility and additional information.

The synopsis is:

create variant schema schenma_nanme [as] eventtype_nane|* [, eventtype_ nane|*]

[,...]

Provide the vari ant keyword to declare a variant stream.

The ' wildcard character declares a variant stream that accepts any type of event inserted into
the variant stream.

179

Chapter 5. EPL Reference: Clauses

Provide eventtype_name if the variant stream should hold events of the given type only. When
usingi nsert int o toinsertinto the variant stream the engine checks to ensure the inserted event
type or its supertypes match the required event type.

A few examples are shown below:

// Create a variant stream that accepts only Logi nEvent and Logout Event event

types
create variant schenma SecurityVariant as Logi nEvent, Logout Event

// Create a variant streamthat accepts any event type
create variant schema AnyEvent as *

5.16. Splitting and Duplicating Streams

EPL offers a convenient syntax to splitting, routing or duplicating events into multiple streams, and
for receiving unmatched events among a set of filter criteria.

For splitting a single event that acts as a container and expose child events as a property of itself
consider the contained-event syntax as described in Section 5.19, “Contained-Event Selection”.

You may define a triggering event or pattern in the on-part of the statement followed by multiple
insert into, sel ect and wher e clauses.

The synopsis is:

[cont ext cont ext nane]

on event_type[(filter_criteria)] [as stream nane]

insert into insert_into_def select select_|ist [where condition]
[insert into insert_into_def select select_list [where condition]]
[insert into...]

[output first | all]

The event_type is the name of the type of events that trigger the split stream. It is optionally
followed by filter_criteria which are filter expressions to apply to arriving events. The optional
as keyword can be used to assign a stream name. Patterns and named windows can also be
specified in the on clause.

Following the on-clause is one or more insert into clauses as described in Section 5.10, “Merging
Streams and Continuous Insertion: the Insert Into Clause” and select clauses as described in
Section 5.3, “Choosing Event Properties And Events: the Select Clause”.

Each sel ect clause may be followed by a wher e clause containing a condition. If the condition
is true for the event, the engine transforms the event according to the sel ect clause and inserts
it into the corresponding stream.

180

Splitting and Duplicating Streams

At the end of the statement can be an optional out put clause. By default the engine inserts into
the first stream for which the wher e clause condition matches if one was specified, starting from
the top. If you specify the out put al | keywords, then the engine inserts into each stream (not only
the first stream) for which the wher e clause condition matches or that do not have a wher e clause.

If, for a given event, none of the wher e clause conditions match, the statement listener receives the
unmatched event. The statement listener only receives unmatched events and does not receive
any transformed or inserted events. The i t er at or method to the statement returns no events.

You may specify an optional context name to the effect that the split-stream operates according
to the context dimensional information as declared for the context. See Chapter 4, Context and
Context Partitions for more information.

In the below sample statement, the engine inserts each Or der Event into the Lar geOr der s stream
if the order quantity is 100 or larger, or into the Snal | O der s stream if the order quantity is smaller
then 100:

on OrderEvent
insert into LargeOrders select * where orderQy >= 100
insert into Small Orders sel ect *

The next example statement adds a new stream for medium-sized orders. The new stream
receives orders that have an order quantity between 20 and 100:

on OrderEvent

insert into LargeOrders select orderld, customer where orderQy >= 100

insert into MediunODrders select orderld, custoner where orderQy between 20
and 100

insert into Small Orders select orderld, customer where orderQy > 0

As you may have noticed in the above statement, orders that have an order quantity of zero don't
match any of the conditions. The engine does not insert such order events into any stream and
the listener to the statement receives these unmatched events.

By default the engine inserts into the first i nsert into stream without a wher e clause or for
which the wher e clause condition matches. To change the default behavior and insert into all
matching streams instead (including those without a wher e clause), the out put al | keywords
may be added to the statement.

The sample statement below shows the use of the output all keywords. The statement
populates both the Lar geOrders stream with large orders as well as the VI PCust oner Or der s
stream with orders for certain customers based on customer id:

on O der Event

181

Chapter 5. EPL Reference: Clauses

insert into LargeOrders select * where orderQy >= 100
insert into VIPCustonerOrders select * where custonerld in (1001, 1002)
out put all

Since the out put al | keywords are present, the above statement inserts each order event into
either both streams or only one stream or none of the streams, depending on order quantity and
customer id of the order event. The statement delivers order events not inserted into any of the
streams to the listeners and/or subscriber to the statement.

The following limitations apply to split-stream statements:

1. Aggregation functions and the prev and pri or operators are not available in conditions and
the sel ect -clause.

5.17. Variables and Constants

A variable is a scalar, object, event or set of aggregation values that is available for use in all
statements including patterns. Variables can be used in an expression anywhere in a statement
as well as in the out put clause for output rate limiting.

Variables must first be declared or configured before use, by defining each variable's type and
name. Variables can be created via the create variabl e syntax or declared by runtime or
static configuration. Variables can be assigned new values by using the on set syntax or via
the set Vari abl eVal ue methods on EPRunt i me. The EPRunt i ne also provides method to read
variable values.

A variable can be declared constant. A constant variable always has the initial value and cannot
be assigned a new value. A constant variable can be used like any other variable and can be used
wherever a constant is required. By declaring a variable constant you enable the Esper engine to
optimize and perform query planning knowing that the variable value cannot change.

When declaring a class-typed, event-typed or aggregation-typed variable you may read or set
individual properties within the same variable.

The engine guarantees consistency and atomicity of variable reads and writes on the level of
context partition (this is a soft guarantee, see below). Variables are optimized for fast read access
and are also multithread-safe.

When you associate a context to the variable then each context partition maintains its own variable
value. See Section 4.8, “Context and Variables” for more information.

Variables can also be removed, at runtime, by destroying all referencing statements including the
statement that created the variable, or by means of the runtime configuration API.

182

Creating Variables: the Create Variable clause

5.17.1. Creating Variables: the ceate varianl e Clause

The creat e vari abl e syntax creates a new variable by defining the variable type and name. In
alternative to the syntax, variables can also be declared in the runtime and engine configuration
options.

The synopsis for creating a variable is as follows:

create [constant] variable variable_type [[]] variabl e_name
[= assignnent _expression]

Specify the optional const ant keyword when the variable is a constant whose associated value
cannot be altered. Your EPL design should prefer constant variables over non-constant variables.

The variable_type can be any of the following:

vari abl e_type
. string
| char
| character
| bool
| bool ean
| byte
| short
| int
| integer
| long
| double
| float
| object
| enumclass
| class_nane
| event_type_nane

Variable types can accept null values. The obj ect type is for an untyped variable that can be
assigned any value. You can provide a class name (use imports) or a fully-qualified class name
to declare a variable of that Java class type including an enumeration class. You can also supply
the name of an event type to declare a variable that holds an event of that type.

Append [] to the variable type to declare an array variable. A limitation is that if your variable type
is an event type then array is not allowed (applies to variables only and not to named windows or
tables). For arrays of primitives, specify [pri mi tive], forexampleint[primtive].

The variable_name is an identifier that names the variable. The variable name should not already
be in use by another variable.

The assi gnnent _expr essi on is optional. Without an assignment expression the initial value for
the variable is nul | . If present, it supplies the initial value for the variable.

183

Chapter 5. EPL Reference: Clauses

The EPSt at enent object of the creat e vari abl e statement provides access to variable values.
The pull API methods i t er at or and saf el t er at or return the current variable value. Listeners to
the creat e vari abl e statement subscribe to changes in variable value: the engine posts new and
old value of the variable to all listeners when the variable value is updated by an on set statement.

The example below creates a variable that provides a threshold value. The name of the variable
is var _t hreshol d and its type is | ong. The variable's initial value is nul | as no other value has
been assigned:

create variable |ong var_threshold

This statement creates an integer-type variable named var _out put _r at e and initializes it to the
value ten (10):

create variable integer var_output_rate = 10

The next statement declares a constant string-type variable:

create constant variable string const_filter_synbol = "'GCE

In addition to creating a variable via the create variabl e syntax, the runtime and engine
configuration API also allows adding variables. The next code snippet illustrates the use of the
runtime configuration API to create a string-typed variable:

epServi ce. get EPAdmi ni strator (). get Configuration()
.addVari abl e("nyVar", String.class, "init value");

The following example declares a constant that is an array of string:

create constant variable string[] const filters = {'GE', 'MSFT'}

The next example declares a constant that is an array of enumeration values. It assumes the
Col or enumeration class was imported:

create constant variable Color[] const_colors = {Col or. RED, Col or.BLUE}

For an array of primitive-type bytes, specify the pri nmi ti ve keyword in square brackets, as the
next example shows:

184

Setting Variable Values: the On Set clause

create variable byte[prinmtive] nmybytes = SoneC ass. get Byt es()

Use the new keyword to initialize object instances (the example assumes the package or class
was imported):

create constant variable Atom clnteger cnt = new Atom cl nteger(1)

The engine removes the variable if the statement that created the variable is destroyed and all
statements that reference the variable are also destroyed. The get Var i abl eNameUsedBy and the
renoveVar i abl e methods, both part of the runtime Conf i gur at i onOper at i ons API, provide use
information and can remove a variable. If the variable was added via configuration, it can only be
removed via the configuration API.

5.17.2. Setting Variable Values: the o set clause

The on set statement assigns a new value to one or more variables when a triggering event
arrives or a triggering pattern occurs. Use the set Vari abl eval ue methods on EPRunti nme to
assign variable values programmatically.

The synopsis for setting variable values is:

on event _type[(filter_criteria)] [as stream nane]
set variable nane = expression [, variable nane = expression [,...]]

The event_type is the name of the type of events that trigger the variable assignments. It is
optionally followed by filter_criteria which are filter expressions to apply to arriving events. The
optional as keyword can be used to assign an stream name. Patterns and named windows can
also be specified in the on clause.

The comma-separated list of variable names and expressions set the value of one or more
variables. Subqueries may by part of expressions however aggregation functions and the pr ev or
prior function may not be used in expressions.

All new variable values are applied atomically: the changes to variable values by the on set
statement become visible to other statements all at the same time. No changes are visible to other
processing threads until the on set statement completed processing, and at that time all changes
become visible at once.

The EPSt at enent object provides access to variable values. The pull API methodsi t er at or and
saf el t er at or return the current variable values for each of the variables set by the statement.
Listeners to the statement subscribe to changes in variable values: the engine posts new variable
values of all variables to any listeners.

185

Chapter 5. EPL Reference: Clauses

In the following example, a variable by name var _out put _r at e has been declared previously.
When a NewOutputRateEvent event arrives, the variable is updated to a new value supplied by
the event property 'rate":

on NewQut put Rat eEvent set var_output_rate = rate
The next example shows two variables that are updated when a ThresholdUpdateEvent arrives:

on Threshol dUpdat eEvent as t
set var_threshol d_l ower = t.|ower,
var _t hreshol d_hi gher = t. hi gher

The sample statement shown next counts the number of pattern matches using a variable. The
pattern looks for OrderEvent events that are followed by CancelEvent events for the same order
id within 10 seconds of the OrderEvent:

on pattern[every a=OrderEvent -> (Cancel Event (order | d=a. order|d) wher e
timer:within(10 sec))]
set var_counter = var_counter + 1

5.17.3. Using Variables

A variable name can be used in any expression and can also occur in an output rate limiting
clause. This section presents examples and discusses performance, consistency and atomicity
attributes of variables.

The next statement assumes that a variable named 'var_threshold' was created to hold a total
price threshold value. The statement outputs an event when the total price for a symbol is greater
then the current threshold value:

sel ect symbol, sum(price) from Ti ckEvent
group by synbol
havi ng sum(price) > var_threshold

In this example we use a variable to dynamically change the output rate on-the-fly. The variable
'var_output_rate' holds the current rate at which the statement posts a current count to listeners:

sel ect count (*) from Ti ckEvent output every var_out put_rate seconds

186

Object-Type Variables

Variables are optimized towards high read frequency and lower write frequency. Variable reads
do not incur locking overhead (99% of the time) while variable writes do incur locking overhead.

The engine softly guarantees consistency and atomicity of variables when your statement
executes in response to an event or timer invocation. Variables acquire a stable value
(implemented by versioning) when your statement starts executing in response to an event or
timer invocation, and variables do not change value during execution. When one or more variable
values are updated via on set statements, the changes to all updated variables become visible
to statements as one unit and only when the on set statement completes successfully.

The atomicity and consistency guarantee is a soft guarantee. If any of your application statements,
in response to an event or timer invocation, execute for a time interval longer then 15 seconds
(default interval length), then the engine may use current variable values after 15 seconds passed,
rather then then-current variable values at the time the statement started executing in response
to an event or timer invocation.

The length of the time interval that variable values are held stable for the duration of execution of
a given statement is by default 15 seconds, but can be configured via engine default settings.

5.17.4. Object-Type Variables

A variable of type obj ect (orj ava. | ang. Obj ect via the API) can be assigned any value including
null. When using an object-type variable in an expression, your statement may need to cast the
value to the desired type.

The following sample EPL creates a variable by name var obj of type object:

create vari abl e object varobj

5.17.5. Class and Event-Type Variables

The creat e vari abl e syntax and the API accept a fully-qualified class name or alternatively the
name of an event type. This is useful when you want a single variable to have multiple property
values to read or set.

The next statement assumes that the event type PageHi t Event is declared:
create vari abl e PageH t Event varPageHit Zero

These example statements show two ways of assigning to the variable:

/1 You may assign the conplete event
on PageHi t Event (i p='0.0.0.0") pagehit set varPageH tZero = pagehit

187

Chapter 5. EPL Reference: Clauses

/] O assign individual properties of the event
on PageHi t Event (i p='0.0.0.0') pagehit set varPageHitZero.userld = pagehit.userld

Similarly statements may use properties of class or event-type variables as this example shows:

select * from Firewal | Event (user| d=var PageHi t Zer 0. user| d)

Instance method can also be invoked:

create variabl e com exanpl e. St at eChecker Servi ce st at eChecker

select * from Test Event as e where stateChecker.checkState(e)

A variable that represents a service for calling instance methods could be initialized by calling a
factory method. This example assumes the classes were added to imports:

create const ant vari abl e St at eChecker Servi ce st at eChecker =
St at eChecker Ser vi ceFact ory. makeSer vi ce()

Or the variable can be added via the config API; an example code snippet is next:

adm n. get Confi guration().addVari abl e("st at eChecker", StateChecker Servi ce. cl ass,
St at eChecker Servi ceFact ory. makeServi ce(), true);

188

Declaring Global Expressions, Aliases And Scripts: Create Expression

5.18. Declaring Global Expressions, Aliases And
Scripts: Create Expression

Your application can declare an expression or script using the cr eat e expr essi on clause. Such
expressions or scripts become available globally to any EPL statement.

The synopsis of the creat e expr essi on syntax is:

create expression expression_or_script

Use the creat e expressi on keywords and append the expression or scripts.

At the time your application creates the creat e expr essi on statement the expression or script
becomes globally visible.

At the time your application destroys the cr eat e expr essi on statement the expression or script
are no longer visible. Existing statements that use the global expression or script are unaffected.

Expression aliases are the simplest means of sharing expressions and do not accept parameters.
Expression declarations limit the expression scope to the parameters that are passed.

5.18.1. Global Expression Aliases

The syntax and additional examples for declaring an expression is outlined in Section 5.2.8,
“Expression Alias”, which discusses expression aliases that are visible within the same EPL
statement i.e. visible locally only.

When using the cr eat e expr essi on syntax to declare an expression the engine remembers the
expression alias and expression and allows the alias to be referenced in all other EPL statements.

The below EPL declares a globally visible expression alias for an expression that computes the
total of the mid-price which is the buy and sell price divided by two:

create expression total MdPrice alias for { sum((buy + sell) / 2) }

The next EPL returns mid-price for events for which the mid-price per symbol stays below 10:
sel ect synbol, m dPrice from Market Dat aEvent group by synbol having m dPrice < 10
The expression name must be unique among all other expression aliases and expression

declarations.

Your application can provide an expression alias of the same name local to a given EPL statement
as well as globally using creat e expressi on. The locally-provided expression alias overrides
the global expression alias.

189

Chapter 5. EPL Reference: Clauses

The engine validates global expression aliases at the time your application creates a statement
that references the alias. When a statement references a global alias, the engine uses the that
statement's local expression scope to validate the expression. Expression aliases can therefore
be dynamically typed and type information does not need to be the same for all statements that
reference the expression alias.

5.18.2. Global Expression Declarations

The syntax and additional examples for declaring an expression is outlined in Section 5.2.9,
“Expression Declaration”, which discusses declaring expressions that are visible within the same
EPL statement i.e. visible locally only.

When using the cr eat e expr essi on syntax to declare an expression the engine remembers the
expression and allows the expression to be referenced in all other EPL statements.

The below EPL declares a globally visible expression that computes a mid-price and that requires
a single parameter:

create expression nmidPrice { in => (buy + sell) / 2}

The next EPL returns mid-price for each event:

sel ect mi dPrice(nd) from MarketDat aEvent as nd

The expression name must be unique for global expressions. It is not possible to declare the same

global expression twice with the same name.

Your application can declare an expression of the same name local to a given EPL statement as
well as globally using cr eat e expr essi on. The locally-declared expression overrides the globally
declared expression.

The engine validates globally declared expressions at the time your application creates a
statement that references the global expression. When a statement references a global
expression, the engine uses that statement's type information to validate the global expressions.
Global expressions can therefore be dynamically typed and type information does not need to be
the same for all statements that reference the global expression.

This example shows a sequence of EPL, that can be created in the order shown, and that
demonstrates expression validation at time of referral:

create expression mnPrice {(select mn(price) from O der Wndow) }

190

Global Scripts

create wi ndow Order Wndow. wi n: ti me(30) as OrderEvent

insert into Order Wndow sel ect * from O der Event

/1 Validates and incorporates the declared gl obal expression
select minPrice() as mnprice from Market Dat a

5.18.3. Global Scripts

The syntax and additional examples for declaring scripts is outlined in Chapter 19, Script Support,
which discusses declaring scripts that are visible within the same EPL statement i.e. visible locally
only.

When using the creat e expressi on syntax to declare a script the engine remembers the script
and allows the script to be referenced in all other EPL statements.

The below EPL declares a globally visible script in the JavaScript dialect that computes a mid-
price:

create expression nmidPrice(buy, sell) [(buy + sell) / 2]
The next EPL returns mid-price for each event:
sel ect mi dPrice(buy, sell) from Market Dat aEvent

The engine validates globally declared scripts at the time your application creates a statement
that references the global script. When a statement references a global script, the engine uses
that statement's type information to determine parameter types. Global scripts can therefore be
dynamically typed and type information does not need to be the same for all statements that
reference the global script.

The script name in combination with the number of parameters must be unique for global scripts.
It is not possible to declare the same global script twice with the same name and number of
parameters.

Your application can declare a script of the same name and number of parameters that is local to
a given EPL statement as well as globally using cr eat e expr essi on. The locally-declared script
overrides the globally declared script.

191

Chapter 5. EPL Reference: Clauses

5.19. Contained-Event Selection

Contained-event selection is for use when an event contains properties that are themselves
events, or more generally when your application needs to split an event into multiple events. One
example is when application events are coarse-grained structures and you need to perform bulk
operations on the rows of the property graph in an event.

Use the contained-event selection syntax in a filter expression such as in a pattern, f r omclause,
subselect, on-select and on-delete. This section provides the synopsis and examples.

To review, in the f r omclause a contained_selection may appear after the event stream name and
filter criteria, and before any view specifications.

The synopsis for contained_selection is as follows:

[sel ect sel ect _expressions fronj
cont ai ned_expressi on [@ype(eventtype_nane)] [as alias_nane]
[where filter_expression]

The sel ect clause and select_expressions are optional and may be used to select specific
properties of contained events.

The contained_expression is required and returns individual events. The expression can, for
example, be an event property name that returns an event fragment, i.e. a property that can itself
be represented as an event by the underlying event representation. The expression can also be
any other expression such as a single-row function or a script that returns either an array or a
java. util. Collection of events. Simple values such as integer or string are not fragments but
can be used as well as described in Section 5.19.6, “Arrays returned by a Contained Expression”.

Provide the @ ype(nane) annotation after the contained expression to name the event type of
events returned by the expression. The annotation is optional and not needed when the contained-
expression is an event property that returns a class or other event fragment.

The alias_name can be provided to assign a name to the expression result value rows.
The wher e clause and filter_expression is optional and may be used to filter out properties.

As an example event, consider a media order. A media order consists of order items as well as
product descriptions. A media order event can be represented as an object graph (POJO event
representation), or a structure of nested Maps (Map event representation) or a XML document
(XML DOM or Axiom event representation) or other custom plug-in event representation.

To illustrate, a sample media order event in XML event representation is shown below. Also, a
XML event type can optionally be strongly-typed with an explicit XML XSD schema that we don't
show here. Note that Map and POJO representation can be considered equivalent for the purpose
of this example.

Let us now assume that we have declared the event type Medi aOr der as being represented by
the root node <nedi aor der > of such XML snip:

192

Contained-Event Selection

<medi aor der >
<or der | d>PQ200901</ or der | d>
<itens>
<itenp
<i tem d>100001</item d>
<pr oduct | d>B001</ pr oduct | d>
<anount >10</ anount >
<price>11.95</ price>
</itenmp
</items>
<books>
<book>
<bookl| d>B001</ bookl! d>
<aut hor >Hei nl ei n</ aut hor >
<revi ew>
<revi ew d>1</revi ew d>
<comrent >best book ever</conment >
</revi ew>
</ book>
<book>
<bookl| d>B002</ bookl| d>
<aut hor >l saac Asi nov</ aut hor >
</ book>
</ books>
</ nedi aor der >

The next query utilizes the contained-event selection syntax to return each book:

sel ect * from Medi aOr der [books. book]

The result of the above query is one event per book. Output events contain only the book properties

and not any of the mediaorder-level properties.

Note that, when using listeners, the engine delivers multiple results in one invocation of each
listener. Therefore listeners to the above statement can expect a single invocation passing all

book events within one media order event as an array.

To better illustrate the position of the contained-event selection syntax in a statement, consider

the next two queries:

sel ect * from Medi aOr der (order | d=' POR00901") [books. book]

The above query the returns each book only for media orders with a given order id. This query

illustrates a contained-event selection and a view:

193

Chapter 5. EPL Reference: Clauses

sel ect count(*) from Medi aO der [books. book] . st d: uni que(bookl d)

The sample above counts each book unique by book id.

Contained-event selection can be staggered. When staggering multiple contained-event
selections the staggered contained-event selection is relative to its parent.

This example demonstrates staggering contained-event selections by selecting each review of
each book:

sel ect * from Medi aOr der [books. book] [revi ew

Listeners to the query above receive a row for each review of each book. Output events contain
only the review properties and not the book or media order properties.

The following is not valid:

/1l not valid
sel ect * from Medi aOr der [books. book. revi ew

The book property in an indexed property (an array or collection) and thereby requires an index
in order to determine which book to use. The expression books. book[1] . revi ew is valid and
means all reviews of the second (index 1) book.

The contained-event selection syntax is part of the filter expression and may therefore occur in
patterns and anywhere a filter expression is valid.

A pattern example is below. The example assumes that a Cancel event type has been defined
that also has an or der | d property:

select * from pattern [c=Cancel -> books=Medi aOrder(orderld = c.orderld)
[books. book]]

When used in a pattern, a filter with a contained-event selection returns an array of events, similar
to the match-until clause in patterns. The above statement returns, in the books property, an array
of book events.

5.19.1. Select-Clause in a Contained-Event Selection

The optional sel ect clause provides control over which fields are available in output events. The
expressions in the select-clause apply only to the properties available underneath the property in
the f r omclause, and the properties of the enclosing event.

194

Select-Clause in a Contained-Event Selection

When no sel ect is specified, only the properties underneath the selected property are available
in output events.

In summary, the sel ect clause may contain:

1. Any expressions, wherein properties are resolved relative to the property in the f r omclause.
2. Use the wildcard (*) to provide all properties that exist under the property in the f r omclause.

3. Use the alias_name. * syntax to provide all properties that exist under a property in the from
clause.

The next query's sel ect clause selects each review for each book, and the order id as well as
the book id of each book:

sel ect * from Medi aOrder[sel ect orderld, bookld from books. book][select * from
revi ewj

/[l ... equivalent to ...

select * from Medi aOrder[sel ect orderld, bookld from books. book][review]

Listeners to the statement above receive an event for each review of each book. Each output event
has all properties of the review row, and in addition the bookl! d of each book and the or der I d of
the order. Thus bookl d and or der | d are found in each result event, duplicated when there are
multiple reviews per book and order.

The above query uses wildcard (*) to select all properties from reviews. As has been discussed
as part of the sel ect clause, the wildcard (*) and property alias. * do not copy properties
for performance reasons. The wildcard syntax instead specifies the underlying type, and
additional properties are added onto that underlying type if required. Only one wildcard (*) and
property_alias. * (unless used with a column rename) may therefore occur in the sel ect clause
list of expressions.

All the following queries produce an output event for each review of each book. The next sample
queries illustrate the options available to control the fields of output events.

The output events produced by the next query have all properties of each review and no other
properties available:

sel ect * from Medi aOr der [books. book] [revi ew]

The following query is not a valid query, since the order id and book id are not part of the contained-
event selection:

/1 Invalid select-clause: orderld and bookld not produced.

195

Chapter 5. EPL Reference: Clauses

sel ect orderld, bookld from Medi aOrder[books. book] [revi ew]

This query is valid. Note that output events carry only the order | d and bookl d properties and
no other data:

sel ect orderld, bookld from Medi aOrder[books. book][sel ect orderld, bookld from
revi ew

[l... equivalent to ...

select * from Medi aOrder[sel ect orderld, bookld from books. book][revi ew]

This variation produces output events that have all properties of each book and only revi ewl d
and comment for each review:

select * fromMedi aOrder[sel ect * frombooks. book] [sel ect review d, comment from
revi ew

/[l ... equivalent to ...

select * from Medi aOr der[books. book as book][sel ect book.*, reviewd, coment
fromreview

The output events of the next EPL have all properties of the order and only bookl d and revi ewl d
for each review:

sel ect * from Medi aOr der [books. book as book]
[sel ect medi aOrder.*, bookld, reviewid fromreview as nediaO der

This EPL produces output events with 3 columns: a column named nedi aOr der that is the order
itself, a column named book for each book and a column named r evi ewthat holds each review:

insert into ReviewStream sel ect * from Medi aO der [books. book as book]
[select np.* as nedi aOrder, book.* as book, review * as review from review
as review as no

/1 .. and a sanpl e consuner of ReviewStream..
sel ect nedi aOrder.orderld, book.bookld, review reviewd from Revi ewSt ream

Please note these limitations:

1. Sub-selects, aggregation functions and the prev and pri or operators are not available in
contained-event selection.

196

Where Clause in a Contained-Event Selection

2. Expressions in the sel ect and wher e clause of a contained-event selection can only reference
properties relative to the current event and property.

5.19.2. Where Clause in a Contained-Event Selection

The optional wher e clause may be used to filter out properties at the same level that the where-
clause occurs.

The properties in the filter expression must be relative to the property in the f r omclause or the
enclosing event.

This query outputs all books with a given author:
sel ect * from Medi aOr der [books. book where author = 'Heinlein']
This query outputs each review of each book where a review comment contains the word 'good":

sel ect * from Medi aOr der [books. book] [revi ew where conment |ike 'good']

5.19.3. Contained-Event Selection and Joins

This section discusses contained-event selection in joins.

When joining within the same event it is not required that views are specified. Recall, in a join or
outer join there must be views specified that hold the data to be joined. For self-joins, no views
are required and the join executes against the data returned by the same event.

This query inner-joins items to books where book id matches the product id:

sel ect book. bookld, itemitemd

from Medi aOr der [books. book] as book,
Medi aOrder[itens.iten]i as item

where productld = bookld

Query results for the above query when sending the media order event as shown earlier are:

book.bookld item.itemid

B0OO1 100001

The next example query is a left outer join. It returns all books and their items, and for books
without item it returns the book and a nul | value:

sel ect book.bookld, itemitemd

197

Chapter 5. EPL Reference: Clauses

from Medi aOr der [books. book] as book
| eft outer join
Medi aCrder[itens.item as item
on productld = bookld

Query results for the above query when sending the media order event as shown earlier are:

book.bookld item.itemid

B0OO1 100001
B002 null

A full outer join combines the results of both left and right outer joins. The joined table will contain
all records from both tables, and fill in nul | values for missing matches on either side.

This example query is a full outer join, returning all books as well as all items, and filling in nul |
values for book id or item id if no match is found:

sel ect orderld, book.bookld,itemitenld
from Medi aOr der [books. book] as book
full outer join
Medi aOrder[sel ect orderld, * fromitens.iten] as item
on productld = bookld
order by bookld, itemitemd asc

As in all other continuous queries, aggregation results are cumulative from the time the statement
was created.

The following query counts the cumulative number of items in which the product id matches a
book id:

sel ect count (*)

from Medi aOr der [books. book] as book,
Medi aOrder[itens.iten]i as item

where productld = bookld

The uni di recti onal keyword in a join indicates to the query engine that aggregation state is not
cumulative. The next query counts the number of items in which the product id matches a book
id for each event:

sel ect count (*)
from Medi aOr der [books. book] as book unidirectional,
Medi aOrder[itens.iten]i as item

198

Sentence and Word Example

where productld = bookld

5.19.4. Sentence and Word Example

The next example splits an event representing a sentence into multiple events in which each event
represents a word. It represents all events and the logic to split events into contained events as
Java code. The next chapter has additional examples that use Map-type events and put contained-
event logic into a separate expression or script.

The sentence event in this example is represented by a class declared as follows:

public class SentenceEvent {
private final String sentence;

public SentenceEvent(String sentence) ({
thi s. sentence = sentence;

public WirdEvent[] getWirds() ({
String[] split = sentence.split(" ");
WrdEvent[] words = new WordEvent[split.length];
for (int i =0; i <split.length; i++) {
words[i] = new WordEvent (split[i]);
}

return words;

The sentence event as above provides an event property wor ds that returns each word event.

The declaration of word event is also a class:

public class WrdEvent {
private final String word;
public WrdEvent (String word) {

this.word = word;

public String getWord() {
return word;

The EPL statement to populate a stream of words from a sentence event is:

199

Chapter 5. EPL Reference: Clauses

insert into WrdStream sel ect * from Sent enceEvent [wor ds]
Finally, the API call to send a sentence event to the engine is shown here:

epServi ce. get EPRunti ne() . sendEvent (new SentenceEvent("Hello Wrd Contained
Events"));

5.19.5. More Examples

The examples herein are not based on the POJO events of the prior example. They are meant to
demonstrate different types of contained-event expressions and the use of @ ype(type_name) to
identify the event type of the return values of the contained-event expression.

The example first defines a few sample event types:

create schema Sent enceEvent (sentence String)

create schena WordEvent (word String)

create schenm CharacterEvent (char String)

The following EPL assumes that your application defined a plug-in single-row function by name
spl i t Sent ence that returns an array of Map, producting output events that are Wor dEvent events:

i nsert into Wor dSt r eam sel ect * from
Sent enceEvent [spl it Sent ence(sent ence) @ype(Wr dEvent)]

The example EPL shown next invokes a JavaScript function which returns some events of type
Wor dEvent :

expression Collection js:splitSentencelJS(sentence) [

i nport Package(java. util);

var words = new ArraylList();

wor ds. add(Col | ecti ons. si ngl et onMap(' word', 'wordOne'));
wor ds. add(Col | ecti ons. si ngl etonMap(' word', 'wordTwo'));
wor ds;

]

200

Arrays returned by a Contained Expression

sel ect * from SentenceEvent[splitSentencelS(sentence)@ype(WrdEvent)]

In the next example the sentence event first gets split into words and then each word event gets
split into character events via an additional spl i t Wor d single-row function, producing events of
type Char act er Event :

sel ect * from Sent enceEvent
[splitSentence(sentence) @ype(WrdEvent)]
[splitword(word) @ype(CharacterEvent)]

5.19.6. Arrays returned by a Contained Expression

Your contained_expression may return an array such as an array of integer or string values. In this
case you must specify a @ ype(nane) annotation and provide an event type name that declares
a single column with a type that matches the array component type.

create schenm | dContainer(id int)

create schema MyEvent (ids int[])

select * from MyEvent[i ds@ ype(ldCont ai ner)]

This example declares a named window and uses on-delete:

create wi ndow MyW ndow. wi n: keepal | () (id int)

on MyEvent[ids@ype(ldContainer)] as ny_ids
del ete from MW ndow ny_w ndow
where ny_ids.id = ny_wi ndow.id

5.19.7. Contained-Event Limitations

The following restrictions apply to contained-event selection:

* When selecting contained events from a named window in a join, the stream must be marked
as uni directional .
» Selecting contained events from a named window in a correlated subquery is not allowed.

201

Chapter 5. EPL Reference: Clauses

5.20. Updating an Insert Stream: the Update IStream
Clause

The update i stream statement allows declarative modification of event properties of events
entering a stream. Update is a pre-processing step to each new event, modifying an event before
the event applies to any statements.

The synopsis of updat e i st reamis as follows:

update i stream event type [as stream nane]
set property nane = set_expression [, property nane = set_expression]

Lo

[wher e where_expressi on]

The event_type is the name of the type of events that the updat e applies to. The optional as
keyword can be used to assign a name to the event type for use with subqueries, for example.
Following the set keyword is a comma-separated list of property names and expressions that
provide the event properties to change and values to set.

The optional wher e clause and expression can be used to filter out events to which to apply
updates.

Listeners to an updat e statement receive the updated event in the insert stream (new data) and
the event prior to the update in the remove stream (old data). Note that if there are multiple update
statements that all apply to the same event then the engine will ensure that the output events
delivered to listeners or subscribers are consistent with the then-current updated properties of
the event (if necessary making event copies, as described below, in the case that listeners are
attached to update statements). Iterating over an update statement returns no events.

As an example, the below statement assumes an Al ert Event event type that has properties
named severity and r eason:

update istream Al ert Event
set severity = 'High'
where severity = 'Medium and reason like '%ithdrawal |imt%

The statement above changes the value of the severi t y property to "High" for Al er t Event events
that have a medium severity and contain a specific reason text.

Update statements apply the changes to event properties before other statements receive the
event(s) for processing, e.g. "sel ect * from Al ert Event " receives the updated Al ert Event .
This is true regardless of the order in which your application creates statements.

When multiple update statements apply to the same event, the engine executes updates in the
order in which update statements are created. We recommend the @i ori t y EPL annotation to

202

Updating an Insert Stream: the Update 1Stream Clause

define a deterministic order of processing updates, especially in the case where update statements
get created and destroyed dynamically or multiple update statements update the same fields. The
update statement with the highest @ri ori ty value applies last.

The updat e clause can be used on streams populated via i nsert i nt o, as this example utilizing
a pattern demonstrates:

insert into Doubl eWthdrawal Stream
select a.id, b.id, a.account as account, 0 as m ni num
frompattern [a=Wthdrawal -> b=Wthdrawal (id = a.id)]

updat e i stream Doubl eW t hdr awal St ream set mni ni mum= 1000 where account in (10002,
10003)

When using updat e i st r eamwith named windows, any changes to event properties apply before
an event enters the named window. The updat e i st r eamis not available for tables.

Consider the next example (shown here with statement names in @Name EPL annotation,
multiple EPL statements):

@Nane(" Creat eW ndow') create wi ndow MyW ndow. wi n: ti me(30 sec) as Al ertEvent

@\ane(" Updat eStreant’) update istream MW ndow set severity = 'Low where reason
= '%ut of paper%

@Nanme(" I nsert Wndow') insert into MyWndow sel ect * from Al ert Event

@Nane(" Sel ect Wndow') sel ect * from MyW ndow

The Updat eSt r eamstatement specifies an updat e clause that applies to all events entering the
named window. Note that updat e does not apply to events already in the named window at the
time an application creates the Updat eSt r eamstatement, it only applies to new events entering
the named window (after an application created the updat e statement).

Therefore, in the above example listeners to the Sel ect Wndow statement as well as the
Creat eW ndow statement receive the updated event, while listeners to the InsertW ndow
statement receive the original Al ert Event event (and not the updated event).

Subqueries can also be used in all expressions including the optional wher e clause.

This example demonstrates a correlated subquery in an assignment expression and also
demonstrates the optional as keyword. It assigns the phone property of an Al ert Event event
a new value based on the lookup within all unique PhoneEvent events (according to an enpi d
property) correlating the Al ert Event property r epor t er with the enpi d property of PhoneEvent :

203

Chapter 5. EPL Reference: Clauses

update istream Al ert Event as ae
set phone =
(sel ect phone from PhoneEvent. std: uni que(enpid) where enpid = ae.reporter)

When updating indexed properties use the syntax propertyName[index] value with the
index value being an integer number. When updating mapped properties use the syntax
propertyName(key) = value with the key being a string value.

When using updat e, please note these limitations:

1. Expressions may not use aggregation functions.

2. The prev and pri or functions may not be used.

3. Forunderlying event representations that are Java objects, a event object class mustimplement
the java.io. Seri al i zabl e interface as discussed below.

4. When using an XML underlying event type, event properties in the XML document
representation are not available for update.

5. Nested properties are not supported for update. Revision event types and variant streams may
also not be updated.

5.20.1. Immutability and Updates

When updating event objects the engine maintains consistency across statements. The engine
ensures that an update to an event does not impact the results of statements that look for or
retain the original un-updated event. As a result the engine may need to copy an event object to
maintain consistency.

