Esper Reference

Version 6.1.0

by EsperTech Inc. [http://www.espertech.com]

Copyright 2006 - 2017 by EsperTech Inc.

http://www.espertech.com
http://www.espertech.com

1= = o] PP XXiii
I 7= 1 o TS = o (Yo PN 1
1.1. Introduction to CEP and event series analySiScoocveviiriiiiiiiieiiiiieeeee e 1
Y (=T o 1 S PP 1
1.2.1. Step One: Setting up Classpathccooiiiiiiii e, 1
1.2.2. Step Two: Obtain Engine INStancCecccooviiiiiiiiiicii e, 2
1.2.3. Step Three: Provide Information on Input EVENEScoovviiiiiiiinieiiiiineeeens 2
1.2.4. Step Four: Create EPL Statements and Attach Callbacks 3
1.2.5. Step Five: SENd EVENTSc.uuiiiiiiiii e 4

1.3. Required 3rd Party LIDrariesccoooouiiiiiiii e 5
2. EVENt REPIESENTALIONS ...uiiiiii et 7
2.1. Event Underlying Java ODJECLSiiiiiiiiii e 7
2.2, EVENE PrOPEITIES ..ottt ettt et e e ettt e e e e eeeab e 8
2.2.1. ESCAPE CRArACLEISciiiiiiiiii et e e e e e e e e eae e 9
2.2.2. Expression as Key or Index Valuecooiviiiiiiiiiiii e 10

2.3. Dynamic EVENE PrOPEILIESuiiiiiiiiii e e e e e e e e e e e e e eaen 11
2.4. Fragment and Fragment TYPE ...coouuuiiiiiiieeii e e 13
2.5. Comparing Event RePreSentationscc.iveiiiieiiiieieiiieiii e e e e e e e e aans 13
2.5.1. INCOMING EVENTS ...ooviiiiiiiii e 14
2.5.2. OULJOING EVENLSiiiiiiii e e 14
2.5.3. SCNBIMA ..eeiiii e 15
2.5.4, SIAE-BY-SIUE ..oeetiiiiiiiii e 16

2.6. Support for GENENIC TUPIES ..o 17
2.7. Additional Event Representationsc.oviiviiieiiiiiiiiieiiie e eee e e e e e 18
2.8. Updating, Merging and Versioning EVENLSccooiiiiiiiiiiiiiinee e 19
2.9. Coarse-GraiNed EVENTSccoiiuiiiiiiiiieeeie et et e e 19
2.10. Event Objects Instantiated and Populated by Insert INtoccooveeiiiiiiiiiinnnnes 20
3. ProcesSiNg MOAEIiiiiii e 23
1 700 1o o 18 o3 1T o I PP 23
3.2, INSEIT SIEAIM oot et e et et e e e e e e e e aneees 24
3.3. Insert and REMOVE SIrEAMccvuiiii e e e e 25
3.4. Filters and WhEre-CIAUSESooiiiiiiiiiiiiii it eeaens 27
28 T T T T4V o (0 £ P 28
3.5.1. TIME WINUOW ..ouuiiiiiiiieiii e e e e e e e e 28
3.5.2. TIME BatCh ..oeeniie e 30

3.6. BAtCh WINAOWSuiiiiiiiieeiie et e e et e et e eeaa s 31
3.7. Aggregation and GrOUPINGceeueuueiemuieeeiieeeeti e et e e e e et e e et e e enanes 32
3.7.1. Insert and REMOVE SErEAIMuuiiiiiiiiiieiiiiii e eaenns 32
3.7.2. Output for Aggregation and Group-BYccoeuiiiieiiiiiiiiiiiiinei e 32

3.8. Event Visibility and Current TIMeccooiiiiiiiiiiicie e 35
G 0 TR 1 T = = 35
3.9.1. INAEX KNGS ...t 35

e I 11 (=] gl T To [t SN 35
e TR T V7= o [0 To 1= =P 39

Esper Reference

4. Context and Context PartitioNsooviiiiiiie e 41
o [11 oo 11 ox 1T o I PSP 41
4.2, Context DECIAratioNco.uiiiiieiii e e e 43

4.2.1. Context-Provided Propertiescociuiiiiiiiiiiii e 43
4.2.2. Keyed Segmented CONEXEuiiiiiiiiieiiiiieee e 43
4.2.3. Hash Segmented CONtEXtc..oiiiiiiiiiiieii e 48
4.2.4. Category Segmented CONEXLccuuiiiiiiiiiieiiiii e 51
4.2.5. Non-Overlapping CONEXLuuiiiiiieiii e e 53
4.2.6. Overlapping CONEXEuieiiiriieiiii et e et e e eeees 55
4.2.7. Context CONAItIONSuiiiiiiieieii e r e 59
4.3, CONLEXE NESHING .eiitiiieiii ettt e et e e et e e e et e e e enba e eeenes 62
4.3.1. Nested Context Sample Walk-Throughccc.ccoiiiiiiiiiii e, 63
4.3.2. Built-In Nested Context Propertiescoouuvieiiiiiiieiiiiieeecei e 65
4.4, Partitioning Without Context Declarationccooeviiiiiiiiiii e, 66
4.5. Output When Context Partition Endscooeuiiiiiiiiiiiii e 66
4.6. Context and Named WINAOWoiiiiiiiiiiiiiine e eeeens 68
4.7. Context and TabIESoiiiii i 70
4.8. Context and Variables ... 71
4.9. Operations on Specific Context Partitionsccoooeiiiiiiiiiiiin e 71

5. EPL REfErenNCe: ClAUSES ...uuiiiiiiiiieiiiiii ettt ettt e et e e et s e e e eat e e e eeaanneeeee 73
L0 o I 1) To 11 o3 1T o P 73
L o I Y o | = PPN 74

5.2.1. Specifying Time Periodsoooiiiiiiiiiiiie e 75
5.2.2. USING COMMENTSiiitiiiii e e e et e e e e e e e e e e e e e et e e et e e eanas 76
5.2.3. ReSErved KEYWOITSiiiiiiiiieiiii ettt ettt e et e et e 76
5.2.4. ESCAPING SIHNGS ©.uiiiniiiiieiiii e e e e e e e e e e e e et s eeaeeeanees 77
5.2.5. DAl TYPBS ittt 78
5.2.6. Using Constants and ENUM TYPEScccuviiiiiiiiieeiiieeeieeeeie e e e e e ean 80
LI R A g T] = 11T o 81
5.2.8. EXPresSSion AlIBSc.uoiiuuiiiiiiiii e 88
5.2.9. EXpression DeClarationooiiiiiiiiiiiiiiiiieee e 89
5.2.10. Script DECIArationoiiiiiiiiiiiiiiii e 91
5.2.11. Referring t0 @ CONEXEuiiiiiiiieiieii e 91
5.3. Choosing Event Properties And Events: the Select Clauseccocoeveiieennnnn. 92
5.3.1. Choosing all event properties: Select * ..o, 92
5.3.2. Choosing specific event Propertiescc.vviiiieiiiiiiii e e 93
5.3.3. EXPIESSIONS ...eetiiieiiiii ettt ettt ettt 94
5.3.4. Renaming eVent ProPertie€Scccuuiiiiiiieiiiieiiiie e e e e e e e e eaae e e 94
5.3.5. Choosing event properties and events in @ joincooveviineviiieviinneenneeenn, 94
5.3.6. Choosing event properties and events from a patternccoeeeevnns 96
5.3.7. Selecting insert and remove stream eventscoceeveviiiieiiiieiiiieeeeeen, 97
5.3.8. Qualifying property names and stream Namesccooeevvieeeiiieriineeenneennn 97
5.3.9. SeleCt DISHINCE ..uiieiei e e 98
5.3.10. Transposing an Expression Result to a Streamcccooeviveiiieeinnennnn. 99

5.3.11. Selecting EventBean instead of Underlying Eventcccoooiiiiiinnnnen. 99

5.4. Specifying Event Streams: the From ClauSeccovevviiiiiiiiiiecie e, 100
5.4.1. Filter-based EVent StreamsSovviiiiiiiiiiiiieii e 100
5.4.2. Pattern-based Event Streamsccoooviiiiiiiiiiiiiieeiiine e 104
5.4.3. SPECITYING VIBWS ...ttt ettt e e s 105
5.4.4. Multiple Data WINAOW VIEWScouuiiiiiiiiiiiciii e eee e e e aens 106
5.4.5. Using the Stream NAMEeoiiiiiiiiiii e 108

5.5. Specifying Search Conditions: the Where Clauseccccocociiiviiiiiiiicvie e, 109

5.6. Aggregates and grouping: the Group-by Clause and the Having Clause 110
5.6.1. Using aggregate fUNCLONScoiiiiiiiiii e e e 110
5.6.2. Organizing statement results into groups: the Group-by clause 112
5.6.3. Using Group-By with Rollup, Cube and Grouping Setscccoeevvveennnn. 115
5.6.4. Specifying grouping for each aggregation functionccc.ocoeveenn. 119
5.6.5. Specifying a filter expression for each aggregation function 120
5.6.6. Selecting groups of events: the Having clauseccoccoovviiiiiineninne 121
5.6.7. How the stream filter, Where, Group By and Having clauses interact 122
5.6.8. Comparing Keyed Segmented Context, the Group By clause and the
LS (0 Be | £0 10T 01171 TV = P 123

5.7. Stabilizing and Controlling Output: the Output Clausec.ccooeveiviiieiiiinnenenn. 124
5.7.1. Output Clause OPLIONSccevuieiiiieiiii e e e e e e e e e 124
5.7.2. Aggregation, Group By, Having and Output clause interaction 130
5.7.3. RUNtime CoNSIAErationsoooivvuiiieiiiiiiiee it e e e e et e e e et e eeeeienaeeees 131

5.8. Sorting Output: the Order By CIAaUSEc.uuiiiiiiiiiiiiiii e 135

5.9. Limiting Row Count: the Limit ClauSecciiiiiiiiiiii e, 136

5.10. Merging Streams and Continuous Insertion: the Insert Into Clause 137
5.10.1. Transposing a Property TO @ Streamccooevviieiiiiiiiiiieiiie e ee e 139
5.10.2. Merging Streams By EVENt TYPEcoouviiiiiiiieiiiii e 139
5.10.3. Merging Disparate Types of Events: Variant Streamscccceceunnees 140
5.10.4. Decorated BEVENIScoouiiiiieii e 141
5.10.5. EVENE @S @ PrOPEITY ..ouiiiiiiiii et 142
5.10.6. Instantiating and Populating an Underlying Event Object 142
5.10.7. Transposing an EXpression ReSUltccocoiviiiiiiiiiicciieceee e, 142
5.10.8. Select-Clause Expression And Inserted-Into Column Event Type 143
5.10.9. Insert Into for Event Types without Propertiesccooeeviiviiiinevinneennnn. 144

B.11. SUBQUETIES ..ottt ettt e e e e 144
5.11.1. The 'eXiStS' KEYWOIdccuuuiiiiieiiii it e e e e e e 148
5.11.2. The 'in" and '"Not in' KEYWOITSoooiiiiiiiiiiiiieeeei e 148
5.11.3. The 'any' and 'some’ KEYWOIdScc.coeviiiiiiiiieiiiieciin e e 149
5.11.4. The "all' KEYWOIdcoieiiiiiiiii et 149
5.11.5. Subquery With Group By ClauSeccoiiiiiiiiiieciicccin e 150
5.11.6. Multi-Column SeIECHIONocvvuiiiiiiie e 150
5.11.7. MUlti-ROW SEIECHIONciieiiieiiiii e 151
5.11.8. Hints Related to SUDQUENIESc.ouiiiiiiiiiii e 152