In the case your application utilizes Java objects as the underlying event representation and an
updat e statement updates properties on an object, then in order to maintain consistency across
statements it is necessary for the engine to copy the object before changing properties (and thus
not change the original object).

For Java application objects, the copy operation is implemented by serialization. Your event object
must therefore implement the j ava. i 0. Seri al i zabl e interface to become eligible for update. As
an alternative to serialization, you may instead configure a copy method as part of the event type
configuration via Conf i gur ati onEvent TypelLegacy.

5.21. Controlling Event Delivery : The ror Clause

The engine delivers all result events of a given statement to the statement's listeners and
subscriber (if any) in a single invocation of each listener and subscriber's updat e method passing
an array of result events. For example, a statement using a time-batch view may provide many
result events after a time period passes, a pattern may provide multiple matching events or in a
join the join cardinality could be multiple rows.

For statements that typically post multiple result events to listeners the f or keyword controls the
number of invocations of the engine to listeners and subscribers and the subset of all result events

204

Controlling Event Delivery : The For Clause

delivered by each invocation. This can be useful when your application listener or subscriber code
expects multiple invocations or expects that invocations only receive events that belong together
by some additional criteria.

The f or keyword is a reserved keyword. It is followed by either the gr ouped_del i very keyword
for grouped delivery or the di scret e_del i very keyword for discrete delivery. The f or clause is
valid after any EPL select statement.

The synopsis for grouped delivery is as follows:

for grouped_delivery (group_expression [, group_expression] [,...])

The group_expression expression list provides one or more expressions to apply to result events.
The engine invokes listeners and subscribers once for each distinct set of values returned by
group_expression expressions passing only the events for that group.

The synopsis for discrete delivery is as follows:

for discrete_delivery

With discrete delivery the engine invokes listeners and subscribers once for each result event
passing a single result event in each invocation.

Consider the following example without f or -clause. The time batch data view collects RFIDEvent
events for 10 seconds and posts an array of result events:

select * from RFI DEvent.w n:time_batch(10 sec)

Let's consider an example event sequence as follows:

Table 5.8. Sample Sequence of Events for For Keyword

RFIDEvent(id:1, zone:'A")
RFIDEvent(id:2, zone:'B")
RFIDEvent(id:3, zone:'A")

Without f or -clause and after the 10-second time period passes, the engine delivers an array of
3 events in a single invocation to listeners and the subscriber.

The next example specifies the f or -clause and grouped delivery by zone:

select * from RFIDEvent.win:tinme_batch(10 sec) for grouped_delivery (zone)

205

Chapter 5. EPL Reference: Clauses

With grouped delivery and after the 10-second time period passes, the above statement delivers
result events in two invocations to listeners and the subscriber: The first invocation delivers an
array of two events that contains zone A events with id 1 and 3. The second invocation delivers
an array of 1 event that contains a zone B event with id 2.

The next example specifies the f or -clause and discrete delivery:

select * from RFI DEvent.w n:tine_batch(10 sec) for discrete_delivery

With discrete delivery and after the 10-second time period passes, the above statement delivers
result events in three invocations to listeners and the subscriber: The first invocation delivers an
array of 1 event that contains the event with id 1, the second invocation delivers an array of 1
event that contains the event with id 2 and the third invocation delivers an array of 1 event that
contains the event with id 3.

Remove stream events are also delivered in multiple invocations, one for each group, if your
statement selects remove stream events explicitly via i r st r eamor r st r eamkeywords.

The i nsert into for inserting events into a stream is not affected by the f or -clause.

The delivery order respects the natural sort order or the explicit sort order as provided by the
order by clause, if present.

The following are known limitations:

1. The engine validates group_expression expressions against the output event type, therefore
all properties specified in group_expression expressions must occur in the sel ect clause.

206

Chapter 6.

Chapter 6. EPL Reference: Named
Windows And Tables

6.1. Overview

A named window is a globally-visible data window. A table is a globally-visible data structure
organized by primary key or keys.

Named windows and tables both offer a way to share state between statements. Named windows
and tables have differing capabilities and semantics.

To query a named window or table, simply use the named window name or table name in the f r om
clause of your statement, including statements that contain subqueries, joins and outer-joins.

Certain clauses operate on either a named window or a table, namely the on- ner ge, on- updat e,
on-del ete and on-sel ect clauses. The fire-and-forget queries also operate on both named
windows and tables.

Both named windows and tables can have columns that hold events as column values, as further
described in Section 6.12, “Events As Property”.

6.1.1. Named Window Overview

A named window is a global data window that can take part in many statement queries, and that
can be inserted-into and deleted-from by multiple statements. A named window holds events of
the same type or supertype, unless used with a variant stream.

The creat e wi ndow clause declares a new named window. The named window starts up empty
unless populated from an existing named window at time of creation. Events must be inserted
into the named window using the i nsert i nt o clause. Events can also be deleted from a named
window via the on del et e clause.

Events enter the named window by means of i nsert i nt o clause of a sel ect statement. Events
leave a named window either because the expiry policy of the declared data window removes
events from the named window, or through statements that use the on del et e clause to explicitly
delete from a named window.

A named window may also decorate an event to preserve original events as described in
Section 5.10.4, “Decorated Events” and Section 6.2.2.1, “Named Windows Holding Decorated
Events”.

To tune subquery performance when the subquery selects from a named window, consider the
hints discussed in Section 5.11.8, “Hints Related to Subqueries”.

6.1.2. Table Overview

207

Chapter 6. EPL Reference: Nam...

A table is a data structure that is globally visible and that holds state.

The columns of a table can store aggregation state, allowing for co-location of event data with
aggregation state. Other statements can directly create and update the shared aggregation state.
Statements can also query the aggregation state conveniently. Aggregation state can include
comprehensive state such as for example a large matrix of long-type values for use in a Count-
min sketch approximation. Common aggregation state can be updated by multiple statements.

Use the creat e t abl e clause to declare a new table.

The atomicity guarantees under multi-threaded evaluation are as follows. For a given statement,
a table row or rows either exists or do not exist, consistently, for the duration of the evaluation of
an event or timer against a context partition of a statement. The same is true for updates in that
for a given context partition of a statement, each table row is either completely updated or not
updated at all for the duration of an evaluation. Stream-level filter expressions against tables are
not part of statement evaluation and the same atomicity applies to stream-level filter expressions.

6.1.3. Comparing Named Windows And Tables

As a general rule-of-thumb, if you need to share a data window between statements, the named
window is the right approach. If however rows are organized by primary key or hold aggregation
state, a table may be preferable. EPL statements allow the combined use of both.

6.1.3.1. Nature of Data

One important difference between named windows and tables is in the data that a row holds:
While named windows hold events, tables can hold additional derived state.

For example, a table column can hold rich derived state such as a distinct values set and rich
aggregation state such as the state of a Count-min sketch approximation aggregation (a large
matrix of long-type values).

I/ Declare a table to hold a Count-min sketch approxi nate count per feed
create tabl e Appoxi mat eCount PerWord (feed string, approx countM nSketch())

6.1.3.2. Data Organization

A second difference between named windows and tables is the organization of rows. For named
windows, the organization of rows follows the data window declaration. Tables, on the other hand,
can be organized by a primary key or by multiple primary keys that make up a compound key.

For example, if your declaration specifies a sliding time window to hold 10 seconds of stock tick
events then the rows are held in a sliding time window, i.e. a list or queue according to arrival order.

/1 Declare a named wi ndow to hold 10 seconds of stock tick events
create wi ndow TenSecOf Ti cksW ndow. wi n: ti me(10 sec) as StockTi ckEvent

208

Named Window Usage

An iterator for a named window returns rows in the order as provided by the data window(s)
declared for the named window. An iterator for a table returns rows in an unpredictable order.

6.1.3.3. Insert and Remove Stream

Only named windows provide an insert and remove stream to other statements. Tables do not
provide an insert and remove stream.

For example, considering the TenSecOf Ti cksW ndow named window declared above, the
following statement outputs the current count each time events enter or leave the named window.

sel ect count(*) from TenSecOf Ti cksW ndow

Also for example, considering the Appoxi mat eCount Per Wor d table declared above, the following
EPL does not output any rows when table rows gets inserted, updated or deleted and only outputs
rows when the statement is iterated:

/1 does not continously output for table changes
sel ect * from Appoxi mat eCount Per Wor d

6.1.3.4. Immutability and Copy-On-Write

As named windows hold events and events are immutable, when an update statement updates
events held in a named window, the engine performs a logical copy operation (copy-on-write,
as configured for the type) of each updated event, and only modifies the newly created event,
preserving the immutable original event.

Data in tables are updated in-place. There is no copy operation for table rows.
6.1.3.5. Removal of Rows

For named windows, the data window declared for the named window instructs the engine to
expire and remove events from the named window. Events can also be removed via on- ner ge,
on- del et e and fire-and-forget del et e.

For tables, row can only be removed via on- mer ge, on- del et e, on- sel ect - and- del et e and fire-
and-forget del et e.

6.2. Named Window Usage

6.2.1. Creating Named Windows: the ceate wndowClause

The creat e wi ndow statement creates a named window by specifying a window name and one
or more data window views, as well as the type of event to hold in the named window.

209

Chapter 6. EPL Reference: Nam...

There are two syntaxes for creating a named window: The first syntax allows modeling a named
window after an existing event type or an existing named window. The second syntax is similar to
the SQL create-table syntax and provides a list of column names and column types.

A new named window starts up empty. It must be explicitly inserted into by one or more statements,
as discussed below. A nhamed window can also be populated at time of creation from an existing
named window.

If your application stops or destroys the statement that creates the named window, any consuming
statements no longer receive insert or remove stream events. The named window can also not
be deleted from after it was stopped or destroyed.

The create wi ndow statement posts to listeners any events that are inserted into the named
window as new data. The statement posts all deleted events or events that expire out of the data
window to listeners as the remove stream (old data). The named window contents can also be
iterated on via the pull API to obtain the current contents of a named window.

6.2.1.1. Creation by Modeling after an Existing Type

The benefit of modeling a named window after an existing event type is that event properties can
be nested, indexed, mapped or other types that your event objects may provide as properties,
including the type of the underlying event itself. Also, using the wildcard (*) operator means your
EPL does not need to list each individual property explicitly.

The syntax for creating a named window by modeling the named window after an existing event
type, is as follows:

[cont ext cont ext nane]
create w ndow wi ndow_nane. vi ew_speci fi cati ons
[as] [select list_of properties fron] event_type_ or_w ndownane
[insert [where filter_expression]]

The window_name you assign to the named window can be any identifier. The name should not
already be in use as an event type or stream name or table name.

The view_specifications are one or more data window views that define the expiry policy for
removing events from the data window. Named windows must explicitly declare a data window
view. This is required to ensure that the policy for retaining events in the data window is well
defined. To keep all events, use the keep-all view: It indicates that the named window should
keep all events and only remove events from the named window that are deleted via the on
del et e clause. The view specification can only list data window views, derived-value views are not
allowed since these don't represent an expiry policy. Data window views are listed in Chapter 13,
EPL Reference: Views. View parameterization and staggering are described in Section 5.4.3,
“Specifying Views”.

The sel ect clause and list_of properties are optional. If present, they specify the column names
and, implicitly by definition of the event type, the column types of events held by the named

210

Creating Named Windows: the Create Window clause

window. Expressions other than column names are not allowed in the sel ect list of properties.
Wildcards (*) and wildcards with additional properties can also be used.

The event_type_or_windowname is required if using the model-after syntax. It provides the name
of the event type of events held in the data window, unless column names and types have been
explicitly selected via sel ect. The name of an (existing) other named window is also allowed
here. Please find more details in Section 6.2.1.4, “Populating a Named Window from an Existing
Named Window”.

Finally, the i nsert clause and optional filter_expression are used if the new named window
is modelled after an existing named window, and the data of the new named window is to be
populated from the existing named window upon creation. The optional filter_expression can be
used to exclude events.

You may refer to a context by specifying the cont ext keyword followed by a context name.
Contexts are described in more detail at Chapter 4, Context and Context Partitions. The effect of
referring to a context is that your named window operates according to the context dimensional
information as declared for the context. For usage and limitations please see the respective
chapter.

The next statement creates a named window O der sNamedW ndow for which the expiry policy is
simply to keep all events. Assume that the event type '‘OrderMapEventType' has been configured.
The named window is to hold events of type 'OrderMapEventType":

create wi ndow O der sNamedW ndow. wi n: keepal | () as O der MapEvent Type

The below sample statement demonstrates the sel ect syntax. It defines a named window in
which each row has the three properties 'symbol’, ‘'volume' and 'price'. This named window actively
removes events from the window that are older than 30 seconds.

create wi ndow OrdersTi meW ndow. wi n: ti ne(30 sec) as
sel ect synbol, volune, price from O der Event

In an alternate form, the as keyword can be used to rename columns, and constants may occur
in the select-clause as well:

create wi ndow O dersTi meW ndow. wi n:ti ne(30 sec) as
sel ect synbol as sym volume as vol, price, 1 as alertld from Order Event

6.2.1.2. Creation By Defining Columns Names and Types

The second syntax for creating a named window is by supplying column names and types:

211

Chapter 6. EPL Reference: Nam...

[cont ext context_nane]
create wi ndow wi ndow_nane. vi ew_speci fications [as] (col um_nane col um_type
[, col um_nane colum_type [,...])

The column_name is an identifier providing the event property name. The column_type is also
required for each column. Valid column types are listed in Section 5.17.1, “Creating Variables: the
Create Variable clause” and are the same as for variable types.

For attributes that are array-type append [] (left and right brackets).

The next statement creates a named window:

create wi ndow SecurityEvent.w n:tine(30 sec)
(i pAddress string, userld String, numAttenpts int, properties String[])

Named window columns can hold events by declaring the column type as the event type name.
Array-type in combination with event-type is also supported.

The next two statements declare an event type and create a named window with a column of the
defined event type:

create schema SecurityData (nane String, roles String[])

create wi ndow SecurityEvent.w n:tine(30 sec)
(i pAddress string, wuserld String, secData SecurityData, historySecData
SecuritybDatal])

Whether the named window uses a Map or Object-array event representation for
the rows can be specified as follows. If the create-window statement provides the
@vent Repr esent ati on(array=true) annotation the engine maintains named window rows as
object array. If the statement provides the @vent Repr esent ati on(array=fal se) annotation
the engine maintains named window rows using Map objects. If neither annotation is provided,
the engine uses the configured default event representation as discussed in Section 16.4.11.1,
“Default Event Representation”.

The following EPL statement instructs the engine to represent FooWindow rows as object arrays:

@vent Representation(array=true) create w ndow FooWndow. win:tine(5 sec) as
(string propl)

212

Inserting Into Named Windows

6.2.1.3. Dropping or Removing Named Windows

There is no syntax to drop or remove a named window.

The dest r oy method on the EPSt at enent that created the named window removes the named
window. However the implicit event type associated with the named window remains active since
further statements may continue to use that type. Therefore a named window of the same name
can only be created again if the type information matches the prior declaration for a named window.

6.2.1.4. Populating a Named Window from an Existing Named
Window

Your EPL statement may specify the name of an existing hamed window when creating a new
named window, and may use the i nsert keyword to indicate that the new named window is to
be populated from the events currently held by the existing named window.

For example, and assuming the named window Order sNamedW ndow already exists, this
statement creates a new named window ScratchOrders and populates all orders in
O der sNanmedW ndow into the new named window:

create wi ndow ScratchOrders.w n: keepal | () as O der sNamedW ndow i nsert
The wher e keyword is also available to perform filtering, for example:

create wi ndow ScratchBuyOrders.win:tinme(10) as O dersNanedW ndow insert where
side = ' buy'

6.2.2. Inserting Into Named Windows

The i nsert into clause inserts events into named windows. Your application must ensure that
the column names and types match the declared column names and types of the named window
to be inserted into.

For inserting into a named window and for simultaneously checking if the inserted row already
exists in the named window or for atomic update-insert operation on a named window, consider
using on- ner ge as described in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-
merge is similar to the SQL mer ge clause and provides what is known as an "Upsert" operation:
Update existing events or if no existing event(s) are found then insert a new event, all in one
atomic operation provided by a single EPL statement.

In this example we first create a named window using some of the columns of an OrderEvent
event type:

213

Chapter 6. EPL Reference: Nam...

create wi ndow OrdersW ndow. wi n: keepal | () as sel ect synbol, volume, price from
Or der Event

The insert into the named window selects individual columns to be inserted:

insert into OrdersW ndow(synbol, volune, price) select name, count, price from
FXCOr der Event

An alternative form is shown next:

insert into O dersWndow select nane as synmbol, vol as volune, price from
FXOr der Event

Following above statement, the engine enters every FXOrderEvent arriving into the engine into
the named window 'OrdersWindow'.
The following EPL statements create a named window for an event type backed by a Java class

and insert into the window any 'OrderEvent’ where the symbol value is IBM:

create wi ndow OrdersW ndow. wi n: ti me(30) as com myconpany. O der Event

insert into OrdersW ndow sel ect * from com nyconpany. O der Event (synbol =" | BM)

The last example adds one column named 'derivedPrice' to the 'OrderEvent’ type by specifying a
wildcard, and uses a user-defined function to populate the column:

create wi ndow Or der sWndow. wi n: ti me(30) as select *, price as derivedPrice from
Or der Event

insert into OrdersWndow select *, MyFunc.func(price, percent) as derivedPrice
from Order Event

Event representations based on Java base classes or interfaces, and subclasses or implementing
classes, are compatible as these statements show:

/'l create a naned w ndow for the base class

214

Selecting From Named Windows

create wi ndow Order sW ndow. st d: uni que(nanme) as select * from Product BaseEvent

/'l The ServiceProduct Event cl ass subcl asses the Product BaseEvent class
insert into OrdersW ndow sel ect * from Servi ceProduct Event

/'l The Merchandi seProduct Event cl ass subcl asses the Product BaseEvent cl ass
insert into OrdersW ndow sel ect * from Merchandi seProduct Event

To avoid duplicate events inserted in a named window and atomically check if a row already
exists, use on- ner ge as outlined in Section 6.8, “Triggered Upsert using the On-Merge Clause”.
An example:

on Servi ceProduct Event as spe nerge OrdersW ndow as wi n
where win.id = spe.id when not matched then insert select *

6.2.2.1. Named Windows Holding Decorated Events

Decorated events hold an underlying event and add additional properties to the underlying event,
as described further in Section 5.10.4, “Decorated Events”.

Here we create a nhamed window that decorates OrderEvent events by adding an additional
property named pri ceTot al to each OrderEvent. A matchingi nsert i nt o statement is also part
of the sample:

create wi ndow OrdersWndow. win:tinme(30) as select *, price as priceTotal from
Or der Event

insert into OdersWndow select *, price * wunit as priceTotal from
Servi ceOr der Event

The property type of the additional pri ceTot al column is the property type of the existing pri ce
property of OrderEvent.

6.2.3. Selecting From Named Windows

A named window can be referred to by any statement in the f r omclause of the statement. Filter
criteria can also be specified. Additional views may be used onto named windows however such
views cannot include data window views.

215

Chapter 6. EPL Reference: Nam...

A statement selecting all events from a named window O der sNanedW ndow is shown next. The
named window must first be created via the cr eat e wi ndow clause before use.

select * from O der sNanedW ndow

The statement as above simply receives the unfiltered insert stream of the named window and
reports that stream to its listeners. Thei t er at or method returns all events in the named window,
if any.

If your application desires to obtain the events removed from the named window, use the r st r eam
keyword as this statement shows:

sel ect rstream* from O der sNanedW ndow

The next statement derives an average price per symbol for the events held by the named window:

sel ect synbol, avg(price) from O der sNamedW ndow group by synbol

A statement that consumes from a named window, like the one above, receives the insert and
remove stream of the named window. The insert stream represents the events inserted into the
named window. The remove stream represents the events expired from the named window data
window and the events explicitly deleted via on- del et e for on-demand (fire-and-forget) del et e.

Your application may create a consuming statement such as above on an empty named window,
or your application may create the above statement on an already filled named window. The
engine provides correct results in either case: At the time of statement creation the Esper engine
internally initializes the consuming statement from the current named window, also taking your
declared filters into consideration. Thus, your statement deriving data from a named window does
not start empty if the named window already holds one or more events. A consuming statement
also sees the remove stream of an already populated named window, if any.

If you require a subset of the data in the named window, you can specify one or more filter
expressions onto the named window as shown here:

sel ect synbol, avg(price) fromO der sNamedW ndow sect or ="' energy') group by symbol

By adding a filter to the named window, the aggregation and grouping as well as any views that
may be declared onto to the named window receive a filtered insert and remove stream. The
above statement thus outputs, continuously, the average price per symbol for all orders in the
named window that belong to a certain sector.

216

Table Usage

A side note on variables in filters filtering events from named windows: The engine initializes
consuming statements at statement creation time and changes aggregation state continuously as
events arrive. If the filter criteria contain variables and variable values changes, then the engine
does not re-evaluate or re-build aggregation state. In such a case you may want to place variables
in the havi ng clause which evaluates on already-built aggregation state.

The following example further declares a view into the named window. Such a view can be a plug-
in view or one of the built-in views, but cannot be a data window view (with the exception of the
st d: gr oupwi n grouped-window view which is allowed).

sel ect * from O der sNamedW ndow vol ume>0, price>0). myconpany: nmypl ugi nvi ew()

Data window views cannot be used onto named windows since named windows post insert and
remove streams for the events entering and leaving the named window, thus the expiry policy and
batch behavior are well defined by the data window declared for the named window. For example,
the following is not allowed and fails at time of statement creation:

/1 not a valid statenent
sel ect * from O der sNamedW ndow. wi n: ti me(30 sec)

6.3. Table Usage

6.3.1. Creating Tables: The ceate Tani e clause

The creat e t abl e statement creates a table.

A new table starts up empty. It must be explicitly aggregated-into using i nt o t abl e, or populated
by an on- ner ge statement, or populated by i nsert into.

The syntax for creating a table provides the table name, lists column names and types and
designates primary key columns:

[cont ext cont ext nane]
create table table_nanme [as] (columm_nanme colum_type [prinmary key]
[, col um_nane columm_type [primary key] [,...]1])

The table_name you assign to the table can be any identifier. The nhame should not already be in
use as an event type or named window name.

You may refer to a context by specifying the cont ext keyword followed by a context name.
Contexts are described in more detail at Chapter 4, Context and Context Partitions. The effect of
referring to a context is that your table operates according to the context dimensional information
as declared for the context. For usage and limitations please see the respective chapter.

The column_name is an identifier providing the column name.

217

Chapter 6. EPL Reference: Nam...

The column_type is required for each column. There are two categories of column types:

1. Non-aggregating column types: Valid column types are listed in Section 5.17.1, “Creating
Variables: the Create Variable clause” and are the same as for variable types. For attributes that
are array-type append [] (left and right brackets). Table columns can hold events by declaring
the column type as the event type name. Array-type in combination with event-type is also
supported.

2. Aggregation column types: These instruct the engine to retain aggregation state.

After each column type you may add the pri mary key keywords. This keyword designates the
column as a primary key. When multiple columns are designated as primary key columns the
combination of column values builds a compound primary key. The order in which the primary key
columns are listed is important.

The next statement creates a table to hold a numat t enpt s count aggregation state and a column
named act i ve of type boolean, per i pAddr ess and user | d:

create tabl e SecuritySummaryTabl e (
i pAddress string primry key,
userld String prinmary key,
numit t enpts count (*),
active bool ean)

The example above specifies i pAddr ess and user | d as primary keys. This instructs the engine
that the table holds a single row for each distinct combination of i pAddr ess and user | d. The two
values make up the compound key and there is a single row per compound key value.

If you do not designate any columns of the table as a primary key column, the table holds only
one row (or no rows).

The create table statement does not provide output to its listeners. The table contents can be
iterated on via the pull API to obtain the current contents of a table.

6.3.1.1. Column Types for Aggregation Functions

All aggregation functions can be used as column types for tables. Please simply list the
aggregation function name as the column type and provide type information, when required.
See Section 10.2.1, “SQL-Standard Functions” for a list of the functions and required parameter
expressions for which you must provide type information.

Consider the next example that declares a table with columns for different aggregation functions
(not a comprehensive example of all possible aggregation functions):

create table MyStats (
nmyKey string primry key,
nyAvedev avedev(int), // colum holds a nean deviation of int-typed val ues

218

Creating Tables: The Create Table clause

nyAvg avg(double), // colum holds an average of double-typed val ues

nmyCount count(*), // colum holds a count

nyMax max(int), // colum holds a highest int-typed val ue

nmyMedi an medi an(float), // colum holds the nmedian of float-typed val ues

nySt ddev stddev(java. math. BigDecinmal), // colum holds a standard deviation
of Bi gDeci mal val ues

nmySum sum(l ong), // colum holds a sum of |ong val ues

nyFirstEver firstever(string), // colum holds a first-ever val ue of type string

myCount Ever countever(*) // colum holds the count-ever (regardless of data
wi ndows)

)

Additional keywords such as di sti nct can be used as well. If your aggregation will be associated
with a filter expression, you must add bool ean to the parameters in the column type declaration.

For example, the next EPL declares a table with aggregation-type columns that hold an average
of filtered double-typed values and an average of distinct double-typed values:

create table MyStatshre (
nyKey string primry key,
myAvgFi | tered avg(double, boolean), // colum holds an average of doubl e-
typed val ues
/1 and filtered by a bool ean expression to be provided
nmyAvgDi stinct avg(distinct double) // colum holds an average of distinct
doubl e-typed val ues

)

6.3.1.2. Column Types for Event Aggregation Functions

The event aggregation functions can be used as column types for tables. For event aggregation
functions you must specify the event type using the @ ype(hame) annotation.

The wi ndow event aggregation function requires the * wildcard. The first and | ast cannot be
used in a declaration, please use wi ndow instead and access as described in Section 6.3.3.2,
“Accessing Aggregation State With The Dot Operator”.

The sorted, maxbyever and minbyever event aggregation functions require the criteria
expression as a parameter. The criteria expression must only use properties of the provided event
type. The maxby and mi nby cannot be used in a declaration, please use sorted instead and
access as described in Section 6.3.3.2, “Accessing Aggregation State With The Dot Operator”.

In this example the table declares sample event aggregations (not a comprehensive example of
all possible aggregations):

create tabl e MyEvent Aggregati onTabl e (
nyKey string primry key,

219

Chapter 6. EPL Reference: Nam...

nyW ndow wi ndow(*) @ype(MEvent), // colum holds a wi ndow of MyEvent events
nySorted sorted(nySortValue) @ype(MEvent), // colum holds M/Event events
sorted by mnySort Val ue
nyMaxByEver nmaxbyever (nmySortVal ue) @ype(M/Event) // columm hol ds the single
M/Event event that
/1 provided the highest val ue of mySortVal ue ever

6.3.1.3. Column Types for Plug-In Custom Aggregation Functions

Any custom single-function and multi-function aggregation can be used as a table column type.
If the aggregation has multiple different return values and aggregations share common state, the
multi-function aggregation is the preferred API.

For example, the next EPL declares a table with a single column that holds the state of the
aggregation function nyAggr egat i on:

create tabl e MyStatsCustom (myCust om nyAggregation(' sone code', 100))

The above example passes the values some code and 100 to show how to pass constants to your
custom aggregation function at declaration time.

6.3.1.4. Dropping or Removing Tables

There is no syntax to drop or remove a table.

The dest r oy method on the EPSt at enent that created the table removes the table unless it is
used by another statement. If your application destroys the statement that creates the table and
also destroys all statements referring to the table, the engine removes the table. The table contents
can be iterated on, by iterating over the statement that creates the table, to obtain the current
contents of a table.

The st op method on the EPSt at enent that created the table has no effect.

6.3.2. Aggregating Into Table Rows: The into Table Clause

Use the i nto tabl e keywords to instruct the engine to aggregate into table columns. A given
statement can only aggregate into a single table.

For example, consider a table that holds the count of intrusion events keyed by the combination
of from-address and to-address:

create tabl e Intrusi onCount Table (
fromAddress string prinmary key,
t oAddress string primary key,
count I ntrusi on10Sec count (*),

220

Aggregating Into Table Rows: The Into Table clause

count I nt rusi on60Sec count (*)

The next sample statement updates the count considering the last 10 seconds of events:

into table IntrusionCount Tabl e

sel ect count(*) as countlntrusionl0Sec
from I ntrusi onEvent.w n:ti ne(10)

group by fromAddress, toAddress

Multiple statements can aggregate into the same table columns or different table columns. The
co-aggregating ability allows you to co-locate aggregation state conveniently.

The sample shown below is very similar to the previous statement except that it updates the count

considering the last 60 seconds of events:

into table IntrusionCount Tabl e

sel ect count (*) as countlntrusi on60Sec
from I ntrusi onEvent.w n:ti ne(60)

group by fromAddress, toAddress

Considering the example above, when an intrusion event arrives and a row for the group-by key
values (from and to-address) does not exists, the engine creates a new row and updates the
aggregation-type columns. If the row for the group-by key values exists, the engine updates the
aggregation-type columns of the existing row.

Tables can have no primary key columns. In this case a table either has a single row or is empty.

The next two EPL statements demonstrate table use without a primary key column:

create table Total I ntrusi onCount Tabl e (totallntrusions count(*))

into table TotallntrusionCountTable select count(*) as totallntrusions from
I nt rusi onEvent

In conjunction with i nt o t abl e the uni di recti onal keyword is not supported.

6.3.2.1. Group-By Clause Requirements

The use of the into table clause requires that the group by clause must list group-by
expressions that match the table's primary key declarations in terms of the number, return type

221

Chapter 6. EPL Reference: Nam...

and order of group-by expressions. It is not necessary that table column names match group-by
expression texts.

For example consider a table with a single long-type primary key column:

create table MyTable (theKey long prinmary key, theCount count(*))

The following EPL are all not valid:

/1 Invalid: No group-by clause however the table declares a primary key
into table MyTabl e sel ect count(*) as theCount from MyEvent

/1 Invalid: Two expressions in the group-by clause however the table declares
a single primary key

into table MTable select count(*) as theCount from MEvent group by
| ongPropertyOne, | ongPropertyTwo

/1 Invalid: The group-by clause expression returns a string-typed val ue however
the tabl e expects a |long-type prinmary key

into table MTable select count(*) as theCount from MEvent group by
stringProperty

You may use the rol | up, cube and gr oupi ng sets keywords in conjunction with tables.
6.3.2.2. Aggregation State Requirements

The use of the i nt o t abl e clause requires that all aggregation state of the EPL statement resides
in table columns.

For example consider a simple table as follows:

create table MyTable (theKey long prinmary key, theCount count(*))

The following EPL is not valid:

/1 Invalid: the sum aggregation state is not available in a table colum
into table MyTable select count(*) as theCount, sun(intProperty) from M/Event
group by | ongProperty

222

Table Column Keyed-Access Expressions

6.3.2.3. Aggregation Function Requirements

The use of the into table clause requires that all aggregation functions that are listed in
the statement are compatible with table column types, and that the statement has at least one
aggregation function.

For example consider a simple table as follows:

create table MyTable (theKey long primary key, theCount count(*))

The following EPL is not valid:

/1 lnvalid: the sum aggregation state is not conmpatible with count(*) that was
declared for the table colum's type

into table MyTabl e select sun{(intProperty) as theCount from MyEvent group by
| ongProperty

If declared, the distinct keyword and filter expressions must also match. The event type
information must match for event aggregation functions.

6.3.2.4. Column Naming Requirements

The use of the i nt o t abl e clause requires that the aggregation functions are named. You can
name an expression two ways.

1. First, you can name the aggregation function expression by adding it to the select-clause and
by providing the as-keyword followed by the table column name. The examples earlier use this
technique.

2. Second, you can name the aggregation function by placing it into a declared expression that
carries the same name as the table column.

This example demonstrates the second method of naming an aggregation function:

expression alias totallntrusions {count(*)}
sel ect total Intrusions fromlntrusi onEvent

6.3.3. Table Column Keyed-Access Expressions

For accessing table columns by primary key, EPL provides a convenient syntax that allows you
to read table column values simply by providing the table name, primary key value expressions
(if required by the table) and the column name.

223

Chapter 6. EPL Reference: Nam...

The synopsis for table-column access expressions is:

tabl e-nanme[primary_key expr [, primary_key expr] [,...]][.col um-nane]

The expression starts with the table name. If the table declares primary keys you must provide
the primary_key_expr value expressions for each primary key within square brackets. To access
a specific column, add the (.) dot character and the column name.

For example, consider a table that holds the count of intrusion events keyed by the combination
of from-address and to-address:

create table IntrusionCountTabl e (
fromAddress string prinmary key,
t oAddress string primry key,
count I ntrusi on10Sec count (*)

Assuming that a Fi r eval | Event has string-type properties named fromand t o, the next EPL
statement outputs the current 10-second intrusion count as held by the | nt r usi onCount Tabl e
row for the matching combination of keys:

sel ect IntrusionCount Tabl e[from to].countlntrusionl0Sec from Firewal | Event

The number of primary key expressions, the return type of the primary key expressions and the
order in which they are provided must match the primary key columns that were declared for the
table. If the table does not have any primary keys declared, you cannot provide any primary key
expressions.

If a row for the primary key (or compound key) cannot be found, the engine returns a nul | value.

An example table without primary key columns is shown next:

create table Total I ntrusi onCount Tabl e (totallntrusions count(*))

A sample statement that outputs the current total count every 60 seconds is:

sel ect Tot al I nt rusi onCount Tabl e. total I ntrusi ons from pattern[every
timer:interval (60 sec)]

Table access expressions can be used anywhere in statements except as parameter expressions
for data windows, the updat e i stream context declarations, output limit expressions, pattern

224

Inserting Into Tables

observer and guard parameters, pattern every-distinct, pattern match-until bounds, pattern
followed-by max and create w ndow insert or select expression and as a create variable
assignment expression.

6.3.3.1. Reading All Column Values

If your keyed-access expression emits the column name, the engine returns all current column
values.

An example EPL:
sel ect I ntrusionCount Tabl e[from to] from Firewal | Event

The engine returns each column value, or null if no row is found. For aggregation-type columns
it returns the current aggregation value.

6.3.3.2. Accessing Aggregation State With The Dot Operator

Certain aggregation functions allow accessing aggregation state using the (.) dot operator. This
includes the wi ndowand the sor t ed aggregation function as well as all other custom multi-function
aggregation function.

The first and| ast aggregation functions can be used with table columns that declare wi ndow.
The maxby and mi nby aggregation functions can be used with table columns that declare sort ed.

The EPL shown below declares a table that keeps an unsorted set of events and a sorted set of
events. This sample table has no primary key columns:

create table MyTable (
t heW ndow wi ndow(*) @ ype(MEvent),
theSorted sorted(mnmySortVal ue) @ype(MEvent)

The EPL to read the fi r st and the maxBy value is:
sel ect MyTabl e.theW ndow. first(), MTabl e.theSorted. maxBy() from SomeQ her Event

Plug-in custom multi-function aggregations can be used the same way.

6.3.4. Inserting Into Tables

The i nsert into clause inserts rows into a table. Your application must ensure that the column
names and types match the declared column names and types of the table to be inserted into,
when provided.

225

Chapter 6. EPL Reference: Nam...

For inserting into a table and for simultaneously checking if the inserted row already exists in
the table or for atomic update-insert operation on a table, consider using on- mer ge as described
in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-merge is similar to the SQL
mer ge clause and provides what is known as an "Upsert" operation; Update existing rows or if
no existing rows(s) are found then insert a new row, all in one atomic operation provided by a
single EPL statement.

The following statement populates the example table declared earlier:
insert into I ntrusi onCount Tabl e sel ect fromAddress, toAddress fromFirewal | Event

Note that when a row with the same primary key values already exists, your statement may
encounter a unigue index violation at runtime. If the inserted-into table does not have primary
key columns, the table holds a maximum of one row and your statement may also encounter a
unigue index violation upon attempting to insert a second row. Use on- mer ge to prevent inserts
of duplicate rows.

Table columns that are aggregation functions cannot be inserted-into and must be updated using
into tabl e instead.

You may also explicitly list column names as discussed earlier in Section 6.2.2, “Inserting Into
Named Windows”. For i nsert-into, the context name must be the same context name as
declared for the creat e t abl e statement or the context name must be absent for both.

6.3.5. Selecting From Tables

A table can be referred to by any statement in the f r omclause of the statement.

Tables do not provide an insert and remove stream. When a table appears alone in the from
clause (other than as part of a subquery), the statement produces output only when iterated (see
pull API) or when executing an on-demand (fire-and-forget) query.

Assuming you have declared a table by name | ntrusi onCount Tabl e as shown earlier, the
following statement only returns rows when iterated or when executing the EPL as an on-demand
query or when adding an out put snapshot :

select * from Intrusi onCount Tabl e

For tables, the contained-event syntax and the declaration of views is not supported. In a join, a
table in the f r omclause cannot be marked as uni di recti onal . You may not specify any of the
retain-flags. Tables cannot be used in the f r omclause of match-recognize statements, in context
declarations, in pattern filter atoms and updat e i stream

The following are examples of invalid statements:

226

Selecting From Tables

/1 invalid statenment exanples

select * from | ntrusionCount Table.wi n:time(30 sec) /1 views not allowed

select * from |ntrusionCount Tabl e unidirectional, MEvent /1 tables cannot
be marked as uni directional

Tables can be used in subqueries and joins.

It follows a sample subselect and join against the table:

sel ect
(select * fromlIntrusionCountTable as intr
where intr.fromAddress = firewall.fromAddress and intr.toAddress
firewal | .toAddress)
from I ntrusi onEvent as firewall

select * fromIntrusionCountTable as intr, IntrusionEvent as firewall
wher e i ntr.fromAddress = firewal |l .fromAddress and i ntr.toAddress
firewal | .t oAddress

If the subselect or join specifies all of a table's primary key columns, please consider using the
table-access expression instead. It offers a more concise syntax.

Note that for a subquery against a table that may return multiple rows, the information about
subquery multi-row selection applies. For subselects, consider using @vent bean to preserve
table type information in the output event.

Note that for joins against tables the engine does not allow specifying table filter expressions in
parenthesis, in the f r omclause. Filter expressions must instead be placed into the wher e-clause.

You may access aggregation state the same way as in table-access expressions, using the dot
(.) operator.

The EPL shown below declares a table that keeps a set of events, and shows a join that selects
window aggregation state:

create tabl e MyW ndowTabl e (t heW ndow wi ndowm *) @ype(M/Event))

sel ect thewWndow first(), thewWndow last(), thewWndow wi ndow() from M/Event,
MW ndowTabl e

227

Chapter 6. EPL Reference: Nam...

6.4. Triggered Select: the o select Clause

The on sel ect clause performs a one-time, non-continuous query on a hamed window or table
every time a triggering event arrives or a triggering pattern matches. The query can consider all
rows, or only rows that match certain criteria, or rows that correlate with an arriving event or a
pattern of arriving events.

The syntax for the on sel ect clause is as follows:

on event _type[(filter_criteria)] [as stream nane]
[insert into insert _into_def]

sel ect select |ist

from w ndow_or_tabl e _name [as stream nane]

[where criteria_expression]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_condi ti ons]

[order by order by expression_list]

The event_type is the name of the type of events that trigger the query against the named window
or table. It is optionally followed by filter_criteria which are filter expressions to apply to arriving
events. The optional as keyword can be used to assign a stream name. Patterns or named
windows can also be specified in the on clause, see the samples in Section 6.7.1, “Using Patterns
inthe On Delete Clause” (for a named window as a trigger only insert stream events trigger actions)
(tables cannot be triggers).

The insert into clause works as described in Section 5.10, “Merging Streams and Continuous
Insertion: the Insert Into Clause”. The select clause is described in Section 5.3, “Choosing Event
Properties And Events: the Select Clause”. For all clauses the semantics are equivalent to a join
operation:; The properties of the triggering event or events are available in the sel ect clause and
all other clauses.

The window_or_table_name in the fromclause is the name of the named window or table to
select rows from. The as keyword is also available to assign a stream name to the table or named
window. The as keyword is helpful in conjunction with wildcard in the sel ect clause to select rows
via the syntax sel ect streamane. * .

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the rows to be considered from the table or named window. The criteria_expression may
also simply filter for rows to be considered by the query.

The group by clause, the havi ng clause and the order by clause are all optional and work as
described in earlier chapters.

Queries against tables and named windows work the same. The examples herein use the
O der sNamedW ndow named window and the Secur i t ySummar yTabl e table to provide examples
for each.

228

Triggered Select: the On Select clause

The sample statement below outputs, when a query event arrives, the count of all rows held by
the Securi t ySummar yTabl e table:

on QueryEvent select count(*) from SecuritySunmaryTabl e

This sample query outputs the total volume per symbol ordered by symbol ascending and only
non-zero volumes of all rows held by the O der sNanedW ndow named window:

on QueryEvent
sel ect synbol, sum(vol une) from O der sNamedW ndow
group by synbol having volune > 0 order by synbol

When using wildcard (*) to select from streams in an on-select clause, each stream, that is the
triggering stream and the selected-upon table or named window, are selected, similar to a join.
Therefore your wildcard select returns two columns: the triggering event and the selection result
row, for each row.

on QueryEvent as queryEvent
sel ect * from O der sNamedW ndow as wi n

The query above returns a quer yEvent column and a wi n column for each event. If only a single
stream's event is desired in the result, use sel ect wi n. * instead.

Upon arrival of a QueryEvent event, this statement selects all rows in the Or der sNanedW ndow
named window:

on QueryEvent select win.* from O der sNanedW ndow as w n

The engine executes the query on arrival of a triggering event, in this case a QueryEvent. It posts
the query results to any listeners to the statement, in a single invocation, as the new data array.
The wher e clause filters and correlates rows in the table or named window with the triggering

event, as shown next:

on QueryEvent (vol ume>0) as query
sel ect query.synbol, query.volune, w n.synbol from O dersNanedW ndow as win
where wi n.synbol = query. synmbol

229

Chapter 6. EPL Reference: Nam...

Upon arrival of a QueryEvent, if that event has a value for the volume property that is greater
than zero, the engine executes the query. The query considers all events currently held by the
O der sNanmedW ndow that match the symbol property value of the triggering QueryEvent event.

6.4.1. Notes on On-Select With Named Windows

For correlated queries that correlate triggering events with rows held by a named window, Esper
internally creates efficient indexes to enable high performance querying of rows. It analyzes the
wher e clause to build one or more indexes for fast lookup in the named window based on the
properties of the triggering event.

To trigger an on-select when an update to the selected named window occurs or when the
triggering event is the same event that is being inserted into the named window, specify the named
window name as the event type.

The next query fires the select for every change to the named window OrdersNamedWindow:
on OrdersNanedW ndow as trig
sel ect onw. synbol, sum(onw. vol une)

from Or der sNamedW ndow as onw
where onw. synbol = trig.synbol

For named windows, the i t er at or of the EPSt at enent object representing the on sel ect clause
returns the last batch of selected events in response to the last triggering event, or null if the last
triggering event did not select any rows.

An on- sel ect statement executes under a shareable named window context partition lock.

6.4.2. Notes on On-Select With Tables

For tables, the i t er at or of the EPSt at enent object representing the on sel ect clause returns
no events.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes
either primary key columns or secondary explicitly-created indexes to enable high performance
querying of rows, based on an analysis of the wher e clause.

6.4.3. On-Select Compared To Join

The similarities and differences between an on sel ect clause and a regular or outer join (and
not unidirectional) are as follows:

1. A join is evaluated when any of the streams participating in the join have new events (insert
stream) or events leaving data windows (remove stream). A join is therefore bi-directional or

230

Triggered Select+Delete: the On Select Delete clause

multi-directional. However, the on sel ect statement has one triggering event or pattern that
causes the query to be evaluated and is thus uni-directional.

2. The query within the on sel ect statement is not continuous: It executes only when a triggering
event or pattern occurs. Aggregation and groups are computed anew considering the contents
of the table or named window at the time the triggering event arrives.

On- sel ect and the unidirectional join can be compared as follows.

On-sel ect, on-ner ge, on-i nsert, on-del et e, on- updat e and on- sel ect - and- del et e operate
only on named windows or tables. Unidirectional joins however can operate on any stream. If the
unidirectional join is between a single named window or table and a triggering event or pattern
and that triggering event or pattern is marked unidirectional, the unidirectional join is equivalent
to on-sel ect .

A unidirectional join does not execute under a named window context partition lock and instead
is a consumer relationship to the named window.

6.5. Triggered Select+Delete: the on select meiete Clause

The on sel ect del et e clause performs a one-time, non-continuous query on a table or named
window every time a triggering event arrives or a triggering pattern matches, similar to on- sel ect
as described in the previous section. In addition, any selected rows are also deleted.

The syntax for the on sel ect del et e clause is as follows:

on trigger
sel ect [and] delete select list...
(pl ease see on-select for insert into, from group by, having, order

by) ...

The syntax follows the syntax of on- sel ect as described earlier. The sel ect clause follows the
optional and keyword and the del et e keyword. The f r omclause can list either a table or a named
window.

The example statement below selects and deletes all rows from O der sNamedW ndow named
window when a QueryEvent arrives:

on QueryEvent select and delete windowmwi n.*) as rows from O der sNamedW ndow
as win

The sample EPL above also shows the use of the wi ndow aggregation function. It specifies the
wi ndow aggregation function to instruct the engine to output a single event, regardless of the
number of rows in the named window, and that contains a column r ows that contains a collection
of the selected event's underlying objects.

6.6. Updating Data: the o wdate Clause

231

Chapter 6. EPL Reference: Nam...

An on updat e clause updates rows held by a table or named window. The clause can be used
to update all rows, or only rows that match certain criteria, or rows that correlate with an arriving
event or a pattern of arriving events.

For updating a table or named window and for simultaneously checking if the updated row exists
or for atomic update-insert operation on a named window or table, consider using on- nmer ge as
described in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-merge is similar to
the SQL ner ge clause and provides what is known as an "Upsert" operation: Update existing
events or if no existing event(s) are found then insert a new event, all in one atomic operation
provided by a single EPL statement.

The syntax for the on updat e clause is as follows:

on event_type[(filter_criteria)] [as stream nane]
updat e wi ndow_or _t abl e_nanme [as stream nane]

set nutation_expression [, nmutation_expression [,...]]
[where criteria_expression]

The event_type is the name of the type of events that trigger an update of rows in a named window.
It is optionally followed by filter_criteria which are filter expressions to apply to arriving events. The
optional as keyword can be used to assign a name for use in expressions and the wher e clause.
Patterns and named windows can also be specified in the on clause.

The window_or_table_name is the name of the table or named window to update rows. The as
keyword is also available to assign a name to the named window or table.

After the set keyword follows a list of comma-separated mutation_expression expressions. A
mutation expression is any valid EPL expression. Subqgueries may by part of expressions however
aggregation functions and the prev or pri or function may not be used in expressions.

The below table shows some typical mutation expessions:

Table 6.1. Mutation Expressions in Update And Merge

Description Syntax and Examples

Assignment
property_nane

= val ue_expressi on

price = 10, side = 'BUY

Event Method Invocation (not available for tables)

or der W ndow. cl ear ()

232

al i as_or_w ndownane. net hodnane(. . .

Updating Data: the On Update clause

Description Syntax and Examples

Property Method Invocation

property name. net hodnanme(...)

account Map. cl ear ()

User-Defined Function Call .
functionnane(...)

cl ear Quantiti es(order Row

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the rows to be updated in the table or named window. The criteria_expression may also
simply filter for rows to be updated.

Queries against tables and named windows work the same. We use the term property and column
interchangeably. The examples herein use the O der sNamedW ndow hamed window and the
Securi t ySummar yTabl e table to provide examples for each. Let's look at a couple of examples.

In the simplest form, this statement updates all rows in the named window O der sNanedW ndow
when any Updat eOr der Event event arrives, setting the price property to zero for all rows currently
held by the named window:

on Updat eOrder Event update O der sNanedW ndow set price = 0

This example demonstrates the use of a wher e clause and updates the Securi t ySunmar yTabl e
table. Upon arrival of a triggering Reset Event it updates the acti ve column value to false for all
table rows that have an act i ve column value of true:

on Reset Event update SecuritySummaryTabl e set active = fal se where active = true

The next example shows a more complete use of the syntax, and correlates the triggering event
with rows held by the Or der sNamedW ndow named window:

on NewOr der Event (vol ume>0) as nyNewOrders
updat e Or der sNamedW ndow as nyNanedW ndow

set price = nyNewOrders. price

wher e nmyNanedW ndow. synbol = nyNewOr ders. synbol

233

Chapter 6. EPL Reference: Nam...

In the above sample statement, only if a NewOr der Event event with a volume greater then zero
arrives does the statement trigger. Upon triggering, all rows in the named window that have the
same value for the symbol property as the triggering NewOr der Event event are then updated (their
price property is set to that of the arriving event). The statement also showcases the as keyword
to assign a name for use in the wher e expression.

Your application can subscribe a listener to your on updat e statements to determine update
events. The statement post any rows that are updated to all listeners attached to the statement
as new data, and the events prior to the update as old data.

The following example shows the use of tags and a pattern. It sets the price value of orders to
that of either a Fl ushQr der Event or Or der Updat eEvent depending on which arrived:

on pattern [every ord=Cr der Updat eEvent (vol ume>0) or every fl ush=Fl ushOr der Event]
updat e Or der sNamedW ndow as wi n

set price = case when ord.price is null then flush.price else ord.price end
where ord.id = win.id or flush.id = win.id

When updating indexed properties use the syntax propertyName[index] = value with the
index value being an integer number. When updating mapped properties use the syntax
propertyName(key) = value with the key being a string value.

The engine executes assignments in the order they are listed. When performing multiple
assignments, the engine takes the most recent column value according to the last assignment,
if any. To instruct the engine to use the initial value before update, prefix the column name with
the literal i ni ti al .

The following statement illustrates:

on Updat eEvent as upd
update MyW ndow as w n
set field_a = 1,
field_ b =win.field_a, // assigns the value 1
field c =initial.field_a // assigns the field_a original value before update

The next example assumes that your application provides a user-defined function copyFi el ds
that receives 3 parameters: The update event, the new row and the initial state before-update row.

on Updat eEvent as upd update MyW ndow as wi n set copyFields(win, upd, initial)

You may invoke a method on a value object, for those properties that hold value objects, as follows:

234

Notes on On-Update With Named Windows

on Updat eEvent update MyW ndow as wi n set soneproperty.clear()

For named windows only, you may also invoke a method on the named window event type.

The following example assumes that your event type provides a method by name popul at eFr om
that receives the update event as a parameter:

on Updat eEvent as upd update MyW ndow as wi n set w n. popul at eFr on(upd)

The following restrictions apply:

1. Each property to be updated via assignment must be writable. For tables, all columns are
always writable.

2. Forunderlying event representations that are Java objects, a event object class mustimplement
the java.io.Serializable interface as discussed in Section 5.20.1, “Immutability and Updates”
and must provide setter methods for updated properties.

3. When using an XML underlying event type, event properties in the XML document
representation are not available for update.

4. Nested properties are not supported for update. Revision event types and variant streams may
also not be updated.

6.6.1. Notes on On-Update With Named Windows

Statements that reference the named window receive the new event in the insert stream and the
event prior to the update in the remove stream.

For correlated queries (as above) that correlate triggering events with events held by a named
window, Esper internally creates efficient indexes to enable high performance update of events.

The it erator of the EPSt at enent object representing the on updat e clause can also be helpful:
It returns the last batch of updated events in response to the last triggering event, in any order,
or null if the last triggering event did not update any rows.

6.6.2. Notes on On-Update With Tables

On-Update may not update primary key columns.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes
either primary key columns or secondary explicitly-created indexes to enable high performance
querying of rows, based on an analysis of the wher e clause.

The i terator of the EPSt at ement object representing the on updat e clause does not return
any rows.

6.7. Deleting Data: the on meiete Clause

235

Chapter 6. EPL Reference: Nam...

An on del et e clause removes rows from a named window or table. The clause can be used to
remove all rows, or only rows that match certain criteria, or rows that correlate with an arriving
event or a pattern of arriving events.

The syntax for the on del et e clause is as follows:

on event _type[(filter_criteria)] [as stream nane]
del ete from wi ndow or _tabl e nane [as stream nane]
[where criteria_expression]

The event_type is the name of the type of events that trigger removal from the table or named
window. It is optionally followed by filter_criteria which are filter expressions to apply to arriving
events. The optional as keyword can be used to assign a name for use in the where clause.
Patterns and named windows can also be specified in the on clause as described in the next
section.

The window_or_table _name is the name of the named window or table to delete rows from. The
as keyword is also available to assign a name to the table or named window.

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the rows to be removed. The criteria_expression may also simply filter for rows without
correlating.

On-delete can be used against tables and named windows. The examples herein use the
O der sNanmedW ndow named window and the Secur i t ySummar yTabl e table to provide examples
for each.

In the simplest form, this statement deletes all rows from the Securi t ySummar yTabl e table when
any d ear Event arrives:

on Cl earEvent delete from SecuritySunmmaryTabl e

The next example shows a more complete use of the syntax, and correlates the triggering event
with events held by the Or der sNanmedW ndow named window:

on NewOr der Event (vol ume>0) as nyNewOr ders
del ete from Order sNanedW ndow as nyNanedW ndow
wher e nmyNamedW ndow. synbol = nyNewOr der s. synbol

In the above sample statement, only if a NewOr der Event event with a volume greater then zero
arrives does the statement trigger. Upon triggering, all rows in the named window that have the
same value for the symbol property as the triggering NewOr der Event event are removed. The
statement also showcases the as keyword to assign a name for use in the wher e expression.

236

Using Patterns in the On Delete Clause

6.7.1. Using Patterns in the on peiete Clause

By means of patterns the on del et e clause and on sel ect clause (described below) can look
for more complex conditions to occur, possibly involving multiple events or the passing of time.
The syntax for on del et e with a pattern expression is show next:

on pattern [pattern_expression] [as stream nane]
del ete from wi ndow _or_tabl e nane [as stream nane]
[where criteria_expression]

The pattern_expression is any pattern that matches zero or more arriving events. Tags can be
used to name events in the pattern and can occur in the optional wher e clause to correlate to
events to be removed from a named window.

In the next example the triggering pattern fires every 10 seconds. The effect is that every 10
seconds the statement removes all rows from the Securi t ySunmar yTabl e table:

on pattern [every tiner:interval (10 sec)] delete from SecuritySunmaryTabl e

The following example shows the use of tags in a pattern and executes against the
O der sNanmedW ndow nhamed window instead:

on pattern [every ord=Order Event (vol une>0) or every fl ush=Fl ushOr der Event]
del ete from Order sNanedW ndow as wi n
where ord.id = win.id or flush.id = win.id

The pattern above looks for OrderEvent events with a volume value greater then zero and tags
such events as 'ord". The pattern also looks for FlushOrderEvent events and tags such events
as 'flush'. The wher e clause deletes from the Or der sNamedW ndow named window any rows that
match in the value of the 'id' property either of the arriving events.

6.7.2. Notes on On-Delete With Named Windows

Statements that reference the named window receive the deleted event as part of the remove
stream.

For correlated queries (as above) that correlate triggering events with rows held by a named
window, Esper internally creates efficient indexes to enable high performance deletion of rows.

Theiterator of the EPSt at enent object representing the on updat e clause can also be helpful:
It returns the last batch of deleted rows in response to the last triggering event, in any order, or
null if the last triggering event did not update any rows.

237

Chapter 6. EPL Reference: Nam...

6.7.3. Notes on On-Update With Tables

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes
either primary key columns or secondary explicitly-created indexes to enable high performance
querying of rows, based on an analysis of the wher e clause.

The i terator of the EPSt at ement object representing the on del et e clause does not return
any rows.

6.8. Triggered Upsert using the o-wrge Clause

The on mer ge clause is similar to the SQL ner ge clause. It provides what is known as an "Upsert"
operation: Update existing rows or if no existing row(s) are found then insert a new row, all in an
atomic operation provided by a single EPL statement.

The syntax for the on ner ge clause is as follows:

on event _type[(filter_criteria)] [as stream nane]
nerge [into] wi ndow or_table nane [as stream nane]
[where criteria_expression]

when [not] matched [and search_condition]

then [
insert [into streamang]
[(property_nane [, property nanme] [,...]) |
sel ect sel ect _expression [, select_expression[,...]]
[where filter_expression]
|
updat e set mutation_expression [, nutation_expression [,...]]
[where filter_expression]
I
del ete
[where filter_expression]
]
[then [insert|update|delete]] [,then ...]
[when ... then ... [...]]

The event_type is the name of the type of events that trigger the merge. It is optionally followed
by filter_criteria which are filter expressions to apply to arriving events. The optional as keyword
can be used to assign a name for use in the wher e clause. Patterns and named windows can also
be specified in the on clause as described in prior sections.

The window_or_table_name is the name of the named window or table to insert, update or delete
rows. The as keyword is also available to assign a name to the named window or table.

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the rows to be considered of the table or named window. We recommend specifying a
criteria expression that is as specific as possible.

238

Triggered Upsert using the On-Merge Clause

Following the wher e clause is one or more when nat ched or when not mat ched clauses in any
order. Each may have an additional search condition associated.

After each when [not] nat ched follow one or more t hen clauses that each contains the action
to take: Either an i nsert, updat e or del et e keyword.

After when not matched only i nsert action(s) are available. After wnen nat ched any i nsert,
updat e and del et e action(s) are available.

Afteri nsert follows, optionally, the i nt o keyword followed by the stream name or named window
to insert-into. If no i nt o and stream name is specified, the insert applies to the current table
or named window. It follows an optional list of columns inserted. It follows the required sel ect
keyword and one or more select-clause expressions. The wildcard (*) is available in the select-
clause as well. It follows an optional where-clause that may return Boolean false to indicate that
the action should not be applied.

After updat e follows the set keyword and one or more mutation expressions. For mutation
expressions please see Section 6.6, “Updating Data: the On Update clause”. It follows an optional
where-clause that may return Boolean false to indicate that the action should not be applied.

After del et e follows an optional where-clause that may return Boolean false to indicate that the
action should not be applied.

When according to the where-clause criteria_expression the engine finds no rows in the named
window or table that match the condition, the engine evaluates each when not matched clause.
If the optional search condition returns true or no search condition was provided then the engine
performs all of the actions listed after each t hen.

When according to the where-clause criteria_expression the engine finds one or more rows in
the named window or table that match the condition, the engine evaluates each when matched
clause. If the optional search condition returns true or no search condition was provided the engine
performs all of the actions listed after each t hen.

The engine executes when mat ched and when not mat ched in the order specified. If the optional
search condition returns true or no search condition was specified then the engine takes the
associated action (or multiple actions for multiple t hen keywords). When the block of actions
completed the engine proceeds to the next matching row, if any. After completing all matching
rows the engine continues to the next triggering event if any.

On-merge can be used with tables and named windows. The examples herein declare a
Pr oduct W ndow named window and also use the SecuritySumaryTabl e table to provide
examples for each.

This example statement updates the Securi t ySummar yTabl e table when a Reset Event arrives
setting the act i ve column's value to false:

on Reset Event nerge SecuritySumaryTabl e

239

Chapter 6. EPL Reference: Nam...

when matched and active = true then update set active = false

A longer example utilizing a named window follows. We start by declaring a schema that provides
a product id and that holds a total price:

create schema Product Total Rec as (productld string, total Price doubl e)

We create a named window that holds a row for each unique product:

create w ndow Product W ndow. st d: uni que(productld) as Product Tot al Rec

The events for this example are order events that hold an order id, product id, price, quantity and
deleted-flag declared by the next schema:

create schema OrderEvent as (orderld string, productld string, price double,
quantity int, del etedFl ag bool ean)

The following EPL statement utilizes on- ner ge to total up the price for each product based on
arriving order events:

on OrderEvent oe
nmer ge Product W ndow pw
where pw. productld = oe. productld
when mat ched
then update set totalPrice = total Price + oe.price
when not mat ched
then insert select productld, price as total Price

In the above example, when an order event arrives, the engine looks up in the product named
window the matching row or rows for the same product id as the arriving event. In this example the
engine always finds no row or one row as the product named window is declared with a unique
data window based on product id. If the engine finds a row in the named window, it performs the
update action adding up the price as defined under when nat ched. If the engine does not find
a row in the named window it performs the insert action as defined under when not nat ched,
inserting a new row.

The i nsert keyword may be followed by a list of columns as shown in this EPL snippet:

/1 equivalent to the insert shown in the last 2 lines in above EPL
... when not matched

240

Triggered Upsert using the On-Merge Clause

then insert(productld, total Price) select productld, price

The second example demonstrates the use of a select-clause with wildcard, a search condition
and the del et e keyword. It creates a hamed window that holds order events and employs on-
merge to insert order events for which no corresponding order id was found, update quantity to the
quantity provided by the last arriving event and delete order events that are marked as deleted:

create wi ndow O der Wndow. wi n: keepal | () as Order Event

on OrderEvent oe
nmerge Order W ndow pw
where pw.orderld = oe.orderld
when not mat ched
then insert select *
when mat ched and oe. del et edFl ag=t rue
then del ete
when mat ched
then update set pw. quantity = oe.quantity, pw. price = oe.price

In the above example the oe. del et edFl ag=t r ue search condition instructs the engine to take
the delete action only if the deleted-flag is set.

You may specify multiple actions by providing multiple t hen keywords each followed by an action.
Each ofthei nsert, updat e and del et e actions can itself have a where-clause as well. If a where-
clause exists for an action, the engine evaluates the where-clause and applies the action only if
the where-clause returns Boolean true.

This example specifies two update actions and uses the where-clause to trigger different update
behavior depending on whether the order event price is less than zero. This example assumes
that the host application defined a cl ear or der user-defined function, to demonstrate calling a
user-defined function as part of the update mutation expressions:

on OrderEvent oe
mer ge Order W ndow pw
where pw.orderld = oe.orderld
when mat ched
then update set clearorder(pw) where oe.price < 0
then update set pw. quantity = oe.quantity, pw price = oe.price where oe.price
>= 0

To insert events into another stream and not the named window, use i nsert i nt o streamname.

241

Chapter 6. EPL Reference: Nam...

In the next example each matched-clause contains two actions, one action to insert a log event
and a second action to insert, delete or update:

on OrderEvent oe

nerge Order W ndow pw

where pw.orderld = oe.orderld

when not mat ched
then insert into LogEvent select 'this is an insert' as nane
then insert select *

when nmat ched and oe. del et edFl ag=true
then insert into LogEvent select 'this is a delete' as nane
then del ete

when mat ched
then insert into LogEvent select 'this is a update' as name
then update set pw. quantity = oe.quantity, pw. price = oe.price

While the engine evaluates and executes all actions listed under the same matched-clause in
order, you may not rely on updated field values of an earlier action to trigger the where-clause of
a later action. Similarly you should avoid simultaneous update and delete actions for the same
match: the engine does not guarantee whether the update or the delete take final affect.

Your application can subscribe a listener to on ner ge statements to determine inserted, updated
and removed events. Statements post any events that are inserted to, updated or deleted from a
named window to all listeners attached to the statement as new data and removed data.

The following limitations apply to on-merge statements:

1. Aggregation functions and the prev and pri or operators are not available in conditions and
the sel ect -clause.

6.8.1. Notes on On-Merge With Named Windows

Statements that reference the named window receive an insert and remove stream represening
the insertions, changes and deletions to named window rows.

For correlated queries (as above) that correlate triggering events with rows held by a named
window, Esper internally creates efficient indexes to enable high performance update and removal
of events especially from named windows that hold large numbers of events.

Upon iteration, the statement provides the last inserted events, if any.

6.8.2. Notes on On-Merge With Tables

On-Merge may not update primary key columns.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes
either primary key columns or secondary explicitly-created indexes to enable high performance
querying of rows, based on an analysis of the wher e clause.

242

Explicitly Indexing Named Windows and Tables

The i t erat or of the EPSt at ement object representing the on ner ge clause does not return any
rows.

6.9. Explicitly Indexing Named Windows and Tables

You may explicitly create an index on a table or a named window. The engine considers explicitly-
created as well as implicitly-allocated indexes (named windows only) in query planning and
execution of the following types of usages of tables and named windows:

1. On-demand (fire-and-forget, non-continuous) queries as described in Section 15.5, “On-
Demand Fire-And-Forget Query Execution”.

2. On- sel ect, on- mer ge, on- updat e, on- del et e and on-i nsert.
3. Subqueries against tables and named windows.

4. For joins (including outer joins) with named windows the engine considers the filter criteria listed
in parenthesis using the syntax

nane_wi ndow _name(filter_criteria)

for index access.

5. For joins with tables the engine considers the primary key columns (if any) as well as any table
indexes.

Please use the following syntax to create an explicit index on a named window or table:

create [uni que] index index_nane on w ndow or_tabl e _nanme (property [hash|
bt ree]
[, property] [hash|btree] [,...])

The optional unique keyboard indicates that the property or properties uniquely identify rows. If
unique is not specified the index allows duplicate rows.

The index_name is the name assigned to the index. The name uniquely identifies the index and
is used in engine query plan logging.

The window_or_table_name is the name of an existing table or named window. If the named
window or table has rows already, the engine builds an index for the rows.

The list of property names are the properties of rows to include in the index (we use the term
property and column interchangeably). Following each property name you may specify the optional
hash or bt r ee keyword.

If you specify no keyword or the hash keyword for a property, the index will be a hash-based
(unsorted) index in respect to that property. If you specify the bt r ee keyword, the index will be
a binary-tree-based sorted index in respect to that property. You may combine hash and bt ree
properties for the same index. Specify bt r ee for a property if you expect to perform numerical

243

Chapter 6. EPL Reference: Nam...

or string comparison using relational operators (<, >, >=, <=), the bet ween or the i n keyword for
ranges and inverted ranges. Use hash (the default) instead of bt r ee if you expect to perform exact
comparison using =.

Thecr eat e t abl e syntax is the same for tables and named windows. The examples herein create
a new User Prof i | eW ndow named window and also use the Secur i t ySunmar yTabl e table.

This sample EPL creates an non-unique index on the active column of table
SecuritySumar yTabl e:

create i ndex Myl ndex on SecuritySummaryTabl e(acti ve)

We list a few example EPL statements next that create a named window and create a single index:

/1 create a named wi ndow
create wi ndow UserProfil eWndow. win:tine(l hour) select * fromUserProfile

/'l create a non-unique index (duplicates allowed) for the user id property only
create index UserProfilelndex on UserProfil eWndow(userl d)

Next, execute an on-demand fire-and-forget query as shown below, herein we use the prepared
version to demonstrate:

String query = "select * from UserProfil eWndow where userld="Joe'";
EPOnDenandPr epar edQuery prepared = epRunti ne. prepareQuery(query);

/1l query performance excellent in the face of |arge nunber of rows
EPOnDemandQuer yResult result = prepared. execute();

Il ...later

prepared. execute(); // execute a second tine

A unique index is generally preferable over non-unique indexes. For named windows, if your data
window declares a unique data window (st d: uni que, st d: fi r st uni que, including intersections
and grouped unique data windows) it is not necessary to create a unique index unless index
sharing is enabled, since the engine considers the unique data window declaration in query
planning.

The engine enforces uniqueness (e.g. unique constraint) for unique indexes. If your application
inserts a duplicate row the engine raises a runtime exception when processing the statement and
discards the row. The default error handler logs such an exception and continues.

For example, if the user id together with the profile id uniquely identifies an entry into the named
window, your application can create a unigue index as shown below:

244

Using Fire-And-Forget Queries with Named Windows and Tables

/! create a unique index on user id and profile id
create uni que i ndex UserProfilelndex on UserProfil eWndow(userld, profileld)

By default, the engine builds a hash code -based index useful for direct comparison via equals
(=). Filter expressions that look for ranges or use i n, between do not benefit from the hash-
based index and should use the bt r ee keyword. For direct comparison via equals (=) then engine
does not use bt r ee indexes.

The next example creates a composite index over two fields synbol and buyPri ce:

/1 create a named w ndow
create w ndow TickEvent Wndow. win:tine(l hour) as (synbol string, buyPrice
doubl e)

/] create a non-uni que index
create index idxl on TickEvent Wndow synmbol hash, buyPrice btree)

A sample fire-and-forget query is shown below (this time the API calls are not shown):

/'l query performance excellent in the face of |arge nunber of rows
select * from Ti ckEvent W ndow where synbol =" GE' and buyPrice between 10 and 20

7 Note
_rﬁ A table that does not declare one or more primary key columns cannot have a

secondary index, as the table holds a maximum of one row.

6.10. Using Fire-And-Forget Queries with Named
Windows and Tables

Fire-and-Forget queries can be run against both tables and named windows. We use the term
property and column interchangeably.

For selecting from named windows and tables, please see the examples in Section 15.5, “On-
Demand Fire-And-Forget Query Execution”.

For data manipulation (insert, update, delete) queries, the on-demand query API returns the
inserted, updated or deleted rows when the query executes against a named window.

6.10.1. Inserting Data

245

Chapter 6. EPL Reference: Nam...

Your application can insert rows into a table or named window using on-demand (fire-and-
forget, non-continuous) queries as described in Section 15.5, “On-Demand Fire-And-Forget Query
Execution”.

The engine allows the standard SQL syntax and val ues keyword and also supports using sel ect
to provide values.

The syntax using the val ues keyword is:

insert into wi ndow or_table nane [(property_names)]
val ues (val ue_expressi ons)

The syntax using sel ect is as follows:

insert into wi ndow or_table_nane [(property_names)]
sel ect val ue_expressi ons

The window_or_table_name is the name of the table or named window to insert rows into.

After the named window or table name you can optionally provide a comma-separated list of
property names.

When providing property names, the order of value expressions in the values list or select clause
must match the order of property names specified. Column names provided in the select-clause,
if specified, are ignored.

When not providing property names and when specifying the val ues keyword, the order of values
must match the order of properties declared for the named window or table. When not providing
property names and when specifying the select-clause, expressions must name the properties to
be inserted into by assigning a column name using the as keyword.

The example code snippet inserts a new order row into the Or der sW ndow named window:
String query =

"insert into OrdersWndow(orderld, symbol, price) values ('001', 'GE', 100)";
epServi ce. get EPRunt i ne() . execut eQuery(query);

Instead of the val ues keyword you may specify a select-clause as this example shows:

String query =
"insert into OrdersWndow orderld, synbol, price) select '001', 'GE', 100";
epServi ce. get EPRunt i ne() . execut eQuery(query);

The following EPL inserts the same values as above but specifies property names as part of the
select-clause expressions:

246

Updating Data

insert into OrdersW ndow
select '001' as orderld, 'GE as synbol, 100 as price

The next EPL inserts the same values as above and does not specify property names thereby
populating the first 3 properties of the type of the named window:

insert into OrdersW ndow val ues ('001', 'GE', 100)

6.10.2. Updating Data

Your application can update table and named window rows using on-demand (fire-and-forget,
non-continuous) queries as described in Section 15.5, “On-Demand Fire-And-Forget Query
Execution”.

The syntax for the updat e clause is as follows:

updat e wi ndow_or _t abl e_nanme [as stream nane]
set nutation_expression [, nutation_expression [,...]]
[where criteria_expression]

The window_or_table_name is the name of the table or named window to remove rows from. The
as keyword is also available to assign a name to the table or named window.

After the set keyword follows a comma-separated list of mutation expressions. For fire-and-
forget queries the following restriction applies: Subqueries, aggregation functions and the pr ev or
pri or function may not be used in expressions. Mutation expressions are detailed in Section 6.6,
“Updating Data: the On Update clause”.

The optional wher e clause contains a criteria_expression that identifies rows to be updated.
The example code snippet updates those rows of the named window that have a negative value

for volume:

String query = "update O dersNanedW ndow set volunme = 0 where volume = 0";
epServi ce. get EPRunt i ne() . execut eQuery(query);

To instruct the engine to use the initial property value before update, prefix the property name
with the literal i ni ti al .

6.10.3. Deleting Data

247

Chapter 6. EPL Reference: Nam...

Your application can delete rows from a named window or table using on-demand (fire-and-
forget, non-continuous) queries as described in Section 15.5, “On-Demand Fire-And-Forget Query
Execution”.

The syntax for the del et e clause is as follows:

del ete from wi ndow _or_tabl e nane [as stream nane]
[where criteria_expression]

The window_or_table_name is the name of the named window or table to delete rows from. The
as keyword is also available to assign a name to the named window or table.

The optional wher e clause contains a criteria_expression that identifies rows to be removed from
the named window or table.

The example code snippet deletes from a named window all rows that have a negative value for
volume:

String query = "delete from O der sNamedW ndow where vol une <= 0";
epServi ce. get EPRunti ne() . execut eQuery(query);

6.11. Versioning and Revision Event Type Use with
Named Windows

As outlined in Section 2.10, “Updating, Merging and Versioning Events”, revision event types
process updates or new versions of events held by a named window.

A revision event type is simply one or more existing pre-configured event types whose events are
related, as configured by static configuration, by event properties that provide same key values.
The purpose of key values is to indicate that arriving events are related: An event amends, updates
or adds properties to an earlier event that shares the same key values. No additional EPL is
needed when using revision event types for merging event data.

Revision event types can be useful in these situations:

1. Some of your events carry only partial information that is related to a prior event and must be
merged together.
2. Events arrive that add additional properties or change existing properties of prior events.

3. Events may carry properties that have null values or properties that do no exist (for example
events backed by Map or XML), and for such properties the earlier value must be used instead.

To better illustrate, consider a revision event type that represents events for creation and updates
to user profiles. Let's assume the user profile creation events carry the user id and a full profile. The

248

Versioning and Revision Event Type Use with Named Windows

profile update events indicate only the user id and the individual properties that actually changed.
The user id property shall serve as a key value relating profile creation events and update events.

A revision event type must be configured to instruct the engine which event types participate and
what their key properties are. Configuration is described in Section 16.4.26, “Revision Event Type”
and is not shown here.

Assume that an event type User Prof i | eRevi si ons has been configured to hold profile events,
i.e. creation and update events related by user id. This statement creates a named window to hold
the last 1 hour of current profiles per user id:

create wi ndow User Profi | eW ndow. wi n: time(1 hour) sel ect * from
User Profi | eRevi si ons

insert into UserProfil eWndow select * from UserProfil eCreation

insert into UserProfil eWndow select * from UserProfil eUpdate

In revision event types, the term base event is used to describe events that are subject to update.
Events that update, amend or add additional properties to base events are termed delta events. In
the example, base events are profile creation events and delta events are profile update events.

Base events are expected to arrive before delta events. In the case where a delta event arrives
and is not related by key value to a base event or a revision of the base event currently held by the
named window the engine ignores the delta event. Thus, considering the example, profile update
events for a user id that does not have an existing profile in the named window are not applied.