5.12. J0INING EVENE SIrEAMSuuiiiiiiii i e e e e e e e e e e et e e eaaaaees 154

Esper Reference

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.12.1. INtroduCiNg JOINSccieutiieiiiiiie ettt e 154
5.12.2. Inner (Default) JOINSc.uiiiiiiiiiii e 156
5.12.3. Outer, Left and Right JOINScoiiiiiiiiii e 157
5.12.4. Unidirectional JOINSoieiiiiiiieiiiiiee et e e e e e e e e e e e e 159
5.12.5. Unidirectional Full Outer JOINScoovuuiiiiiiiii e 160
5.12.6. Hints Related t0 JOINSocviiiiiieiiiiiieeei e 161
Accessing Relational Data Viad SQLcccuuiiiiiiiiiiiiiiiec e 162
5.13.1. Joining SQL Query RESUILScoeiiiiiiiiiiiicc e 163
5.13.2. SQL Query and the EPL Where ClausSeccooveiiiiiiieiiiieiiieceieeeieens 164
5.13.3. Outer Joins With SQL QUETIESccvuiiiiiiiiiiieee e 166
5.13.4. Using Patterns to Request (POIl) Datacooeveviiiiiiiiiiiiiiiiiieeceiieees 166
5.13.5. Polling SQL Queries via eratorccoeeviiiviiiieeiii e 166
5.13.6. JDBC Implementation OVEIVIEWoieiiriiiieieiinieeeiine e e 167
5.13.7. Oracle Drivers and No-Metadata Workaroundc.ccocovvviiieiiiinnnnnns 167
5.13.8. SQL Input Parameter and Column Output Conversionccc.uun.... 168
5.13.9. SQL ROW POJO CONVEISION ...cevuiiiiiieiiieeeiieeiieeeiieesieesaeesieesaaeeanneens 168
Accessing Non-Relational Data via Method, Script or UDF Invocation 169
5.14.1. Joining Method, Script or UDF Invocation Resultsccooeevviveinnnn. 169
5.14.2. Polling Invocation Results via [teratorcccoeveveeiiiiiiiiiieecii e, 171
5.14.3. Providing the Methodcccoiiiiii e 171
5.14.4. Using a Map RetUrN TYPEuuiiiiiiiieiii et 173
5.14.5. Using a Object Array RetUrn TYPEoeiiiiiiiiiiiiieeci e e e 175
5.14.6. Using an EventBean Return TYPEooviiiiiiiiiiiiiiieccii e 176
5.14.7. Providing the SCriPtoiiiiiiii e 177
5.14.8. Providing the UDF ... 177
Declaring an Event Type: Create Schemacccocviiiiiii i 177
5.15.1. Declare an Event Type by Providing Names and Typesccccceeveeene. 178
5.15.2. Declare an Event Type by Providing a Class Nameccceeevvnneeen. 181
5.15.3. Declare a Variant Stre@mcoeeuieiiiieiiiiee e 182
Splitting and Duplicating StreamsSc..oviiiiiiiiiieiie e 182
5.16.1. Generating Marker Events for Contained Eventsccccooviivevinennnnn. 185
Variables and CONSLANESooiiiiiiiiiiiiie e e s 186
5.17.1. Creating Variables: the Create Variable clausec.c.ccooveviiievinennnnn. 186
5.17.2. Setting Variable Values: the On Set clausecccoveviiiiiiiiiiiieeninns 189
5.17.3. USING VariabIesoiiiiiiiiiiii e 190
5.17.4. Object-Type Variablesc.coeiiiiiiiiii e 191
5.17.5. Class and Event-Type Variablesccoooiiiiiiiiiiiiiiii e 191
Declaring Global Expressions, Aliases And Scripts: Create Expression 192
5.18.1. Global EXpression AlIRSEScocuuiiiiiiiiiieii e 193
5.18.2. Global Expression Declarationsc.cccoveviiieeiiiiiiiiieeiie e e 194
5.18.3. GIODAl SCrIPLS ...ciiiiiieiiii e 195
Contained-Event SEIECIONccovuiiiiiiiii e 195
5.19.1. Select-Clause in a Contained-Event Selectionccoovvviiiiiiiieennn, 198
5.19.2. Where Clause in a Contained-Event Selectionccccoovvviiiiiieiiinnnnnn. 201

Vi

5.19.3. Contained-Event Selection and JOINSco.viieiiiiriiiiieeeeeeee e 201

5.19.4. Sentence and Word EXampleccooooiiiiiiiiiiiin e 203
5.19.5. MOre EXamPIESiiiiiiiiii e 204
5.19.6. Contained Expression Returning an Array of Property Values 205
5.19.7. Contained Expression Returning an Array of EventBean 205
5.19.8. Generating Marker Events such as a Begin and End Event 206
5.19.9. Contained-Event LIimitationscoouiviiiiiiiineiie e 207
5.20. Updating an Insert Stream: the Update IStream Clauseccooeevveeinnnnn. 207
5.20.1. Immutability and Updatescoeeuiiiiiiiiiiiiiii e 209
5.21. Controlling Event Delivery : The FOr Clauseccoooviieiiiiiiiicieecie e 210
6. EPL Reference: Named Windows And Tablescoooeiiiiiiiiiiiiiii e, 213
L I O 1Y TSP 213
6.1.1. Named WiNdOW OVEIVIEWcceuuieiiieeiiieeiiieeei e ee et ae e e et eeeeeeeenees 213
6.1.2. TADIE OVEIVIEW ...uviiiiiiiiieiii ettt e e e e aa e e eaeen 213
6.1.3. Comparing Named Windows And Tablesooviiiiiiiiiiiin, 214

6.2. Named WINAOW USAQEccuuiiiiiiiiii et e e e e e e e e e e e e aan s 215
6.2.1. Creating Named Windows: the Create Window clausecccc.cccuve..e. 215
6.2.2. Inserting Into Named WINAOWSc.couiieiiiiiiiiiici e 219
6.2.3. Selecting From Named WINAOWScccouiiiiiiiiiiiiiiiiece e 221

Lo IC T Ir= 1] (T UL Vo T 223
6.3.1. Creating Tables: The Create Table clauseccooveviiiiiiiiiiiiiineeenn, 223
6.3.2. Aggregating Into Table Rows: The Into Table clausecccoeveennn. 226
6.3.3. Table Column Keyed-Access EXPressionscovvvveviiieveiiineiiiiineeeenenn. 229
6.3.4. Inserting INt0 TabIEScovviiiii e 231
6.3.5. Selecting From Tables ... 232

6.4. Triggered Select: the On Select Clausec.ccoevviiiiiiii i, 234
6.4.1. Notes on On-Select With Named WINdOWScccoceviiiviiniiiiniiiiinecieen 236
6.4.2. Notes on On-Select With Tables ..o, 236
6.4.3. On-Select Compared TO JOINcocuuiiiiiiiiiieeii e 236

6.5. Triggered Select+Delete: the On Select Delete clausec.ccoveviiiiiiiiieiinnennn. 237
6.6. Updating Data: the On Update Clausecooovviiiiiiiiiiniiiiiecee e 237
6.6.1. Notes on On-Update With Named Windowsccooeviieiiiniiiiieeiineeennnn, 241
6.6.2. Notes on On-Update With Tables ... 241

6.7. Deleting Data: the On Delete ClauSecc.viviiiiiiiiiiiii e 241
6.7.1. Using Patterns in the On Delete ClausSeccoovvviiiiiiiiiiiiiiiecieeeeeeeen, 243
6.7.2. Notes on On-Delete With Named WIiNdOWScccceiiiiiiiiiieiiiiineenciinnnn, 243
6.7.3. Notes on On-Update With Tables ... 244

6.8. Triggered Upsert using the On-Merge Clauseccooeviiiiiiiiiiiieciiiccie e, 244
6.8.1. Notes on On-Merge With Named WINdOWScoooeviiiiiiiiiiiiiiiiineeeens 248
6.8.2. Notes on On-Merge With Tablescccoiiiiiiiiiiii e 248

6.9. Explicitly Indexing Named Windows and Tablesccccooiiiiiiiiiiiiiiiiiiecciieees 249
6.10. Using Fire-And-Forget Queries with Named Windows and Tables 252
6.10.1. INSErtiNG DALAccvuuiiiiiiiie e 252
6.10.2. UPdating Datalccevuieiiiieiiiieiii e e aaas 253

Vii

Esper Reference

6.10.3. DeletiNng Dataveeiiiiieeiiiie e 254
6.11. Versioning and Revision Event Type Use with Named Windows 254
6.12. EVENIS AS PrOPEITY ..o 256

7. EPL ReferencCe: PatterNSciie ittt et e et e eees 259
7.1, EVeNnt Pattern OVEIVIEWiiiiiiiiieii et e e e e e e e e et e e e e e e eeens 259
7.2. HOW 10 USE PAEIMSceiiieiieiiiii e et r e e e e enees 260

7.2. 1. PAEIN SYNTAX ..oieriiiiiieiiiee ettt e 260

7.2.2. Patterns in EPL ... e 261

7.2.3. Subscribing to Pattern EVENSocooiiiiiiiiii e 261

7.2.4. Pulling Data from Patternsccccouiiiiiiiiiiiiei e 262

7.2.5. Pattern Error REPOIMINGviiiuiieiiiiii ettt 263

7.2.6. Suppressing Same-Event MatChescccovvviiiiiiiiii e 263

7.2.7. Discarding Partially Completed Patternsccooovveiiiiiiiiiiinieciiieeeeee, 264
TS T O o= = 1 (o) gl o =T oT=To [T o o = 265
7.4. Filter EXpressions IN PatlerNSuiiiiiiiiiiiii e 266

7.4.1. Filter Expressions and Filter INdeXescccoveviiiiiiiiiiiiii e 268

7.4.2. Controlling Event CONSUMPLIONccouuiiiiiiiieiiii et 269

7.4.3. Use With Named Windows and Tablescccooevviiiiiiiiiiiiineece, 270
7.5, PAttern OPEIALOISuiiieiieiiiieei ettt et et e e e e ee 271

7. 5.0, EVBIY it 271

7.5.2. EVEIY-DISHINCEoiiiiiiiiiii e 276

T.5.3. REPEAL ..ottt 278

7.5.4. RePeat-UNtilcoouuiiiii e 279

T.5.5. AN .ot e 283

420571 T 284

T8 7. INOU Lo e 284

7.5.8. FOIOWEA-DY ..o 286

7.5.9. PAErN GUAIOSccoviniiiiiiii ettt e et e et e e e e 288
A ST =1 =] ¢ g TN (0] 1 S PP 292

0T N 11 (= N o] 3 T PR 292

7.6.2. Observer AtOMS OVEIVIEWcc.uiiiiieiieeei et e e e e e e e e e eeens 292

7.6.3. Interval (tImer:interval)coooouiiiiiii e 292

7.6.4. Crontab (HMEFIAL)oieeiiii i e 293

7.6.5. Schedule (timer:schedule)ooiiiiii i 296

8. EPL Reference: Match RECOGNIZEcooovuiiiiiiii i 303
S I O 1= o T PSP 303
8.2. Comparison of Match Recognize and EPL Patternsccccvvvviiininiceneeennnns 303
SR TS Y/ 0 = 0 PP 304

8.3.1. SyntaxX EXamPIE ... 305
8.4. Pattern and Pattern OPEratOrScc.iiivinieiiiieiii e eiiee e e e e e e e e e eanes 307

8.4.1. Operator PreCEIBNCEcciouuuieiiiiii et 307

S o] g (o= 1 (=] g - L1 ISP 307

SIS T 1Y 1 (=1 - 11T o 308

8.4.4. QUANLITIEIS OVEIVIEWiiiiiiiii i e e e e e e e eaae s 309

viii

R ST o= ¢ 4 U] = {0 F- T 309

8.4.6. Variables Can be Singleton or Groupcccovevviiiiiiiiiiie e 310
8.4.7. Eliminating Duplicate MatChescoouuiiiiiiiiii e 311
8.4.8. Greedy Or RelUCANtcoiiiiiiii i 312
8.4.9. Quantifier - One Or More (+ and +?)ooouoiiiiiiiiii e 313
8.4.10. Quantifier - Zero Or More (* and *?)ooveviieiiieii e, 313
8.4.11. Quantifier - Zero Or One (? and 2?)cooeuiiiiiiiiiieiii e 314
8.4.12. Repetition - Exactly N MatChesccooeiiiiiiiiiicii e 315
8.4.13. Repetition - N Or More MatChesocoeuiiiiiiiiiiiiiii e 316
8.4.14. Repetition - Between N and M Matchesccoooviiiiiiiiiiiniiieceee, 316
8.4.15. Repetition - Between Zero and M Matchesccoooviiiiiiiiiiniiiiiieciees 317
8.4.16. Repetition EQUIVAIENCEoiiiiiii i 318

8.5. DEfiNE ClAUSEuiieeiiiii i e e e e e e 318
8.5.1. The PreV OPEratOruuiiiiiieii i e e e e e e e e et e e e e e e e eanes 319

8.6. MEASUIE CIAUSEeeiiiiiiieei ettt e e e e e e e e e e e e e et e e ean e eeen s 320
8.7. DatawindoW-BOUNGuiiiiiiiiii e 320
S0 S T 11 (=T Y | 321
8.9. INterval-Or-TermMINALEAcoiiiiiiiiiii e 322
8.10. Use with Different EVENt TYPES ...cciiiiiiiiiiiieeeei et 323
8.11. Limiting Engine-wide State COUNLciiiiiiiiiii e e 324
S 002 I T 7= L1 1P 325
9. EPL ReferenCe: OPEratirS ..oiuiiiiiiiiei et e e e e e e e et e e e e e eaaaens 327
9.1. ArithMEtiC OPEIALIOIS .. .ceuviiiiiii et eeeai e e 327
9.2. Logical And Comparison OPEratOrSccuuieviuieiiiieeiiieeeiieeeiee e e e e e eaens 327
9.2.1. Null-Value ComparisSon OPEratorsveeeeuuuieeeiiiieeeeiineeeeiineeeennnns 327