When a base or delta event arrives, the insert and remove stream output by the named window
are the current and the prior version of the event. Let's come back to the example. As creation
events arrive that are followed by update events or more creation events for the same user id, the
engine posts the current version of the profile as insert stream (new data) and the prior version
of the profile as remove stream (old data).

Base events are also implicitly delta events. That is, if multiple base events of the same key
property values arrive, then each base event provides a new version. In the example, if multiple
profile creation events arrive for the same user id then new versions of the current profile for that
user id are output by the engine for each base event, as it does for delta events.

The expiry policy as specified by view definitions applies to each distinct key value, or multiple
distinct key values for composite keys. An expiry policy re-evaluates when new versions arrive. In
the example, user profile events expire from the time window when no creation or update event
for a given user id has been received for 1 hour.

249

Chapter 6. EPL Reference: Nam...

Tip

It usually does not make sense to configure a revision event type

without delta event types. Use the unique data window (std: uni que) or
unigue data window in intersection with other data windows instead (i.e.
std: uni que(field).win:tine(l hour)).

Several strategies are available for merging or overlaying events as the configuration chapter
describes in greater detalil.

Any of the Map, XML and JavaBean event representations as well as plug-in event representations
may participate in a revision event type. For example, profile creation events could be JavaBean
events, while profile update events could be j ava. uti |l . Map events.

Delta events may also add properties to the revision event type. For example, one could add
a new event type with security information to the revision event type and such security-related
properties become available on the resulting revision event type.

The following restrictions apply to revision event types:

» Nested properties are only supported for the JavaBean event representation. Nested properties
are not individually versioned; they are instead versioned by the containing property.

« Dynamic, indexed and mapped properties are only supported for nested properties and not as
properties of the revision event type itself.

6.12. Events As Property

Columns in a named window and table may also hold an event or multiple events. More information
ontheinsert into clause providing event columns is in Section 5.10.5, “Event as a Property”.

A sample declaration for a named window and a table is:

create schema | nnerData (val ue string)

create tabl e ContainerTable (innerdata |nnerData)

create wi ndow Contai nerWndow. win:time(30) as (innerdataArray InnerData[]) //
array of events

The second sample creates a named window that specifies two columns: A column that holds
an OrderEvent, and a column by name pri ceTot al . A matching i nsert i nt o statement is also
part of the sample:

250

Events As Property

create wi ndow Order sWndow. wi n:ti ne(30) as select this, price as priceTotal from
Or der Event

insert into OrdersW ndow sel ect order, price * unit as priceTotal
from Servi ceOr der Event as order

Note that the this proprerty must exist on the event and must return the event class itself
(JavaBean events only). The property type of the additional pri ceTot al column is the property
type of the existing pri ce property.

251

252

Chapter 7.

Chapter 7. EPL Reference: Patterns

7.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition.
Patterns can also be time-based.

Pattern expressions consist of pattern atoms and pattern operators:

1. Pattern atoms are the basic building blocks of patterns. Atoms are filter expressions, observers
for time-based events and plug-in custom observers that observe external events not under
the control of the engine.

2. Pattern operators control expression lifecycle and combine atoms logically or temporally.

The below table outlines the different pattern atoms available:

Table 7.1. Pattern Atoms

Pattern Atom Example

Filter expressions specify an event t

look for. St ockTi ck(synbol =" ABC', price > 100)

Time-based event observers specify tim

intervals or time schedules. timer:interval (10 seconds)

tinmer:at(*, 16, *, *, *)

timer:schedule(....)

Custom plug-in observers can ad
pattern language syntax for observini
application-specific events.

myappl i cati on: myobserver("http://
sonmeResour ce")

There are 4 types of pattern operators:

1. Operators that control pattern sub-expression repetition: every, every-di sti nct, [nuni and
unti |

2. Logical operators: and, or, not

253

Chapter 7. EPL Reference: Pat...

3. Temporal operators that operate on event order: - > (followed-by)

4. Guards are where-conditions that control the lifecycle of subexpressions. Examples are
timer:wthin,timer:wthinmax and whi | e-expression. Custom plug-in guards may also be
used.

Pattern expressions can be nested arbitrarily deep by including the nested expression(s) in ()
round parenthesis.

Underlying the pattern matching is a state machine that transitions between states based on
arriving events and based on time advancing. A single event or advancing time may cause a
reaction in multiple parts of your active pattern state.

7.2. How to use Patterns

7.2.1. Pattern Syntax

This is an example pattern expression that matches on every Servi ceMeasur enent events
in which the value of the I atency event property is over 20 seconds, and on every
Servi ceMeasur ement event in which the success property is false. Either one or the other
condition must be true for this pattern to match.

every (
spi ke=Ser vi ceMeasur enent (| at ency>20000)
or
error=Servi ceMeasur enent (success=f al se)

In the example above, the pattern expression starts with an every operator to indicate that the
pattern should fire for every matching events and not just the first matching event. Within the ever y
operator in parentheses is a nested pattern expression using the or operator. The left hand of the
or operator is a filter expression that filters for events with a high latency value. The right hand of
the operator contains a filter expression that filters for events with error status. Filter expressions
are explained in Section 7.4, “Filter Expressions In Patterns”.

The example above assigned the tags spi ke and error to the events in the pattern. The tags
are important since the engine only places tagged events into the output event(s) that a pattern
generates, and that the engine supplies to listeners of the pattern statement. The tags can further
be selected in the select-clause of an EPL statement as discussed in Section 5.4.2, “Pattern-
based Event Streams”.

Patterns can also contain comments within the pattern as outlined in Section 5.2.2, “Using
Comments”.

Pattern statements are created via the EPAdni ni strator interface. The EPAdmi ni strator
interface allows to create pattern statements in two ways: Pattern statements that want to make

254

Patterns in EPL

use of the EPL sel ect clause or any other EPL constructs use the cr eat eEPL method to create
a statement that specifies one or more pattern expressions. EPL statements that use patterns
are described in more detail in Section 5.4.2, “Pattern-based Event Streams”. Use the syntax as
shown in below example.

EPAdmi ni st rat or admi n =
EPSer vi cePr ovi der Manager . get Def aul t Provi der () . get EPAdni ni strator();

String event Nane = Servi ceMeasurenent. cl ass. get Name() ;

EPSt at enent nyTri gger = adnin.createEPL("select * frompattern [" +
"every (spike=" + eventName + "(latency>20000) or error=" + eventNane +
"(success=false))]");

Pattern statements that do not need to make use of the EPL sel ect clause or any other EPL
constructs can use the cr eat ePat t er n method, as in below example.

EPSt at ement nyTri gger = admi n. createPattern(
"every (spike=" + eventName + "(latency>20000) or error=" + eventNane +
"(success=false))");

7.2.2. Patterns in EPL

A pattern may appear anywhere in the from clause of an EPL statement including joins and
subqueries. Patterns may therefore be used in combination with the wher e clause, group by
clause, havi ng clause as well as output rate limiting and i nsert into.

In addition, a data window view can be declared onto a pattern. A data window declared onto a
pattern only serves to retain pattern matches. A data window declared onto a pattern does not
limit, cancel, remove or delete intermediate pattern matches of the pattern when pattern matches
leave the data window.

This example statement demonstrates the idea by selecting a total price per customer over pairs of
events (ServiceOrder followed by a ProductOrder event for the same customer id within 1 minute),
occurring in the last 2 hours, in which the sum of price is greater than 100, and using a where
clause to filter on name:

sel ect a.custld, sun{a.price + b.price)
frompattern [every a=Servi ceOrder ->
b=Pr oduct Order (custld = a.custld) wheretimer:within(l mn)].win:tine(2 hour)
where a.nanme in (' Repair', b.nane)
group by a.custld
havi ng sum(a.price + b.price) > 100

255

Chapter 7. EPL Reference: Pat...

7.2.3. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The
listener interface is the com espertech. esper. cli ent. Updat eLi st ener interface.

The example below shows an anonymous implementation of the
com espertech. esper. client. UpdateLi st ener interface. We add the anonymous listener
implementation to the nyPat t er n statement created earlier. The listener code simply extracts the
underlying event class.

nyPat t er n. addLi st ener (new Updat eLi stener () {
public void update(Event Bean[] newEvents, EventBean[] ol dEvents) {
Servi ceMeasur ement spi ke = (Servi ceMeasurenent) newEvent s[0] . get ("spi ke");
Servi ceMeasurenment error = (Servi ceMeasurenent) newEvents[O0].get("error");
I/ either spike or error can be null, depending on which occurred
/1 add nore logic here

}
1),

Listeners receive an array of Event Bean instances in the newEvent s parameter. There is one
Event Bean instance passed to the listener for each combination of events that matches the pattern
expression. At least one Event Bean instance is always passed to the listener.

The properties of each Event Bean instance contain the underlying events that caused the pattern
to fire, if events have been named in the filter expression via the nanme=event Type syntax. The
property name is thus the name supplied in the pattern expression, while the property type is the
type of the underlying class, in this example Ser vi ceMeasur enent .

7.2.4. Pulling Data from Patterns

Data can also be obtained from pattern statements via the safelterator() and iterator()
methods on EPSt atenent (the pull API) If the pattern had fired at least once and the
@t er abl eUnbound annotation is declared for the statement, then the iterator returns the last event
for which it fired. The hasNext () method can then be used to determine if the pattern had fired.

if (myPattern.iterator().hasNext()) {
Ser vi ceMeasur enment event = (Servi ceMeasur enment)
view iterator().next().get("alert");
/1 some nore code here to process the event
}
el se {
/1 no matching events at this tine

256

Pattern Error Reporting

Further, if a data window is defined onto a pattern, the iterator returns the pattern matches
according to the data window expiry policy.

This pattern specifies a length window of 10 elements that retains the last 10 matches of A and

B events, for use via iterator or for use in a join or subquery:

select * frompattern [every (A or B).w n:length(10)

7.2.5. Pattern Error Reporting

While the pattern compiler analyzes your pattern and verifies its integrity, it may not detect certain
pattern errors that may occur at runtime. Sections of this pattern documentation point out common
cases where the pattern engine will log a runtime error. We recommend turning on the log warning
level at project development time to inspect and report on warnings logged. If a statement name
is assigned to a statement then the statement name is logged as well.

7.2.6. Suppressing Same-Event Matches

Any given event can contribute to multiple matches.

For example, consider the following pattern:
every a=A -> B

Given this sequence of events:
AL A By

When event B, arrives the pattern matches for both the combination {A;, B;} and the combination
{A,, B1}. The engine indicates both matches to the listener or subscriber by delivering an array
containing both matches in a single listener or subscriber invocation.

Use the @uppr essOver | appi nghat ches pattern-level annotation to instruct the engine to discard
all but the first match among multiple overlapping matches.

The same example with the pattern-level annotation is:
select * from pattern @uppressOverl appi nghat ches [every a=A -> b=B]

When event B, arrives the pattern outputs only the first combination that matches, namely the
combination {A1, B1}. The engine discards the second combination ({A,, B4}) that matches as it
detects that event B, overlaps between the first and the second match.

257

Chapter 7. EPL Reference: Pat...

7.2.7. Discarding Partially Completed Patterns

Partially-completed patterns are incomplete matches that are not yet indicated by the engine
because the complete pattern condition is not satisfied. Any given event can be part of multiple
partially-completed patterns.

For example, consider the following pattern:

every a=A -> B and C(id=a.id)

Given this sequence of events:
Afid="id1"} Ao{id="id2} B,

According to the sequence above there are no matches. The pattern is partially completed waiting
for C events. The combination {A1, B1} is waiting for a C{id='id1'} event before the pattern match
is complete for that combination. The combination {A,, B4} is waiting for a C{id='id2'} event before
the pattern match is complete for that combination.

Assuming event C,{id="id1") arrives the pattern outputs the combination {A;, B1, C4}. Assuming
event C,{id="id2") arrives the pattern outputs the combination {A,, B, C,}. Note that event B4 is
part of both partially-completed patterns.

Use the @i scar dParti al sOnMat ch pattern-level annotation to instruct the engine that when any
matches occur to discard partially completed patterns that overlap in terms of the events that make
up the match (or matches if there are multiple matches).

The same example using the @i scar dParti al sOnMat ch pattern-level annotation is:

select * frompattern @i scardPartial sOnvatch [every a=A -> B and C(id=a.id)]

258

Operator Precedence

When event Cq{id="id1") arrives the pattern outputs the match combination {A{, B;, C1}. Upon
indication of the match the engine discards all partially-completed patterns that refer to either
of the A4, B; and C; events. Since event B; is part of a partially-completed pattern waiting
for C{id='id2'}, the engine discards that partially-completed pattern. Therefore when Cx{id="id2"}
arrives the engine outputs no matches.

When specifying both @i scardParti al sOnMat ch and @uppr essOver | appi nghvat ches the
engine discards the partially-completed patterns that overlap all matches including suppressed
matches.

7.3. Operator Precedence

The operators at the top of this table take precedence over operators lower on the table.

Table 7.2. Pattern Operator Precedence

Precedenc Operator Description Example
1 guard where tiner:wthi
postfix and whi | MyEvent where tiner:within(l sec)

(expression) (inc
withinmax and plug-i

pattern guard) a=MyEvent while (a.price between 1 and
10)
2 unary every, not, every
di sti nct every MyEvent

tinmer:interval (5 min) and not MyEvent

3 repeat [nuni, until
[5] MyEvent

259

Chapter 7. EPL Reference: Pat...

Precedenc Operator Description Example

[1..3] MyEvent until M/OQ herEvent
4 and and

every (MyEvent and MyQt her Event)
5 or or

every (MyEvent or MyQt her Event)
6 followed- |->

by every (MyEvent -> MyQt her Event)

If you are not sure about the precedence, please consider placing parenthesis () around your
subexpressions. Parenthesis can also help make expressions easier to read and understand.

The following table outlines sample equivalent expressions, with and without the use of
parenthesis for subexpressions.

Table 7.3. Equivalent Pattern Expressions

Expression

every AorB

every A->BorC

Equivalent

(every A) or B

(every A)->(BorC)

Reason

The every operator has higher precedence then the
or operator.

The or operator has higher precedence then the
f ol | owed- by operator.

A->BorB->A

AandBorC

A->(BorB)->A

(AandB) or C

The or operator has higher precedence then the
f ol | owed- by operator, specify as (A -> B) or (B ->
A) instead.

The and operator has higher precedence then the or
operator.

A->BuntilC->D

A->(Buntil C)->D

The unti | operator has higher precedence then the
f ol | oned- by operator.

[5]AorB

every A where
timer:within(10)

([5] A) or B
every (A where
timer:within(10))

The [nuni repeat operator has higher precedence
then the or operator.

The wher e postfix has higher precedence then the
every operator.

7.4. Filter Expressions In Patterns

The simplest form of filter is a filter for events of a given type without any conditions on the event
property values. This filter matches any event of that type regardless of the event's properties.

260

Filter Expressions In Patterns

The example below is such a filter. Note that this event pattern would stop firing as soon as the
first RfidEvent is encountered.

com nypackage. myevent s. Rf i dEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the every
keyword.

every com nmypackage. nyevents. Rf i dEvent

The example above specifies the fully-qualified Java class name as the event type. Via
configuration, the event pattern above can be simplified by using the name that has been defined
for the event type.

every RfidEvent

Interfaces and superclasses are also supported as event types. In the below example
| Rf i dReadabl e is an interface class, and the statement matches any event that implements this
interface:

every org.myorg.rfid.|Rfi dReadabl e

The filtering criteria to filter for events with certain event property values are placed within
parenthesis after the event type name:

Rfi dEvent (cat egor y="Peri shabl e")

All expressions can be used in filters, including static method invocations that return a boolean
value:

Rfi dEvent (com nyconpany. MyRFI DLi b. i sl nRange(x, y) or (x<0 and y < 0))

Filter expressions can be separated via a single comma ', '. The comma represents a logical AND
between expressions:

Rfi dEvent (zone=1, category=10)
...is equivalent to...

261

Chapter 7. EPL Reference: Pat...

Rfi dEvent (zone=1 and cat egor y=10)

The following set of operators are highly optimized through indexing and are the preferred means
of filtering high-volume event streams:

e equals =

* notequals!=

e comparison operators < , >, >=, <=

* ranges
» use the bet ween keyword for a closed range where both endpoints are included
» usethein keywordandround () orsquare brackets[] to control how endpoints are included
« for inverted ranges use the not keyword and the bet ween or i n keywords

« list-of-values checks using the i n keyword or the not in keywords followed by a comma-
separated list of values

At compile time as well as at run time, the engine scans new filter expressions for subexpressions
that can be indexed. Indexing filter values to match event properties of incoming events enables
the engine to match incoming events faster. The above list of operators represents the set of
operators that the engine can best convert into indexes. The use of comma or logical and in filter
expressions does not impact optimizations by the engine.

For more information on filters please see Section 5.4.1, “Filter-based Event Streams”. Contained-
event selection on filters in patterns is further described in Section 5.19, “Contained-Event
Selection”.

Filter criteria can also refer to events matching prior named events in the same expression. Below
pattern is an example in which the pattern matches once for every RfidEvent that is preceded by
an RfidEvent with the same asset id.

every el=Rfi dEvent -> e2=Rfi dEvent (assetl d=el. asset|d)

The syntax shown above allows filter criteria to reference prior results by specifying the event
name tag of the prior event, and the event property name. The tag names in the above example
were el and e2. This syntax can be used in all filter operators or expressions including ranges
and the i n set-of-values check:

every el=RfidEvent ->
e2=Rfi dEvent (M/Li b.i sl nRadi us(el.x, el.y, x, y) and zone in (1, el.zone))

An arriving event changes the truth value of all expressions that look for the event. Consider the
pattern as follows:

262

Controlling Event Consumption

every (RfidEvent(zone > 1) and Rfi dEvent(zone < 10))

The pattern above is satisfied as soon as only one event with zone in the interval [2, 9] is received.

7.4.1. Controlling Event Consumption

An arriving event applies to all filter expressions for which the event matches. In other words, an
arriving event is not consumed by any specify filter expression(s) but applies to all active filter
expressions of all pattern sub-expressions.

You may provide the @onsume annotation as part of a filter expression to control consumption of
an arriving event. If an arriving event matches the filter expression marked with @ onsune it is no
longer available to other filter expressions of the same pattern that also match the arriving event.

The @onsune can include a level number in parenthesis. A higher level number consumes the
event first. The default level number is 1. Multiple filter expressions with the same level number
for @onsune all match the event.

Consider the next sample pattern:
a=Rfi dEvent (zone='Z1') and b=Rfi dEvent (asset|d='0001")

This pattern fires when a single RfidEvent event arrives that has zone 'Z1' and assetld '0001". The
pattern also matches when two RfidEvent events arrive, in any order, wherein one has zone 'Z1'
and the other has assetld '0001'.

Mark a filter expression with @onsune to indicate that if an arriving event matches multiple filter
expressions that the engine prefers the marked filter expression and does not match any other
filter expression.

This updated pattern statement uses @onsume to indicate that a match against zone is preferred:
a=Rfi dEvent (zone='Z1') @onsunme and b=Rfi dEvent (asset|d="'0001")

This pattern no longer fires when a single RfidEvent arrives that has zone 'Z1' and assetld '0001',
because when the first filter expression matches the pattern engine consumes the event. The
pattern only matches when two RfidEvent events arrive in any order. One event must have zone
'Z1' and the other event must have a zone other than 'Z1' and an assetld '0001".

The next sample pattern provides a level number for each @onsune:

a=Rfi dEvent (zone='Z1') @onsune(2)

263

Chapter 7. EPL Reference: Pat...

or b=Rfi dEvent (asset|d='"0001") @onsune(1)
or c=Rfi dEvent (cat egory='peri shable'))

The pattern fires when an RfidEvent arrives with zone 'Z1". In this case the output event populates
property 'a’ but not properties 'b' and 'c'. The pattern also fires when an RfidEvent arrives with a
zone other than 'Z1' and an asset id of '0001". In this case the output event populates property 'b'
but not properties 'a’ and 'c'. The pattern also fires when an RfidEvent arrives with a zone other
than 'Z1' and an asset id other than '0001' and a category of 'perishable’. In this case the output
event populates property 'c’ but not properties 'a’ and 'b'.

7.4.2. Use With Named Windows and Tables

When your filter expression provides the name of a named window then the filter expression
matches each time an event is inserted into the named window that matches the filter conditions.
For example, assume a named window that holds the last order event per order id:

create wi ndow Last Order W ndow. st d: uni que(orderld) as O derEvent

Assume that all order events are inserted into the named window using insert-into:

insert into Last O der Wndow select * from O der Event

This sample pattern fires 10 seconds after an order event with a price greater then 100 was
inserted:

select * frompattern [every o=Last Order Wndow(price >= 100) ->tiner:interval (10
sec)]

The pattern above fires only for events inserted-into the Last Or der W ndow hamed window and
does not fire when an order event was updated using on-update or merged using on-merge.

If your application would like to have the pattern fire for any change to the named window events
including updates and merges, you must select from the named window as follows:

insert into Order WndowChangeStream sel ect * from Last O der W ndow

select * from pattern [every o=OderW ndowChangeStream(price >= 100) ->
timer:interval (10 sec)]

264

Pattern Operators

A table cannot be listed as part of a pattern filter, however any filter EPL expressions can have
tables access expressions and subqueries against tables.

Assuming that MyTabl e is a table, the following is not allowed:

/'l not allowed
select * frompattern [every MyTable -> tiner:interval (10 sec)]

7.5. Pattern Operators

7.5.1. Every

The every operator indicates that the pattern sub-expression should restart when the
subexpression qualified by the every keyword evaluates to true or false. Without the every
operator the pattern sub-expression stops when the pattern sub-expression evaluates to true or
false.

As a side note, please be aware that a single invocation to the Updat eLi st ener interface may
deliver multiple events in one invocation, since the interface accepts an array of values.

Thus the every operator works like a factory for the pattern sub-expression contained within.
When the pattern sub-expression within it fires and thus quits checking for events, the every
causes the start of a new pattern sub-expression listening for more occurrences of the same event
or set of events.

Every time a pattern sub-expression within an every operator turns true the engine starts a new
active subexpression looking for more event(s) or timing conditions that match the pattern sub-
expression. If the every operator is not specified for a subexpression, the subexpression stops
after the first match was found.

This pattern fires when encountering an A event and then stops looking.

This pattern keeps firing when encountering A events, and doesn't stop looking.
every A

When using every operator with the - > followed-by operator, each time the every operator
restarts it also starts a new subexpression instance looking for events in the followed-by
subexpression.

Let's consider an example event sequence as follows.

265

Chapter 7. EPL Reference: Pat...

A; B; C; By Ay Dy A3 Bz E1 Ay F1 By

Table 7.4. 'Every' operator examples

Example Description

every (A->B)

Detect an A event followed by a B event. At the time when B occurs
the pattern matches, then the pattern matcher restarts and looks for
the next A event.

1. Matches on B, for combination {A1, B4}
2. Matches on B3 for combination {A,, B3}
3. Matches on B, for combination {A4, B4}

every A-> B

A -> every B

every A -> every B

The pattern fires for every A event followed by a B event.

1. Matches on B4 for combination {Aq, B4}
2. Matches on B3 for combination {A,, B3} and {Az, B3}
3. Matches on B, for combination {A,4, B4}

The pattern fires for an A event followed by every B event.

1. Matches on B4 for combination {Aq, B4}.
2. Matches on B, for combination {A4, B,}.
3. Matches on B3 for combination {A4, B3}
4. Matches on B, for combination {A, B4}

The pattern fires for every A event followed by every B event.

1. Matches on B4 for combination {Aq, B4}.

2. Matches on B, for combination {A4, B,}.

3. Matches on B3 for combination {A, B3} and {A,, B3} and {A3, B3}

4. Matches on B, for combination {A1, B4} and {A,, B4} and {Az, B4}
and {A4, B4}

The examples show that it is possible that a pattern fires for multiple combinations of events that
match a pattern expression. Each combination is posted as an Event Bean instance to the updat e
method in the Updat eLi st ener implementation.

Let's consider the ever y operator in conjunction with a subexpression that matches 3 events that

follow each other:

every (A->B->0

266

Every

The pattern first looks for A events. When an A event arrives, it looks for a B event. After the B
event arrives, the pattern looks for a C event. Finally, when the C event arrives the pattern fires.
The engine then starts looking for an A event again.

Assume that between the B event and the C event a second A, event arrives. The pattern would
ignore the A, event entirely since it's then looking for a C event. As observed in the prior example,
the every operator restarts the subexpression A -> B -> Conly when the subexpression fires.

In the next statement the ever y operator applies only to the A event, not the whole subexpression:

every A->B->C

This pattern now matches for each A event that is followed by a B event and then a C event,
regardless of when the A event arrives. Note that for each A event that arrives the pattern engine
starts a new subexpression looking for a B event and then a C event, outputting each combination
of matching events.

7.5.1.1. every Operator Equivalence

A pattern that only has the every operator and a single filter expression is equivalent to selecting
the same filter in the f r omclause:

select * from StockTi ckEvent (synbol =' GE') /1 Prefer this
/[l ... equivalent to ...
select * frompattern[every StockTi ckEvent (synbol =' GE')]

7.5.1.2. Limiting Subexpression Lifetime

As the introduction of the ever y operator states, the operator starts new subexpression instances
and can cause multiple matches to occur for a single arriving event.

New subexpressions also take a very small amount of system resources and thereby your
application should carefully consider when subexpressions must end when designing patterns.
Use the ti mer: wi t hi n construct and the and not constructs to end active subexpressions. The
data window onto a pattern stream does not serve to limit pattern sub-expression lifetime.

Lets look at a concrete example. Consider the following sequence of events arriving:
A1 A By

This pattern matches on arrival of B; and outputs two events (an array of length 2 if using a
listener). The two events are the combinations {A;, B1} and {A,, B¢}

every a=A -> b=B

267

Chapter 7. EPL Reference: Pat...

The and not operators are used to end an active subexpression.

The next pattern matches on arrival of B; and outputs only the last A event which is the combination
{A21 Bl}:

every a=A -> (b=B and not A)

The and not operators cause the subexpression looking for {A;, B?} to end when A, arrives.

Similarly, in the pattern below the engine starts a new subexpression looking for a B event every
1 second. After 5 seconds there are 5 subexpressions active looking for a B event and 5 matches
occur at once if a B event arrives after 5 seconds.

every tinmer:interval (1 sec) -> b=B

Again the and not operators can end subexpressions that are not intended to match any longer:

every timer:interval (1 sec) -> (b=B and not timer:interval (1 sec))
/1 equivalent to
every tinmer:interval (1 sec) -> (b=B where tiner:within(l sec))

7.5.1.3. every Operator Example

In this example we consider a generic pattern in which the pattern must match for each A event
followed by a B event and followed by a C event, in which both the B event and the C event must
arrive within 1 hour of the A event. The first approach to the pattern is as follows:

every A -> (B ->C) where tinmer:within(1l hour)

Consider the following sequence of events arriving:
A1 A2 Bp C; By G

First, the pattern as above never stops looking for A events since the ever y operator instructs the
pattern to keep looking for A events.

When A; arrives, the pattern starts a new subexpression that keeps A; in memory and looks for
any B event. At the same time, it also keeps looking for more A events.

When A, arrives, the pattern starts a new subexpression that keeps A, in memory and looks for
any B event. At the same time, it also keeps looking for more A events.

After the arrival of A,, there are 3 subexpressions active:

268

Every

1. The first active subexpression with A; in memory, looking for any B event.
2. The second active subexpression with A, in memory, looking for any B event.
3. A third active subexpression, looking for the next A event.

In the pattern above, we have specified a 1-hour lifetime for subexpressions looking for B and C
events. Thus, if no B and no C event arrive within 1 hour after A;, the first subexpression goes
away. If no B and no C event arrive within 1 hour after A,, the second subexpression goes away.
The third subexpression however stays around looking for more A events.

The pattern as shown above thus matches on arrival of C; for combination {A;, B1, C41} and for
combination {A,, B4, C4}, provided that B; and C, arrive within an hour of A; and A,.

You may now ask how to match on {A, B1, C1} and {A,, B,, C,} instead, since you may need to
correlate on a given property.

The pattern as discussed above matches every A event followed by the first B event followed by
the next C event, and doesn't specifically qualify the B or C events to look for based on the A
event. To look for specific B and C events in relation to a given A event, the correlation must use
one or more of the properties of the A event, such as the "id" property:

every a=A -> (B(id=a.id -> C(id=a.id)) where timer:within(1l hour)

The pattern as shown above thus matches on arrival of C4 for combination {A;, B1, C1} and on
arrival of C, for combination {A,, By, C5}.

7.5.1.4. Sensor Example

This example looks at temperature sensor events named Sample. The pattern detects when 3
sensor events indicate a temperature of more then 50 degrees uninterrupted within 90 seconds
of the first event, considering events for the same sensor only.

every sanpl e=Sanpl e(temp > 50) ->
((Sampl e(sensor =sanpl e. sensor, tenp > 50) and not Sanpl e(sensor=sanpl e. sensor,
tenp <= 50))

->

(Sanpl e(sensor =sanpl e. sensor, tenp > 50) and not Sanpl e(sensor=sanpl e. sensor,
temp <= 50))

) where timer:wthin(90 seconds))

The pattern starts a new subexpression in the round braces after the first followed-by operator for
each time a sensor indicated more then 50 degrees. Each subexpression then lives a maximum
of 90 seconds. Each subexpression ends if a temperature of 50 degress or less is encountered
for the same sensor. Only if 3 temperature events in a row indicate more then 50 degrees, and
within 90 seconds of the first event, and for the same sensor, does this pattern fire.

269

Chapter 7. EPL Reference: Pat...

7.5.2. Every-Distinct

Similar to the every operator in most aspects, the every-di sti nct operator indicates that the
pattern sub-expression should restart when the subexpression qualified by the ever y- di sti nct
keyword evaluates to true or false. In addition, the every-di sti nct eliminates duplicate results
received from an active subexpression according to its distinct-value expressions.

The synopsis for the ever y- di sti nct pattern operator is:

every-distinct(distinct_value_expr [, distinct_val ue_exp[...]
[, expiry_ time_period])

Within parenthesis are one or more distinct_value_expr expressions that return the values by
which to remove duplicates.

You may optionally specify an expiry_time_period time period. If present, the pattern engine
expires and removes distinct key values that are older then the time period, removing their
associated memory and allowing such distinct values to match again. When your distinct value
expressions return an unlimited number of values, for example when your distinct value is a
timestamp or auto-increment column, you should always specify an expiry time period.

When specifying properties in the distinct-value expression list, you must ensure that the event
types providing properties are tagged. Only properties of event types within filter expressions that
are sub-expressions to the ever y- di sti nct may be specified.

For example, this pattern keeps firing for every A event with a distinct value for its apr op property:
every-di stinct(a.aprop) a=A

Note that the pattern above assigns the a tag to the A event and uses a. pr op to identify the pr op
property as a value of the a event A.

A pattern that returns the first Sample event for each sensor, assuming sensor is a field that returns
a unique id identifying the sensor that originated the Sample event, is:

every-di stinct(s.sensor) s=Sanple

The next pattern looks for pairs of A and B events and returns only the first pair for each
combination of apr op of an A event and bpr op of a B event:

every-di stinct(a.aprop, b.bprop) (a=A and b=B)

270

Every-Distinct

The following pattern looks for A events followed by B events for which the value of the apr op of
an A event is the same value of the bpr op of a B event but only for each distinct value of apr op
of an A event:

every-di stinct(a.aprop) a=A -> b=B(bprop = a. aprop)

When specifying properties as part of distinct-value expressions, properties must be available
from tagged event types in sub-expressions to the every-di sti nct .

The following patterns are not valid:

// Invalid: event type in filter not tagged
every-di stinct (aprop) A

/'l Invalid: property not froma sub-expression of every-distinct
a=A -> every-distinct(a.aprop) b=B

When an active subexpression to every-di stinct becomes permanently false, the distinct-
values seen from the active subexpression are removed and the sub-expression within is
restarted.

For example, the below pattern detects each A event distinct by the value of apr op.

every-di stinct(a.aprop) (a=A and not B)

In the pattern above, when a B event arrives, the subexpression becomes permanently false and
is restarted anew, detecting each A event distinct by the value of apr op without considering prior
values.

When your distinct key is a timestamp or other non-unique property, specify an expiry time period.

The following example returns every distinct A event according to the timestamp property on the
A event, retaining each timestamp value for 10 seconds:

every-distinct(a.tinmestanp, 10 seconds) a=A

In the example above, if for a given A event and its timestamp value the same timestamp value
occurs again for another A event before 10 seconds passed, the A event is not a match. If 10
seconds passed the pattern indicates a second match.

You may not use every-distinct with a timer-within guard to expire keys: The expiry time notation
as above is the recommended means to expire keys.

271

Chapter 7. EPL Reference: Pat...

// This is not the same as above; It does not expire transaction ids and is
not recomended
every-di stinct(a.tinestanp) a=A where tiner:w thin(10 sec)

7.5.3. Repeat

The repeat operator fires when a pattern sub-expression evaluates to true a given number of
times. The synopsis is as follows:

[mat ch_count] repeating_subexpr

The repeat operator is very similar to the ever y operator in that it restarts the repeating_subexpr
pattern sub-expression up to a given number of times.

match_count is a positive number that specifies how often the repeating_subexpr pattern sub-
expression must evaluate to true before the repeat expression itself evaluates to true, after which
the engine may indicate a match.

For example, this pattern fires when the last of five A events arrives:

[5] A

Parenthesis must be used for nested pattern sub-expressions. This pattern fires when the last of
a total of any five A or B events arrives:

[5] (A or B)

Without parenthesis the pattern semantics change, according to the operator precedence
described earlier. This pattern fires when the last of a total of five A events arrives or a single B
event arrives, whichever happens first:

[5] Aor B

Tags can be used to name events in filter expression of pattern sub-expressions. The next pattern
looks for an A event followed by a B event, and a second A event followed by a second B event.
The output event provides indexed and array properties of the same name:

[2] (a=A -> b=B)

272

Repeat-Until

Using tags with repeat is further described in Section 7.5.4.6, “Tags and the Repeat Operator”.
Consider the following pattern that demonstrates the behavior when a pattern sub-expression
becomes permanently false:

[2] (a=A and not Q)

In the case where a C event arrives before 2 A events arrive, the pattern above becomes
permanently false.

Lets add an every operator to restart the pattern and thus keep matching for all pairs of A events
that arrive without a C event in between each pair:

every [2] (a=A and not Q)

Since pattern matches return multiple A events, your select clause should use tag a as an array,
for example:

select a[0].id, a[1].id frompattern [every [2] (a=A and not Q)]

7.5.4. Repeat-Until

The repeat unti | operator provides additional control over repeated matching.

The repeat until operator takes an optional range, a pattern sub-expression to repeat, the unti |
keyword and a second pattern sub-expression that ends the repetition. The synopsis is as follows:

[range] repeated_pattern_expr until end_pattern_expr

Without a range, the engine matches the repeated_pattern_expr pattern sub-expression until the
end_pattern_expr evaluates to true, at which time the expression turns true.

An optional range can be used to indicate the minimum number of times that the
repeated_pattern_expr pattern sub-expression must become true.

The optional range can also specify a maximum number of times that repeated_pattern_expr
pattern sub-expression evaluates to true and retains tagged events. When this number is reached,
the engine stops the repeated_pattern_expr pattern sub-expression.

The unti | keyword is always required when specifying a range and is not required if specifying
a fixed number of repeat as discussed in the section before.

273

Chapter 7. EPL Reference: Pat...

7.5.4.1. Unbound Repeat

In the unbound repeat, without a range, the engine matches the repeated_pattern_expr pattern
sub-expression until the end_pattern_expr evaluates to true, at which time the expression turns
true. The synopsis is:

repeated pattern_expr until end _pattern_expr

This is a pattern that keeps looking for A events until a B event arrives:

Auntil B

Nested pattern sub-expressions must be placed in parenthesis since the until operator has
precedence over most operators. This example collects all A or B events for 10 seconds and

places events received in indexed properties 'a' and 'b":

(a=A or b=B) until tiner:interval (10 sec)

7.5.4.2. Bound Repeat Overview

The synopsis for the optional range qualifier is:
[[l ow endpoint] : [high _endpoint]]

low_endpoint is an optional number that appears on the left of a colon (:), after which follows an
optional high_endpoint number.

A range thus consists of a low_endpoint and a high_endpoint in square brackets and separated by
a colon (:) characters. Both endpoint values are optional but either one or both must be supplied.
The low_endpoint can be omitted to denote a range that starts at zero. The high_endpoint can
be omitted to denote an open-ended range.

Some examples for valid ranges might be:

[3 : 10]
[:3] /'l range starts at zero
[2:] /'l open-ended range

The low_endpoint, if specified, defines the minimum number of times that the
repeated_pattern_expr pattern sub-expression must become true in order for the expression to
become true.

274

Repeat-Until

The high_endpoint, if specified, is the maximum number of times that the repeated_pattern_expr
pattern sub-expression becomes true. If the number is reached, the engine stops the
repeated_pattern_expr pattern sub-expression.

In all cases, only at the time that the end_pattern_expr pattern sub-expression evaluates to true
does the expression become true. If end_pattern_expr pattern sub-expression evaluates to false,
then the expression evaluates to false.

7.5.4.3. Bound Repeat - Open Ended Range

An open-ended range specifies only a low endpoint and not a high endpoint.

Consider the following pattern which requires at least three A events to match:

[3:] Auntil B

In the pattern above, if a B event arrives before 3 A events occurred, the expression ends and
evaluates to false.

7.5.4.4. Bound Repeat - High Endpoint Range

A high-endpoint range specifies only a high endpoint and not a low endpoint.

In this sample pattern the engine will be looking for a maximum of 3 A events. The expression
turns true as soon as a single B event arrives regardless of the number of A events received:

[:3] Auntil B

The next pattern matches when a C or D event arrives, regardless of the number of A or B events
that occurred:

[:3] (a=A or b=B) until (c=C or d=D)

In the pattern above, if more then 3 A or B events arrive, the pattern stops looking for additional A
or B events. The 'a' and 'b' tags retain only the first 3 (combined) matches among A and B events.
The output event contains these tagged events as indexed properties.

7.5.4.5. Bound Repeat - Bounded Range

A bounded range specifies a low endpoint and a high endpoint.

The next pattern matches after at least one A event arrives upon the arrival of a single B event:

275

Chapter 7. EPL Reference: Pat...

[1:3] a=A until B

If a B event arrives before the first A event, then the pattern does not match. Only the first 3 A
events are returned by the pattern.

7.5.4.6. Tags and the Repeat Operator

The tags assigned to events in filter subexpressions within a repeat operator are available for use
in filter expressions and also in any EPL clause.

This sample pattern matches 2 A events followed by a B event. Note the filter on B events: only
a B event that has a value for the "beta" property that equals any of the "id" property values of
the two A events is considered:

[2] A-> B(betain (a[0].id, a[1].id))

The next EPL statement returns pairs of A events:

select a, a[0], a[0].id, a[1], a[1].id
frompattern [every [2] a=A]

The sel ect clause of the statement above showcases different ways of accessing tagged events:

» Thetagitself can be used to select an array of underlying events. For example, the 'a’ expression
above returns an array of underlying events of event type A.

» The tag as an indexed property returns the underlying event at that index. For instance, the
'a[0]' expression returns the first underlying A event, or null if no such A event was matched
by the repeat operator.

« The tag as a nested, indexed property returns a property of the underlying event at that index.
For example, the 'a[1].id" expression returns the 'id' property value of the second A event, or
null if no such second A event was matched by the repeat operator.

7.5.4.7. Note on Indexed Tags

You may not use indexed tags defined in the sub-expression to the repeat operator in the same
subexpression. For example, in the following pattern the subexpression to the repeat operator
is (a=A() -> b=B(id=a[0].id)) and the tag a cannot be used in its indexed form in the filter
for event B:

/! invalid

276

And

every [2] (a=A() -> b=B(id=a[0].id))
You can use tags without an index:

/1 valid
every [2] (a=A() -> b=B(id=a.id))

7.5.5. And

Similar to the Java && operator the and operator requires both nested pattern expressions to turn
true before the whole expression turns true (a join pattern).

This pattern matches when both an A event and a B event arrive, at the time the last of the two
events arrive:

A and B

This pattern matches on any sequence of an A event followed by a B event and then a C event
followed by a D event, or a C event followed by a D and an A event followed by a B event:

(A->B) and (C -> D)

Note that in an and pattern expression it is not possible to correlate events based on event property
values. For example, this is an invalid pattern:

// This is NOT valid
a=A and B(id = a.id)

The above expression is invalid as it relies on the order of arrival of events, however in an and
expression the order of events is not specified and events fulfill an and condition in any order. The
above expression can be changed to use the followed-by operator:

// This is valid

a=A -> B(id = a.id)

/1 anot her exanple using 'and'...

a=A -> (B(id = a.id) and C(id = a.id))

Consider a pattern that looks for the same event:

277

Chapter 7. EPL Reference: Pat...

A and A
The pattern above fires when a single A event arrives. The first arriving A event triggers a state
transition in both the left and the right hand side expression.

In order to match after two A events arrive in any order, there are two options to express this
pattern. The followed-by operator is one option and the repeat operator is the second option, as
the next two patterns show:

A->A
/Il ... or
[2] A

7.5.6. Or

Similar to the Java “||” operator the or operator requires either one of the expressions to turn true
before the whole expression turns true.

Look for either an A event or a B event. As always, A and B can itself be nested expressions

as well.

A or B

Detect all stock ticks that are either above or below a threshold.

every (StockTick(synmbol="1BM, price < 100) or StockTick(synbol="1BM, price >
105)

7.5.7. Not

The not operator negates the truth value of an expression. Pattern expressions prefixed with not
are automatically defaulted to true upon start, and turn permanently false when the expression
within turns true.

The not operator is generally used in conjunction with the and operator or subexpressions as the
below examples show.

This pattern matches only when an A event is encountered followed by a B event but only if no
C event was encountered before either an A event and a B event, counting from the time the
pattern is started:

278

Followed-by

(A ->B) and not C

Assume we'd like to detect when an A event is followed by a D event, without any B or C events
between the A and D events:

A -> (D and not (B or Q)

It may help your understanding to discuss a pattern that uses the or operator and the not operator
together:

a=A -> (b=B or not QO

In the pattern above, when an A event arrives then the engine starts the subexpression B or not
C. As soon as the subexpression starts, the not operator turns to true. The or expression turns
true and thus your listener receives an invocation providing the A event in the property 'a’. The
subexpression does not end and continues listening for B and C events. Upon arrival of a B event
your listener receives a second invocation. If instead a C event arrives, the not turns permanently
false however that does not affect the or operator (but would end an and operator).

To test for absence of an event, use tiner:interval together with and not operators. The
sample statement reports each 10-second interval during which no A event occurred:

every (tiner:interval (10 sec) and not A)

In many cases the not operator, when used alone, does not make sense. The following example
is invalid and will log a warning when the engine is started:

/'l not a sensible pattern
(not a=A) -> B(id=a.id)

7.5.8. Followed-by

The followed by - > operator specifies that first the left hand expression must turn true and only
then is the right hand expression evaluated for matching events.

Look for an A event and if encountered, look for a B event. As always, A and B can itself be nested
event pattern expressions.

279

Chapter 7. EPL Reference: Pat...

This is a pattern that fires when 2 status events indicating an error occur one after the other.

St at usEvent (status=' ERROR) -> Stat usEvent (status=' ERROR)

A pattern that takes all A events that are not followed by a B event within 5 minutes:

every A -> (tinmer:interval (5 mn) and not B)

A pattern that takes all A events that are not preceded by B within 5 minutes:

every (timer:interval (5 min) and not B -> A)

7.5.8.1. Limiting Sub-Expression Count

The followed-by - > operator can optionally be provided with an expression that limits the number
of sub-expression instances of the right-hand side pattern sub-expression.

The synopsis for the followed-by operator with limiting expression is:
| hs_expression -[linmit_expression]> rhs_expression

Each time the Ihs_expression pattern sub-expression turns true the pattern engine starts a new
rhs_expression pattern sub-expression. The limit_expression returns an integer value that defines
a maximum number of pattern sub-expression instances that can simultaneously be present for
the same rhs_expression.

When the limit is reached the pattern engine issues a
com espertech. esper. client. hook. Condi ti onPatt er nSubexpr essi onMax notification object
to any condition handlers registered with the engine as described in Section 15.12, “Condition
Handling” and does not start a new pattern sub-expression instance for the right-hand side pattern
sub-expression.

For example, consider the following pattern which returns for every A event the first B event that
matches the i d field value of the A event:

every a=A -> b=B(id = a.id)

280

Followed-by

In the above pattern, every time an A event arrives (lhs) the pattern engine starts a new pattern
sub-expression (rhs) consisting of a filter for the first B event that has the same value for the i d
field as the A event.

In some cases your application may want to limit the number of right-hand side sub-expressions
because of memory concerns or to reduce output. You may add a limit expression returning an
integer value as part of the operator.

This example employs the followed-by operator with a limit expression to indicate that maximally
2 filters for B events (the right-hand side pattern sub-expression) may be active at the same time:

every a=A -[2]> b=B(id = a.id)

Note that the limit expression in the example above is not a limit per value of i d field, but a limit
counting all right-hand side pattern sub-expression instances that are managed by that followed-
by sub-expression instance.

If your followed-by operator lists multiple sub-expressions with limits, each limit applies to the
immediate right-hand side. For example, the pattern below limits the number of filters for B events
to 2 and the number of filters for C events to 3:

every a=A -[2]> b=B(id = a.id) -[3]> c=C(id = a.id)

7.5.8.2. Limiting Engine-wide Sub-Expression Count

Esper allows setting a maximum number of pattern sub-expressions in the configuration,
applicable to all followed-by operators of all statements.

If your application has patterns in multiple EPL statements and all such patterns should count
towards a total number of pattern sub-expression counts, you may consider setting a maximum
number of pattern sub-expression instances, engine-wide, via the configuration described in
Section 16.4.15.1, “Followed-By Operator Maximum Subexpression Count”.

When the limit is reached the pattern engine issues a notification object to any condition handlers
registered with the engine as described in Section 15.12, “Condition Handling”. Depending on your
configuration the engine can prevent the start of a new pattern sub-expression instance for the
right-hand side pattern sub-expression, until pattern sub-expression instances end or statements
are stopped or destroyed.

The notification object issued to condition handlers is an instance
of com espertech. esper.client.hook. ConditionPatternEngi neSubexpr essi onMax. The
notification object contains information which statement triggered the limit and the pattern counts
per statement for all statements.

281

Chapter 7. EPL Reference: Pat...

For information on static and runtime configuration, please consult Section 16.4.15.1, “Followed-
By Operator Maximum Subexpression Count”. The limit can be changed and disabled or enabled
at runtime via the runtime configuration API.

7.5.9. Pattern Guards

Guards are where-conditions that control the lifecycle of subexpressions. Custom guard functions
can also be used. The section Chapter 18, Integration and Extension outlines guard plug-in
development in greater detail.

The pattern guard where-condition has no relationship to the EPL wher e clause that filters sets
of events.

Take as an example the following pattern expression:

MyEvent where tinmer:wi thin(10 sec)

In this pattern the ti mer: wi t hi n guard controls the subexpression that is looking for MyEvent
events. The guard terminates the subexpression looking for MyEvent events after 10 seconds
after start of the pattern. Thus the pattern alerts only once when the first MyEvent event arrives
within 10 seconds after start of the pattern.

The every keyword requires additional discussion since it also controls subexpression lifecycle.
Let's add the ever y keyword to the example pattern:

every MyEvent where timer:within(10 sec)

The difference to the pattern without every is that each MyEvent event that arrives now starts a
new subexpression, including a new guard, looking for a further MyEvent event. The result is that,
when a MyEvent arrives within 10 seconds after pattern start, the pattern execution will look for
the next MyEvent event to arrive within 10 seconds after the previous one.

By placing parentheses around the ever y keyword and its subexpression, we can have the every
under the control of the guard:

(every MyEvent) where tiner:w thin(10 sec)

In the pattern above, the guard terminates the subexpression looking for all MyEvent events after
10 seconds after start of the pattern. This pattern alerts for all MyEvent events arriving within 10
seconds after pattern start, and then stops.

Guards do not change the truth value of the subexpression of which the guard controls the
lifecycle, and therefore do not cause a restart of the subexpression when used with the every

282

Pattern Guards

operator. For example, the next pattern stops returning matches after 10 seconds unless a match
occurred within 10 seconds after pattern start:

every ((A and B) where tinmer:within(10 sec))

7.5.9.1. The tiner: within Pattern Guard

Thetimer:wit hi n guard acts like a stopwatch. If the associated pattern expression does not turn
true within the specified time period it is stopped and permanently false.

The synopsis for ti mer: wi t hi n is as follows:

timer:wthin(tinme_period_expression)

The time_period_expression is a time period (see Section 5.2.1, “Specifying Time Periods”) or an
expression providing a number of seconds as a parameter. The interval expression may contain
references to properties of prior events in the same pattern as well as variables and substitution
parameters.

This pattern fires if an A event arrives within 5 seconds after statement creation.

A where tinmer:within (5 seconds)

This pattern fires for all A events that arrive within 5 seconds. After 5 seconds, this pattern stops
matching even if more A events arrive.

(every A) where timer:within (5 seconds)

This pattern matches for any one A or B event in the next 5 seconds.

(Aor B) where timer:within (5 sec)

This pattern matches for any 2 errors that happen 10 seconds within each other.

every (StatusEvent (st at us=' ERROR) -> StatusEvent (status=' ERROR) wher e
timer:within (10 sec))

The following guards are equivalent:

283

Chapter 7. EPL Reference: Pat...

timer:within(2 mnutes 5 seconds)
tinmer:w thin(125 sec)
tinmer:wthin(125)

7.5.9.2. The tiner: vt hi nmax Pattern Guard

The ti ner: wit hi nmax guard is similar to the ti mer : wi t hi n guard and acts as a stopwatch that
additionally has a counter that counts the number of matches. It ends the subexpression when
either the stopwatch ends or the match counter maximum value is reached.

The synopsis for t i mer : wi t hi nmax is as follows:

timer:wthi nmax(tine_period_expressi on, nmax_count _expression)

The time_period_expression is a time period (see Section 5.2.1, “Specifying Time Periods”) or an
expression providing a number of seconds.

The max_count_expression provides the maximum number of matches before the guard ends
the subexpression.

Each parameter expression may also contain references to properties of prior events in the same
pattern as well as variables and substitution parameters.

This pattern fires for every A event that arrives within 5 seconds after statement creation but only
up to the first two A events:

(every A) where timer:w thinmax (5 seconds, 2)

If the result of the max_count_expression is 1, the guard ends the subexpression after the first
match and indicates the first match.

This pattern fires for the first A event that arrives within 5 seconds after statement creation:

(every A) where timer:w thinmax (5 seconds, 1)

If the result of the max_count_expression is zero, the guard ends the subexpression upon the first

match and does no indicate any matches.

This example receives every A event followed by every B event (as each B event arrives) until
the 5-second subexpression timer ends or X number of B events have arrived (assume X was
declared as a variable):

284

Pattern Guards

every A -> (every B) where tinmer:wthinmax (5 seconds, X)

7.5.9.3. The w1 e Pattern Guard

The whil e guard is followed by an expression that the engine evaluates for every match
reported by the guard pattern sub-expression. When the expression returns false the pattern sub-
expression ends.

The synopsis for whi | e is as follows:

whi | e (guard_expression)

The guard_expression is any expression that returns a boolean true or false. The expression
may contain references to properties of prior events in the same pattern as well as variables and
substitution parameters.

Each time the subexpression indicates a match, the engine evaluates guard_expression and if
true, passes the match and when false, ends the subexpression.

This pattern fires for every A event until an A event arrives that has a value of zero or less for its
si ze property (assuming A events have an integer si ze property).

(every a=A) while (a.size > 0)

Note the parenthesis around the every subexpression. They ensure that, following precedence
rules, the guard applies to the every operator as well.

7.5.9.4. Guard Time Interval Expressions

The timer:withinandtimer:wthi nmax guards may be parameterized by an expression that
contains one or more references to properties of prior events in the same pattern.

As a simple example, this pattern matches every A event followed by a B event that arrives within
del t a seconds after the A event:

every a=A -> b=B where tinmer:within (a.delta seconds)

Herein A event is assumed to have a del t a property that provides the number of seconds to wait
for B events. Each arriving A event may have a different value for del t a and the guard is therefore
parameterized dynamically based on the prior A event received.

When multiple events accumulate, for example when using the match-until or repeat pattern
elements, an index must be provided:

285

Chapter 7. EPL Reference: Pat...

[2] a=A -> b=B where timer:within (a[0].delta + a[1].delta)

The above pattern matches after 2 A events arrive followed by a B event within a time interval
after the A event that is defined by the sum of the del t a properties of both A events.

7.5.9.5. Combining Guard Expressions

You can combine guard expression by using parenthesis around each subexpression.
The below pattern matches for each A event while A events of size greater then zero arrive and

only within the first 20 seconds:

((every a=A) while (a.size > 0)) where tiner:wthin(20)

7.6. Pattern Atoms

7.6.1. Filter Atoms

Filter atoms have been described in section Section 7.4, “Filter Expressions In Patterns”.

7.6.2. Observer Atoms Overview

Observers observe time-based events for which the thread-of-control originates by the engine
timer or external timer event. Custom observers can also be developed that observe timer events
or other engine-external application events such as a file-exists check. The section Chapter 18,
Integration and Extension outlines observer plug-in development in greater detail.

7.6.3. Interval (tiner:interval)

The tiner:interval pattern observer waits for the defined time before the truth value of the
observer turns true. The observer takes a time period (see Section 5.2.1, “Specifying Time
Periods”) as a parameter, or an expression that returns the number of seconds.

The observer may be parameterized by an expression that contains one or more references
to properties of prior events in the same pattern, or may also reference variables, substitution
parameters or any other expression returning a numeric value.

After an A event arrived wait 10 seconds then indicate that the pattern matches.

A ->tinmer:interval (10 seconds)

The pattern below fires every 20 seconds.

286

Crontab (timer:at)

every timer:interval (20 sec)

The next example pattern fires for every A event that is not followed by a B event within 60 seconds
after the A event arrived. The B event must have the same "id" property value as the A event.

every a=A -> (tinmer:interval (60 sec) and not B(id=a.id))
Consider the next example, which assumes that the A event has a property wai t ti ne:
every a=A -> (tinmer:interval (a.waittinme + 2) and not B(id=a.id))

In the above pattern the logic waits for 2 seconds plus the number of seconds provided by the
value of the wai t t i me property of the A event.

7.6.4. Crontab (tiner:at)

Theti mer: at pattern observer is similar in function to the Unix “crontab” command. At a specified
time the expression turns true. The at operator can also be made to pattern match at regular
intervals by using an every operator in front of the ti mer: at operator.

The syntax is: ti mer:at (minutes, hours, days of nonth, nonths, days of week [,
seconds [, time zone]]).

The value for seconds and time zone is optional. Each element allows wildcard * values. Ranges
can be specified by means of lower bounds then a colon *’ then the upper bound. The division
operator */ x can be used to specify that every x;, value is valid. Combinations of these operators
can be used by placing these into square brackets ([]).

The ti ner: at observer may also be parameterized by an expression that contains one or more
references to properties of prior events in the same pattern, or may also reference variables,
substitution parameters or any other expression returning a numeric value. The frequency division
operator */ x and parameters lists within brackets ([]) are an exception: they may only contain
variables, substitution parameters or numeric values.

This expression pattern matches every 5 minutes past the hour.
every tiner:at(5, *, *, *, *)

The below ti mer: at pattern matches every 15 minutes from 8am to 5:45pm (hours 8 to 17 at
0, 15, 30 and 45 minutes past the hour) on even numbered days of the month as well as on the
first day of the month.

287

Chapter 7. EPL Reference: Pat...

tinmer:at (*/15, 8:17, [*/2, 1], *, *)

The below table outlines the fields, valid values and keywords available for each field:

Table 7.5. Crontab Fields

Field Name Mandatory? Allowed Values Additional Keywords
Minutes yes 0-59
Hours yes 0-23
Days Of Month yes 1-31 last, weekday, lastweekday
Months yes 1-12
Days Of Week yes 0 (Sunday) - 6 |last
(Saturday)
Seconds no (required if 0-59
specifying a time
zone)
Time Zone no any string (not
validated, see
TimeZone
javadoc)

The keyword | ast used in the days-of-month field means the last day of the month (current
month). To specify the last day of another month, a value for the month field has to be provided.
For example: tiner:at(*, *, last,2,*) isthe last day of February.

The | ast keyword in the day-of-week field by itself simply means Saturday. If used in the day-
of-week field after another value, it means "the last xxx day of the month" - for example "5 last"
means "the last Friday of the month". So the last Friday of the current month will be: ti mer: at (*,
*, %, * 5 |ast).Andthe last Friday of June: tiner:at(*, *, *, 6, 5 last).

The keyword weekday is used to specify the weekday (Monday-Friday) nearest the given day.
Variant could include month like in: ti mer:at (*, *, 30 weekday, 9, *) which for year 2007
is Friday September 28th (no jump over month).

The keyword | ast weekday is a combination of two parameters, the | ast and the weekday
keywords. A typical example could be: timer:at(*, *, *, |astweekday, 9, *) which will
define Friday September 28th (example year is 2007).

The time zone is a string-type value that specifies the time zone of the schedule. You must specify
a value for seconds when specifying a time zone. Esper relies on the j ava. util . Ti meZone to
interpret the time zone value. Note that Ti neZone does not validate time zone strings.

The following ti mer : at pattern matches at 5:00 pm Pacific Standard Time (PST):

288

Schedule (timer:schedule)

timer:at (0, 17, *, *, * * ‘'PST)

Any expression may occur among the parameters. This example invokes a user-defined function
conput eHour to return an hour:

tinmer:at (0, conputeHour(), *, *, *, *)

The following restrictions apply to crontab parameters:

« ltis not possible to specify both Days Of Month and Days Of Week.

7.6.4.1. timer:at and the every Operator

When using ti mer: at with the every operator the crontab-like timer computes the next time at
which the timer should fire based on the specification and the current time. When using every,
the current time is the time the timer fired or the statement start time if the timer has not fired once.

For example, this pattern fires every 1 minute starting at 1:00pm and ending at 1:59pm, every day:
every timer:at(*, 13, *, *, *)

Assume the above statement gets started at 1:05pm and 20 seconds. In such case the above
pattern fires every 1 minute starting at 1:06pm and ending at 1:59pm for that day and 1:00pm to
1:59pm every following day.

To get the pattern to fire only once at 1pm every day, explicitly specify the minute to start. The
pattern below fires every day at 1:00pm:

every timer:at(0, 13, *, *, *)

By specifying a second resolution the timer can be made to fire every second, for instance:

every timer:at(*, *, *, * * *)

7.6.5. Schedule (tiner: schedul e)

The ti mer: schedul e observer is a flexible observer for scheduling.

The observer implements relevant parts of the ISO 8601 specification however it is not necessary
to use ISO 8601 formats. The ISO 8601 standard is an international standard covering the

289

Chapter 7. EPL Reference: Pat...

exchange of date and time-related data. The standard specifies a date format, a format for time
periods and a format for specifying the number of repetitions. Please find more information on
ISO 8601 at Wikipedia [http://en.wikipedia.org/wiki/ISO_8601].

The observer takes the following named parameters:

Table 7.6. Timer Schedule Parameters

Name Description

i so An expression returning a string-type 1SO 8601
formatted date, time period and/or number of
repetitions.

repetitions An expression returning a numeric value that

specifies a number of repetitions. Provide
a value of -1 for an unlimited number of
repetitions. If unspecified, the number of
repetitions is one.

date An expression returning a string-type ISO 8601
formatted date; The expression can also return
a long-type, Date-typed or Cal endar -typed
value.

peri od An expression returning a time period, see
Section 5.2.1, “Specifying Time Periods”

In summary, for example, the below pattern schedules two callbacks: The first callback 2008-03-01
at 13:00:00 UTC and the second callback on 2009-05-11 at 15:30:00 UTC.

select * from pattern[every tiner:schedule(iso: 'R2/2008-03-01T13:00:00z/
P1Y2MLODT2H30M) |

The number of repetitions, date and period can be separated and do not have to be 1SO 8601
strings, allowing each part to be an own expression.

This example specifies separate expressions. The equivalent schedule to the above example is:

sel ect * from pattern[every timer:schedul e(repetitions: 2, dat e:
' 2008- 03-01T13: 00: 00Z', period: 1 year 2 nonth 10 days 2 hours 30 minutes)]

When providing the i so parameter, it must be the only parameter. The repeti ti ons parameter
is only allowed in conjunction with other parameters.

290

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Schedule (timer:schedule)

7.6.5.1. Specifying ISO8601 Dates, Periods and Repetition

7.6.5.1.1. Specifying Dates

The complete document for ISO 8601, the international standard for the representation of dates
and times, can be found at http://www.w3.0rg/TR/NOTE-datetime.

The supported 1ISO 8601 date formats are:

Table 7.7.1SO 8601 Period Examples

Description Format Example
Complete date plus hours, minutes and YYYY- M} 1997-07- 16T19: 20: 30Z
seconds (zero milliseconds): DDThh: nm ssTZD
(i.e. GMT+00:00,
UTC)

1997-07-16T19: 20: 30+01: 00
(i.e. GMT+01:00)
1997-07-16T19: 20: 30

(i.e. local time zone)

Complete date plus hours, minutes, seconds YYYY- M 1997-07- 16T19: 20: 30. 45Z
and a decimal fraction of a second DDThh: mm ss. sTZD
(i.e. GMT+00:00,
UTC)

1997-07-16T19: 20: 30. 45+01: 00
(i.e. GMT+01:00)
1997-07-16T19: 20: 30. 45

(i.e. local time zone)

7.6.5.1.2. Specifying Periods
In ISO 8601, periods are specified by a P and an optional year, month, week and day count. If

there is a time part, add T and optionally provide the hour, minute and seconds. The format does
not have any whitespace. The synopsis is:

P[nY] [nM [nW [nD [T [nH [nM [nS]]

The Y stands for years, the Mfor month as well as minutes, the wfor weeks and the D for days.
The H stands for hours and the S means seconds.

291

http://www.w3.org/TR/NOTE-datetime

Chapter 7. EPL Reference: Pat...

Table 7.8. 1SO 8601 Period Examples

Example Description

P10M 10 months
PT10M 10 minutes
P1Y3M12D 1 year, 3 month and 12 days

P10DT5M 10 days and 5 minutes

P1Y2M3DT4H5M§8ar, 2 month, 3 days, 4 hours, 5 minutes, 6 seconds

7.6.5.1.3. Specifying Repetitions

In 1ISO 8601, repetition is specified by an Rand an optional number of repetitions without any white
space. The synopsis is:

R [nn]

For example R5 means 5 repetitions, and just R means unlimited repetitions.

7.6.5.2. Scheduling a callback to occur for a given date (non-
repeating)

To instruct the engine to observe a date, provide a date to the observer. When time advances to
the specified date, the pattern subexpression fires.

For example, this pattern fires once when time reaches 2012-10-01 at 5:52:00 (UTC):

timer:schedul e(iso:'2012-10-01T05: 52: 00Z')

This equivalent pattern specifies separate expressions:

every timer:schedul e(date: '2012-10-01T05: 52: 00Z")

When the observer fires, the pattern subexpression becomes permanently false and the engine
does not restart the observer.

If the provided date is a past date as compared to engine time, the pattern subexpression becomes
permanently false on start.

292

Schedule (timer:schedule)

7.6.5.3. Scheduling a callback to occur after a given period (non-
repeating)

To instruct the engine to observe a period starting from the current engine time, provide a
period. When time advances to the current engine time plus the specified period, the pattern
subexpression fires.

Assuming the current engine time is 2012-10-01 at 5:52:00 (UTC), this pattern fires once when
time reaches 5:53:00:

timer:schedul e(iso:' PT1IM)

This equivalent pattern specifies separate expressions:

every tinmer:schedul e(period: 1 mnute)

When the observer fires, the pattern subexpression becomes permanently false and the engine
does not restart the observer.

7.6.5.4. Scheduling a callback to occur after a given date and period
(non-repeating)

To instruct the engine to observe a period starting from a given date, provide a date and a period.
When time advances to the date plus the specified period, the pattern subexpression fires.

Assuming the current engine time is 5:52:00 (UTC), this pattern fires once when time reaches
2012-10-01 at 5:53:00:

timer:schedul e(iso:'2012-10-01T05: 52: 00Z/ PT1M)

This equivalent pattern specifies separate expressions:

every timer:schedul e(date: '2012-10-01T05:52: 00Z', period: 1 mnute)

When the observer fires, the pattern subexpression becomes permanently false and the engine
does not restart the observer.

293

Chapter 7. EPL Reference: Pat...

7.6.5.5. Scheduling a callback to occur periodically (repeating)

To instruct the engine to observe a period starting from the current engine time and repeatedly
thereafter anchored to current engine time, provide a number of repetitions and a period (see
synopsis provided earlier), like this:

repetitions/period

timer:schedul e(iso: 'R2/PT1IM)

When time advances to the current engine time plus the specified period, the pattern
subexpression fires for the first time. Repeatedly when time advances to the current engine time
plus a multiple of the specified period, the pattern subexpression fires, up to the number of
repetitions specified (if any).

This pattern specifies a repetition of two. Assuming the current engine time is 2012-10-01 at
5:52:00 (UTC), it fires when time reaches 5:53:00 and again when time reaches 5:54:00:

every timer:schedul e(iso: 'R2/PT1IM)

This equivalent pattern specifies separate expressions:

every timer:schedul e(repetitions: 2, period: 1 mnute)

All schedule computations are relative to (i.e. anchored to) current engine time at observer start.
Once the number of repetitions is reached relative to the current engine time at observer start, the
pattern subexpression becomes permanently false and the engine does not restart the observer.

o

/ Note

Please specify the every operator for repeating schedules.

7.6.5.6. Scheduling a callback to occur periodically starting from a
given date (repeating)

To instruct the engine to observe a period starting from a given date and repeatedly thereafter
anchored to the provide date, provide a number of repetitions and a date and a period (see
synopsis provided earlier), like this:

repetitions/date/period

294

Schedule (timer:schedule)

When time advances to the date, the pattern subexpression fires for the first time. You may
specify a date older than current engine time as an anchor. Repeatedly when time advances to
the date plus a multiple of the specified period, the pattern subexpression fires, up to the number
of repetitions specified (if any).

This pattern specifies a repetition of two. The pattern fires when time reaches 2012-10-01 at
5:52:00 (UTC) and again when time reaches 5:53:00.
every tinmer:schedul e(iso: 'R2/2012-10-01T05: 52: 00Z/ PT1M)

This equivalent pattern specifies separate expressions:

every tinmer:schedul e(repetitions: 2, date:'2012-10-01T05:52:00Z', period: 1
m nut e)

All schedule computations are relative to (i.e. anchored to) the provided date. Once the number
of repetitions is reached relative to the provided date, the pattern subexpression becomes
permanently false and the engine does not restart the observer.

7 Note
’

Please specify the every operator for repeating schedules.

-

7.6.5.7. Additional Usage Examples
The pattern below outputs every MyEvent event after the MyEvent arrived and upon the next round

15 seconds:

sel ect * from pattern[every e=M/Event -> timer:schedul e(i so:
' R/ 1980- 01- 01T0O0: 00: 00Z/ PT15S']

Assuming a MyEvent event arrives on 2012-10-01 at 5:51:07 the output for that event occurs at
5:51:15.

All parameters can be expressions. The dat e parameter could, for example, be used with
current _ti mestanp to compute a schedule:

select * frompattern[date: current_tinestanp.w thTine(9, 0, 0, 0)]

The above statement fires only at 9am and not after 9am on the same day (one repetition).

295

Chapter 7. EPL Reference: Pat...

7.6.5.8. Samples With Equivalent EPL

The following EPL is equivalent:

select * from pattern[every tiner:schedule(iso: 'R2/2008-03-01T13:00:00z/
P1Y2MLODT2H30M)]

select * from pattern[every (tiner:schedule(iso: '2008-03-01T13:00:00Z') or
timer:schedul e(iso: '2009-05-11T15: 30: 002"))]

select * from pattern[every (tinmer:schedule(iso: '2008-03-01T13:00:00Z') or
timer: schedul e(iso: '2008-03-01T13: 00: 00Z/ P1Y2MLODT2H30M))]

7.6.5.9. Implementation Notes

Your environment should have the JAXB date parser available. The engine uses
javax. xml . dat at ype. Dat at ypeFact ory. new nst ance() . newXM.G egor i anCal endar (dat eText) .t oG egori an(
for date parsing.

296

Chapter 8.

Chapter 8. EPL Reference: Match
Recognize

8.1. Overview

Using match recognize patterns are defined in the familiar syntax of regular expressions.

The match recognize syntax presents an alternative way to specify pattern detection as compared
to the EPL pattern language described in the previous chapter. A comparison of match recognize
and EPL patterns is below.

The match recognize syntax is a proposal for incorporation into the SQL standard. It is
thus subject to change as the standard evolves and finalizes (it has not finalized yet).
Please consult row-pattern-recogniton-11-public [http://dist.codehaus.org/esper//row-pattern-
recogniton-11-public.pdf] for further information.

You may be familiar with regular expressions in the context of finding text of interest in a string,
such as particular characters, words, or patterns of characters. Instead of matching characters,
match recognize matches sequences of events of interest.

Esper can apply match-recognize patterns in real-time upon arrival of new events in a stream of
events (also termed incrementally, streaming or continuous). Esper can also match patterns on-
demand via the i t er at or pull-API, if specifying a named window or data window on a stream
(tables cannot be used in the f r omclause with match-recognize).

8.2. Comparison of Match Recognize and EPL Patterns
This section compares pattern detection via match recognize and via the EPL pattern language.

Table 8.1. Comparison Match Recognize to EPL Patterns

Category EPL Patterns Match Recognize
Purpose Pattern detection in Same.
sequences of events.
Standards Not standardized, similar to Proposal for incorporation into

Rapide pattern language.

the SQL standard.

Real-time Processing Yes. Yes.
On-Demand query via Iterator | No. Yes.
Language Nestable expressions Regular expression consisting

consisting of boolean AND,
OR, NOT and time or arrival-

of variables each representing
conditions on events.

297

http://dist.codehaus.org/esper//row-pattern-recogniton-11-public.pdf
http://dist.codehaus.org/esper//row-pattern-recogniton-11-public.pdf
http://dist.codehaus.org/esper//row-pattern-recogniton-11-public.pdf

Chapter 8. EPL Reference: Mat...

Category EPL Patterns Match Recognize
based constructs such as - >
(followed-by), timer:within
andtiner:interval.
Event Types An EPL pattern may react The input is a single type of

to multiple different types of
events.

event (unless used with variant
streams).

Data Window Interaction

Disconnected, i.e. an event
leaving a data window does
not change pattern state.

event
window

Connected, i.e.
leaving a data
removes the event from match
selection.

an

Semantic Evaluation

Truth-value based: A EPL
pattern such as (A and B)
can fire when a single event
arrives that satisfies both A
and B conditions.

Sequence-based: A regular
expression (A B) requires at
least two events to match.

Time Relationship Between
Events

The timer:wthin,
timer:interval and NOT
operator can expressively

search for absence of events
or other more complex timing
relationships.

Some support for detecting
absence of events using the
i nterval clause.

Extensibility Custom pattern objects, user- User-defined functions,
defined functions. custom aggregation functions.

Memory Use Likely between 500 bytes to 2k Likely between 100 bytes to 1k
per open sequence, depends per open sequence, depends
on pattern. on pattern.

8.3. Syntax

The synopsis is as follows:

mat ch_recogni ze (

[partition by partition_expression [,

partition_expression] [,...]]

measures nmeasure_expression as col _nanme [, neasure_expression as col _nane
1 [,

[all matches]

[after match skip (past last row | to next row | to current row]
pattern (variable_regular_expr [, variable_regular_expr] [,...])

[interval tine_period [or term nated]]

[define wvariable as variable_condition [, variable

as vari abl e_condition]

)

[,...11]

298

Syntax Example

The mat ch_r ecogni ze keyword starts the match recognize definition and occurs right after the
fromclause in an EPL sel ect statement. It is followed by parenthesis that surround the match
recognize definition.

Partition by is optional and may be used to specify that events are to be partitioned by one
or more event properties or expressions. If there is no Partition by then all rows of the table
constitute a single partition. The regular expression applies to events in the same partition and
not across partitions.

The neasur es clause defines columns that contain expressions over the pattern variables. The
expressions can reference partition columns, singleton variables, aggregates as well as indexed
properties on the group variables. Each measure_expression expression must be followed by the
as keyword and a col_name column name.

The al | mat ches keywords are optional and instructs the engine to find all possible matches.
By default matches are ranked and the engine returns a single match following an algorithm to
eliminate duplicate matches, as described below. When specifying al | nat ches, matches may
overlap and may start at the same row.

The after match ski p keywords are optional and serve to determine the resumption point of
pattern matching after a match has been found. By default the behavior is after match skip
past |ast row. This means that after eliminating duplicate matches, the logic skips to resume
pattern matching at the next event after the last event of the current match.

The pat t er n component is used to specify a regular expression. The regular expression is built
from variable names, and may use quantifiers such as *, +, ?, *?, +?, ??, {repeti tion} and |
alteration (concatenation is indicated by the absence of any operator sign between two successive
items in a pattern).

With the optional i nt er val keyword, time period and or termni nat ed you can control how long
the engine should wait for further events to arrive that may be part of a matching event sequence,
before indicating a match (or matches) (not applicable to on-demand pattern matching).

Def i ne is optional and is used to specify the boolean condition(s) that define some or all variable
names that are declared in the pattern. A variable name does not require a definition and if there
is no definition, the default is a predicate that is always true. Such a variable name can be used
to match any row.

8.3.1. Syntax Example

For illustration, the examples in this chapter use the Tenper at ur eSensor Event event. Each event
has 3 properties: the i d property is a unique event id, the devi ce is a sensor device number
and the tenp property is a temperature reading. An event described as "i d=E1, devi ce=1,
t enp=100" is a Tenper at ur eSensor Event event with id "E1" for device 1 with a reading of 100.

This example statement looks for two Tenper at ur eSensor Event events from the same device,
directly following each other, that indicate a jump in temperature of 10 or more between the two
events:

299

Chapter 8. EPL Reference: Mat...

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
nmeasures Aid as a_id, B.id as b_id, Atenp as a_tenp, B.tenp as b_tenp
pattern (A B)
defi ne
B as Math.abs(B.temp - A tenp) >= 10

The partition by ensures that the regular expression applies to sequences of events from the
same device.