9.3. Concatenation OPEIALONSccuuiieiuieiieeiiire e e e e e e e e e e e e et eeaneaeeas 328
9.4, BINAIY OPEIALOISuueiiiiti ettt e ettt e ettt e e ettt e et et e e e et e e eeab e e e eebanaeaeees 328
9.5. Array Definition OPEIAtOrcviuuiiiiii e e e e e e e e e e e ees 329
O.6. DOt OPEIALOL ...cvuiiiie ittt ettt et ettt e e e e e e e e 330
LS LG T I 1§ o~ 1Y/ o1 o 331

9.7. The "IN KEYWOI .. .ooviiiiii ettt 331
9.7.1. 'In' for RaNge SElECHONcivviiiiii e 332

9.8. The 'hetween’ KEYWOIMiiiiiii ittt e e e 333
9.9. The "lIKE" KEYWOITuuiiiiiiii e e e e e e e e e aaes 334
9.10. The 'TegeXp' KEYWOIToiiiiiiieiiii et 335
9.11. The 'any' and 'SOME" KEYWOITScceuuieiiiiieiiieeiiieeeiieeeie e e e e e e e e eaneens 336
9.12. The "all' KEYWOITccoueiiiiii et e 337
9.13. The "NEW' KEYWOIcoiiiiiiiiieii e e e e e e e e e e e e e e een 337
9.13.1. Using 'new' To Populate A Data StrUCIUIeveeeiiiiieiiiiieeeeiiieeees 338
9.13.2. Using 'new"' To Instantiate An ODbjJeCtccovvvviiiiiiiiiiii e 339

10. EPL Reference: FUNCHIONS ..oouuiiiii et e e e e e eens 341
10.1. Single-row FUuNCtion REfErENCEcccviiiiiiii e 341
10.1.1. The Case Control FIow FUNCLONccoveviiiiiiiiiiiiiec e 343
10.1.2. The Cast FUNCHONcooouiiiiiiiii e 344

Esper Reference

10.1.3. The Coalesce FUNCLIONciiiiiiii i e 346
10.1.4. The Current_Evaluation_Context FUNCtioncccoveviiiiiniciiineennn, 346
10.1.5. The Current_Timestamp FUNCHONccciiiiiiiiinieiiic e 346
10.1.6. The EXIStS FUNCLON .. ccooutiiiiiiii e e s 346
10.1.7. The Grouping FUNCLIONuuiiiiiiiiiii e 347
10.1.8. The Grouping_Id FUNCLONcooiiiiiiiiic e 347
10.1.9. The Instance-Of FUNCHONoviuiiiiieiee e 348
10.1.10. The Istream FUNCHONcovviiiiiiiiie e e s 349
10.1.12. The Min and Max FUNCHONSc.oiiiiiiiiiieie e e 350
10.1.12. The Previous FUNCLONcoooiiiiiiiiiiiiie e 350
10.1.13. The Previous-Tail FUNCHONcciiiiiiiiiiie e 353
10.1.14. The Previous-WIindow FUNCLIONcovuiiiiiiiiiiieeeiin e 354
10.1.15. The Previous-Count FUNCHONcoouiiiiiiiiiieeiii e 356
10.1.16. The Prior FUNCLONcoouuiiiiiiiiiee e e e 357
10.1.17. The Type-Of FUNCHONoiiiiiiiiiiii e 357
10.2. Aggregation FUNCHONSccuiiiiiiiiie e e e e e e e e aaeees 359
10.2.1. SQL-Standard FUNCHONScc.uiiiiiiiiiieeii e 359
10.2.2. Event Aggregation FUNCHONSoeeiiiiiiiiiiiiii e e 362
10.2.3. Approximation Aggregation FUNCLIONScoeiviiiiiiiiiiiiieeiiii e 369
10.2.4. Additional Aggregation FUNCLIONScccoiviiiieiiiieiii e 372
10.3. User-Defined FUNCHONSccuiiiiiiiii e e 376
10.4. Select-Clause transpose FUNCLIONccouiiiiiiiiiii e e e 379
10.4.1. Transpose With INSErt-INtOccoouiiiiiiiiiiii e 380

11. EPL Reference: Enumeration Methodscooooviiiiiiiiiiiiiiiiiieee e 383
B O Y= V1= S 383
11.2. EXAMPIE EVENLS ...oviiiiii et e e e e e e 387
G T o o T o T U L PP 389
I T 1 | = PSP 389
11.3.2. Introductory EXampPlesoooooiiiiiiiiiiiieiii e 389
11.3.3. Input, Output and LimMitationscccveeiiiiiiiiieiie e e 390
N [o1 | £ SRR 391
11.4.1. SUBbQUErY RESUILSceviiiii e 391
11.4.2. Named WINAOWviiuniiiieiiiee e e e e et e e e eees 393
L11.4.3. TABIE ..o 394
11.4.4, EVENE PrOPITY .oeiiiiiiei ettt e 394
11.4.5. Event Aggregation FUNCHONcciiiiiiieiiii e 395
11.4.6. prev, prevwindow and prevtail Single-Row Functions as Input 396
11.4.7. Single-Row Function, User-Defined Function and Enum Types 397
11.4.8. Declared EXPreSSIONccccuuuieiimuunieieiiiieeeeii ettt e e eeti e e eeni e eeeniaeaees 398
11.4.9. Variablesooooeiiiiiiii e 399
11.4.10. Substitution Parametersco.ooviiiiiiiiiieiie e 399
11.4.11. Match-Recognize Group Variablecccooovviiiiiiiiiiiciiceee e 399
11.4.12. Pattern Repeat and Repeat-Until Operatorsooeevireeiirinneeeennnnnn. 400
115, EXAMPIE .ooiiiiiii e 400

T L2 (=] (=] (o =T 401

T1.6. 1. AQOIEOALE ...uiiiiiiiie e 401
L1.68.2. Al e e 402
L1.68.3. ANY O e et 402
T1.6.4. AVEIAQE ..eueiiiiei ettt ettt e 403
T11.6.5. COUNTOT «.eiiiti e ettt e e e e e e eees 403
G T TR 13] o3 (O P 404
L1168, 7. EXCEPL et 405
B TR TR 51 (P 405
11.6.9. GIOUPBY ..ottt et et 406
L11.6.20. INTEISECT .unitiiii et e e et e e e e e 407
L1600, LASIOT L 407
11.6.12. LeAStFIEQUENTcieeiiiiieie e e e 408
TR G TR 1Y - O PP P PP 408
L11.6.04. MAXBY .oeiiiiiiie et 409
L1605, IMIIN e eaa e 409
B 00 TR 1Y o = 410
11.6.17. MOSEFIEOQUENL ...ttt a e 411
11.6.18. OrderBy and OrderBYDESCooeieuuuiiiiiiiieeeiii e e 411
11.6.19. REVEISE oottt ettt e e e e e 412
11.6.20. SEIECIFIOM ...ouiiiiieei e e e e e e e e e een s 412
11.6.21. SEQUENCEEQUAIcuuniiiiiii e 413
T T 1 [413
T T I |- SRR 414
11.6.24. TAKELASE ...uieeiiiii e e e 414
11.6.25. TAKEWHRIIE ...t e e e ees 415
11.6.26. TAKEWHNIIELAST .. oeviieei e e 416
L11.6.27. TOMAP . .eeieeii et ettt et eaa 416
G 7022 TR U 1 o T o PP 417
I ST I Y 1= = PP 417
12. EPL Reference: Date-Time MethOodsSccoovviiiiiiiiii e 419
2 B @ Y= V= PP 419
I o o T (o T U L PP 423
L1220 SYNTAX 1ottt ettt ean s 423
12.3. Calendar and Formatting Referenceooooeuiiiiiiiiiiiiiiii e 424
12.3.0. BEIWEEIN L. 424
12.3.2. FOIMIAL .ttt ettt an e 425
12.3.3. Get (BY FIeld) ..ooovuiiiiiiieee e 426
12.3.4. Get (BY NAIME) ..ooouiiiiiiiie e 426
12.3.5. IMINUS ot e e e e e et e e et a e aee 427
L1236, PlUS ot 427
2 A = o 0] o [@4=T1 1 o [427
12.3.8. ROUNAFIOON ...ttt e e e e ees 428
12.3.9. ROUNAHAI ...ooei e 428

Xi

Esper Reference

12.3.10. Set (BY FIeld) ..uuiieiiiieieii e e e 429
e T I V1 o1 - 429
12.3.12. WINIMAX .iiviiieciii e e e e e e e e e e e s 429
12.3. 13, WIRIMIN et e et e e e ea s e e eeae e eees 430
e T B V1 o T TN 430
e T T o1 0= 1= o - | PSP 430
12.3.16. TODALE ...covviiieiiiii e e 431
12.3.17. TOMIIISEC ...eeeeiieieeii e e e e e eaees 431
12.4. Interval Algebra RefErenCecoouuiiiiiiiiiii e 431
O R e 1 111 o] L= RN 431
12.4.2. Interval Algebra Parameterscoviiiiiiiiiiiiii e 432
12.4.3. PEIfOMMANCEcieiiiit et et e e e e ees 432
2 o) =] PN 433
D245, AT i 433
12.4.6. BEIOIE ..oviiiei e 434
D2 Sy R o T [odTo [P 435
L12.4.8. DUING .eueeeiiiiee ettt et e et e et ea s 436
12.4.9. FINISNES ..o 437
12.4.10. FiNISNEA BY ..ot 438
2 o T [od [o 1= PPN 438
L12.4.12. MBELS ..eiviiieieeit ettt e e e e e e et aane 440
2 Y = = PPN 440
L12.4. 14, OVEIIAPS .ooviieeiiiiie ettt ettt 441
12.4.15. OVErlapped BY ...ccuniiiiiiiie et 442
T - Ly £ PPN 443
12.4.17. SEAMEA BY ooiviiiiiiiii ittt 444

13. EPL Reference: Spatial Methods and INAEXeSccoeviiiiiiiiiiiiiiii e 445
R 20 I @ Y= = PP 445
13.2. Spatial MEtNOUSuniiiiiii e 445
13.2.1. Point-Inside-ReCtanglecccouiiiiiiiiiii e 445
13.2.2. Rectangle-Intersects-Rectangle ..o 446
13.3. Spatial Index - QUAALIEEociiiiiiii e 447
R T TR O @ 1V =TV = 447
13.3.2. Declaring a Point-Region Quadtree INdexcccccoiveviiiiiiiiiiiiiieciieeiis 448
13.3.3. Using a Point-Region Quadtree as a Filter Indexccccoevviiiiinneiens 448
13.3.4. Using a Point-Region Quadtree as an Event IndeXc.c.cccovvevvnnennnnn. 449
13.3.5. Declaring a MX-CIF Quadtree INdeXcoovviiiiiiiiiiiiiiiieiiii e 451
13.3.6. Using a MX-CIF Quadtree as a Filter IndeXcccooevviiiiiiiiiiiiiciinennnn. 452
13.3.7. Using a MX-CIF Quadtree as an Event Indexcccoooveeiiiiiiiiinnnnnn. 453
13.4. Spatial Types, Functions and Methods from External Libraries 454
14, EPL ReEfErENCE: VIBWS .ouiiiiiiiiiiii ettt e e e e e et e e et e ean e eees 457
14.1. A Note on View Name and Parameterscccoveeviviiieiiiiiieeeiiiinee e eeeeii e 460
14.2. A Note on BatCh WINAOWSccouuiiiiiiiiiie e 462
14.3. Data WINAOW VIBWSiiiiiiiieiiii it e et e et e e et e e et e e e et e e eenanns 463