The neasur es clause provides a list of properties or expressions to be selected from matching
events. Each property name must be prefixed by the variable name.

In the pattern component the statement declares two variables: A and B. As a matter of
convention, variable names are uppercase characters.

The def i ne clause specifies no condition for variable A. This means that A defaults to true and
any event matches A. Therefore, the pattern can start at any event.

The pattern A B indicates to look for a pattern in which an event that fulfills the condition for
variable A is immediately followed by an event that fulfills the condition for variable B. A pattern
thus defines the sequence (or sequences) of conditions that must be met for the pattern to fire.

Below table is an example sequence of events and output of the pattern:

Table 8.2. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=50

2000 id=E2, device=1, temp=55

3000 id=E3, device=1, temp=60

4000 id=E4, device=1, temp=70 a id=E3,b_id=E4,a temp=60,b_temp=70
5000 id=E5, device=1, temp=85

6000 id=E6, device=1, temp=85

7000 id=E7, device=2, temp=100

At time 4000 when event with id E4 (or event E4 or just E4 for short) arrives the pattern matches
and produces an output event. Matching then skips past the last event of the current match (E4)
and begins at event E5 (the default skip clause is past last row). Therefore events E4 and E5 do
not constitute a match.

At time 3000, events E1 and E3 do not constitute a match as E3 does not immediately follow E,
since there is E2 in between.

300

Pattern and Pattern Operators

At time 7000, event E7 does not constitute a match as it is from device 2 and thereby not in the
same partition as prior events.

8.4. Pattern and Pattern Operators

The pat t er n specifies the pattern to be recognized in the ordered sequence of events in a partition
using regular expression syntax. Each variable name in a pattern corresponds to a boolean
condition, which is specified later using the def i ne component of the syntax. Thus the pattern
can be regarded as implicitly declaring one or more variable names; the definition of those variable
names appears later in the syntax. If a variable is not defined the variable defaults to true.

It is permitted for a variable nhame to occur more than once in a pattern, for example pattern
(ABA).

8.4.1. Operator Precedence
The operators at the top of this table take precedence over operators lower on the table.

Table 8.3. Match Recognize Regular Expression Operator Precedence

Precedence¢ Operator Description Example
1 Grouping 0

(A B)
2 Quantifiers * + ?2 {repetition}

A* B+ C?
3 Concatenation (no operator)

A B
4 Alternation

A| B

If you are not sure about the precedence, please consider placing parenthesis () around your
groups. Parenthesis can also help make expressions easier to read and understand.

8.4.2. Concatenation

The concatenation is indicated by the absence of any operator sign between two successive items
in a pattern.

In below pattern the two items A and B have no operator between them. The pattern matches
for any event immediately followed by an event from the same device that indicates a jump in
temperature over 10:

sel ect * from Tenper at ureSensor Event

301

Chapter 8. EPL Reference: Mat...

mat ch_recogni ze (
partition by device
measures A.id as a_id, B.id as b_id, Atenp as a_tenp, B.tenp as b_tenp
pattern (A B)
defi ne
B as Math.abs(B.temp - A tenp) >= 10

Please see the Section 8.3.1, “Syntax Example” for a sample event sequence.

8.4.3. Alternation

The alternation operator is a vertical bar (|).

The alternation operator has the lowest precedence of all operators. It tells the engine to match
either everything to the left of the vertical bar, or everything to the right of the vertical bar. If you
want to limit the reach of the alternation, you will need to use parentheses for grouping.

This example pattern looks for a sequence of an event with a temperature over 50 followed
immediately by either an event with a temperature less than 45 or an event that indicates the
temperature jumped by 10 (all for the same device):

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
nmeasures Aid as a_id, B.id as b_id, Cid as c.id
pattern (A (B | ©)
defi ne
A as A tenmp >= 50,
B as B.tenp <= 45,
C as Math.abs(C. tenp - A tenp) >= 10)

Below table is an example sequence of events and output of the pattern:

Table 8.4. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=50

2000 id=E2, device=1, temp=45 a_id=E1, b_id=E2, c_id=null
3000 id=E3, device=1, temp=46

4000 id=E4, device=1, temp=48

5000 id=ED5, device=1, temp=50

6000 id=E6, device=1, temp=60 a_id=E5, b _id =null, c_id=E6

302

Quantifiers Overview

8.4.4. Quantifiers Overview

Quantifiers are postfix operators with the following choices:

Table 8.5. Quantifiers

Quantifier Meaning

* Zero or more matches (greedy).
+ One or more matches (greedy).

? Zero or one match (greedy).

*? Zero or more matches (reluctant).
+7? One or more matches (reluctant).
?? Zero or one match (reluctant).

Quantifiers that control the number of repetitions are:

Table 8.6. Quantifiers

Quantifier Meaning

{n} Exactly n matches.

{n,} n or more matches.

{n, m} Between n and m matches (inclusive).
{,m} Between zero and m matches (inclusive).

Repetition quantifiers can be combined with other quantifiers and grouping. For example A?{ 2}
or (A B){2} are valid.

8.4.5. Permutations

To detect patterns that consist of a permutation of variables you may use
mat ch_r ecogni ze_per nut e. Itis possible to express a permutation as alternations but it becomes
clumsy when many variables are involved. For example, if all permutations of three variables A B
C are needed we could expressitas: (ABC|ACB|BAC|BCA|CAB]|CBA).

You may use mat ch_recogni ze_pernut e followed by a comma-separated list of variables,
grouping, alternations or concatenations.

The following table outlines sample equivalent permutations.

Table 8.7. Equivalent Pattern Expressions

Pattern Equivalent

match_recognize_permute(A) A

match_recognize_permute(A,B) (A BIBA)

303

Chapter 8. EPL Reference: Mat...

Pattern Equivalent

match_recognize_permute(A,B,C) ABCIACBIBACIBCA|ICABICBA
match_recognize_permute((A B), C) (AB)CIC (AB)

A match_recognize_permute(B,C) D A(BC|ICB)D
match_recognize_permute(A, A (B CICB)|(BC|ICB)A

match_recognize_permute(B, C))

This sample pattern looks for either an event with temperature less than 100 and then an event
with temperature greater or equal to 100, or an event with temperature greater or equal to 100
and then an event with temperature less than 100.

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
measures Aid as a_id, B.id as b_id
pattern (match_recogni ze_pernute(A, B))
defi ne
A as A tenp < 100,
B as B.tenmp >= 100)

An example sequence of events that matches the pattern above is:

Table 8.8. Example

Arrival Time Tuple Output Event (if any)
1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100 a id=El,b id=E2
3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=99 a id=E4,b id=ES3
5000 id=E5, device=1, temp=98

8.4.6. Variables Can be Singleton or Group

A singleton variable is a variable in a pattern that does not have a quantifier or has a zero-or-one
quantifier (? or ??) and occurs only once in the pattern (except with alteration). In the measur es
clause a singleton variable can be selected as:

vari abl eNane. propert yNane

Variables with a zero-or-more or one-or-more quantifier, or variables that occur multiple places in
a pattern (except when using alteration), may match multiple events and are group variables. In
the measur es clause a group variable must be selected either by providing an index or via any of
the aggregation functions, such as first, | ast, count and sumt

304

Eliminating Duplicate Matches

vari abl eNanme[i ndex] . propert yName

| ast (vari abl eNane. pr opert yNane)

Enumeration methods can also be applied to group variables. An example is provided in
Section 11.4.11, “Match-Recognize Group Variable”.

Please find examples of singleton and group variables and example measur es and def i ne clauses
below.

8.4.6.1. Additional Aggregation Functions

For group variables all existing aggregation functions can be used and in addition the following
aggregation functions may be used (nmeasur es-clause only):

Table 8.9. Syntax and results of aggregate functions

Aggregate Function Result

first([all|distinct] expression) ‘ Returns the first value.

last([all|distinct] expression) ‘ Returns the last value.

8.4.7. Eliminating Duplicate Matches

The execution of match recognize is continuous and real-time by default. This means that every
arriving event, or batch of events if using batching, evaluates against the pattern and matches
are immediately indicated. Elimination of duplicate matches occurs between all matches of the
arriving events (or batch of events) at a given time.

As an alternative, and if your application does not require continuous pattern evaluation, you may
usethei t er at or APIto perform on-demand matching of the pattern. For the purpose of indicating
to the engine to not generate continuous results, specify the @i nt (' iterate_only') hint.

When using one-or-more, zero-or-more or zero-or-one quantifiers (?, +, *, ?2?, +?, *?), the
output of the real-time continuous query can differ from the output of the on-demand i t er at or
execution: The continuous query will output a match (or multiple matches) as soon as matches are
detected at a given time upon arrival of events (not knowing what further events may arrive). The
on-demand execution, since it knows all possible events in advance, can determine the longest
match(es). Thus elimination of duplicate matches can lead to different results between real-time
and on-demand use.

If the al | mat ches keywords are specified, then all matches are returned as the result and no
elimination of duplicate matches as below occurs.

Otherwise matches to a pattern in a partition are ordered by preferment. Preferment is given to
matches based on the following priorities:

1. A match that begins at an earlier row is preferred over a match that begins at a later row.

305

Chapter 8. EPL Reference: Mat...

2. Of two matches matching a greedy quantifier, the longer match is preferred.
3. Of two matches matching a reluctant quantifier, the shorter match is preferred.

After ranking matches by preferment, matches are chosen as follows:

1. The first match by preferment is taken.

2. The pool of matches is reduced as follows based on the SKIP TO clause: If SKIP PAST LAST
ROW is specified, all matches that overlap the first match are discarded from the pool. If SKIP
TO NEXT ROW is specified, then all matches that overlap the first row of the first match are
discarded. If SKIP TO CURRENT ROW is specified, then no matches are discarded.

3. The first match by preferment of the ones remaining is taken.
4. Step 2 is repeated to remove more matches from the pool.

5. Steps 3 and 4 are repeated until there are no remaining matches in the pool.

8.4.8. Greedy Or Reluctant

Reluctant quantifiers are indicated by an additional question mark (*?, +?, ??,). Reluctant
quantifiers try to match as few rows as possible, whereas non-reluctant quantifiers are greedy and
try to match as many rows as possible.

Greedy and reluctant come into play only for match selection among multiple possible matches.
When specifying al | mat ches there is no difference between greedy and reluctant quantifiers.

Consider the below example. The conditions may overlap: an event with a temperature reading
of 105 and over matches both A and B conditions:

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
neasures Aid as a_id, B.id as b_id
pattern (A?? B?)
defi ne
A as A tenp >= 100
B as B.tenmp >= 105)

A sample sequence of events and pattern matches:

Table 8.10. Example

Arrival Time Tuple Output Event (if any)
1000 id=E1, device=1, temp=99

2000 id=E2, device=2, temp=106 a_id=null, b_id=E2
3000 id=E3, device=1, temp=100 a_id=E3, b_id=null

306

Quantifier - One Or More (+ and +7?)

As the ? qualifier on condition B is greedy, event E2 matches the pattern and is indicated as a B
event by the neasur e clause (and not as an A event therefore a_i d is null).

8.4.9. Quantifier - One Or More (+ and +?)

The one-or-more quantifier (+) must be matched one or more times by events. The operator is
greedy and the reluctant version is +?.

In the below example with pattern (A+ B+) the pattern consists of two variable names, A and
B, each of which is quantified with +, indicating that they must be matched one or more times.

The pattern looks for one or more events in which the temperature is over 100 followed by one
or more events indicating a higher temperature:

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
measures first(Aid) as first_a, last(Aid) as last_a, B[0].id as bO_id,
B[1].id as bl_id
pattern (A+ B+t)
defi ne
A as A tenp >= 100,
B as B.tenp > A tenp)

An example sequence of events that matches the pattern above is:

Table 8.11. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=101 first a = E2, last_a = E3, b0_id = E4, bl _id =
null

5000 id=E5, device=1, temp=102

Note that for continuous queries, there is no match that includes event E5 since after the pattern
matches for E4 the pattern skips to start fresh at E5 (by default skip clause). When performing on-
demand matching via i t er at or , event E5 gets included in the match and the outputisfirst_a
= E2, last_a = E3, bO_id = E4, bl id = E5.

8.4.10. Quantifier - Zero Or More (* and *?)

The zero-or-more quantifier (*) must be matched zero or more times by events. The operator is
greedy and the reluctant version is * 2.

307

Chapter 8. EPL Reference: Mat...

The pattern looks for a sequence of events in which the temperature starts out below 50 and then
stays between 50 and 60 and finally comes over 60:

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
measures A id as a_id, count(B.id) as count_b, Cid as c_id
pattern (A B* O
defi ne
A as A tenp < 50,
B as B.tenp between 50 and 60,
C as C.tenp > 60)

An example sequence of events that matches the pattern above is:

Table 8.12. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=55

2000 id=E2, device=1, temp=52

3000 id=E3, device=1, temp=49

4000 id=E4, device=1, temp=51

5000 id=E5, device=1, temp=55

6000 id=E5, device=1, temp=61 a_id=E3, count_b=2, c_id=E6

8.4.11. Quantifier - Zero Or One (? and ??)

The zero-or-one quantifier (?) must be matched zero or one time by events. The operator is greedy
and the reluctant version is ??.

The pattern looks for a sequence of events in which the temperature is below 50 and then dips to
over 50 and then to under 50 before indicating a value over 55:

sel ect * from Tenper at ur eSensor Event

mat ch_r ecogni ze (
partition by device
neasures Aid as a_id, B.id as b_id, Cidas c_id, Did as d_id
pattern (A B? C? D)

defi ne

A as A tenp < 50,
B as B.tenp > 50,
Cas C.tenmp < 50,
D as D.tenp > 55)

308

Repetition - Exactly N Matches

An example sequence of events that matches the pattern above is:

Table 8.13. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=44

2000 id=E2, device=1, temp=49

3000 id=E3, device=1, temp=51

4000 id=E4, device=1, temp=49

5000 id=E5, device=1, temp=56 a_id=E2, b_id=ES3, c_id=E4, d_id=E5
6000 id=E5, device=1, temp=61

8.4.12. Repetition - Exactly N Matches

The exactly-n quantifier ({n}) must be matched exactly N times. The repetition quantifier can be
combined with other non-repetition quantifiers and can be used with grouping.

In the below example the patt ern (A{ 2}) consists of one variable names, A, quantified with { 2} ,
indicating that the condition must match exactly two times.

This sample pattern looks for two events in which the temperature is over 100:

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
measures A[0].id as a0_id, A[1l].id as al_id
pattern (A{2})
defi ne
A as A tenmp >= 100)

An example sequence of events that matches the pattern above is:

Table 8.14. Example

Arrival Time Tuple Output Event (if any)
1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100 a0 id=E2,al id=E3
4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=102 a0 _id=E4,al id=E5

The next sample applies the quantifier to a group. This sample pattern looks for a four events in
which the temperature is, in sequence, 100, 101, 100 and 101:

309

Chapter 8. EPL Reference: Mat...

sel ect * from Tenper at ur eSensor Event

mat ch_r ecogni ze (
partition by device
measures A[0].id as a0_id, A[1].id as al_id
pattern (A B){2}

defi ne
A as A tenp = 100,
B as B.tenp = 101)

8.4.13. Repetition - N Or More Matches

The quantifier {n, } must be matched N or more times. The repetition quantifier can be combined
with other non-repetition quantifiers and can be used with grouping.

In the below example the pattern (A{2,} B) consists of two variable names, A and B. The
condition A must match two or more times and the B condition must match once.

This sample pattern looks for two or more events in which the temperature is over 100 and
thereafter an event with a temperature over 102:

sel ect * from Tenper at ur eSensor Event
mat ch_recogni ze (
partition by device
measures A[0].id as a0_id, A[1].id as al_id, A[2].id as a2_id, B.id as b_id
pattern (A{2,} B)
defi ne
A as A tenp >= 100,
B as B.tenp >= 102)

An example sequence of events that matches the pattern above is:

Table 8.15. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=102 a0 id=E2,al id=E3,a2 id=E4,b_id=E5

8.4.14. Repetition - Between N and M Matches

The quantifier { n, n} must be matched between N and M times. The repetition quantifier can be
combined with other non-repetition quantifiers and can be used with grouping.

310

Repetition - Between Zero and M Matches

In the below example the pattern (A{2, 3} B) consists of two variable names, A and B. The
condition A must match two or three times and the B condition must match once.

This sample pattern looks for two or three events in which the temperature is over 100 and
thereafter an event with a temperature over 102:

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
nmeasures A[0].id as a0_id, A[1l].id as al_id, A[2].id as a2_id, B.id as b_id
pattern (A{2,3} B)
defi ne
A as A tenp >= 100,
B as B.tenp >= 102)

An example sequence of events that matches the pattern above is:

Table 8.16. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=102 a0 id=E2,al id=E3,a2_id=E4,b _id=E5

8.4.15. Repetition - Between Zero and M Matches

The quantifier {, n} must be matched between zero and M times. The repetition quantifier can
be combined with other non-repetition quantifiers and can be used with grouping.

In the below example the pattern (A{, 2} B) consists of two variable names, A and B. The
condition A must match zero, once or twice and the B condition must match once.

This sample pattern looks for between zero and two events in which the temperature is over 100
and thereafter an event with a temperature over 102;

sel ect * from Tenper at ur eSensor Event
mat ch_recogni ze (
partition by device
measures A[0].id as a0_id, A[1].id as al_id, B.id as b_id
pattern (A{, 2} B)
defi ne
A as A tenp >= 100,

311

Chapter 8. EPL Reference: Mat...

B as B.tenp >= 102)

An example sequence of events that matches the pattern above is:

Table 8.17. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=102 a0 id=E3,al id=E4,b _id=E5

8.4.16. Repetition Equivalence

The following table outlines sample equivalent patterns.

Table 8.18. Equivalent Pattern Expressions

Expression Equivalent

Atom Examples

A{2} AA

A{2,} A A A*

A{2, 4} AAA? A?

A{, 2} A? A?

Group Examples

(A B)}2} (AB) (AB)
(AB)2,} (AB) (AB) (AB)*
(A B){2, 4} (A B) (A B) (AB)? (A B)?
(A B){, 2} (A B)? (A B)?
Quantifier Examples

A+2,} A+ A+ A*

A?{2,} A? A? A*

A+{2, 4} A+ A+ A* A*

A+{, 2} A* A*

8.5. metine Clause

Within def i ne are listed the boolean conditions that defines a variable name that is declared in
the pattern.

The Prev Operator

A variable name does not require a definition and if there is no definition, the default is a predicate
that is always true. Such a variable name can be used to match any row.

The definitions of variable names may reference the same or other variable names as prior
examples have shown.

If a variable in your condition expression is a singleton variable, then only individual columns may
be referenced. If the variable is not matched by an event, a nul | value is returned.

If a variable in your condition expression is a group variable, then only indexed columns may be
referenced. If the variable is not matched by an event, a nul | value is returned.

Aggregation functions are not allowed within expressions of the def i ne clause. However def i ne-
clause expressions can utilize enumeration methods.

8.5.1. The rrev Operator

The pr ev function may be used in a def i ne expression to access columns of the previous row of
a variable name. If there is no previous row, the null value is returned.

The pr ev function can accept an optional non-negative integer argument indicating the offset to
the previous rows. That argument must be a constant. In this case, the engine returns the property
from the N-th row preceding the current row, and if the row doesn’t exist, it returns nul | .

This function can access variables currently defined, for example:

Y as Y.price < prev(Y.price, 2)

It is not legal to use pr ev with another variable then the one being defined:

/1 not all owed
Y as Y.price < prev(X price, 2)

The pr ev function returns properties of events in the same patrtition. Also, it returns properties of
events according to event order-of-arrival. When using data windows or deleting events from a
named window, the remove stream does not remove events from the pr ev function.

The pattern looks for an event in which the temperature is greater or equal 100 and that, relative to
that event, has an event preceding it by 2 events that also had a temperature greater or equal 100:

sel ect * from Tenper at ureSensor Event
mat ch_recogni ze (

partition by device

nmeasures A.id as a_id

pattern (A)

313

Chapter 8. EPL Reference: Mat...

defi ne
A as A tenp > 100 and prev(A tenp, 2) > 100)

An example sequence of events that matches the pattern above is:

Table 8.19. Example

Arrival Time Tuple Output Event (if any)
1000 id=E1, device=1, temp=98

2000 id=E2, device=1, temp=101

3000 id=E3, device=1, temp=101

4000 id=E4, device=1, temp=99

5000 id=E5, device=1, temp=101 a_id=E5

8.6. wasure Clause

The neasures clause defines exported columns that contain expressions over the pattern
variables. The expressions can reference partition columns, singleton variables and any
aggregation functions including | ast and first on the group variables.

Expressions in the measur es clause must use the as keyword to assign a column name.

If a variable is a singleton variable then only individual columns may be referenced, not
aggregates. If the variable is not matched by an event, a nul | value is returned.

If a variable is a group variable and used in an aggregate, then the aggregate is performed over
all rows that have matched the variable. If a group variable is not in an aggregate function, its
variable name must be post-fixed with an index. See Section 8.4.6, “Variables Can be Singleton
or Group” for more information.

8.7. Datawindow-Bound

When using match recognize with a named window or stream bound by a data window, all
events removed from the named window or data window also removed the match-in-progress that
includes the event(s) removed.

The next example looks for four sensor events from the same device immediately following each
other and indicating a rising temperature, but only events that arrived in the last 10 seconds are
considered:

sel ect * from Tenperat ureSensorEvent.win:tine(10 sec)
mat ch_r ecogni ze (

partition by device

neasures Aid as a_id

314

Interval

pattern (A B C D)
define

B as B.temp > A tenp,
Cas C.tenp > B.tenp,
D as D.temp > C tenp)

An example sequence of events that matches the pattern above is:

Table 8.20. Example

Arrival Time Tuple Output Event (if any)
1000 id=E1, device=1, temp=80

2000 id=E2, device=1, temp=81

3000 id=E3, device=1, temp=82

4000 id=E4, device=1, temp=81

7000 id=E5, device=1, temp=82

9000 id=E6, device=1, temp=83

13000 id=E7, device=1, temp=84 a_id=E4, a_id=E5, a_id=ES6, a_id=E7
15000 id=E8, device=1, temp=84

20000 id=E9, device=1, temp=85

21000 id=E10, device=1, temp=86

26000 id=E11, device=1, temp=87

Note that E8, E9, E10 and E11 doe not constitute a match since E8 leaves the data window at
25000.

8.8. Interval

With the optional i nt er val keyword and time period you can control how long the engine should
wait for further events to arrive that may be part of a matching event sequence, before indicating
a match (or matches). This is not applicable to on-demand pattern matching.

The interval timer starts are the arrival of the first event matching a sequence for a partition. When
the time interval passes and an event sequence matches, duplicate matches are eliminated and
output occurs.

The next example looks for sensor events indicating a temperature of over 100 waiting for any
number of additional events with a temperature of over 100 for 5 seconds before indicating a
match:

sel ect * from Tenper at ur eSensor Event
mat ch_recogni ze (

315

Chapter 8. EPL Reference: Mat...

partition by device
nmeasures A id as a_id, count(B.id) as count_b, first(B.id) as first_b, last(B.id)
as last b
pattern (A B*)
interval 5 seconds
defi ne
A as A tenp > 100,
B as B.tenmp > 100)

An example sequence of events that matches the pattern above is:

Table 8.21. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=98

2000 id=E2, device=1, temp=101

3000 id=E3, device=1, temp=102

4000 id=E4, device=1, temp=104

5000 id=E5, device=1, temp=104

7000 a_id=E2, count_b=3, first_b=E3, last_b=E5

Notice that the engine waits 5 seconds (5000 milliseconds) after the arrival time of the first event
E2 of the match at 2000, to indicate the match at 7000.

8.9. Interval-Or-Terminated

The i nterval keyword and time period can be followed by or t er ni nat ed keywords. When or-
terminated is specified, the engine detects when a pattern state cannot match further and outputs
matching event sequences collected so far that are otherwise only output at the end of the interval.
This is not applicable to on-demand pattern matching.

Same as for i nterval alone, the interval timer starts are the arrival of the first event matching
a sequence for a partition. Event arrival can terminate the interval and lead to immediate output
as follows:

« When an event arrives in the sequence that causes pattern state to terminate because no further
match is possible, the event sequence matches, duplicate matches are eliminated and output
occurs immediately (and not at the end of the interval), for the affected event sequence(s).

» Otherwise, when the time interval passes and an event sequence matches, duplicate matches
are eliminated and output occurs.

The next example looks for sensor events indicating a temperature of over 100, waiting for any
number of additional events with a temperature of over 100 for 5 seconds or when the temperature
falls to equal or below 100, whichever happens first:

316

Use with Different Event Types

sel ect * from Tenper at ur eSensor Event
mat ch_r ecogni ze (
partition by device
neasures A.id as a_id, count(B.id) as count_b, first(B.id) as first_b, last(B.id)
as last_b
pattern (A B*)
interval 5 seconds or terninated
defi ne
A as A tenp > 100,
B as B.tenmp > 100)

An example sequence of events that matches the pattern above is:

Table 8.22. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=98

2000 id=E2, device=1, temp=101

3000 id=E3, device=1, temp=102

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=100 a_id=E2, count_b=2, first b=E3, last_b=E4
7000 (no further output)

8.10. Use with Different Event Types

You may match different types of events using match-recognize by following any of these
strategies:

1. Declare a variant stream.

2. Declare a supertype for your event types in the creat e schena syntax.

3. Have you event classes implement a common interface or extend a common base class.

317

Chapter 8. EPL Reference: Mat...

A short example that demonstrates variant streams and match-recognize is listed below:

/| Declare one sanple type
create schema SO as (col string)

/| Decl are second sanpl e type
create schena S1 as (col string)

/1 Declare variant stream hol ding either type
create variant schema MyVariant Stream as S0, Sl

/1 Popul ate variant stream
insert into MyVariantStream select * from SO

/] Popul ate variant stream
insert into MyVariant Stream sel ect * from S1

/[l Sinple pattern to match SO S1 pairs
select * from My/Vari ant Type.win:tine(1 mn)
mat ch_r ecogni ze (
measures A.id? as a, B.id? as b
pattern (A B)
defi ne
A as typeof (A)
B as typeof (B)

3

' g

8.11. Limitations

Please note the following limitations:

. Subqueries are not allowed in expressions within mat ch_r ecogni ze.

. Joins and outer joins are not allowed in the same statement as mat ch_r ecogni ze.

mat ch_r ecogni ze may not be used within on- sel ect oron-i nsert statements.

. When using mat ch_r ecogni ze on unbound streams (no data window provided) the i t er at or
pull API returns no rows.

5. A Statement Object Model API for mat ch_r ecogni ze is not yet available.

> w NP

318

Chapter 9.

Chapter 9. EPL Reference:
Operators

Esper arithmetic and logical operator precedence follows Java standard arithmetic and logical
operator precedence.

9.1. Arithmetic Operators
The below table outlines the arithmetic operators available.

Table 9.1. Syntax and results of arithmetic operators

Operator Description

+, - As unary operators they denote a
positive or negative expression. As
binary operators they add or subtract.

* Multiplication and division are binary
operators.
% Modulo binary operator.

9.2. Logical And Comparison Operators
The below table outlines the logical and comparison operators available.

Table 9.2. Syntax and results of logical and comparison operators

Operator Description

NOT Returns true if the following condition is
false, returns false if it is true.

OR Returns true if either component
condition is true, returns false if both are
false.

AND Returns true if both component
conditions are true, returns false if either
is false.

=, 1=, <, > <=, >=, s, is hot Comparison.

9.2.1. Null-Value Comparison Operators

The null value is a special value, see http://en.wikipedia.org/wiki/Null_(SQL) [http://
en.wikipedia.org/wiki/Null_%28SQL%29] (source:Wikipedia) for more information.

Thereby the following expressions all return nul | :

319

http://en.wikipedia.org/wiki/Null_%28SQL%29
http://en.wikipedia.org/wiki/Null_%28SQL%29
http://en.wikipedia.org/wiki/Null_%28SQL%29

Chapter 9. EPL Reference: Ope...

2 !'= nul

nul |l = nul

2!'=null or 1 =2

2!'=null and 2 = 2

Use theis andis not operators for comparing values that can be null.

The following expressions all return t r ue:

2 is not nul

null is not 2
null is null
2is 2

The engine allows i s and i s not with any expression, not only in connection with the nul |
constant.

9.3. Concatenation Operators
The below table outlines the concatenation operators available.

Table 9.3. Syntax and results of concatenation operators

Operator Description

I Concatenates character strings

9.4. Binary Operators

The below table outlines the binary operators available.

320

Array Definition Operator

Table 9.4. Syntax and results of binary operators

Operator Description

& Bitwise AND if both operands are
numbers; conditional AND if both
operands are boolean.

Bitwise OR if both operands are
numbers; conditional OR if both
operands are boolean.

n Bitwise exclusive OR (XOR).

9.5. Array Definition Operator

The { and} curly braces are array definition operators following the Java array initialization syntax.
Arrays can be useful to pass to user-defined functions or to select array data in a select clause.

Array definitions consist of zero or more expressions within curly braces. Any type of expression
is allowed within array definitions including constants, arithmetic expressions or event properties.
This is the syntax of an array definition:

{ [expression [,expression...]] }

Consider the next statement that returns an event property named act i ons. The engine populates
the act i ons property as an array of j ava. | ang. St ri ng values with a length of 2 elements. The
first element of the array contains the obser vat i on property value and the second element the
comand property value of RFl DEvent events.

sel ect {observation, comrand} as actions from RFI DEvent

The engine determines the array type based on the types returned by the expressions in the array
definiton. For example, if all expressions in the array definition return integer values then the type
of the array is j ava. | ang. I nteger[]. If the types returned by all expressions are compatible
number types, such as integer and double values, the engine coerces the array element values
and returns a suitable type, j ava. | ang. Doubl e[] in this example. The type of the array returned
is Obj ect [] if the types of expressions cannot be coerced or return object values. Null values can
also be used in an array definition.

Arrays can come in handy for use as parameters to user-defined functions:

sel ect * from RFI DEvent where Filter.nyFilter(zone, {1,2,3})

9.6. Dot Operator

321

Chapter 9. EPL Reference: Ope...

You can use the dot operator to invoke a method on the result of an expression. The dot operator
uses the dot (.) or period character.

The dot-operator is relevant with enumeration methods: Enumeration methods perform tasks
such as transformation, filtering, aggregation, sequence-matching, sorting and others on subquery
results, named windows, tables, event properties or inputs that are or can be projected to a
collection of events, scalar values or objects. See Chapter 11, EPL Reference: Enumeration
Methods

Further the dot-operator is relevant to date-time methods. Date-time methods work on date-time
values to add or subtract time periods, set or round calendar fields or query fields, among other
tasks. See Chapter 12, EPL Reference: Date-Time Methods.

This section only describes the dot-operator in relation to property instance methods, the special
get and si ze indexed-property methods and duck typing.

The synopsis for the dot operator is as follows

expressi on. met hod([paranmeter [,...]])[.method(...)][...]

The expression to evaluate by the dot operator is in parenthesis. After the dot character follows
the method name and method parameters in parenthesis.

You may use the dot operator when your expression returns an object that you want to invoke
a method on. The dot operator allows duck typing and convenient array and collection access
methods.

This example statement invokes the get Zones method of the RFID event class by referring to the
stream name assigned in the f r omclause:

select rfid.getZones() from RFI DEvent as rfid

The si ze() method can be used to return the array length or collection size. Use the get method
to return the value at a given index for an array or collection.

The next statement selects array size and returns the last array element:

sel ect arrayproperty.size() as arraySi ze,
arrayproperty.get((arrayproperty).size - 1) as lastlnArray
from Product Event

9.6.1. Duck Typing

Duck typing is when the engine checks at runtime for the existence of a method regardless of
object class inheritance hierarchies. This can be useful, for example, when a dynamic property
returns an object which may or may not provide a method to return the desired value.

322

The 'in' Keyword

Duck typing is disabled in the default configuration to consistently enforce strong typing. Please
enable duck typing via engine expression settings as described in Section 16.4.22, “Engine
Settings related to Expression Evaluation”.

The statement below selects a dynamic property by name product Desc and invokes the
get Count er () method if that method exists on the property value, or returns the null value if the
method does not exist for the dynamic property value of if the dynamic property value itself is null:

sel ect (productDesc?).getCounter() as arraySi ze from Product Event

9.7. The 'in' Keyword

The i n keyword determines if a given value matches any value in a list. The syntax of the keyword
is:

test _expression [not] in (expression [,expression...])

The test_expression is any valid expression. The keyword is followed by a list of expressions to
test for a match. The optional not keyword specifies that the result of the predicate be negated.

The result of an i n expression is of type Bool ean. If the value of test_expression is equal to any
expression from the comma-separated list, the result value is t r ue. Otherwise, the result value
is f al se.

The next example shows how the i n keyword can be applied to select certain command types
of RFID events:

sel ect * from RFI DEvent where comrand in (' OBSERVATION , ' SIGNAL')
The statement is equivalent to:

sel ect * from RFI DEvent where command = ' OBSERVATI ON' or command = ' S| GNAL'

Expression may also return an array, aj ava. util. Col | ecti onorajava. util . Map. Thus event
properties that are lists, sets or maps may provide values to compare against test_expression.

All expressions must be of the same type or a compatible type to test_expression. The in
keyword may coerce number values to compatible types. If expression returns an array, then
the component type of the array must be compatible, unless the component type of the array is
oj ect .

If expression returns an array of component type Obj ect , the operation compares each element
of the array, applying equal s semantics.

323

Chapter 9. EPL Reference: Ope...

If expression returns a Col | ecti on, the operation determines if the collection contains the value
returned by test_expression, applying cont ai ns semantics.

If expression returns a Map, the operation determines if the map contains the key value returned
by test_expression, applying cont ai nskey semantics.

Constants, arrays, Col | ecti on and Map expressions or event properties can be used combined.

For example, and assuming a property named 'mySpecialCmdList' exists that contains a list of
command strings:

select * from RFIDEvent where command in ('OBSERVATION, 'SIGNAL',
my Speci al CndLi st)

When using prepared statements and substitution parameters with the i n keyword, make sure to
retain the parenthesis. Substitution values may also be arrays, Col | ecti on and Map values:

test_expression [not] in (? [,?...])

Note that if there are no successes and at least one right-hand row yields null for the operator's
result, the result of the any construct will be null, not false. This is in accordance with SQL's normal
rules for Boolean combinations of null values.

9.7.1.'in' for Range Selection

The i n keyword can be used to specify ranges, including open, half-closed, half-open and inverted
ranges.

Ranges come in the following 4 varieties. The round () or square [] bracket indicate whether
an endpoint is included or excluded. The low point and the high-point of the range are separated
by the colon : character.

« Open ranges that contain neither endpoint (| ow: hi gh)

Closed ranges that contain both endpoints [| ow: hi gh] . The equivalent 'between' keyword also
defines a closed range.

» Half-open ranges that contain the low endpoint but not the high endpoint [| ow: hi gh)
Half-closed ranges that contain the high endpoint but not the low endpoint (| ow: hi gh]

The following statement two statements are equivalent: Both statements select orders where the
price is in the range of zero and 10000 (endpoints inclusive):

select * from OrderEvent where price in [0:10000]

select * from Order Event where price between 0 and 10000

324

The 'between’ Keyword

The next statement selects order events where the price is greater then 100 and less-or-equal
to 2000:

select * from Order Event where price in (100: 2000]

Use the not i n keywords to specify an inverted range.
The following statement selects an inverted range by selecting all order events where the price is
less then zero or the price is greater or equal to 10000:

select * from OrderEvent where price not in (0:10000]

In case the value of low endpoint is less then the value of high endpoint the i n operator reverses
the range.

The following two statements are also equivalent:

select * from OrderEvent where price in [10000: 0]

select * from Order Event where price >= 0 and price <= 1000

9.8. The 'between’ Keyword

The bet ween keyword specifies a range to test. The syntax of the keyword is:

test _expression [not] between begi n_expression and end_expression

The test_expression is any valid expression and is the expression to test for in the range defined by
begin_expression and end_expression. The not keyword specifies that the result of the predicate
be negated.

The result of a between expression is of type Bool ean. If the value of test expression is
greater then or equal to the value of begin_expression and less than or equal to the value of
end_expression, the resultis t r ue.

The next example shows how the bet ween keyword can be used to select events with a price
between 55 and 60 (endpoints inclusive).

select * from StockTi ckEvent where price between 55 and 60

325

Chapter 9. EPL Reference: Ope...

The equivalent expression without bet ween is:

select * from StockTi ckEvent where price >= 55 and price <= 60
And also equivalent to:

select * from StockTi ckEvent where price between 60 and 55

While the bet ween keyword always includes the endpoints of the range, the i n operator allows
finer control of endpoint inclusion.

In case the value of begin_expression is less then the value of end_expression the bet ween
operator reverses the range.

The following two statements are also equivalent:

select * from StockTi ckEvent where price between 60 and 55

sel ect * from StockTi ckEvent where price >= 55 and price <= 60

9.9. The "ike' Keyword

The | i ke keyword provides standard SQL pattern matching. SQL pattern matching allows you
to use ' ' to match any single character and ' % to match an arbitrary number of characters
(including zero characters). In Esper, SQL patterns are case-sensitive by default. The syntax of
likeis:

test _expression [not] |ike pattern_expression [escape string literal]

The test_expression is any valid expression yielding a String-type or a numeric result. The optional
not keyword specifies that the result of the predicate be negated. The | i ke keyword is followed
by any valid standard SQL pattern_expression yielding a String-typed result. The optional escape
keyword signals the escape character to escape ' _' and' % values in the pattern.