Xii

14.3.1. Length window (length or win:length)cccoooiiiiiii e, 463

14.3.2. Length batch window (length_batch or win:length_batch) 464
14.3.3. Time window (time or WIN:tiMe)coouuiiiiiiiiiii e 464
14.3.4. Externally-timed window (ext_timed or win:ext_timed)ccoeeeeenne. 464
14.3.5. Time batch window (time_batch or win:time_batch)ccccoooeieienn. 465
14.3.6. Externally-timed batch window (ext_timed_batch or win:ext_timed_batch)
.. 467
14.3.7. Time-Length combination batch window (time_length _batch or
win:time_length_batch) ... 468
14.3.8. Time-Accumulating window (time_accum or win:time_accum) 469
14.3.9. Keep-All window (keepall or win:keepall)ccccooiiiiiiiiiiiiiiies 470
14.3.10. First Length (firstlength or win:firstlength)ccoooiiiiiii e, 470
14.3.11. First Time (firsttime or win:firStlime)c.oooiiiiiiiin e 471
14.3.12. Expiry EXpression (EXPr OF WINIEXPI) ...cuvuieiuieeeiieeeiiieeiieeeieeesieeeaneenens 471
14.3.13. Expiry Expression Batch (expr_batch or win:expr_batch) 474
14.4. StANAArd VIEW ST ...ciiiiiiiieiiii et e e e e et e e e et aeeeeaeaeaeees 476
14.4.1. Unique (unique Or StAIUNIQUE)ocieieiieiiiiie et 476
14.4.2. Grouped Data Window (groupwin or std:groupwin)cccceceuuveeenneennnn. 477
14.4.3. Size (SiZ€) OF StAISIZE) ..vvuiiiiiii et 480
14.4.4. Last Event (Std:1aSteVent)ccouiiiiiiiiie i 481
14.4.5. First Event (firstevent or std:firstevent)ccooovvveiiiiiiii e, 482
14.4.6. First Unique (firstunique or std:firstunique)ccooeeviieiiiiiiniii e 482
14.5. STALISHICS VIBWS .ieuiiiiiiiiii ettt e e e e e e e et e e et s e e e ean e eeeen 483
14.5.1. Univariate statistics (uni or stat:uni)ccoooeviiiiiiiiiiii e 483
14.5.2. Regression (linest or Stat:linest)ccoivviiiiiiiiiiii e 484
14.5.3. Correlation (correl or stat:Correl)coooveiiiiiiiiii e 485
14.5.4. Weighted average (weighted_avg or stat:weighted_avg)ccc.uunn... 486
14.6. EXIENSION VIBW S ...iiiiiiiieiiiiii ettt e e e et e e e e re e 488
14.6.1. Sorted WIindow View (SOrt Or @Xt:SOm)cccuvuiveiiriiiieiiiiineeeein e 488
14.6.2. Ranked Window View (rank or ext:rank)ccccociviiiiineiiiieiiineeiieeeennn, 488
14.6.3. Time-Order View (time_order or ext:time_order)cccooeveevevinneeiinnnnn. 489
14.6.4. Time-To-Live View (timetolive or ext:timetolive)cccoeceiviiiiineinn, 491
15. EPL Reference: Data FIOWccoouiiiiiiiiiiii e 493
L 700 I 111 o T [o 1o o I PP 493
15,2, USAQE ..ieiiiiitieii ettt ettt 493
15.2. 1. OVEIVIEW ..evtuieieiiiiee et e et e et s e e et s e e et e e e e et e e e eett s e e aeae e eeaestnaaaees 493
T s | - VP 495
15.3. BUIlt-in OPEIAIOrScviiiiiiii it e e e e e 500
15.3.1. BEACONSOUITE ...euieiiiieet et ettt e e e et e e e n et e e e et eennas 500
15.3.2. EPSIAtEMENISOUICEuiveiiiiei ettt e e e e enns 502
15.3.3. EVENIBUSSINK ...eeiieiie et e e e e 503
15.3.4. EVENBUSSOUICEceuiiiiiiiieit ettt e e e e 504
TR TR T 11 T 505
15.3.6. LOGSINK ottt 506

Xiii

Esper Reference

15.3.7. SEIECE ettt 506

L 30 S L . PP 508
15.4.1. Declaring a Data FIOWcoviiiiiiiiiiiii e 508
15.4.2. Instantiating a Data FIOWcoooviiiiiiiicii e 509
15.4.3. Executing a Data FIOWcccuiiiiiiiiiiiici e 510
15.4.4. Instantiation OPLIONSuiiiiiiiiiiiiciie e e e e eeaes 511
15.4.5. SEArt CapliVE ...coeeveiiiiiii e 511
15.4.6. Data Flow Punctuation with Markerscccoovviiiiiiiiiiiiiii e, 512
15.4.7. Exception HandliNgoooiiiiiiiiii e 513
15.5. EXAMPIES ..oiiiiiiii e 513
15.6. Operator IMpIemMeENtatioNcoiiiiiieiii e 514
15.6.1. Sample Operator ACtiNg @S SOUICEceevvuieiiiieiiiieeiiieeeii e e e e e 515
15.6.2. Sample TOKENIZEr OPETALOrcc.uuieiiiiiiieeieie et 516
15.6.3. Sample Aggregator OPEratorceceuuieiiiieeiiieeiii e e e e e e e 517

G N o I =) LT =Y Yo = 519
L16.0. AP OVEIVIEW ..evuiiiiiiiiieeeiee ettt e e et e e et s e e e et e e e e et e e e e abneeeeaanaas 519
16.2. The Service Provider INterfacecooooieiiiiiiiii e 519
16.3. The Administrative INterfaceooeuiiiiiiiii e 521
16.3.1. Creating STateMENTSociiiiiiiee e 521
16.3.2. Receiving Statement RESUILScocvviiiiiiiiiiii e 522
16.3.3. Setting a Subscriber ODJECTc.uuiiiiiiii 523
16.3.4. AddING LISTENEIS ...covtiiiiiiii e e e e e e e e e e e een 529
16.3.5. USING ITEIAtOrSiiiiiiiieeiiii ettt e e e e e eni e eees 530
16.3.6. Managing StatemMENTSccivuiiiiiiiiii e 532
16.3.7. Atomic Statement Managementoveeiiiiiiniiiiiine e 532
16.3.8. Runtime Configurationc.oiiiiiiiiiiie e e e e e 533
16.4. The RUNtiME INEIfACEuiiiiiiee e 534
R o V=T o1 Y=g T [535
16.4.2. Receiving Unmatched EVENtSccciiiiiiiiiiiiii e 536
16.5. On-Demand Fire-And-Forget Query EXecutionccoccciiiiiiiiiiiieiiin e, 536
16.5.1. On-Demand Query Single EXeCULIONcccouviviiiiiiinieiiiieecc e 537
16.5.2. On-Demand Query Prepared Unparameterized Execution 538
16.5.3. On-Demand Query Prepared Parameterized Execution 538
16.6. EVENE @Nd EVENE TYP oiviiiiiii it e et e e e e e e et e e e e et eeaneees 539
16.6.1. Event Type Metadatalccouuiiiiiiiiiiiiiiiie e 539
16.6.2. EVENE ODJECE ..uiiiiiii e 540
16.6.3. QUETY EXAMPIE ..ooiiiiiii e 541
16.6.4. Pattern EXampleco.uiiiiiiii e 542
16.7. Engine Threading and CONCUITENCYveiiiiiieeiiiiieeieiie et e et 544
16.7.1. Advanced Threadingcoovvueeiiiiiiii e e e 546
16.7.2. ProCesSiNG OFUEIciiiiii et 548
16.8. Controlling TiMe-KEEPINGcvvuieiiiieii e e e e e 549
16.8.1. Controlling Time Using Time Span EVENtScccoooveviiiiiiiiiiieiiiiineeees 552
16.8.2. Time Resolution and Time UNitcoooviiiiiiiiiiiinieceieeei e 553

Xiv

16.8.3. Internal Timer Based on JVM System Timecooeviiieiiiiinieiiiiinneeennnn, 554

16.8.4. Additional Time-Related APIScooiiiiiiiiii e 554
16.9. SErVICE ISOIALION ...ceuiiiii e e 554
16.9. 1. OVEIVIEW .evvuieiiiiiiee et s e ettt e et e e et e e e et e e e e et e e e e et s e e aeaeaeeeentnaaaees 554
16.9.2. Example: Suspending a Statementc.cooviiiiiiiieiiiiii e 556
16.9.3. Example: Catching up a Statement from Historical Data 557
16.9.4. Isolation for INSEr-INtOoeviiiiiiiie e 558
16.9.5. Isolation for Named Windows and Tablescccoevveiiiiiiieiiiineeeci, 558
16.9.6. Runtime CoNnSIAerationsoviiuiiiiiiieiii e e e 559
16.10. Exception Handlingcc.oiiiiiiiiiiii e e 559
16.11. Condition HANAIINGcoouuniiiiiei e 560
16.12. Statement ObJect MOElcoiiiiiii i 560
16.12.1. Building an Object Modelcouiiiiiiiiiiii e 561
16.12.2. BUilding EXPreSSIONSouuiiiiiiiiiieiiii e e e e e et e e e aae e 562
16.12.3. Building a Pattern Statementccoouiiiiiiiiiiniiiieee e 563
16.12.4. Building a Select Statementccoooviiiiiiiiiiiie e 564
16.12.5. Building a Create-Variable and On-Set Statementcccccoeevevennnen. 564
16.12.6. Building Create-Window, On-Delete and On-Select Statements 565
16.13. Prepared Statement and Substitution Parametersccccoovevviiniiiiiiinnenennnn, 566
16.14. Engine and Statement MetricsS REPOItiNGccccevveiiiieiiiiiiiiieeeeeeie e e 568
16.14.1. ENQINE MELIICS ..eevuiiiiiiii et 569
16.14.2. Statement MELIICSuuiiiiiiii e e e e e 570
16.15. Event Rendering to XML and JSONoiiiiiiiiiiiiiiiiceei e 570
16.15.1. JSON Event Rendering Conventions and Optionsc.ccevevvvneeennnn. 571
16.15.2. XML Event Rendering Conventions and Optionsccccuviveeeiiinneees 572
G0 G T = 0T T o T I Y= o [P 572
16.17. Interrogating EPL ANNOLAtIONSuuiiiiiiiiiiiii e 573
16.18. Context Partition SeIeCtioNcoeuiiiiiiiiiiiiei e 574
16.18.1. SEIECLOIS ..oevuiiiiiieii ettt e e e e e e e e e e e e aen 576
16.19. Context Partition AAMINISIrationooovvuiiiiiiiiiieii e 576
16.20. Test and ASSErtion SUPPOITuuuiiiiii ettt 577
16.20.1. EPAssertionUtIl SUMMAIYooiiiiiiiiiiciiiecee e e 577
16.20.2. SupportUpdateListener SUMMANYcoouuiiieiiiiinieieiiieeeeieeeeiieeeees 578
16.20.3. USAQe EXAMPIE ..uiiiiiii i 578
16.21. OSGi, Class Loader, Class-FOr-Nameccoveiuiiiiiieiiiiee e 579
R o Yo} {0 10 1= 1 Y o [581
17.1. Programmatic ConfiQUuIationooeeiiiiiiiiiiiieec e 581
17.2. Configuration via XML Filecccooiiiiiiii e 581
17.3. Passing Services or Transient ODJECEScouuviiiiiiiiiiiii e 582
17.3.1. Service EXampPIecoouiiiiiii e 583
17.3.2. ClassS-FOr-Name@oiiiiiiiiiii e e e e 583
17.3.3. ClasS LOAUETuiiiiiiiiieii et e et e 584
17.3.4. Class Loader CGLID FaStClasscccuviiiiiiiiiieiiieec e 584
17.4. Configuration IEEMSiiii i e e 585

XV

Esper Reference

17.4.1. Events represented by Java CIaSSeScccevuiieiiiiiiiiiiiiiiieeieii e 585
17.4.2. Events represented by java.util.Mapccoooeviiiiiiiiii e 590
17.4.3. Events represented by Object[] (Object-array)ccccevveeeveiiiiieiiinneennnn. 592
17.4.4. Events represented by Avro GenericData.Recordccocoevvveennnnnnn. 594
17.4.5. Events represented by org.w3c.dom.Nodeccoeeviiiiiiiiiiiiiiiiinnenenn. 595
17.4.6. Events represented by Plug-in Event Representationsc......... 600
17.4.7. Class and package iMPOrtSccouuiiiiiiiiiiiiii e 601
17.4.8. Annotation class and package importsccooveviiiiiiiiiin e 602
17.4.9. Cache Settings for From-Clause Method Invocationsccccceeeeenenn. 602
17.4.10. Variablesooiiiiiiiii e 603
17.4.11. Relational Database ACCESSccuuviieniiiiieiii et eees 603
17.4.12. Engine Settings related to Concurrency and Threading 610
17.4.13. Engine Settings related to Event Metadatacccoevveeiiiiiiiiiiineneens 615
17.4.14. Engine Settings related to View RESOUICEScocevvveviiieiiiiiiiineiineans 618
17.4.15. Engine Settings related t0 LOgQiNgooeevvniiiiiiiieiiiiiieeciii e 620
17.4.16. Engine Settings related to Variablescccoccoiiiiiiiiii i 622
17.4.17. Engine Settings related to Patternscocoovviiiiiniiiiiiin e 623
17.4.18. Engine Settings related to Match-Recognizeccooceviiiiiiiiiiiecinnnns 624
17.4.19. Engine Settings related to SCrPLSvevieviiiiiiiiiic e 624
17.4.20. Engine Settings related to Stream Selectionccooceiveviiiiiiieeennns 625
17.4.21. Engine Settings related to TiMe SOUICEcccuuviviiiiiiiiiiiiieeeiiieeees 626
17.4.22. Engine Settings related to IMX MELICSocovveeiiiiiiiiiiii e 627
17.4.23. Engine Settings related to Metrics Reportingccooveveviiiiiiiiiinnenenns 627
17.4.24. Engine Settings related to Language and Localeccoooeevneeennn. 629
17.4.25. Engine Settings related to Expression Evaluationcceeieeene. 630
17.4.26. Engine Settings related to Execution of Statementsccccccevneeen. 633
17.4.27. Engine Settings related to Exception Handlingcccoooovviinieiinnnnnn. 638
17.4.28. Engine Settings related to Condition Handlingcc..coooiviienn. 638
17.4.29. ReViISION EVENE TYPE .ouuiiiiiiiieeeei e 639
17.4.30. Variant SIEAIMuuiiiiiiiiiee e e e e e et e e e et eeeete e eeene 641
17.5. TYPE NAIMES oottt ettt e e e e e e e eaaeees 642
17.6. Runtime Configurationc.oiiiiiiiiiii e e e e e e aen 642
17.7. Logging Configurationcooeuuiiiiiiiiiii et 642
17.7.1. Log4j Logging Configurationccceeuieiiiiieiiiieiie e e e e e e 643

18. Development LIfECYCIE ..o 645
RS 0 A 011 T o Pt 645
18,2, TOSHNG werueeiiit ettt ettt ettt et 645
ST T 7= o 18 o o |1 o 645
18.3.1. @AUIt ANNOTALIONiviieiiiii e 646
18.4. Packaging and Deploying OVEIVIEWcveiuieiiiieiiiieeiii e eeeie e eai e eanee e 647
SR T o I VT To [= 648
18.6. The Deployment Administrative INnterfacecccooveviiiiiiiiii e, 649
18.6.1. Reading Module CONtENtcoiiuiiiiiiiii e 650
18.6.2. Ordering Multiple ModUIESooiiiiiiii e 650

XVi

18.6.3. Deploying and Un-deployingcooeveuuiieieiiiieiiiieeei e 651

18.6.4. Listing DEPIOYMENLSciiiiiiii i e e e e e e s 651
18.6.5. State Transitioning @ Modulecciiiiiiiiiii e 651
18.6.6. BESE PraCliCeSccoevvviiiiiiieeeiiiiiiiii ettt e e 652
18.7. J2EE Packaging and DeploymMENtccoeuuuiiiiiiiieiiii e 652
18.7.1. J2EE Deployment Considerationscooevvuiieiiieeiiiieiii e eeeineeeaneens 653
18.7.2. Servlet Context LISLENETuuiiieiiiiiieee e 653
18.8. Monitoring and JMXciiuiiiii i 655
19. Integration and EXTENSION ...ccoouuiiiiiii e 657
19,1, OVEIVIEW ...ttt ettt ettt ettt bbb e e e e e e et e r et e r e e e e e e e rnnane s 657
19.2. Virtual Data WINUOWoeeeiiiiieiie e e e e et e e e e e e eens 658
19.2.1. HOW 10 USE ..oiiiiiiiiiiiiicii et 659
19.2.2. Implementing the FaCIONYc..oiiiiiiiiiiiiii e 661
19.2.3. Implementing the Virtual Data WINdOWcccciiiiiiiiiiiinciinecineeeieee 663
19.2.4. Implementing the LOOKUPccuuuiiiiiiiiiii e 664
19.3. SiNgle-ROW FUNCHON ..ot e 665
19.3.1. Implementing a Single-Row FUNCHONcoouuiiiiiiiiiiiei e, 666
19.3.2. Configuring the Single-Row Function Namecccooooiiiiiiiiiiineiinen, 666
19.3.3. VAU CAChE ... 667
19.3.4. Single-Row Functions in Filter Predicate EXpressionsc..cccoeeevunnnnn. 667
19.3.5. Single-Row Functions Taking Events as Parametersccccceeveeenenn. 668
19.3.6. Single-Row Functions Returning EVENtScccccoveviiiiiiiniiiiiicce e 669
19.3.7. Receiving a Context ODJECTviiiiiiiiiiiii e 670
19.3.8. Exception HaNdliNgoviiuieiiiiiiii e e e 670
19.4. Derived-value and Data WINAOW VIEWcociuiiiiiiiiiiiiiiieecee e 670
19.4.1. Implementing a VIiew FaCtOryccocoieiiiiiiiiii e 671
19.4.2. Implementing @ VIBWuuiiiiiiieicii e 673
19.4.3. VIEW CONIFACE 1eevvvviiiiiieeeiee ettt e e e 673
19.4.4. Configuring View Namespace and Namecccceeveveviinieiiiiinneeeninnnnn. 674
19.4.5. Requirement for Data WIiNdow VIEWSccocoviiiiiiiiiiiiceie e 675
19.4.6. Requirement for Derived-Value VIEWSoocovviiiiiiiiiiiieiiieeeii e 675
19.4.7. Requirement for Grouped VIEWSccuiieiiiieiiiieiiiiieiie e e e e 675
19.5. AgQregation FUNCLIONooiiiuiiiiiii e 676
19.5.1. Aggregation Single-Function Developmentcccocoiieiiiiiinneeiieeennnn, 677
19.5.2. Aggregation Multi-Function Developmentc.oooviiiiiiiiniiiiiiineecenn, 683
19.6. PAMEIN GUAN ...euuiiiieeiiieiiii et e e et e e e e n s 691
19.6.1. Implementing @ Guard FacCtOrycccuiiiiiiiiiiiiiiiieee e 691
19.6.2. Implementing @ Guard CIassSccoeiuiiiiiiiiiiii e 692
19.6.3. Configuring Guard Namespace and Namecccccoeevviiieiiiiinneeciinnnnn. 693
19.7. PAErN ODSEIVET ..ottt ettt e e e e e e e 694
19.7.1. Implementing an ObServer FaCtOrycccovviieiiiiieiiiiiieeiiii e 694
19.7.2. Implementing an ObSErver ClIasscccoeeiiiiiiiiieiie e 696
19.7.3. Configuring Observer Namespace and Namec.ocooiiieiiiiinneenennnnn. 697
19.8. Event Type And Event ODJECtco.uiiiiiiii e 697

XVii

Esper Reference

19.8.1. HOW It WOTKS ..eeieiiiieii ettt e e e e e e e e ees 698

IR TS (=T o LSO 698
19.8.3. URI-based ReSOIULIONooiiiiiiiii e 699
19.8.4. EXAMPIE ..oeniiiiiiiii e 699

L STt g1 o] AR TUT o] o Lo & AP PP TPPPPT 707
b0 R O YT 1= PSP 707
202, SYNEBX ittt et 707
20.3. EXAIMPIES ..ot 708
20.4. Built-In EPL Script ARMNDULEScoooviiiiiiii e 709
20.5. PerformanCe NOLESciuuiiiiiiiiie et e e eaa e ees 710
b4 BT 2o [11 o o F= U N o) (=P 710
21. Examples, Tutorials, Case StUAIEScc.viiiiiiiiii e 711
21.1. EXAMPIES OVEIVIEW ..covuuiiiiii ettt ettt e e e e eaa e e enaas 711
21.2. RUNNING the EXAMPIEScoviiiii e e e s 713
21.3. AULOID RFID REAUET . .ceuniiiiiiiiii ettt e e e e e e e e e een 714
21.4. Runtime Configurationciiiiiiiiiii e e e e e e 714
21.5. IMS Server Shell and CHENtviiiiiii e 714
b2 T T8 B @ 1= T VPP 714
21.5.2. JMS MeSsages as EVENTScc.iiiiiiiiii e 715
21.5.3. JMX for Remote Dynamic Statement Managementccooeeeveeennnnns 716
21.6. Market Data Feed MONITOTcoouiiiiiii e e 716
21.6. 1. INPUL EVENES .iiiiiiiii e 716
21.6.2. Computing Rates Per Feedoooiiiiiiiiiiiiiiiiii e 716
21.6.3. Detecting a Fall-off ... 717
21.6.4. EVENE QENEIALONivviiiirieiie ettt e 717
21.7. OHLC PIUG-IN VIBW ...ttt e et e et e e et e e e e 717
21.8. Transaction 3-Event Challengeviiiiiiiiiiiiiiec e 718
21.8.1. THE EVENLS ..uiiiiiieiiiii ettt e et e et s e e e eata e e e aaaaeeees 718
21.8.2. COMDINEA EVENLuiiici e e 718
21.8.3. Real time summary datacc.coiieiiiiiiiii e 719
21.8.4. FINd ProbIEMS ... 719
21.8.5. EVENE QENEIALON ..iviiviiiiiii i 719
21.9. Self-Service Terminalccouui i e 720
b I T O V=T 0| £ SRR 720
21.9.2. Detecting Customer Check-in ISSUEScccuuiiieiiiiiiiiiiiiineecei e, 720
21.9.3. Absence of Status EVENLScooivviiiiiiiiiieii e 721
21.9.4. Activity SUMMArY Datacoeeiiiiiiieiiiiiiec e 721
21.9.5. Sample Application for J2EE Application Servercccceccevevivneeennnnnn. 721
21.10. Assets Moving Across Zones - An RFID Exampleocooviiiiiiiiinieiiiiinneeenn, 723
b I S (0T 1 I T 2= PRSPPI 724
A V= (o 1Y, = 1 P 724
21.13. Named WiINAOW QUETYcuuiiiiieiiieeie e e e e e e e e e e e e e et e e et e e e e aneeeen 725
21.14. Sample Virtual Data WINAOWcooeiiiiiiiiiiiiiec e 725
21.15. Sample Cycle DEeECHIONiiieiiiii e e e e e e e 725

Xviii

21.16. Qualit

Y OF SEIVICE .. 725

21.17. Trivia GEEKS ClUD ..vviiiii e 726
A o =T (oY 4= o Yo = PN 727
22.1. Performance RESUILScoouuiiiiiiii e 727
22.2. PerfOorManCe TIPS ..uuueiiiiiieeiii ettt ettt e et e e 727
22.2.1. Understand how to tune your Java virtual machinec....coec. 727
22.2.2. Input and Output Bottenecks ... 728
2 T 1 =T Vo |1 o P 728
22.2.4. Select the underlying event rather than individual fields 733
22.2.5. Prefer stream-level filtering over where-clause filtering 733
22.2.6. Reduce the use of arithmetic in eXpressionscoovevviiineiiiinieeeiiee, 735
22.2.7. Remove Unneccessary CONSIIUCESovuviiiiiiiiiiiiiiieicieeee e 735
22.2.8. End Pattern SUD-EXPreSSIiONScccuuiiiiiiiiiiiiiiiiae e 736
22.2.9. Consider using EventPropertyGetter for fast access to event properties... 737
22.2.10. Consider casting the underlying eventccccoooviiiiiiiiiinieciieeeeeen, 738
22.2.11. Turn off logging and auditcccoeeiiiiiiii e 738
22.2.12. Tune or disable delivery order guaranteesccccoevveeeiiiiieeeiinneennns 738
22.2.13. Use a Subscriber Object to Receive EVentscccoovvvviviiiiieiiineninenns 739
22.2.14. Consider Data FIOWSco.uiiiiiiiiee e 739
22.2.15. High-Arrival-Rate Streams and Single Statementscccoocvveeeenn... 739
22.2.16. Subqueries versus Joins And Where-clause And Data Windows 741
22.2.17. Patterns and Pattern Sub-Expression INStancesccccocccevevvnneennnn. 742
22.2.18. Pattern Sub-Expression Instance Versus Data Window Use 744
22.2.19. The Keep-All Data WINAOWccocouiiiiiiiiiiieci e 744
22.2.20. Statement Design for Reduced Memory Consumption - Diagnosing
(@ 101117/ =10 0 o] Y/ =1 1 o] S 744
22.2.21. Performance, JVM, OS and hardwarecooeveeiiiiiiiiieieeieeieeinn, 745
22.2.22. Consider using HINtSc..oiiiiiiiiiiic e 746
22.2.23. Optimizing Stream Filter EXPressionsocoevvieiiiiiniciiiiiieceiieeees 747
22.2.24. Statement and Engine Metric Reportingc.cccovvvviiiiiiieiiiieciineeennnn, 747
22.2.25. Expression Evaluation Order and Early EXitcocoeviiieiiiiniiiininnnn. 747
22.2.26. Large Number of Threadscccoiviiiiiiiiiiiiin e 748
22.2.27. Filter Evaluation TUNINGcoouuuiiiiiiiiieeeiie e eei e e 748
22.2.28. Context Partition Related Informationccoocoviiiiiiiiiiiiinee, 748
22.2.29. Prefer Constant Variables over Non-Constant Variables 748
22.2.30. Prefer Object-array EVENLScocoviiiiiiiiiiecie e eies 749
22.2.31. Composite or CompouNnd KEYSoceeuuiiiiiiiiiiieiiiiiiieeeei e 749
22.2.32. Notes on QUuEery Planningc.ccuiiiiiiieiiiiieiii e e e e e eaaee s 750
22.2.33. Query Planning Expression Analysis HINtScccooviviiiiiniiiiiiineccennnn. 751
22.2.34. Query Planning Index HINSccoiiiiiiiiiiiie e 753
22.2.35. Measuring Throughput ... 754
22.2.36. Do not create the same or similar EPL Statement X times 754
22.2.37. Comparing Single-Threaded and Multi-Threaded Performance 757