The result of a | i ke expression is of type Bool ean. If the value of test_expression matches the
pattern_expression, the result value is t r ue. Otherwise, the result value is f al se.

An example for the | i ke keyword is below.

sel ect * from PersonLocati onEvent where nane |like '%ack%

326

The 'regexp’ Keyword

The escape character can be defined as follows. In this example the where-clause matches events
where the suffix property is a single' ' character.

sel ect * from PersonLocati onEvent where suffix like '"!_' escape '!’

9.10. The 'regexp’ Keyword

The regexp keyword is a form of pattern matching based on regular expressions implemented
through the Javaj ava. uti | . r egex package. The syntax of r egexp is:

test _expression [not] regexp pattern_expression

The test_expression is any valid expression yielding a String-type or a numeric result. The optional
not keyword specifies that the result of the predicate be negated. The r egexp keyword is followed
by any valid regular expression pattern_expression yielding a String-typed result.

The result of a regexp expression is of type Bool ean. If the value of test_expression matches
the regular expression pattern_expression, the result value is t r ue. Otherwise, the result value
is f al se.

An example for the r egexp keyword is below.
sel ect * from PersonLocati onEvent where nane regexp '.*Jack.*'

The rexexp function matches the entire region against the pattern via
java. util.regex. Mat cher. mat ches() method. Please consult the Java API documentation for
more information or refer to Regular Expression Flavors [http://www.regular-expressions.info/
refflavors.html].

9.11. The ‘any' and 'sone' KeyWOI‘dS

The any operator is true if the expression returns true for one or more of the values returned by
a list of expressions including array, Col | ect i on and Map values.

The synopsis for the any keyword is as follows:

expressi on operator any (expression [,expression...])

The left-hand expression is evaluated and compared to each expression result using the given
operator, which must yield a Boolean result. The result of any is "true" if any true result is obtained.
The result is "false" if no true result is found (including the special case where the expressions
are collections that return no rows).

The operator can be any of the following values: =, =, <>, <, <=, >, >=

327

http://www.regular-expressions.info/refflavors.html
http://www.regular-expressions.info/refflavors.html
http://www.regular-expressions.info/refflavors.html

Chapter 9. EPL Reference: Ope...

The sone keyword is a synonym for any. The i n construct is equivalent to = any.

Expression may also return an array, aj ava. util. Col l ecti onorajava. util.Mp. Thus event
properties that are lists, sets or maps may provide values to compare against.

All expressions must be of the same type or a compatible type. The any keyword coerces number
values to compatible types. If expression returns an array, then the component type of the array
must be compatible, unless the component type of the array is Obj ect .

If expression returns an array, the operation compares each element of the array.

If expression returns a Col | ect i on, the operation determines if the collection contains the value
returned by the left-hand expression, applying cont ai ns semantics. When using relationship
operators <, <=, >, >=the operator applies to each element in the collection, and non-numeric
elements are ignored.

If expression returns a Map, the operation determines if the map contains the key value returned by
the left-hand expression, applying cont ai nsKey semantics. When using relationship operators <,
<=, >, >=the operator applies to each key in the map, and non-numeric map keys are ignored.

Constants, arrays, Col | ecti on and Map expressions or event properties can be used combined.

The next statement demonstrates the use of the any operator:
sel ect * from Product Order where category != any (categoryArray)

The above query selects ProductOrder event that have a category field and a category array, and
returns only those events in which the category value is not in the array.

Note that if there are no successes and at least one right-hand row yields null for the operator's
result, the result of the any construct will be null, not false. This is in accordance with SQL's normal
rules for Boolean combinations of null values.

9.12. The 'ai' Keyword

The al | operator is true if the expression returns true for all of the values returned by a list of
expressions including array, Col | ecti on and Map values.

The synopsis for the al | keyword is as follows:

expressi on operator all (expression [,expression...])

The left-hand expression is evaluated and compared to each expression result using the given
operator, which must yield a Boolean result. The resultofal | is "true" if all rows yield true (including
the special case where the expressions are collections that returns no rows). The result is "false"
if any false result is found. The result is nul | if the comparison does not return false for any row,
and it returns nul | for at least one row.

328

The 'new' Keyword

The operator can be any of the following values: =, =, <>, <, <=, >, >=,
The not i n construct is equivalentto!= all.

Expression may also return an array, aj ava. util. Col | ecti onorajava. util.Mp. Thus event
properties that are lists, sets or maps may provide values to compare against.

All expressions must be of the same type or a compatible type. The al | keyword coerces number
values to compatible types. If expression returns an array, then the component type of the array
must be compatible, unless the component type of the array is Obj ect .

If expression returns an array, the operation compares each element of the array.

If expression returns a Col | ect i on, the operation determines if the collection contains the value
returned by the left-hand expression, applying cont ai ns semantics. When using relationship
operators <, <=, >, >=the operator applies to each element in the collection, and non-numeric
elements are ignored.

If expression returns a Map, the operation determines if the map contains the key value returned by
the left-hand expression, applying cont ai nsKey semantics. When using relationship operators <,
<=, >, >=the operator applies to each key in the map, and non-numeric map keys are ignored.

Constants, arrays, Col | ecti on and Map expressions or event properties can be used combined.

The next statement demonstrates the use of the al | operator:
sel ect * from Product Order where category = all (categoryArray)

The above query selects ProductOrder event that have a category field and a category array, and
returns only those events in which the category value matches all values in the array.

9.13. The 'wew Keyword

The new has two uses:

1. Populate a new data structure by evaluating column names and assignment expressions.

2. Instantiate an object of a given class by its constructor.

9.13.1. Using 'new To Populate A Data Structure

The newdata structure operator populates a new data structure by evaluating column names and
assignment expressions. This is useful when an expression should return multiple results, for
performing a transformation or inside enumeration method lambda expressions.

The synopsis is as follows:

new { col um_nane = [assignnent_expression] [,colum_nane...] }

329

Chapter 9. EPL Reference: Ope...

The result of the new-operator is a map data structure that contains column_name keys and
values. If an assignment expression is provided for a column, the operator evaluates the
expression and assigns the result to the column name. If no assignment expression is provided,
the column name is assumed to be an event property name and the value is the event property
value.

The next statement demonstrates the use of the new operator:
sel ect new {category, price = 2*price} as pricelnfo from Product O der

The above query returns a single property pri cel nf o for each arriving ProductOrder event. The
property value is itself a map that contains two entries: For the key name cat egory the value of
the category property and for the key name pri ce the value of the price property multiplied by two.

The next EPL is an example of the new operator within an expression definition and a case-

statement (one EPL statement not multiple):

expression cal cPrice {
product Order => case
when category = 'fish' then new { sterialize = "'XRAY', priceFactor = 1.01 }
when category = "nmeat' then new { sterialize = "'UVL', priceFactor = 1 }
end

sel ect calcPrice(po) as priceDetail from ProductOrder po

In above example the expression cal cPrice returns both a sterialize string value and a
pri ceFact or double value. The expression is evaluated as part of the sel ect -clause and the
map-type result placed in the pri ceDet ai | property of output events.

When used within the case operator, the operator validates that the data structure is compatible
between each case-when result in terms of column names and types. The default value for el se
incaseisnull.

9.13.2. Using 'mew To Instantiate An Object

The new instantiation operator can instantiate an object of the given class.

The synopsis is as follows:

new cl ass-nane([paraneter [, paraneter [,...]]])

The class-name is the name of the class to instantiate an object for. The classname can either be
fully-qualified or you can add the package or classname to the engine imports.

330

Using 'new' To Instantiate An Object

After the classname follow parenthesis and any number of parameter expressions. The engine
expects that the class declares a public constructor matching the number and return types of
parameter expressions.

Assuming that Or der Hol der is an imported class, the next statement demonstrates the use of
the new operator:

sel ect new OrderHol der (po) as orderHol der from Product Order as po

331

332

Chapter 10.

Chapter 10. EPL Reference:
Functions

10.1. Single-row Function Reference

Single-row functions return a single value for every single result row generated by your statement.
These functions can appear anywhere where expressions are allowed.

Esper allows static Java library methods as single-row functions, and also features built-in single-
row functions. In addition, Esper allows instance method invocations on named streams.

You may also register your own single-row function name with the engine so that your EPL
statements become less cluttered. This is described in detail in Section 18.3, “Single-Row
Function”. Single-row functions that return an object can be chained.

Esper auto-imports the following Java library packages:

* java.lang.*
 java.math.*
* java.text.*
* java.util.*

Thus Java static library methods can be used in all expressions as shown in below example:

sel ect synbol, WMath.round(vol une/ 1000)
from St ockTi ckEvent.wi n:ti ne(30 sec)

In general, arbitrary Java class names have to be fully qualified (e.g. java.lang.Math) but Esper
provides a mechanism for user-controlled imports of classes and packages as outlined in
Section 16.4.6, “Class and package imports”.

The below table outlines the built-in single-row functions available.

Table 10.1. Syntax and results of single-row functions

Single-row Function Result

Returns resul t where the first val ue
case val ue

when conpare_val ue then result
[when conpare_val ue then result ...]
[el se resul t]

end

equals conpar e_val ue.

Returns ther esul t for the first condition
that is true.

case
when condition then result

333

Chapter 10. EPL Reference: Fu...

Single-row Function Result

[when condition then result ...]
[el se result]
end

Casts the result of an expression to the

cast (expression, type_nane) .
given type.

Returns the first non-nul | value in the
list, or null if there are no non-nul |
values.

coal esce(expressi on, expression
[, expression ...])

Returns an object containing the engine
URI, EPL statement name and context
partition id (when applicable).

current _eval uati on_cont ext ()

Returns the current engine time as
a |l ong millisecond value. Reserved
keyword with optional parenthesis.

current _timestanp[()]

Returns true if the dynamic property
exists for the event, or false if the
property does not exist.

exi st s(dynam c_property_nane)

: : Returns true if the expression returns an
i nst anceof (expressi on, type_nane

[, type_nane ...]) object whose type is one of the types
- listed.

e Returns true if the event is part of the
insert stream and false if the event is
part of the remove stream.

max(expressi on, expression [, expression Returns the highest numeric value

D among the 2 or more comma-separated
expressions.

m n(expressi on, expression [, expression retums the lowest numeric value

D among the 2 or more comma-separated

expressions.

Returns a property value or all
properties of a previous event, relative
to the event order within a data window,
or according to an optional index
parameter (N) the positional Nth-from-
last value.

prev(expressi on, event_property)

Returns a property value or all
properties of the first event in a data
window relative to the event order
within a data window, or according to

prevtail (expression, event_property)

334

The Case Control Flow Function

Single-row Function Result

an optional index parameter (N) the
positional Nth-from-first value.

Returns a single property value of all
events or all properties of all events in
a data window in the order that reflects
the sort order of the data window.

pr evwi ndow(event _property)

Returns the count of events (number of

prevcount (event _property) i))
data points) in a data window.

Returns a property value of a prior
event, relative to the natural order of
arrival of events

prior(integer, event_property)

If expression is a stream name, returns
the event type name of the evaluated
event, often used with variant streams.
If expression is a property name or
expression, returns the name of the
expression result type.

t ypeof (expr essi on)

10.1.1. The case Control Flow Function

The case control flow function has two versions. The first version takes a value and a list of
compare values to compare against, and returns the result where the first value equals the
compare value. The second version takes a list of conditions and returns the result for the first
condition that is true.

The return type of a case expression is the compatible aggregated type of all return values.

The case expression is sometimes used with the new operator to return multiple results, see
Section 9.13, “The 'new' Keyword”.

The example below shows the first version of a case statement. It has a St ri ng return type and
returns the value 'one’.

sel ect case nyexpression when 1 then 'one' when 2 then 'two' else 'nmore' end
from...

The second version of the case function takes a list of conditions. The next example has a Bool ean
return type and returns the boolean value true.

sel ect case when 1>0 then true else false end from...

335

Chapter 10. EPL Reference: Fu...

10.1.2. The cast Function

The cast function casts the return type of an expression to a designated type. The function accepts
two parameters: The first parameter is the property name or expression that returns the value to
be casted. The second parameter is the type to cast to. You can use the as keyword instead of
comma (,) to separate parameters.

Valid parameters for the second (type) parameter are:

« Any of the Java built-in types: i nt, long, byte, short, char, double, float, string,
Bi gl nt eger, Bi gDeci mal, where string is a short notation for j ava. | ang. String and
Bi gl nt eger as well as Bi gDeci mal are the classes in j ava. mat h. The type name is not case-
sensitive. For example:

cast (price, double)

» The fully-qualified class name of the class to cast to, for example:

cast (product as org. nyproducer. Product)

« For parsing date-time values, any of the date-time types: date, cal endar, | ong. For these
types the dat ef or mat parameter is required as discussed below.

The cast function is often used to provide a type for dynamic (unchecked) properties. Dynamic
properties are properties whose type is not known at compile type. These properties are always
of type j ava. | ang. Qbj ect .

The cast function as shown in the next statement casts the dynamic "price" property of an "item"
in the OrderEvent to a double value.

select cast(itemprice?, double) from O der Event

The cast function returns a nul | value if the expression result cannot be casted to the desired
type, or if the expression result itself is nul | .

The cast function adheres to the following type conversion rules:

» For all numeric types, the cast function utilitzes j ava. | ang. Nunber to convert numeric types,
if required.

» Forcaststostringorjava. |l ang. String, the function callst oSt ri ng on the expression result.

» For casts to other objects including application objects, the cast function considers a Java
class's superclasses as well as all directly or indirectly-implemented interfaces by superclasses.

336

The Coalesce Function

10.1.2.1. The cast Function For Parsing Dates

The cast function can parse string-type date-time values to long-type milliseconds, Date or
Cal endar objects.

You must provide the dat ef or mat named parameter as the last parameter to the cast function.
The date format can be any platform date format (Si npl eDat eFor mat) as a string-type value.

The next EPL outputs the date May 2, 2010 as a Dat e-type value:

sel ect cast('20100502', date, dateformat: 'yyyyMwdd') from O der Event

You may specify | ong for a millisecond value or Cal endar for a calendar value instead of dat e.
You may use date-time methods when cast is returning a date-time value. Expressions can be
any expression and do not need to be string constants.

You may parse dates that are ISO 8601-formatted dates by specifying i so as the date format.
The ISO 8601 date format is described in Section 7.6.5.1.1, “Specifying Dates”.

For example, assuming the or der Dat e property is a ISO 8601 formatted date, the engine can

convert it to a long millisecond value like this:

sel ect cast(orderDate, long, dateformat: 'iso') from O derEvent

10.1.3. The coal esce FUNction

The result of the coal esce function is the first expression in a list of expressions that returns a
non-null value. The return type is the compatible aggregated type of all return values.

This example returns a String-typed result of value 'foo":

sel ect coal esce(null, '"foo') from...

10.1.4. The current _Eval uat i on_Cont ext Function

The current_eval uation_context function takes no parameters and returns
expression evaluation contextual information as an object of type
com espertech. esper. client. hook. EPLExpr essi onEval uati onCont ext . The object provides
the engine URI, the statement name and the context partition id of the currently-evaluated
expression.

For example:

337

Chapter 10. EPL Reference: Fu...

sel ect current_eval uati on_context().get Engi neURI () as engi neURl from MyEvent

The context partition id will be - 1 when the statement is not associated to a context.

10.1.5. The current _Tinestanp FUNCtion

The current _ti nest anp function is a reserved keyword and requires no parameters. The result of
the cur rent _t i mest anp function is the | ong-type millisecond value of the current engine system
time.

The function returns the current engine timestamp at the time of expression evaluation. When
using external-timer events, the function provides the last value of the externally-supplied time at
the time of expression evaluation.

This example selects the current engine time:

sel ect current _tinmestanp from MyEvent
/1 equivalent to
sel ect current _timestanp() from MyEvent

10.1.6. The exists Function

The exi st s function returns a boolean value indicating whether the dynamic property, provided
as a parameter to the function, exists on the event. The exi st s function accepts a single dynamic
property name as its only parameter.

The exi sts function is for use with dynamic (unchecked) properties. Dynamic properties are
properties whose type is not known at compile type. Dynamic properties return a null value if the
dynamic property does not exists on an event, or if the dynamic property exists but the value of
the dynamic property is null.

The exi st s function as shown next returns true if the "item" property contains an object that has a
"serviceName" property. It returns false if the "item" property is null, or if the "item" property does
not contain an object that has a property named "serviceName" :

sel ect exists(item serviceName?) from O der Event

10.1.7. The aoupi ng Function

The groupi ng function is a SQL-standard function useful in statements that have a group by-
clause and that utilize one of the r ol | up, cube or gr oupi ng set s keywords. The function can be
used only in the sel ect -clause, havi ng-clause and or der by-clauses.

338

The Grouping_ld Function

The function takes a single expression as a parameter and returns an integer value of zero or one
indicating whether a specified expression in a gr oup- by-clause is aggregated or not. The function
returns 1 for aggregated or O for not aggregated.

The gr oupi ng function can help you distinguish null values returned because of the output row's
aggregation level from null values returned by event properties or other expressions.

The parameter expression must match exactly one of the expressions in the gr oup- by-clause.

Please see an example in the next section.

10.1.8. The aouping 1d Function

The gr oupi ng_i d function is a SQL-standard function useful in statements that have a gr oup by-
clause and that utilize one of the r ol | up, cube or gr oupi ng set s keywords. The function can be
used only in the sel ect -clause, havi ng-clause and or der by-clauses.

The function takes one or more expressions as a parameter and returns an integer value indicating
grouping level. The engine computes the grouping level by taking the results of multiple gr oupi ng
functions and concatenating them into a bit vector (a string of ones and zeros).

Assume a car event that has a property for name, place and number of cars:

create schenm CarEvent (name string, place string, nunctars int)

The next EPL computes the total number of cars for each of the following groupings: per name
and place, per name, per place and overall.

sel ect name, pl ace, sunm(huncars), gr oupi ng(nane), groupi ng(pl ace),
groupi ng_i d(nane, pl ace)
from Car Event group by groupi ng sets((nane, place), name, place,())

Assume your application processes a car event with properties like so:
Car Event ={ nane=' skoda', place='france', nuntars=100}.

The engine outputs 4 rows as shown in the next table:

Table 10.2. Example output for groupi ng and groupi ng_i d functions (CarEvent
1)

sum(numcars, grouping(nam grouping(plac grouping_id(n

place)
skoda france 100 0 0 0
skoda null 100 0 1 1

339

Chapter 10. EPL Reference: Fu...

sum(numcars; grouping(nam grouping(plac grouping_id(n

place)
null france 100 1 0 2
null null 100 1 1 3

Assume your application processes a second car event: CarEvent={nane='skoda',
pl ace=' germany', nuntars=75}.

The engine outputs 4 rows as shown in the next table:

Table 10.3. Example output for groupi ng and groupi ng_i d functions (CarEvent
2)

sum(numcars. grouping(nam grouping(plac grouping_id(n

skoda germany 75 0 0 0
skoda null 175 0 1 1
null germany 75 1 0 2
null null 175 1 1 3

The parameter expressions must match exactly to expressions in the gr oup- by-clause.

10.1.9. The instance-o Function

The i nst anceof function returns a boolean value indicating whether the type of value returned
by the expression is one of the given types. The first parameter to the i nst anceof function is an
expression to evaluate. The second and subsequent parameters are Java type names.

The function determines the return type of the expression at runtime by evaluating the expression,
and compares the type of object returned by the expression to the defined types. If the type of
object returned by the expression matches any of the given types, the function returns t r ue. If
the expression returned nul | or a type that does not match any of the given types, the function
returns f al se.

The i nstanceof function is often used in conjunction with dynamic (unchecked) properties.
Dynamic properties are properties whose type is not known at compile type.

This example uses the i nst anceof function to select different properties based on the type:

sel ect case when instanceof (item com nyconpany. Service) then servi ceNane?
when instanceof (item com myconpany. Product) then product Name? end
from O der Event

The i nst anceof function returns f al se if the expression tested by instanceof returned null.

340

The Istream Function

Valid parameters for the type parameter list are:

e Any of the Java built-in types: i nt, long, byte, short, char, double, float, string,
where st ring is a short notation for j ava. | ang. St ri ng. The type name is not case-sensitive.
For example, the next function tests if the dynamic "price" property is either of type float or type
double:

i nst anceof (price?, double, float)

« The fully-qualified class name of the class to cast to, for example:

i nst anceof (product, org. myproducer. Product)

The function considers an event class's superclasses as well as all the directly or indirectly-
implemented interfaces by superclasses.

10.1.10. The istreamFunction

The i st r eamfunction returns a boolean value indicating whether within the context of expression
evaluation the current event or set of events (joins) are part of the insert stream (true) or part of
the remove stream (false). The function takes no parameters.

Use the i st r eamfunction with data windows and sel ect irstreamandinsert irstreaminto.

In the following example the i st r eamfunction always returns boolean true since no data window
is declared:

select irstream*, istreanm) from O der Event

The next example declares a data window. For newly arriving events the function returns boolean
true, for events that expire after 10 seconds the function returns boolean false:

select irstream*, istream() from OrderEvent.win:tine(10 sec)

The i st r eamfunction returns true for all cases where insert or remove stream does not apply,
such as when used in parameter expressions to data windows or in stream filter expressions.

10.1.11. The mn and max Functions

The mi n and max function take two or more parameters that itself can be expressions. The mi n
function returns the lowest numeric value among the 2 or more comma-separated expressions,
while the max function returns the highest numeric value. The return type is the compatible
aggregated type of all return values.

341

Chapter 10. EPL Reference: Fu...

The next example shows the max function that has a Doubl e return type and returns the value 1.1.

select max(1, 1.1, 2 * 0.5) from...

The mi n function returns the lowest value. The statement below uses the function to determine
the smaller of two timestamp values.

sel ect synbol, mn(ticks.timestanp, news.tinmestanp) as mnT
from StockTi ckEvent.win:time(30 sec) as ticks, NewsEvent.win:time(30 sec) as
news
where ticks. symbol = news. synbol

10.1.12. The previous Function

The pr ev function returns the property value or all event properties of a previous event. For data
windows that introduce a sort order other than the order of arrival, such as the sorted data window
and the time order data window, the function returns the event at the specified position.

The prev function is not an aggregation function and therefore does not return results per
group when used with group by. Please consider the | ast, | astever or first aggregation
functions instead as described in Section 10.2.2, “Event Aggregation Functions”. You must use
an aggregation function instead of pr ev when querying a named window or table.

The first parameter to the pr ev function is an index parameter and denotes the i-th previous event,
in the order established by the data window. If no index is provided, the default index is 1 and the
function returns the previous event. The second parameter is a property name or stream name. If
specifying a property name, the function returns the value for the previous event property value.
If specifying a stream name, the function returns the previous event underlying object.

This example selects the value of the pri ce property of the 2nd-previous event from the current
Trade event:

sel ect prev(2, price) from Trade. w n: | ength(10)

By using the stream alias in the pr evi ous function, the next example selects the trade event itself
that is immediately previous to the current Trade event

select prev(l, trade) from Trade.w n:|length(10) as trade

Since the pr ev function takes the order established by the data window into account, the function
works well with sorted windows.

342

The Previous Function

In the following example the statement selects the symbol of the 3 Trade events that had the
largest, second-largest and third-largest volume.

sel ect prev(0, synbol), prev(l, symbol), prev(2, synbol)
from Trade. ext:sort (3, volunme desc)

The i-th previous event parameter can also be an expression returning an Integer-type value. The
next statement joins the Trade data window with an RankSel ect i onEvent event that provides a
r ank property used to look up a certain position in the sorted Trade data window:

sel ect prev(rank, synbol) from Tr ade. ext : sort (10, vol une desc),
RankSel ecti onEvent uni directional

Use the prev function in combination with a grouped data window to access a previous event
per grouping criteria.

The example below returns the price of the previous Trade event for the same symbol, or nul |
if for that symbol there is no previous Trade event:

select prev(l, price) from Trade. std: groupwi n(synbol).w n: | ength(2)

The pr ev function returns a nul | value if the data window does not currently hold the i-th previous
event. The example below illustrates this using a time batch window. Here the prev function
returns a null value for any events in which the previous event is not in the same batch of events.
Note that the pri or function as discussed below can be used if a null value is not the desired result.

sel ect prev(1l, synbol) from Trade.wi n:tine_batch(1l mn)

An alternative form of the pr ev function allows the index to not appear or appear after the property
name if the index value is a constant and not an expression:

sel ect prev(l, symbol) from Trade

/[l ... equivalent to ...
sel ect prev(synbol) from Trade
/1 ... and

sel ect prev(synbol, 1) from Trade

The combination of the prev function and st d: gr oupwi n view returns the property value for a
previous event in the given data window group.

343

Chapter 10. EPL Reference: Fu...

The following example returns for each event the current smallest price per symbol:

sel ect synbol, prev(0, price) as topPricePerSynbol
from Trade. std: groupwi n(synbol). ext:sort(1, price asc)

10.1.12.1. Restrictions

The following restrictions apply to the pr ev functions and its results:

« The function always returns a nul | value for remove stream (old data) events.

» The function requires a data window view, or a st d: gr oupwi n and data window view, without
any additional sub-views. See Section 13.2, “Data Window Views” for built-in data window
views.

10.1.12.2. Comparison to the prior Function

The pr ev function is similar to the pri or function. The key differences between the two functions
are as follows:

« The prev function returns previous events in the order provided by the data window, while the
pri or function returns prior events in the order of arrival as posted by a stream's declared views.

e The prev function requires a data window view while the pri or function does not have any
view requirements.

e The prev function returns the previous event grouped by a criteria by combining the
st d: gr oupwi n view and a data window. The pri or function returns prior events posted by the
last view regardless of data window grouping.

« The prev function returns a nul | value for remove stream events, i.e. for events leaving a data
window. The pri or function does not have this restriction.

10.1.13. The previous-Tai| Function

The prevt ai | function returns the property value or all event properties of the positional-first event
in a data window. For data windows that introduce a sort order other than the order of arrival, such
as the sorted data window and the time order data window, the function returns the first event at
the specified position.

The prevtail function is not an aggregation function and therefore does not return results per
group when used with group by. Please consider the first, firstever or wi ndowaggregation
functions instead as described in Section 10.2.2, “Event Aggregation Functions”. You must use
an aggregation function instead of pr evt ai | when querying a named window or table.

The first parameter is an index parameter and denotes the i-th from-first event in the order
established by the data window. If no index is provided the default is zero and the function returns
the first event in the data window. The second parameter is a property name or stream name. If
specifying a property name, the function returns the value for the previous event property value.
If specifying a stream name, the function returns the previous event underlying object.

344

The Previous-Tail Function

This example selects the value of the pri ce property of the first (oldest) event held in the length
window:

sel ect prevtail (price) from Trade.w n: | ength(10)

By using the stream alias in the pr evt ai | function, the next example selects the trade event itself
that is the second event held in the length window:

sel ect prevtail (1, trade) from Trade.w n: | ength(10) as trade

Since the prevtail function takes the order established by the data window into account, the
function works well with sorted windows.

In the following example the statement selects the symbol of the 3 Trade events that had the
smallest, second-smallest and third-smallest volume.

select prevtail (0, synmbol), prevtail (1, synbol), prevtail (2, synbol)
from Trade. ext:sort(3, volume asc)

The i-th previous event parameter can also be an expression returning an Integer-type value. The
next statement joins the Trade data window with an RankSel ect i onEvent event that provides a
r ank property used to look up a certain position in the sorted Trade data window:

sel ect prevtail (rank, synbol) from Trade.ext:sort(10, vol ume asc),
RankSel ecti onEvent wuni directional

The pr ev function returns a nul | value if the data window does not currently holds positional-first
or the Nth-from-first event. For batch data windows the value returned is relative to the current
batch.

The following example returns the first and second symbol value in the batch:

sel ect prevtail (0, synbol), prevtail (1, synbol) fromTrade.w n:tine_batch(1l m n)

An alternative form of the prevtail function allows the index to not appear or appear after the
property name if the index value is a constant and not an expression:

select prevtail (1, symbol) from Trade
/[l ... equivalent to ...

345

Chapter 10. EPL Reference: Fu...

sel ect prevtail (synbol) from Trade
/[l ... and ...
sel ect prevtail (synbol, 1) from Trade

The combination of the prevt ai | function and st d: gr oupwi n view returns the property value for
a positional first event in the given data window group.

Let's look at an example. This statement outputs the oldest price per symbol retaining the last
10 prices per symbol:

sel ect symbol, prevtail (0, price) as ol destPrice
from Trade. std: groupwi n(synbol). w n: | engt h(10)

10.1.13.1. Restrictions

The following restrictions apply to the pr ev functions and its results:

» The function always returns a nul | value for remove stream (old data) events.

» The function requires a data window view, or a st d: gr oupwi n and data window view, without
any additional sub-views. See Section 13.2, “Data Window Views” for built-in data window
views.

10.1.14. The previ ous- wndow Function

The pr evwi ndow function returns property values or all event properties for all events in a data
window. For data windows that introduce a sort order other than the order of arrival, such as the
sorted data window and the time order data window, the function returns the event data sorted
in that order, otherwise it returns the events sorted by order of arrival with the newest arriving
event first.

The pr evw ndow function is not an aggregation function and therefore does not return results per
group when used with group by. Please consider the wi ndow aggregation function instead as
described in Section 10.2.2, “Event Aggregation Functions”. You must use an aggregation function
instead of pr evwi ndow when querying a named window or table.

The single parameter is a property name or stream name. If specifying a property name, the
function returns the value of the event property for all events held by the data window. If specifying
a stream name, the function returns the event underlying object for all events held by the data
window.

This example selects the value of the pri ce property of all events held in the length window:

sel ect prevw ndow(price) from Trade.w n: | engt h(10)

346

The Previous-Count Function

By using the stream alias in the pr evwi ndow function, the next example selects all trade events
held in the length window:

sel ect prevwi ndow(trade) from Trade.w n: | ength(10) as trade

When used with a data window that introduces a certain sort order, the pr evw ndow function
returns events sorted according to that sort order.

The next statement outputs for every arriving event the current 10 underying trade event objects
that have the largest volume:

sel ect prevwi ndow trade) from Trade. ext:sort (10, volume desc) as trade

The pr evw ndow function returns a nul | value if the data window does not currently hold any
events.

The combination of the pr evwi ndowfunction and st d: gr oupwi n view returns the property value(s)
for all events in the given data window group.

This example statement outputs all prices per symbol retaining the last 10 prices per symbol:

sel ect synbol, prevw ndow price) from Trade. std: groupwi n(synbol). w n: | ength(10)

10.1.14.1. Restrictions

The following restrictions apply to the pr ev functions and its results:

» The function always returns a nul | value for remove stream (old data) events.

» The function requires a data window view, or a st d: gr oupwi n and data window view, without
any additional sub-views. See Section 13.2, “Data Window Views” for built-in data window
views.

10.1.15. The previous-count Function

The prevcount function returns the number of events held in a data window.

The prevcount function is not an aggregation function and therefore does not return results
per group when used with group by. Please consider the count (*) or count ever aggregation
functions instead as described in Section 10.2, “Aggregation Functions”. You must use an
aggregation function instead of pr evcount when querying a named window or table.

The single parameter is a property name or stream name of the data window to return the count for.

347

Chapter 10. EPL Reference: Fu...

This example selects the number of data points for the pri ce property held in the length window:

sel ect prevcount(price) from Trade.w n: | ength(10)

By using the stream alias in the prevcount function the next example selects the count of trade
events held in the length window:

sel ect prevcount(trade) from Trade.w n: |l ength(10) as trade

The combination of the prevcount function and st d: gr oupwi n view returns the count of events
in the given data window group.

This example statement outputs the number of events retaining the last 10 events per symbol:

sel ect synbol, prevcount(price) from Trade. std: groupwi n(synbol).w n: | ength(10)

10.1.15.1. Restrictions

The following restrictions apply to the pr ev functions and its results:

« The function always returns a nul | value for remove stream (old data) events.

« The function requires a data window view, or a st d: gr oupwi n and data window view, without
any additional sub-views. See Section 13.2, “Data Window Views” for built-in data window
views.

10.1.16. The rrior Function

The pri or function returns the property value of a prior event. The first parameter is an integer
value that denotes the i-th prior event in the natural order of arrival. The second parameter is a
property name for which the function returns the value for the prior event. The second parameter is
a property name or stream name. If specifying a property name, the function returns the property
value for the prior event. If specifying a stream name, the function returns the prior event underlying
object.

This example selects the value of the pri ce property of the 2nd-prior event to the current Trade
event.

select prior(2, price) from Trade

By using the stream alias in the pri or function, the next example selects the trade event itself
that is immediately prior to the current Trade event

348

The Type-Of Function

select prior(1l, trade) from Trade as trade

The prior function can be used on any event stream or view and does not have any specific
view requirements. The function operates on the order of arrival of events by the event stream
or view that provides the events.

The next statement uses a time batch window to compute an average volume for 1 minute of Trade
events, posting results every minute. The select-clause employs the pri or function to select the
current average and the average before the current average:

sel ect average, prior(1l, average)
from TradeAverages. wi n:time_batch(1l min).stat: uni (vol une)

10.1.17. The 1ype-o Function

The t ypeof function, when parameterized by a stream name, returns the event type name of the
evaluated event which can be useful with variant streams. When parameterized by an expression
or property name, the function returns the type name of the expression result or nul | if the
expression result is null.

In summary, the function determines the return type of the expression at runtime by evaluating
the expression and returns the type name of the expression result.

The typeof function is often used in conjunction with variant streams. A variant stream is a
predefined stream into which events of multiple disparate event types can be inserted. The t ypeof
function, when passed a stream name alias, returns the name of the event type of each event
in the stream.

The following example elaborates on the use of variant streams with t ypeof . The first statement
declares a variant stream SequencePat t er nSt r eam

create variant schema SequencePatternStream as *

The next statement inserts all order events and is followed by a statement to insert all product
events:

insert into SequencePatternStream select * from O derEvent;

insert into SequencePatternStream select * from PriceEvent;

349

Chapter 10. EPL Reference: Fu...

This example statement returns the event type name for each event in the variant stream:

sel ect typeof (sps) from SequencePatternStream as sps

The next example statement detects a pattern by utilizing the t ypeof function to find pairs of order
event immediately followed by product event:

sel ect * from SequencePatternStream mat ch_recogni ze(
measures A as a, Bas b
pattern (A B)
define A as typeof (A
B as typeof (B)

"Order Event ",
"Product Event "

When passing a property name to the t ypeof function, the function evaluates whether the property
type is event type (a fragment event type). If the property type is event type, the function returns
the type name of the event in the property value or nul | if not provided. If the property type is not
event type, the function returns the simple class name of the property value.

When passing an expression to the t ypeof function, the function evaluates the expression and
returns the simple class name of the expression result value or nul | if the expression result value
is null.

This example statement returns the simple class hame of the value of the dynamic property pr op
of events in stream MyStream or a nul | value if the property is not found for an event or the
property value itself is nul | :

sel ect typeof (prop?) from MyStream

When using subclasses or interface implementations as event classes or when using Map-event
type inheritance, the function returns the event type name provided when the class or Map-type
event was registered, or if the event type was not registered, the function returns the fully-qualified
class name.

10.2. Aggregation Functions

Aggregation functions are stateful and consider sets of events or value points. The group by
clause is often used in conjunction with aggregation functions to group the result-set by one or
more columns.

Aggregation functions can be a column type for table declarations. This allows easy sharing
of aggregated state, co-location of aggregations and other data as well as co-aggregation by

350

SQL-Standard Functions

multiple statements into the same aggregation state. Please see Section 6.1.2, “Table Overview”
for details.

The EPL language extends the standard SQL aggregation functions by allowing filters and
by further useful aggregation functions that can track a data window or compute event rates,
for example. Your application may also add its own aggregation function as Section 18.5,
“Aggregation Function” describes.

The EPL language allows each aggregation function to specify its own grouping criteria. Please
find further information in Section 5.6.4, “Specifying grouping for each aggregation function”.

Aggregation values are always computed incrementally: Insert and remove streams result in
aggregation value changes. The exceptions are on-demand queries and joins when using the
uni di recti onal keyword. Aggregation functions are optimized to retain the minimal information
necessary to compute the aggregated result, and to share aggregation state between eligible
other aggregation functions in the same statement so that same-kind aggregation state is never
held multiple times unless required.

Most aggregation functions can also be used with unbound streams when no data window is
specified. A few aggregation functions require a data window or named window as documented
below.

10.2.1. SQL-Standard Functions

The SQL-standard aggregation functions are shown in below table.

Table 10.4. Syntax and results of SQL-standard aggregation functions

Aggregate Function Result

Mean deviation of the (distinct) values in the expression,

avedev([all |]
returning a value of doubl e type.

di stinct] expression

, filter _expr
[—exprl) The optional filter expression limits the values considered for

computing the mean deviation.

Average of the (distinct) values in the expression, returning a

avg([all|
value of doubl e type.

di stinct] expression

, filter expr
[—exprl) The optional filter expression limits the values considered for

computing the average.

Number of the (distinct) non-null values in the expression,

count ([al ||)
returning a value of | ong type.

di stinct] expression

, filter expr
[—exprl) The optional filter expression limits the values considered for

the count.

count (* Number of events, returning a value of | ong type.

[, filter_expr])

351

Chapter 10. EPL Reference: Fu...