XiX

Esper Reference

22.2.38. Incremental Versus Recomputed Aggregation for Named Window

YT PP 757
22.2.39. When Does Memory Get Releasedcooeviieiiiiiiieiiiiiiiecciieeeeinn 759
22.2.40. Measure throughput of non-matches as well as matches 759
22.3. Using the performance Kitoiiiiiiiiii e 760
22.3.1. How to use the performance Kitccooeviiiiiiiiiiiiici e 760
22.3.2. How we use the performance Kitcoooeeiiiiiiiiiiiiniii e 763

23, REIBIBNCES ottt et 765
B TR = (=T =T ot I 765
A. Output Reference and SamPIESccovuiiiiiii i 767
A.l. Introduction and Sample DAtaoveieiiiiiiiiiiiee e 767
A.2. Output for Un-aggregated and Un-grouped QUETIESc.coevvvieiiieiiieiiiieeiiens 769
A.2.1. No Output Rate LIMItiNgccuuiiiiiiiiiiiiiie e 769
A.2.2. Output Rate Limiting - Defaultccoooiiiiii e 770
A.2.3. Output Rate Limiting - LASTviiiiiiiiiiii e 772
A.2.4. Output Rate Limiting - Firstcccoiiiiiiiiiii e 773
A.2.5. Output Rate Limiting - SNapshotcciiiiiiiii e 774

A.3. Output for Fully-aggregated and Un-grouped QUETIESccevvviiiieiiiiiiiiieiinenns 776
A.3.1. No Output Rate LIMItiNgccuuieiiiiiiiiiiiiiieeei e 776
A.3.2. Output Rate Limiting - Defaultccooeiiiiii e 778
A.3.3. Output Rate Limiting - LASTviiiiiiiiiiiii e 779
A.3.4. Output Rate Limiting - Firstcocoiiiiiiiiiii e 780
A.3.5. Output Rate Limiting - SNapshotcoiiiiiiiiiii e, 781

A.4. Output for Aggregated and Un-grouped QUENESceevvnieiiiiieiiieeiiiieiiieeeieeean, 783
A.4.1. No Output Rate LIMItiNgcccuuieiiiiiiiiiiiiie e 783
A.4.2. Output Rate Limiting - Defaultccoooiiiiiii e 784
A.4.3. Output Rate Limiting - LASTuviiiiiiiiiiiii e 785
A.4.4. Output Rate Limiting - Firstcocoiiiiiiiiii e 787
A.4.5. Output Rate Limiting - SNapshotcooiiiiiiiiii e, 788

A.5. Output for Fully-aggregated and Grouped QUENEScceevvvviiiiieeiiineiiiieeieeann, 790
A.5.1. No Output Rate LIMItiNgcccvuieiiiiiiieiiiii e 790
A.5.2. Output Rate Limiting - Defaultccoooiiiiii e 791
A.5.3. Output Rate Limiting - All ... e 793
A.5.4. Output Rate Limiting - LAStc.oviiiiiiiii e 794
A.5.5. Output Rate Limiting - FirStoiiiiiiiiiii e 796
A.5.6. Output Rate Limiting - SNapshotccoociiiiiiii i 797

A.6. Output for Aggregated and Grouped QUETIEScceuvviuiiiiiieiiiieeieevine e e 798
A.6.1. No Output Rate LImitingcoouveiiiiiiiiiieii e e e 799
A.6.2. Output Rate Limiting - Defaultcooiiiiiiiiii e, 800
A.6.3. Output Rate Limiting - All ... 801
A.6.4. Output Rate Limiting - LASTuviiiiiiiiiiiii e 803
A.6.5. Output Rate Limiting - Firstcccoiiiiiiiiiii e 804
A.6.6. Output Rate Limiting - SNapshot ..o, 806

A.7. Output for Fully-Aggregated, Grouped Queries With Rollupccoeevvieiinnnnn. 808

XX

A.7.1. No Output Rate LIMItiNgcccuuieiiiriiieiiiiieeee e 808

A.7.2. Output Rate Limiting - Defaultccoooiiiiiii e 809

A.7.3. Output Rate Limiting - All ... 811

A.7.4. Output Rate Limiting - LAStc.oviiiiiiiii e 813

A.7.5. Output Rate Limiting - FirStoviiiiiiiiii e 814

A.7.6. Output Rate Limiting - SNapshotccoooiiiiiiiii e 816

B. RESEIVEU KEYWOITS ..ottt ettt e e e e e e eaaens 819
C. Event Representation: Plain-Old Java Object EVENLScccccieiiiiiiiiiiciie e, 825
(O I @Y= V1 PP 825

C.2. Java ODbject EVENE PrOPEITIESuiiiieii i ee et e e e e e e e e e e e e 825

C.3. Property NAMESo 827

C.4. ParameteriZEd TYPES ...ceuuieiiiieiiii e et e et e e et e e e e e e e e e e et e et e eaaeenen 827

C.5. Setter Methods for Indexed and Mapped Propertiescccooeevveinieiiiiinneeiinnnnnn. 828

C.6. KNOWN LIMILALIONS ...iiiiiiieeiiiiiee et e ettt s e e e s e e e et e e e eatn s e e e eatnneeeenes 829

D. Event Representation: java.util.Map EVENLScoiiiiiiiiiiiiiic e 831
D B0 @ =T TSP 831

D.2. MAP PrOPEITIES ...ttt et et 832

D.3. MaP SUP B Y PES ottt 833

D.4. Advanced Map Property TYPEScieuuuiiiiiiieeeei et e e 834
D.4.1. NeSted Properti€scccuiiiiiiiiiiii e 834

D.4.2. One-to-Many RelationShipsoooeuiiiiiiiii e 835

E. Event Representation: Object-array (Object[]) EVENEScccovvveiiiiiiiiiiiiiecec e, 837
R Y= V= 837

E.2. ODJECt-Array PrOPEITIESciiiiiiiiii ettt e e e e e aeaas 838

E.3. ODJECE-AITAY SUPEIYPE ...iieiiiieeiiti ettt ettt et e et e eenens 839

E.4. Advanced Object-Array Property TYPESuviiiiiiiiiiiiii e e e e e e e 840
E.4.1. NeSted Properti€socueeuuiiiiiiiieieii ettt 840

E.4.2. One-to-Many Relationshipscooiiiiiiiiciii e 841

F. Event Representation: Avro Events (org.apache.avro.generic.GenericData.Record) 843
N I @ =T o T PP 843

F.2. AVIO EVENE Ty PO ittt e e en e 844

F.3. Avro Schema Name ReqUIrEMENTcc.uiiiiiiiiiiiiiii e e 845

F.4. Avro Field Schema to Property Type Mappingcccuoiieiiiiiiiiiiiiiineeieieeeeiie 845

F.5. Primitive Data Type and Class to Avro Schema Mappingc..ccoeeevvierinneennnnn. 846

F.6. Customizing Avro Schema ASSIGNMENToviiiiiiiiiiiii e 850

F.7. Customizing Class-to-AVro SChEMAcoviiiiiiiiiiciie e 851

F.8. Customizing Object-to-Avro Field Value Assignmentcccooveveviiiiineeinnnenn, 851

e T AN o B e 1 4] o] L= PP 852
Nt IO T I 71 7= U4 T 1 853

G. Event Representation: org.w3c.dom.Node XML EVENLSccccevieiiiiiiiiiieiiiieciieeeieeeen, 855
L0 O 1= V= N 855

G.2. Schema-Provided XML EVENESuuiiiiiiiiiiiiiiiieeeii e e e e e e 856
G.2.1. Getting STAredccouuuiiiiiiii i e 857

G.2.2. Property Expressions and NameSPACEScccuuvevviieiiineeiiieiiiieniineeannens 858

XXi

Esper Reference

G.2.3. Property Expression to XPath ReWriteccoiiiiiiiiiiiiiiiic e, 858
G.2.4. Array PrOPertieS ...uuiiiiiiiiii it 859
G.2.5. DYNamMIC PrOPEITIESuuuiiiiiiiiieiiiii et e 859
G.2.6. TranspoSIiNg PrOPEItIESiivuiiiiiieii e e e e e e 860
LTy G =T | =T o = P 861
G.2.8. LIMITALIONS ..uuiiiiiiiieiiiie e et e e e e e e e eees 861

G.3. No-Schema-Provided XML EVENLSc.uiiiiiiiiiieiieeie e 861
G.4. Explicitly-Configured Properti€sceeiuiiiiiieiii e e e e 862
G.4.1. Simple EXPICIt PrOPertYovieiiiiiiieiiiie e 862
G.4.2. Explicit Property Casting and Parsingcccooooiiiviiniiiniii e 862
G.4.3. Node and Nodeset EXpliCit Propertyccccoovieviiiiiiiiiiiiieieieeceii e 863

H. NEsper .NET -Specific INnfOrmationccooiiiiiiiiiii e 865
H.1. .NET General INformationcooouiiiiiiiiii e 865
H.2. .NET and ANNOALIONScoiiiiiiieiiii e e et e e e et e e e eab e eeene 865
H.3. .NET and LOCKS @nd CONCUIMENCYocituuinieeiiiiieeeeitia ettt e 865
[T N | = g o I o €= Vo L1 T P 865
H.5. .NET NESper Configurationoooeeeuuiiiiiiieeiii e 866
H.6. .NET Event Underlying ODJECLScccoviiiiiiiiii e 866
H.7. .NET ODJECE EVENTS ..ottt e e 866
H.8. .NET IDICtionary EVENLScouuiiiiiiiiii e e e e et e e e e 867
H.9. .NET XML EVENLS ..ouiiiiiiiiiiii ettt e e e e e e e et e e e aaa e aaens 867
H.10. .NET Event Objects Instantiated and Populated by Insert Into 867
H.11. .NET Processing Model INtroduCtionccouoiiiiiiiiiiiiiiiie e 868
H.12. .NET EPL Syntax - Data TYPES ..cuiiuiiiiiiiiniiiininen e a e 868
H.13. .NET Accessing Relational Data via SQLcoooiiiiiiiiiiiiiieiiiieeceeeeeiien 868
H.14. .NET API - Receiving Statement RESUILSccocoiiiiiiiiiiiiiiiee e, 868
H.15. .NET API - Adding LISTENEISiiiiiiieiiiii e 868
H.16. .NET API - Engine Threading and CONCUITENCYcc.eviiieiiiieeiiieeiiiieeieeennnns 868
H.17. .NET Configurations - Relational Database ACCESSccvvviiiiiiiiiiiiiiiiiinneees 868
H.18. .NET Configurations - Logging Configurationcccoeeviiieiiineiinieie e, 869
3o 1= G P 871

XXi

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of
custom applications. Typically these applications must obtain the data to analyze, filter data,
derive information and then indicate this information through some form of presentation or
communication. Data may arrive with high frequency requiring high throughput processing. And
applications may need to be flexible and react to changes in requirements while the data is
processed. Esper is an event stream processor that aims to enable a short development cycle
from inception to production for these types of applications.

This document is a resource for software developers who develop event driven applications. It also
contains information that is useful for business analysts and system architects who are evaluating
Esper.

It is assumed that the reader is familiar with the Java programming language.

For NEsper .NET the reader is is familiar with the C# programming language. For NEsper .NET,
please also review Appendix H, NEsper .NET -Specific Information.

This document is relevant in all phases of your software development project: from design to
deployment and support.

If you are new to Esper, please follow these steps:
1. Read the tutorials, case studies and solution patterns available on the Esper public web site
athttp://ww. espertech. conl esper

2. Read Chapter 1, Getting Started if you are new to CEP and ESP (complex event processing,
event stream processing)

3. Read Chapter 2, Event Representations that explains the different ways of representing events
to Esper

4. Read Chapter 3, Processing Model to gain insight into EPL continuous query results
5. Read Section 5.1, “EPL Introduction” for an introduction to event stream processing via EPL
6. Read Section 7.1, “Event Pattern Overview” for an overview over event patterns

7. Read Section 8.1, “Overview” for an overview over event patterns using the match recognize
syntax.

8. Then glance over the examples Section 21.1, “Examples Overview”

9. Finally to test drive Esper performance, read Chapter 22, Performance

Xxiii

XXiV

Chapter 1.

Chapter 1. Getting Started

1.1. Introduction to CEP and event series analysis

The Esper engine has been developed to address the requirements of applications that analyze
and react to events. Some typical examples of applications are:

« Business process management and automation (process monitoring, BAM, reporting

exceptions)

» Finance (algorithmic trading, fraud detection, risk management)
* Network and application monitoring (intrusion detection, SLA monitoring)
» Sensor network applications (RFID reading, scheduling and control of fabrication lines, air

traffic)

What these applications have in common is the requirement to process events (or messages) in
real-time or near real-time. This is sometimes referred to as complex event processing (CEP) and
event series analysis. Key considerations for these types of applications are throughput, latency

and the complexity of the logic required.

» High throughput - applications that process large volumes of messages (between 1,000 to 100k

messages per second)

» Low latency - applications that react in real-time to conditions that occur (from a few milliseconds

to a few seconds)

» Complex computations - applications that detect patterns among events (event correlation),
filter events, aggregate time or length windows of events, join event series, trigger based on

absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

More information on CEP can be found at
faq_esper.php#whatiscep].

1.2. Steps

1.2.1. Step One: Setting up Classpath

Please add Esper and dependent jar files to the classpath:

» Esper core jar file esper - version. j ar
e ANTLR parser jar file ant I r-runtine-4.5. 3. j ar

* CGLIB code generator jar file cgl i b- nodep-3. 2. 4. j ar

FAQ [http://espertech.com/esper/

http://espertech.com/esper/faq_esper.php#whatiscep
http://espertech.com/esper/faq_esper.php#whatiscep
http://espertech.com/esper/faq_esper.php#whatiscep

Chapter 1. Getting Started

e SLF4J logging library sl f 4j -api-1.7.21.jar

Optionally, for logging using Log4j, please add slf4j-1o0g4j12-1.7.21.jar and
| 0g4j-1.2.17.j ar to the classpath.

Optionally, for using Apache Avro with Esper, please add esper-avro-version.jar to the
classpath.

1.2.2. Step Two: Obtain Engine Instance

Your application can obtain an engine instance by calling the get Def aul t Povi der static method
of the EPSer vi cePr ovi der Manager class:

EPSer vi ceProvi der engi ne = EPServi ceProvi der Manager . get Def aul t Provi der () ;

This example does not provide a Confi guration configuration object and thus the engine
instance returned is configured with defaults. The default engine URI, which is simply the name
assigned to the engine, is "defaul t".

More information about EPSer vi cePr ovi der Manager can be found at Section 16.2, “The Service
Provider Interface” and the JavaDoc.

More information about engine configuration can be found at Chapter 17, Configuration and the
JavaDoc.

1.2.3. Step Three: Provide Information on Input Events

Your application can register an event type to instruct the engine what the input events look
like. When creating EPL statements the engine checks the available event type information to
determine that the statement is valid.

This example assumes that there is a Java class PersonEvent and each instance of the
Per sonEvent class is an event. Note that it is not necessary to create classes for each event type,
as explained below. Here is the class:

package com nycompany. nyapp;

public class PersonEvent {
private String name;
private int age;

publ i c PersonEvent (String nane, int age) {

thi s. nanme = nane;
thi s. age = age;

public String getName() {

Step Four: Create EPL Statements and Attach Callbacks

return nane;

public int getAge() {
return age;

Your application can call the addEvent Type method that is part of the runtime configuration
interface to tell the engine about the Per sonEvent class:

engi ne. get EPAdmi ni strator (). get Configuration().addEvent Type(PersonEvent. cl ass);

Upon calling the addEvent Type method and passing the PersonEvent class the engine
inspects the class using reflection and determines the event properties. Because the class has
two JavaBean-standard getter-methods the engine determines that a Per sonEvent has two
properties: the nane property of type st ri ng and the age property of type i nt .

Now that the Per sonEvent event type is known to the engine, your application can create EPL
statements that have Per sonEvent inthe f r omclause and EPL can refer to event property names.

Instead of PersonEvent being a Java class, it could also be an Apache Avro schema or an
XML schema or a Map or array of names and properties. The different event representations are
discussed at Section 2.5, “Comparing Event Representations”.

Your application can instead pre-configure event types using the Confi gur ati on object, see
Section 17.4, “Configuration Items”.

Your application can, instead of calling an API, add event types using EPL with creat e schens,
see Section 5.15, “Declaring an Event Type: Create Schema”.

1.2.4. Step Four: Create EPL Statements and Attach Callbacks

The sample EPL for this getting-started section simply selects the name and the age of each
arriving person event;

sel ect name, age from PersonEvent
Your application can create an EPL statement using the cr eat eEPL method that is part of the
administrative interface.

The API calls are:

String epl = "select nanme, age from PersonEvent";

Chapter 1. Getting Started

EPSt at enent st atement = engi ne. get EPAdni ni strator().createEPL(epl);

Upon creating the statement, the engine verifies that Per sonEvent exists since it is listed in
the f romclause. The engine also verifies that the nane and age properties are available for the
Per sonEvent since they are listed in the sel ect -clause.

After successful verification, the engine internally adds an entry to an internally-maintained filter
index tree structure that ensures that when a Per sonEvent comes in it will be processed by the
statement.

Your application can attach a callback to the EPSt at enent to receive statement results.

The following callback simply prints name and age:

st at enent . addLi st ener((newData, ol dData) -> {
String nane = (String) newbData[0].get("nane");
int age = (int) newData[O].get("age");
Systemout.printIn("String.format(Nane: %, Age: %", nane, age));
B

More information about creating EPL statements is at Section 16.3.1, “Creating Statements” and
Section 18.6, “The Deployment Administrative Interface” and the JavaDoc.

Your application can provide different kinds of callbacks, see Section 16.3.2, “Receiving Statement
Results”.

1.2.5. Step Five: Send Events

Your application can send events into the engine using the sendEvent method that is part of the
runtime interface:

engi ne. get EPRunt i me() . sendEvent (new PersonEvent ("Peter", 10));

The output you should see is:

Name: Peter, Age: 10

Upon sending the Per sonEvent event object to the engine, the engine consults the internally-
maintainced shared filter index tree structure to determine if any EPL statement is interested
in PersonEvent events. The EPL statement that was created as part of this example has
Per sonEvent in the fromclause, thus the engine delegates processing of such events to the
statement. The EPL statement obtains the name and age properties by calling the get Nane and
get Age methods.

Required 3rd Party Libraries

For different event representations and sendEvent methods please see Section 2.5, “Comparing
Event Representations”.

Specialized event senders are explained in Section 16.4.1, “Event Sender”.

For reference, here is the complete code without event class:

EPSer vi ceProvi der engi ne = EPServi ceProvi der Manager . get Def aul t Provi der () ;
engi ne. get EPAdmi ni strator (). get Configuration().addEvent Type(PersonEvent. cl ass);
String epl = "select nane, age from PersonEvent";
EPSt at enent st at enent = engi ne. get EPAdmi ni strator().createEPL(epl);
st at enent . addLi st ener ((newData, ol dData) -> {
String nane = (String) newbata[0].get("nane");
int age = (int) newData[O0].get("age");
Systemout.println(String.format("Nanme: %, Age: %", nane, age));
1

engi ne. get EPRunt i me() . sendEvent (new Per sonEvent ("Peter", 10));

1.3. Required 3rd Party Libraries

Esper requires the following 3rd-party libraries at runtime:

« ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EPL
syntax. Credit goes to Terence Parr at http://www.antlr.org. The ANTLR license is a BSD license
and is provided in the lib directory. The ant | r - runt i me runtime library is required for runtime.

» CGLIB is the code generation library for fast method calls, licensed under Apache 2.0 license
as provided in the lib directory.

* SLF4Jis alogging API that can work together with LOG4J and other logging APIs. While SLF4J
is required, the LOG4J log component is not required and can be replaced with other loggers.
SLF4J is licensed under Apache 2.0 license as provided in the lib directory.

Esper requires the following 3rd-party libraries for running the test suite:

» JUnitis a great unit testing framework. Its license has also been placed in the lib directory. The
library is required for build-time only.

* MySQL connector library is used for testing SQL integration and is required for running the
automated test suite.

Chapter 2.

Chapter 2. Event Representations

This section outlines the different means to model and represent events.

Esper uses the term event type to describe the type information available for an event
representation.

Your application may configure predefined event types at startup time or dynamically add event
types at runtime via APl or EPL syntax. See Section 17.4, “Configuration Items” for startup-time
configuration and Section 16.3.8, “Runtime Configuration” for the runtime configuration API.

The EPL create schema syntax allows declaring an event type at runtime using EPL, see
Section 5.15, “Declaring an Event Type: Create Schema”.

In Section 16.6, “Event and Event Type” we explain how an event type becomes visible in EPL
statements and output events delivered by the engine.

2.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. Event
properties capture the state information for an event.

In Esper, an event can be represented by any of the following underlying Java objects
(NEsper .NET, see Section H.6, “.NET Event Underlying Objects”):

Table 2.1. Event Underlying Java Objects

Java Class Description

j ava.l ang. Obj ect Any Java POJO (plain-old java object) with getter
methods following JavaBean conventions; Legacy
Java classes not following JavaBean conventions can
also serve as events .

java.util.Mp Map events are implementations of the
java. util . Map interface where each map entry is a
propery value.

Qbj ect[] (array of object) Object-array events are arrays of objects (type
Obj ect[]) where each array element is a property
value.

org. apache. avro. generi c. Generi cDat ApReber dAvro events are GenericData. Record
objects (Avro is a data serialization system with JSON
and schema support)

org. w3dc. dom Node XML document object model (DOM).

or g. apache. axi om om OvDocument XML - Streaming API for XML (StAX) - Apache Axiom
or OMEl enent (provided by EsperlO package).

Application classes Plug-in event representation via the extension API.

Chapter 2. Event Representations

Esper provides multiple choices for representing an event. There is no absolute need for you to
create new Java classes to represent an event.

Event representations have the following in common:

« All event representations support nested, indexed and mapped properties (aka. property
expression), as explained in more detail below. There is no limitation to the nesting level.

« All event representations provide event type metadata. This includes type metadata for nested
properties.

« All event representations allow transposing the event itself and parts of all of its property graph
into new events. The term transposing refers to selecting the event itself or event properties that
are themselves nestable property graphs, and then querying the event's properties or nested
property graphs in further statements. The Apache Axiom event representation is an exception
and does not currently allow transposing event properties but does allow transposing the event
itself.

« The Java object, Map, Object-array and Avro representations allow supertypes.

The API behavior for all event representations is the same, with minor exceptions noted.

The benefits of multiple event representations are:

« For applications that already have events in one of the supported representations, there is no
need to transform events before processing for both input and output.

e Event representations are exchangeable, reducing or eliminating the need to change
statements when the event representation changes, i.e. the EPL does not depend on whether
events are Objects, Map(s), Object-array(s), Avro record(s) or XML document(s).

« Event representations are interoperable, allowing all event representations to interoperate in
same or different statements.

« The choice makes its possible to consciously trade-off performance, ease-of-use, the ability to
evolve and effort needed to import or externalize events and use existing event type metadata.

2.2. Event Properties

Event properties capture the state information for an event. Event properties can be simple,
indexed, mapped and nested event properties.

The table below outlines the different types of properties and their syntax in an event expression:

Table 2.2. Types of Event Properties

Type Description Syntax Example

Simple A property that has a single value
that may be retrieved.

nanme sensorld

Indexed An indexed property stores an
ordered collection of objects (all
of the same type) that can be
individually accessed by an integer-

name[i ndex] t enper at ur e[0]

Escape Characters

Type Description Syntax Example
valued, non-negative index (or
subscript).
Mapped A map.ped prop.)erty stores a keyed e ke) i sTurnedon(’ 1 ght*)
collection of objects (all of the same
type).
Nested A nested property is a property that e
lives within another property of an
event.

Combinations are also possible. For example, a valid combination could be
person. address(' hone').street[0].

You may use any expression as a mapped property key or indexed property index by putting the
expression within parenthesis after the mapped or index property name. Please find examples
below.

2.2.1. Escape Characters

If your application usesj ava. util . Map, Qbj ect [] (object-array) or XML to represent events, then
event property names may themselves contain the dot (.") character. The backslash ('\') character
can be used to escape dot characters in property hames, allowing a property name to contain
dot characters.

For example, the EPL as shown below expects a property by name part 1. par t 2 to exist on event
type MyEvent :

select partl\.part2 from M/Event

Sometimes your event properties may overlap with EPL language keywords or contain spaces or
other special characters. In this case you may use the backwards apostrophe * (aka. back tick)
character to escape the property name.