Aggregate Function Result

The optional filter expression limits the values considered for
the count.

Highest (distinct) value in the expression, returning a value of

max ([al |
the same type as the expression itself returns.

di stinct] expression)

' Use f max to provide a filter expression that limits the values
fmax([all| considered for computing the maximum.

di stinct] expression, filter_expr)
Consider using maxby instead if return values must include

‘ additional properties.

Highest (distinct) value - ever - in the expression, returning a
value of the same type as the expression itself returns.

maxever ([al |
di stinct] expression)

' Use fnaxever to provide a filter expression that limits the
f maxever ([al | | values considered for computing the maximum.

distinct] expression, filter_expr)
Consider using maxbyever instead if return values must include

additional properties.

el e Tl] Median (distinct) value in the expression, returning a value of
distinct] expression doubl e type. Double Not-a-Number (NaN) values are ignored
[, filter_expr]) in the median computation.

The optional filter expression limits the values considered for
computing the median.

Lowest (distinct) value in the expression, returning a value of
the same type as the expression itself returns.

mn([all]
di stinct] expression)

' Use fmin to provide a filter expression that limits the values
fmin([all] considered for computing the maximum.

di stinct] expression, filter_expr)
Consider using ni nby instead if return values must include

‘ additional properties.

Lowest (distinct) value - ever - in the expression, returning a
value of the same type as the expression itself returns.

m never ([al |
di stinct] expression)

' Use fninever to provide a filter expression that limits the
fm never([all| values considered for computing the maximum.

distinct] expression, filter_expr)
Consider using mi nbyever instead if return values must include

additional properties.

Standard deviation of the (distinct) values in the expression,

stddev([all|)
returning a value of doubl e type.

di stinct] expression

, filter expr
[—exprl) The optional filter expression limits the values considered for

computing the standard deviation.

352

Event Aggregation Functions

Aggregate Function Result

v Totals the (distinct) values in the expression, returning a value
distinct] expression of l ong, double, float or integer type depending on the

[, filter_expr]) expression.

The optional filter expression limits the values considered for
computing the total.

If your application provides double-type values to an aggregation function, avoid using Not-a-
Number (NaN) and infinity. Also when using double-type values, round-off errors (or rounding
errors) may occur due to double-type precision. Consider rounding your result value to the desired
precision.

Each of the aggregation functions above takes an optional filter expression as a parameter. The
filter expression must return a boolean-type value and applies to the events considered for the
aggregation. If a filter expression is provided, then only if the filter expression returns a value of
true does the engine update the aggregation for that event or combination of events.

Consider the following example, which computes the quantity fraction of buy orders among all
orders:

sel ect sun{quantity, side="buy') / sum{quantity) as buy fraction from Orders

Use the f ni n and f max aggregation functions instead of the ni n and max aggregation functions
when providing a filter expression (the ni n and max functions are also single-row functions).

The next example computes the minimum quantity for buy orders and a separate minimum
quantity for sell orders:

select fmn(quantity, side="buy'), fmn(quantity, side = "sell') from O ders

This sample statement demonstrates specifying grouping criteria for an aggregation function using
the gr oup_by named parameter. It computes, for the last one minute of orders, the ratio of orders
per account compared to all orders:

sel ect count(*)/count(*, group_by:()) as ratio fromOders.win:tine(l mn) group
by account

10.2.2. Event Aggregation Functions

The event aggregation functions return one or more events or event properties. When used with
group by the event aggregation functions return one or more events or event properties per group.

353

Chapter 10. EPL Reference: Fu...

The sort ed and the wi ndow event aggregation functions require that a data window or named
window is declared for the applicable stream. They cannot be used on unbound streams.

The below table summarizes the event aggregation functions available:

Table 10.5. Event Aggregation Functions

Function Result

first(...)

Returns the first event or an event property value of the first
event.

Section 10.2.2.1, “First Aggregation Function”.

last(...)

maxby(criteria)

Returns the last event or an event property value of the last
event.

Section 10.2.2.2, “Last Aggregation Function”.

Returns the event with the highest sorted value according to
criteria expressions.

Section 10.2.2.3, “Maxby Aggregation Function”.

maxbyever(criteria)

minby(criteria)

Returns the event with the highest sorted value, ever, according
to criteria expressions.

Section 10.2.2.4, “Maxbyever Aggregation Function”.

Returns the event with the lowest sorted value according to
criteria expressions.

Section 10.2.2.5, “Minby Aggregation Function”.

minbyever(criteria)

Returns the event with the lowest sorted value, ever, according
to criteria expressions.

Section 10.2.2.6, “Minbyever Aggregation Function”.

sorted(criteria) Returns events sorted according to criteria expressions.
Section 10.2.2.7, “Sorted Aggregation Function”.
window(...) Returns all events or all event's property values.

Section 10.2.2.8, “Window Aggregation Function”.

In connection with named windows and tables, event aggregation functions can also be used in
on- sel ect, selects with named window or table in the f r omclause, subqueries against named
windows or tables and on-demand fire-and-forget queries.

The event aggregation functions are often useful in connection with enumeration methods
and they can provide input events for enumeration. Please see Chapter 11, EPL Reference:
Enumeration Methods for more information.

354

Event Aggregation Functions

When comparing the | ast aggregation function to the pr ev function, the differences are as follows.
The prev function is not an aggregation function and thereby not sensitive to the presence of
group by. The prev function accesses data window contents directly and respects the sort order
of the data window. The | ast aggregation function returns results based on arrival order and
tracks data window contents in a separate shared data structure.

When comparing the fi rst aggregation function to the prevtai |l function, the differences are
as follows. The prevtail function is not an aggregation function and thereby not sensitive to
the presence of group by. The prevtail function accesses data window contents directly and
respects the sort order of the data window. The fi r st aggregation function returns results based
on arrival order and tracks data window contents in a separate shared data structure.

When comparing the wi ndowaggregation function to the pr evwi ndowfunction, the differences are
as follows. The pr evwi ndow function is not an aggregation function and thereby not sensitive to
the presence of gr oup by. The prevw ndowfunction accesses data window contents directly and
respects the sort order of the data window. The wi ndowaggregation function returns results based
on arrival order and tracks data window contents in a separate shared data structure.

When comparing the count aggregation function to the prevcount function, the differences are
as follows. The prevcount function is not an aggregation function and thereby not sensitive to
the presence of group by.

When comparing the | ast aggregation function to the nt h aggregation function, the differences
are as follows. The nt h aggregation function does not consider out-of-order deletes (for example
with on-delete and sorted windows) and does not revert to the prior expression value when the
last event or nth-event was deleted from a data window. The | ast aggregation function tracks the
data window and reflects out-of-order deletes.

From an implementation perspective, the first, | ast and wi ndow aggregation functions share
a common data structure for each stream. The sort ed, nm nby and naxby aggregation functions
share a common data structure for each stream.

10.2.2.1. rirst Aggregation Function

The synopsis for the fi r st aggregation function is:

first(*|stream *|val ue_expression [, index_expression])

The fi rst aggregation function returns properties of the very first event. When used with gr oup
by, it returns properties of the first event for each group. When specifying an index expression, the
function returns properties of the Nth-subsequent event to the first event, all according to order
of arrival.

The first parameter to the function is required and defines the event properties or expression result
to return. The second parameter is an optional index_expression that must return an integer value
used as an index to evaluate the Nth-subsequent event to the first event.

355

Chapter 10. EPL Reference: Fu...

You may specify the wildcard (*) character in which case the function returns the underlying event
of the single selected stream. When selecting a single stream you may specify no parameter
instead of wildcard. For joins and subqueries you must use the stream wildcard syntax below.

You may specify the stream name and wildcard (*) character in the stream. * syntax. This returns
the underlying event for the specified stream.

You may specify a value_expression to evaluate for the first event. The value expression may not
select properties from multiple streams.

The index_expression is optional. If no index expression is provided, the function returns the first
event. If present, the function evaluates the index expression to determine the value for N, and
evaluates the Nth-subsequent event to the first event. A value of zero returns the first event and
a value of 1 returns the event subsequent to the first event. You may not specify event properties
in the index expression.

The function returns nul | if there are no events or when the index is larger than the number of
events held. When used with group by, it returns nul | if there are no events for that group or
when the index is larger than the number of events held for that group.

To explain, consider the statement below which selects the underlying event of the first sensor
event held by the length window of 2 events.

select first(*) from SensorEvent.w n: | ength(2)

Assume event E1, event E2 and event E3 are of type SensorEvent. When event E1 arrives the
statement outputs the underlying event E1. When event E2 arrives the statement again outputs
the underlying event E1. When event E3 arrives the statement outputs the underlying event E2,
since event E1 has left the data window.

The stream wildcard syntax is useful for joins and subqueries. This example demonstrates a
subquery that returns the first SensorEvent when a DoorEvent arrives:

sel ect (select first(se.*) fromSensor Event.w n:|length(2) as se) from Door Event

The following example shows the use of an index expression. The output value for f 1 is the
temperature property value of the first event, the value for f 2 is the temperature property value
of the second event:

select first(tenmperature, 0) as f1, first(tenperature, 1) as f2
from Sensor Event. wi n: ti ne(10 sec)

You may use dot-syntax to invoke a method on the first event. You may also append a property
name using dot-syntax.

356

Event Aggregation Functions

10.2.2.2. Last Aggregation Function

The synopsis for the | ast aggregation function is:

| ast (*| stream *| val ue_expressi on [, index_expression])

The | ast aggregation function returns properties of the very last event. When used with gr oup
by, it returns properties of the last event for each group. When specifying an index expression, the
function returns properties of the Nth-prior event to the last event, all according to order of arrival.

Similar to the first aggregation function described above, you may specify the wildcard (*)
character, no parameter or stream name and wildcard (*) character or a value_expression to
evaluate for the last event.

The index_expression is optional. If no index expression is provided, the function returns the last
event. If present, the function evaluates the index expression to determine the value for N, and
evaluates the Nth-prior event to the last event. A value of zero returns the last event and a value
of 1 returns the event prior to the last event. You may not specify event properties in the index
expression.

The function returns nul | if there are no events or when the index is larger than the number of
events held. When used with group by, it returns nul | if there are no events for that group or
when the index is larger than the number of events held for that group.

The next statement selects the underlying event of the first and last sensor event held by the time
window of 10 seconds:

select first(*), last(*) from SensorEvent.w n:ti me(10 sec)

The statement shown next selects the last temperature (f 1) and the prior-to-last temperature (f 1)
of sensor events in the last 10 seconds:

select last(tenmperature, 0) as f1l, select last(tenperature, 1) as f2
from Sensor Event.wi n:ti me(10 sec)

10.2.2.3. vaxby Aggregation Function

The synopsis for the naxby aggregation function is:

maxby(sort _criteria_expression [asc/desc][, sort_criteria_expression [asc/
desc]...])

The maxby aggregation function returns the greatest of all events, compared by using criteria
expressions. When used with gr oup by, it returns the greatest of all events per group.

357

Chapter 10. EPL Reference: Fu...

This example statement returns the sensor id and the temperature of the sensor event that had
the highest temperature among all sensor events:

sel ect maxby(t enperature). sensorld, maxby(tenperature).tenperature from
Sensor Event

The next EPL returns the sensor event that had the highest temperature and the sensor event
that had the lowest temperature, per zone, among the last 10 seconds of sensor events:

sel ect nmaxby(tenperature), mnby(tenperature) from SensorEvent.wi n:tinme(10 sec)
group by zone

Your EPL may specify multiple criteria expressions. If the sort criteria expression is descending
please append the desc keyword.

The following EPL returns the sensor event with the highest temperature and if there are multiple
sensor events with the highest temperature the query returns the sensor event that has the newest
timestamp value:

sel ect maxby(tenperature asc, tinestanp desc) from SensorEvent

Event properties that are listed in criteria expressions must refer to the same event stream and
cannot originate from different event streams.

If your query does not define a data window and does not refer to a named window, the semantics
of maxby are the same as maxbyever.

10.2.2.4. vaxbyever Aggregation Function

The synopsis for the naxbyever aggregation function is:

maxbyever (sort _criteria_expression [asc/desc][, sort_criteria_expression
[asc/desc]...])

The maxbyever aggregation function returns the greatest of all events that ever occurred,
compared by using criteria expressions. When used with gr oup by, it returns the greatest of all
events that ever occurred per group.

Compared to the maxby aggregation function the maxbyever does not consider the data window
or named window contents and instead considers all arriving events.

The next EPL computes the difference, per zone, between the maximum temperature considering
all events and the maximum temperature considering only the events in the last 10 seconds:

358

Event Aggregation Functions

sel ect maxby(tenperature).tenperature - nmaxbyever (tenperature).tenperature
from Sensor Event.w n: ti me(10) group by zone

10.2.2.5. m nby Aggregation Function

The synopsis for the ni nby aggregation function is:

m nby(sort _criteria_expression [asc/desc][, sort_criteria_expression [asc/
desc]...])

Similar to the naxby aggregation function, the nmi nby aggregation function returns the lowest of all
events, compared by using criteria expressions. When used with gr oup by, it returns the lowest
of all events per group.

Please review the section on maxby for more information.

10.2.2.6. m nbyever Aggregation Function

Similar to the maxbyever aggregation function, the ni nbyever aggregation function returns the
lowest of all events that ever occurred, compared by using criteria expressions. When used with
group by, it returns the lowest of all events per group that ever occured.

Please review the section on maxbyever for more information.
10.2.2.7. sorted Aggregation Function

The synopsis for the sor t ed aggregation function is:

sorted(sort_criteria_expression [asc/desc][, sort_criteria_expression [asc/
desc]...])

The sorted aggregation function maintains a list of events sorted according to criteria
expressions. When used with gr oup by, it maintains a list of events sorted according to criteria
expressions per group.

The sample EPL listed next returns events sorted according to temperature ascending for the
same zone:

sel ect sorted(tenperature) from SensorEvent group by zone

Your EPL may specify multiple criteria expressions. If the sort criteria expression is descending
please append the desc keyword.

Enumeration methods can be useful in connection with sor t ed as the function provides the sorted
events as input.

359

Chapter 10. EPL Reference: Fu...

This EPL statement finds the sensor event that when sorted according to temperature is the first
sensor event for a Friday timestamp among sensor events for the same zone:

sel ect sorted(tenperature).first(v => tinestanp. get DayCf Week() =6)
from Sensor Event

Event properties that are listed in criteria expressions must refer to the same event stream and
cannot originate from different event streams.

If used in a regular select statement, the use of sort ed requires that your EPL defines a data
window for the stream or utilizes a named window.

10.2.2.8. wndow Aggregation Function

The synopsis for the wi ndow aggregation function is:

Wi ndow(*| stream *| val ue_expr essi on)

The wi ndow aggregation function returns all rows. When used with gr oup by, it returns the rows
for each group.

Similar to the first aggregation function described above, you may specify the wildcard (*)
character or stream name and wildcard (*) character or a value_expression to evaluate for all
events.

The function returns nul | if there are no rows. When used with gr oup by, it returns nul | if there
are no rows for that group.

The next statement selects the underlying event of all events held by the time window of 10
seconds:

sel ect window(*) from SensorEvent.w n:tine(10 sec)

If used in a regular select statement, the wi ndow aggregation function requires that your stream is
bound by a data window or a named window. You may not use the wi ndow aggregation function
on unbound streams with the exception of on-demand queries or subqueries.

This example statement assumes that the Or der W ndow hamed window exists. For each event
entering or leaving the O der W ndownamed window it outputs the total amount removing negative
amounts:

sel ect wi ndow(*).where(v => v.anmount > 0).aggregate(0d, (r, v) =>r + v.anpunt)
from O der W ndow

360

Approximation Aggregation Functions

10.2.3. Approximation Aggregation Functions

Under approximation aggregation function we understand aggregations that perform approximate
analysis. Compared to the previously-introduced aggregation functions, the functions discussed
here have a degree of accuracy and probabilistic behavior.

10.2.3.1. Count-Min Sketch

Count-min sketch (or CM sketch) is a probabilistic sub-linear space streaming algorithm (source:
Wikipedia). Count-min sketch computes an approximate frequency, without retaining distinct
values in memory, making the algorithm suitable for summarizing very large spaces of distinct
values. The estimated count can be used for estimated top-K and estimated heavy-hitters, for
example.

The original and detail of the algorithm is described in the paper by Graham Cormode and S.
Muthukrishnan. An improved data stream summary: The Count-min sketch and its applications
(2004. 10.1016/j.jalgor.2003.12.001).

Count-min sketch can only be used with tables and is not available as an aggregation function
other than in a table declaration.

Count-min sketch does not consider events leaving a data window and does not process a remove
stream.

10.2.3.1.1. Declaration

The table column type for Count-min sketch is count M nSket ch.

For example, the next EPL declares a table that holds a Count-min sketch (does not provision
a top-K):

create tabl e WrdCount Tabl e(wordcrms count M nSket ch())

You can parameterize the algorithm by providing a JSON-format structure to the declaration. The
available parameters are all optional:

Table 10.6. Count-min Sketch Parameters

Name Description

epsCOf Tot al Count| Specifies the accuracy (number of values counted * accuracy >= number of
errors) of type double.

This value defaults to 0.0001.

confi dence Provides the certainty with which we reach the accuracy of type double.

The default is 0.99.

361

Chapter 10. EPL Reference: Fu...

Name Description

seed A seed value for computing hash codes of type integer.

This default is 123456.

t opk The number of top-K values as an integer. If null, the algorithm maintains
no top-K list.

This value defaults to null (no top-K available).

agent The agent is an extension API class that can interact with Count-min sketch
state and also receives the value objects. The agent defines the type of the
values that can be counted. The default agent only allows string-type values
and utilizes UTF-16 charset encoding.

The default agent is
com espertech. esper.client.util.CountM nSketchAgent Stri ngUTF16.

The next example EPL declares all available parameters:

create tabl e WrdCount Tabl e (wordcns count M nSket ch({
epsO Tot al Count: 0. 000002,
confidence: 0.999,

seed: 38576,

topk: 20,

agent: 'com nyconpany. Count M nSket chCust omAgent '
)

The default for the t opk parameteris nul | . Thereby the engine by default does not compute top-K.
By specifying a positive integer value for t opk the algorithm maintains a list of values representing
the top estimated counts.

By default, the Count-min sketch group of aggregation functions operates on string-type
values only. The aggregation function allows registering an agent that can handle any other
type of value objects and that allows overriding behavior. The agent class must implement
the interface com espertech. esper.client.util.CountM nSketchAgent. Please see the
JavaDoc for implementing an agent. The agent API is an extension APl and is subject to change
between versions.

10.2.3.1.2. Counting Values

The count M nSket chAdd function counts value(s). It expects a single parameter expression
returning the value(s) to be counted. The function can only be used with statements that utilize
into table.

This example EPL counts words:

362

Approximation Aggregation Functions

into table W rdCountTable select countM nSketchAdd(word) as wordcnms from
Wor dEvent

10.2.3.1.3. Estimating Current Count

The count M nSket chFr equency function returns an estimated count for a given value. It expects
a single parameter expression returning the value(s) for which to estimate and return the long-
type count. The function can only be used as a table-access function against a table column that
declares the aggregation count M nSket ch.

The next example EPL returns, when a Est i mat eWor dCount Event event arrives, the estimated

frequency of a given word:

sel ect Wor dCount Tabl e. wor dcs. count M nSket chFr equency(wor d) from
Est i mat eWbr dCount Event

10.2.3.1.4. Obtaining Top-K

The count M nSket chTopK function returns top-K. The function expects no parameters. The
function can only be used as a table-access function against a table column that declares the
aggregation count M nSket ch and only if the Count-min sketch was parameterized with a non-null
t opk parameter (the default is nul | , see declaration above).

The function returns an array of com espertech. esper.client.util.Count M nSket chTopK.

The following EPL outputs top-K every 10 seconds:

sel ect Wor dCount Tabl e. wor dcns. count M nSket chTopk() from pattern[every
tinmer:interval (10 sec)]

10.2.3.1.5. Agent APl Example

We provide a sample agent code that handles String-type values below. The complete code is
available for class Count M nSket chAgent St ri ngUTF16 as part of sources.

public class Count M nSket chAgent Stri ngUTF16 i npl enents Count M nSket chAgent {
public C ass[] getAcceptabl evVal ueTypes() {
return new Cl ass[] {String.class};

public void add(Count M nSket chAgent Cont ext Add ctx) {
String text = (String) ctx.getValue();

363

Chapter 10. EPL Reference: Fu...

if (text == null) {
return;

}
byte[] bytes = toBytesUTF16(text);
ctx.getState().add(bytes, 1); // increase count by 1

public Long esti mat e(Count M nSket chAgent Cont ext Esti mate ctx) {
String text = (String) ctx.getValue();
if (text == null) {
return null;

}
byte[] bytes = toBytesUTF16(text);
return ctx.getState().frequency(bytes);

10.2.4. Additional Aggregation Functions

Esper provides the following additional aggregation functions beyond those in the SQL standard:

Table 10.7. Syntax and results of EPL aggregation functions

Aggregate Function Result

countever(* [, filter_expr]) The count ever aggregation function returns the number of
events ever. When used with group by it returns the number

countever(expression [of events ever for that group.

filter_expr])

When used with a data window, the result of the function
does not change as data points leave a data window. Use the
count (*) or prevcount function to return counts relative to a
data window.

The optional filter expression limits the values considered for
counting rows. The di sti nct keyword is not allowed. When an
expression is provided instead of wildcard, counts the non-null
values.

The next example statement outputs the count-ever for sell
orders:

sel ect countever(*, side="sell') from O der

firstever(expression [, | Thefirstever aggregation function returns the very first value
filter_expr]) ever. When used with group by it returns the first value ever
for that group.

364

Additional Aggregation Functions

Result

Aggregate Function

When used with a data window, the result of the function does
not change as data points leave a data window. Use the fi r st
or prevtai | function to return values relative to a data window.

The optional filter expression limits the values considered for
retaining the first-ever value.

The next example statement outputs the first price ever for sell
orders:

select firstever(price, side="sell') from O der

lastever(expression
filter_expr])

leaving()

Returns the last value or last value per group, when used with
group by.

This sample statement outputs the total price, the first price and
the last price per symbol for the last 30 seconds of events and
every 5 seconds:

sel ect symnbol , sum(price), | ast ever (price),
firstever(price)

from St ockTi ckEvent . wi n:ti me(30 sec)

group by synbol

out put every 5 sec

When used with a data window, the result of the function does
not change as data points leave a data window (for example
when all data points leave the data window). Use the | ast or
pr ev function to return values relative to a data window.

The optional filter expression limits the values considered for
retaining the last-ever value.

The next example statement outputs the last price (ever) for sell
orders:

sel ect lastever(price, side="sell') from O der

Returns true when any remove stream data has passed, for use
in the havi ng clause to output only when a data window has
filled.

365

Chapter 10. EPL Reference: Fu...

Aggregate Function Result

The | eavi ng aggregation function is useful when you want to
trigger output after a data window has a remove stream data
point. Use the out put af t er syntax as an alternative to output
after a time interval.

This sample statement uses | eavi ng() to output after the first
data point leaves the data window, ignoring the first datapoint:

sel ect synbol, sum(price)
from St ockTi ckEvent . wi n:ti me(30 sec)
havi ng | eavi ng()

nth(expression, N_index)

rate(number_of _seconds)

Returns the Nth oldest element; If N=0 returns the most recent
value. If N=1 returns the value before the most recent value.
If N is larger than the events held in the data window for this
group, returns null.

A maximum N historical values are stored, so it can be safely
used to compare recent values in large views without incurring
excessive overhead.

As compared to the pr ev row function, this aggregation function
works within the current group by group, see Section 3.7.2,
“Output for Aggregation and Group-By”.

This statement outputs every 2 seconds the groups that have
new data and their last price and the previous-to-last price:

sel ect synmbol, nth(price, 1), last(price)
from St ockTi ckEvent

group by synbol

output |ast every 2 sec

Returns an event arrival rate per second over the provided
number of seconds, computed based on engine time.

Returns null until events fill the number of seconds. Useful
with out put snapshot to output a current rate. This function
footprint is for use without a data window onto the stream(s).

A sample statement to output, every 2 seconds, the arrival rate
per second considering the last 10 seconds of events is shown
here:

366

User-Defined Functions

Aggregate Function Result

sel ect rate(10) from StockTi ckEvent
out put snapshot every 2 sec

The aggregation function retains an engine timestamp value for
each arriving event.

rate(timestamp_property]|, Returns an event arrival rate over the data window including the

accumulator]) last remove stream event. The timestamp_property is the name
of a long-type property of the event that provides a timestamp
value.

The first parameter is a property name or expression providing
millisecond timestamp values.

The optional second parameter is a property or expression for
computing an accumulation rate: If a value is provided as a
second parameter then the accumulation rate for that quantity
is returned (e.g. turnover in dollars per second).

This footprint is designed for use with a data window and
requires a data window declared onto the stream. Returns null
until events start leaving the window.

This sample statement outputs event rate for each group
(symbol) with fixed sample size of four events (and considering
the last event that left). The t i mest anp event property must be
part of the event for this to work.

sel ect colour, rate(tinmestanp) as rate

from

St ockTi ckEvent . std: groupwi n(synbol). wi n: | engt h(4)
group by synbol

Built-in aggregation functions can be disabled via configuration (see Section 16.4.22.4, “Extended
Built-in Aggregation Functions”). A custom aggregation function of the same name as a built-on
function may be registered to override the built-in function.

10.3. User-Defined Functions

A user-defined function (UDF) is a single-row function that can be invoked anywhere as an
expression itself or within an expresson. The function must simply be a public static method that
the classloader can resolve at statement creation time. The engine resolves the function reference
at statement creation time and verifies parameter types.

367

Chapter 10. EPL Reference: Fu...

For information on calling external services via instance method invocation, please see
Section 5.17.5, “Class and Event-Type Variables”. For invoking methods on events, please see
Section 5.4.5, “Using the Stream Name”

You may register your own function name for the user-defined function. Please see the instructions
in Section 18.3, “Single-Row Function” for registering a function name for a user-defined single-
row function.

A single-row function that has been registered with a function name can simply be referenced
as function_name(parameters) thus EPL statements can be less cluttered as no class name
is required. The engine also optimizes evaluation of such registered single-row functions when
used in filter predicate expressions as described in Section 18.3.4, “Single-Row Functions in Filter
Predicate Expressions”.

An example EPL statement that utilizes the di scount function is shown next (assuming that
function has been registered).

sel ect discount(quantity, price) from O der Event

When selecting from a single stream, use the wildcard (*) character to pass the underlying event:

sel ect discount(*) from O der Event

Alternatively use the stream alias or EPL pattern tag to pass an event:

sel ect discount(oe) from OrderEvent as oe

User-defined functions can be also be invoked on instances of an event: Please see Section 5.4.5,

“Using the Stream Name” to invoke event instance methods on a named stream.

Note that user-defined functions (not single-row functions) are candidate for caching their return
result if the parameters passed are constants and they are not used chained. Please see below
for details and configuration.

The example below assumes a class MyCl ass that exposes a public static method nyFuncti on
accepting 2 parameters, and returing a numeric type such as doubl e.

select 3 * com myconpany. M/C ass. nyFuncti on(price, volune) as nyVal ue
from St ockTick.wi n:time(30 sec)

User-defined functions also take array parameters as this example shows. The section on
Section 9.5, “Array Definition Operator” outlines in more detail the types of arrays produced.

368

User-Defined Functions

sel ect * from RFI DEvent where com nyconpany.rfid. M/Checker.islnZone(zone, {10,
20, 30})

Java class names have to be fully qualified (e.g. java.lang.Math) but Esper provides a mechanism
for user-controlled imports of classes and packages as outlined in Section 16.4.6, “Class and
package imports”.

User-defined functions can return any value including nul |, Java objects or arrays. Therefore
user-defined functions can serve to transform, convert or map events, or to extract information
and assemble further events.

The following statement is a simple pattern that looks for events of type E1 that are followed by
events of type E2. It assigns the tags "el" and "e2" that the function can use to assemble a final
event for output:

sel ect MyLi b. mapEvents(el, e2) frompattern [every el=El -> e2=E2]

User-defined functions may also be chained: If a user-defined function returns an object then the
object can itself be the target of the next function call and so on.

Assume that there is a cal cul at or function in the MyLi b class that returns a class which provides
the sear ch method taking two parameters. The EPL that takes the result of the cal cul at or
function and that calls the sear ch method on the result and returns its return value is shown below:

sel ect MyLib.cal cul ator().search(zonevariable, zone) from RFl DEvent]

A user-defined function should be implemented thread-safe.

10.3.1. Event Type Conversion via User-Defined Function

A function that converts from one event type to another event type is shown in the next example.
The first statement declares a stream that consists of MyEvent events. The second statement
employs a conversion function to convert MyOtherEvent events to events of type MyEvent:

insert into M/Stream select * from MyEvent
insert into MyStream sel ect M/Li b. convert(other) from M/Q her Event as ot her

In the example above, assuming the event classes MyEvent and MyOtherEvent are Java classes,
the static method should have the following footprint:

369

Chapter 10. EPL Reference: Fu...

public static MyEvent convert(M/Q her Event ot her Event)

10.3.2. User-Defined Function Result Cache

For user-defined functions that take no parameters or only constants as parameters the engine
automatically caches the return result of the function, and invokes the function only once. This
is beneficial to performance if your function indeed returns the same result for the same input
parameters.

You may disable caching of return values of user-defined functions via configuration as described
in Section 16.4.22.3, “User-Defined Function or Static Method Cache”.

10.3.3. Parameter Matching

EPL follows Java standards in terms of widening, performing widening automatically in cases
where widening type conversion is allowed without loss of precision, for both boxed and primitive

types.

When user-defined functions are overloaded, the function with the best match is selected based
on how well the arguments to a function can match up with the parameters, giving preference to
the function that requires the least number of widening conversions.

Boxing and unboxing of arrays is not supported in UDF as it is not supported in Java. For example,
an array of I nt eger and an array of i nt are not compatible types.

When passing the event or underlying event to your method, either declare the parameter
to take EventBean (i.e. nyfunc(EventBean event)) or as the underlying event type (i.e.
nyfunc(Or der Event event)).

When using {} array syntax in EPL, the resulting type is always a boxed type: " {1, 2}" is an array
of I nt eger (and noti nt since it may contain null values), "{1. 0, 2d}" is an array of Doubl e and
“{"A, "B"}" isanarray of String, while"{1, "B", 2.0}" is an array of Qbj ect (Qbj ect[]).

10.3.4. Receiving a Context Object

Esper can pass an object containing contextual information such as statement name, function
name, engine URI and context partition id to your method. The container for this information
is EPLMet hodl nvocat i onCont ext in package com espertech. esper.client.hook. Please
declare your method to take EPLMet hodl nvocat i onCont ext as the last parameter. The engine
then passes the information along.

A sample method footprint and EPL are shown below:

public static doubl e conput eSonet hi ng(doubl e nunber, EPLMet hodl nvocati onCont ext
context) {...}

370

Select-Clause transpose Function

sel ect MyLi b. conput eSonet hi ng(10) from M/Event

10.4. Select-Clause transpose FUNction

The transpose function is only valid in the select-clause and indicates that the result of the
parameter expression should become the underlying event object of the output event.

The transpose function takes a single expression as a parameter. The result object of the
parameter expression is subject to transposing as described below.

The function can be useful with i nsert into to allow an object returned by an expression to
become the event itself in the output stream.

Any expression returning a Java object can be used with the transpose function. Typical
examples for expressions are a static method invocation, the result of an enumeration method,
a plug-in single row function or a subquery.

The examples herein assume that a single-row function by name nekeEvent returns an
Or der Event instance (a POJO object, not shown).

The following EPL takes the result object of the invocation of the nakeEvent method (assumed
to be an OrderEvent instance) and returns the OrderEvent instance as the underlying event of
the output event:

sel ect transpose(nmakeEvent (oi)) from Orderl ndication oi

Your select-clause can select additional properties or expressions. In this case the output event
underlying object is a pair of the expression result object and the additional properties.

The next EPL also selects the ori gi n property of the order indication event. The output event is
a pair of the OrderEvent instance and a map containing the property name and value of origin:

sel ect origin, transpose(nmakeEvent (0i)) from Orderlndication oi

If the t ranspose function is not a top-level function, i.e. if it occurs within another expression or
within any other clause then the select-clause, the function simply returns the expression result
of the parameter expression.

10.4.1. Transpose with Insert-Into

You may insert transposed output events into another stream.

If the stream name in the insert-into clause is already associated to an event type, the engine
checks whether the event type associated to the stream name provided in the insert-into clause

371

Chapter 10. EPL Reference: Fu...

matches the event type associated to the object returned by the expression. If the stream name
in the insert-into clause is not already associated to an existing event type the engine associates
a new event type using the stream name provided in the insert-into clause.

The type returned by the expression must match the event representation that is defined for the
stream, i.e. must be a subtype or implementation of the respective class (POJO, object-array or
Map).

For example, the next statement associates the stream name O der Event with a class.
Alternatively this association can be achieved via static or runtime configuration API:

create schena O der Event as com myconpany. Or der Event

An EPL statement can insert into the Or der Event stream the Or der Event instance returned by
the makeEvent method, as follows:

insert into Order Event sel ect transpose(nmakeEvent(oi)) from Orderlndication oi

It is not valid to select additional properties or expressions in this case, as they would not be part
of the output event. The following is not valid:

/'l not valid
i nsert into Or der Event sel ect origin, transpose(makeEvent (0i)) from
Order | ndi cation oi

372

Chapter 11.

Chapter 11. EPL Reference:
Enumeration Methods

11.1. Overview

EPL provides enumeration methods that work with lambda expressions to perform common
tasks on subquery results, named windows, tables, event properties or inputs that are or can be
projected to a collection of events, scalar values or objects.

Enumeration methods are stateless and the use of enumeration methods alone does not cause
the engine to retain any events or other state (with the possible exception of short-lived caching
of evaluation results).

A lambda expression is an anonymous expression. Lambda expressions are useful for
encapsulating user-defined expressions that are applied to each element in a collection. This
section discusses built-in enumeration methods and their lambda expression parameters.

Lambda expressions use the lambda operator =>, which is read as "goes to" (- > may be used
and is equivalent). The left side of the lambda operator specifies the lambda expression input
parameter(s) (if any) and the right side holds the expression. The lambda expression x => x * x
is read "X goes to x times x.". Lambda expressions are also used for expression declaration as
discussed in Section 5.2.9, “Expression Declaration”.

When writing lambdas, you do not have to specify a type for the input parameter(s) or output
result(s) because the engine can infer all types based on the input and the expression body.
So if you are querying an RFIDEvent, for example, then the input variable is inferred to be an
RFIDEvent event, which means you have access to its properties and methods.

The term element in respect to enumeration methods means a single event, scalar value or object
in a collection that is the input to an enumeraton method. The term collection means a sequence
or group of elements.

The below table summarizes the built-in enumeration methods available:

Table 11.1. Enumeration Methods

Method Result

aggregate(seed, accumulator Aggregate elements by using seed as an initial accumulator
lambda) value and applying an accumulator expression.

Section 11.6.1, “Aggregate”.

allof(predicate lambda) Return true when all elements satisfy a condition.

Section 11.6.2, “AllOf".

anyof(predicate lambda) Return true when any element satisfies a condition.

373

Chapter 11. EPL Reference: En...

Method Result

Section 11.6.3, “AnyOf”.

average()

average(projection lambda)

Computes the average of values obtained from numeric
elements.

Section 11.6.4, “Average”.

Computes the average of values obtained from elements by
invoking a projection expression on each element.

Section 11.6.4, “Average”.

countof()

Returns the number of elements.

Section 11.6.5, “CountOf".

countof(predicate lambda)

Returns the number of elements that satisfy a condition.

Section 11.6.5, “CountOf".

distinctOf()

distinctOf(key-selector

Returns distinct elements according to default hash and equals
semantics.

Section 11.6.6, “DistinctOf".

Returns distinct elements according using the key function

lambda) provided.
Section 11.6.6, “DistinctOf".

except(source) Produces the set difference of the two collections.
Section 11.6.7, “Except”.

firstof() Returns the first element.

Section 11.6.8, “FirstOf”.

firstof(predicate lambda)

Returns the first element that satisfies a condition.

Section 11.6.8, “FirstOf”.

groupby(key-selector lambda)

Groups the elements according to a specified key-selector
expression.

Section 11.6.9, “GroupBYy”.

groupby(key-selector lambda,
value-selector lambda)

intersect(source)

Groups the elements according to a key-selector expression
mapping each element to a value according to a value-selector.

Section 11.6.9, “GroupBy".

Produces the set intersection of the two collections.

Section 11.6.10, “Intersect”.

374

Overview

Method

Result

lastof()

lastof(predicate lambda)

leastFrequent()

leastFrequent(transform
lambda)

Returns the last element.

Section 11.6.11, “LastOf".

Returns the last element that satisfies a condition.

Section 11.6.11, “LastOf".

Returns the least frequent value among a collection of values.

Section 11.6.12, “LeastFrequent”.

Returns the least frequent value returned by the transform
expression when applied to each element.

Section 11.6.12, “LeastFrequent”.

max()

Returns the maximum value among a collection of elements.

Section 11.6.13, “Max”.

max(value-selector lambda)

maxby(value-selector lambda)

Returns the maximum value returned by the value-selector
expression when applied to each element.

Section 11.6.13, “Max”.

Returns the element that provides the maximum value returned
by the value-selector expression when applied to each element.

Section 11.6.14, “MaxBy".

min()