The next example assumes a Quot e event that has a property by name or der, while order is
also a reserved keyword:

select “order’, price as “price.for.goods" from Quote

When escaping mapped or indexed properties, make sure the back tick character appears outside
of the map key or index.

The next EPL selects event properties that have names that contain spaces (e.g. candi date
book), have the tick special character (e.g. chil dren's books), are an indexed property (e.g.

Chapter 2. Event Representations

children's books[0]) and a mapped property that has a reserved keyword as part of the
property name (e.g. book sel ect('isbn')):

sel ect “candidate book®™ , “children's books [0], “book select ('"isbn') from
MyEvent Type

7 Note
’

Avro does not support the dot-character in field names.

-

2.2.2. Expression as Key or Index Value

The key or index expression must be placed in parenthesis. When using an expression as key for
a mapped property, the expression must return a St ri ng-typed value. When using an expression
as index for an indexed property, the expression must return an i nt -typed value.

This example below uses Java classes to illustrate;The same principles apply to all event
representations.

Assume a class declares these properties (getters not shown for brevity):

public class MyEvent Type {
String nmyMapKey;
i nt myl ndexVal ue;
i nt myl nner | ndexVal ue;
Map<String, |nnerType> innerTypesMap; // mapped property
I nner Type[] innerTypesArray; // indexed property

public class InnerType {
String nane;
int[] ids;

A sample EPL statement demonstrating expressions as map keys or indexes is:

sel ect innerTypesMap('sonekey'), [/ returns map value for 'sonekey

i nner TypesMap(nyMapKey) , /'l returns map value for nmyMapKey val ue (an
expr essi on)
i nner TypesArray[1], /'l returns array value at index 1

i nner TypesArray(nmyl ndexVal ue) /1 returns array value at index nylndexVal ue
(an expressi on)

10

Dynamic Event Properties

from MyEvent Type

The dot-operator can be used to access methods on the value objects returned by the mapped or
indexed properties. By using the dot-operator the syntax follows the chained method invocation
described at Section 9.6, “Dot Operator”.

A sample EPL statement demonstrating the dot-operator as well as expressions as map keys or
indexes is:

sel ect inner TypesMap(' sonekey').ids[1],
i nner TypesMap(nyMapKey) . get | ds(nyl ndexVal ue),
i nner TypesArray[1].ids[2],
i nner TypesArray(nyl ndexVal ue) . get | ds(nyl nner | ndexVal ue)
from MyEvent Type

Please note the following limitations:

« The square brackets-syntax for indexed properties does now allow expressions and requires
a constant index value.

« When using the dot-operator with mapped or indexed properties that have expressions as map
keys or indexes you must follow the chained method invocation syntax.

2.3. Dynamic Event Properties

Dynamic (unchecked) properties are event properties that need not be known at statement
compilation time. Such properties are resolved during runtime: they provide duck typing
functionality.

The idea behind dynamic properties is that for a given underlying event representation we don't
always know all properties in advance. An underlying event may have additional properties that
are not known at statement compilation time, that we want to query on. The concept is especially
useful for events that represent rich, object-oriented domain models.

The syntax of dynamic properties consists of the property name and a question mark. Indexed,
mapped and nested properties can also be dynamic properties:

Table 2.3. Types of Event Properties

Type Syntax

Dynamic Simple name?

Dynamic Indexed S e 2

Dynamic Mapped T [)

11

Chapter 2. Event Representations

Type Syntax

Dynamic Nested

nane?. nest edPr oper t yName

Dynamic properties always return the j ava. | ang. Obj ect type. Also, dynamic properties return a
nul | value if the dynamic property does not exist on events processed at runtime.

As an example, consider an OrderEvent event that provides an "item" property. The "item" property
is of type Obj ect and holds a reference to an instance of either a Service or Product.

Assume that both Service and Product classes provide a property named "price”. Via a dynamic
property we can specify a query that obtains the price property from either object (Service or
Product):

select itemprice? from O derEvent

As a second example, assume that the Service class contains a "serviceName" property that
the Product class does not possess. The following query returns the value of the "serviceName"
property for Service objects. It returns a nul | -value for Product objects that do not have the
"serviceName" property:

sel ect item servi ceNane? from O der Event

Consider the case where OrderEvent has multiple implementation classes, some of which have
a "timestamp" property. The next query returns the timestamp property of those implementations
of the OrderEvent interface that feature the property:

sel ect tinestanp? from O der Event

The query as above returns a single column named "timestamp?" of type Chj ect .

When dynamic properties are nested, then all properties under the dynamic property are also

considered dynamic properties. In the below example the query asks for the "direction" property
of the object returned by the "detail” dynamic property:

sel ect detail ?.direction from O der Event

Above is equivalent to:

sel ect detail?.direction? from O der Event

12

Fragment and Fragment Type

The functions that are often useful in conjunction with dynamic properties are:

* The cast function casts the value of a dynamic property (or the value of an expression) to a
given type.

» The exi st s function checks whether a dynamic property exists. It returns t r ue if the event has
a property of that name, or false if the property does not exist on that event.

e Theinstanceof function checks whether the value of a dynamic property (or the value of an
expression) is of any of the given types.

» Thetypeof function returns the string type name of a dynamic property.

Dynamic event properties work with all event representations outlined next: Java objects, Map-
based, Object-array-based and XML DOM-based events.

2.4. Fragment and Fragment Type

Sometimes an event can have properties that are itself events. Esper uses the term fragment and
fragment type for such event pieces. The best example is a pattern that matches two or more
events and the output event contains the matching events as fragments. In other words, output
events can be a composite event that consists of further events, the fragments.

Fragments have the same metadata available as their enclosing composite events. The metadata
for enclosing composite events contains information about which properties are fragments, or
have a property value that can be represented as a fragment and therefore as an event itself.

Fragments and type metadata can allow your application to navigate composite events without
the need for using the Java reflection APl and reducing the coupling to the underlying event
representation. The API is further described in Section 16.6, “Event and Event Type”.

2.5. Comparing Event Representations
More information on event representations can be found in the appendix. The links are:

Table 2.4. Comparing Event Representations

Event Representation More Information and Examples

Java Object (POJO/Bean or other) Appendix C, Event Representation: Plain-Old
Java Object Events

Map Appendix D, Event Representation:
java.util.Map Events

Object-array Appendix E, Event Representation: Object-
array (Object[]) Events

Avro Appendix F, Event Representation: Avro
Events

(org.apache.avro.generic.GenericData.Record)

13

Chapter 2. Event Representations

Event Representation More Information and Examples

XML Document Appendix G, Event Representation:
org.w3c.dom.Node XML Events

2.5.1. Incoming Events

For sending incoming events into the engine for processing, your application uses one of the send-
event methods on the EPRunt i e interface:

Table 2.5. EPRuntime Send-event Methods

Event Representation Method for Processing Events

Java Object (POJO/Bean or other)
sendEvent (Obj ect event)

Map
sendEvent (Map map, String

mapEvent TypeNane)

Object-array
sendEvent (oj ect[] objectarray, String

obj ect ArrayEvent TypeNane)

Avro
sendEvent (oj ect

avr oGeneri cDat aDot Recor d, String
avr oEvent TypeNane)

XML Document
sendEvent (org. w3c. dom Node node)

Please find an example in the respective appendix.

2.5.2. Outgoing Events

The St at enent Updat eLi st ener interface receives EPL statement output. The output events can
be either of the representations

Table 2.6. Annotation for Receiving Events

Event Representation Annotation

Java Object (POJO/Bean or other)
N A

Map
@vent Represent ati on(nap)

Schema

Event Representation Annotation

Object-array
@vent Repr esent at i on(obj ect arr ay)

Avro
@vent Represent ati on(avr o)

XML Document
N A

Please find an example in the respective appendix.

2.5.3. Schema

The create-schema clause can be used to define an event type and its event representation.

Table 2.7. Create-Schema

Event Representation Annotation

Java Object (POJO/Bean or other)
create schema nane as cl ass_nane

Map
create map schema nane as (...)

Object-array
create objectarray schema nane as (...)

Avro
create avro schema nane as (...)

XML Document
N A

Your EPL statements can use create schema and i nsert into to define an event type and to
produce events of the type.

In the following example the first statement declares a schema and the second statement inserts

events according to the schema:

create map schema Par ki ngEvent as (carld string, driverName string)

insert into ParkingEvent select carld, 'jiml as driverNane from CarArrival Event

15

Chapter 2. Event Representations

Please find additional examples in Section 5.15, “Declaring an Event Type: Create Schema”.

2.5.4. Side-By-Side

Each of the event representations of Java object, Map, Object-array, Avro and XML document
has advantages and disadvantages that are summarized in the table below:

Table 2.8. Comparing Event Representations

Java Object Map Object-array Avro XML
(POJO/Bean Document
or other)

Performance | Good Good Very Good Very Good Not
comparable
and
depending on
use of XPath

Memory Use | Small Medium Small Small Depends on
DOM and
XPath
implementation
used, can be
large

Call Method Yes Yes, if Yes, if No No

on Event contains contains

Object(s) Object(s)

Nested, Yes Yes Yes Yes Yes

Indexed,

Mapped and

Dynamic

Properties

Course- Yes Yes Yes Yes Yes

grained event

syntax

Insert-into Yes Yes Yes Yes No

that

Representation

Runtime Type | Reload class, | Yes Yes Yes Yes

Change yes

Create- Yes Yes Yes Yes No, runtime

schema and static

Syntax configuration

16

Support for Generic Tuples

Java Object Map Object-array Avro XML
(POJO/Bean Document
or other)

Object is Self- | Yes Yes No Yes Yes

Descriptive

Supertypes Multiple Multiple Single Single No

2.6. Support for Generic Tuples

Esper does not require a fixed tuple structure and fully supports generic tuples, i.e. there does
not need to be a fixed set of attributes or event properties and event properties can be added
and queried at runtime.

The facilities for support of generic tuples are:

« Dynamic properties allow to query properties that are not defined, see Section 2.3, “Dynamic
Event Properties”.

« The cast function for operations that require strongly-typed data, see Section 10.1.2, “The Cast
Function”.

» Type inheritance for adding properties to supertypes, see Section 5.15, “Declaring an Event
Type: Create Schema”

e The Map event representation, as it allows any map key to become an event property, see
Appendix D, Event Representation: java.util. Map Events

« The Avro event representation, as it allows any Avro field to become
an event property, see Appendix F, Event Representation: Avro Events
(org.apache.avro.generic.GenericData.Record)

e The POJO event representation, as getter-methods and fields can be dynamically discovered
to become an event property, see Appendix C, Event Representation: Plain-Old Java Object
Events

» The XML event representation, as the DOM can have any attribute or nested element and there
does not need to be a schema, see Appendix G, Event Representation: org.w3c.dom.Node
XML Events

» Event types can be updated at runtime using the API

There is no need to explicitly create an event type for each tuple type. It is not necessary to create
classes for tuple types at all. Events can be arbitrary objects.

The engine validates EPL at statement creation time therefore there is an advantage if type
information is available: the engine can verify your EPL statement against the known properties
and types, preventing you as the EPL designer from making mistakes in EPL design. The engine

17

Chapter 2. Event Representations

does not verify dynamic properties, which may return nul | at runtime. If type information is not
available then properties are assumed to return j ava. | ang. Qbj ect -typed values.

For example, let's say we need a generic tuple and we have Map events:
create schema GenericTupl e()

Create statements that use dynamic properties, as the next EPL shows, which casts the timestamp
value to a | ong-type value and outputs the hour-minute-second string:

sel ect cast(tinmestanp?, long).format('hh nmss') from GenericTuple
Send events like this:

Map<String, Object> genericEvent = new HashMap<>();

generi cEvent. put ("ti nestanp", new Date().getTime());

generi cEvent . put ("sone_ot her _property", "hello");

epServi ce. get EPRunt i ne() . sendEvent (generi cEvent, "GenericTuple");

2.7. Additional Event Representations

Part of the extension and plug-in features of Esper is an event representation API. This set of
classes allow an application to create new event types and event instances based on information
available elsewhere, statically or dynamically at runtime when EPL statements are created. Please
see Section 19.8, “Event Type And Event Object” for details.

Creating a plug-in event representation can be useful when your application has existing Java
classes that carry event metadata and event property values and your application does not want
to (or cannot) extract or transform such event metadata and event data into one of the built-in
event representations (POJO Java objects, Map, Object-array or XML DOM).

Further use of a plug-in event representation is to provide a faster or short-cut access path to
event data. For example, access to event data stored in a XML format through the Streaming
API for XML (StAX) is known to be very efficient. A plug-in event representation can also provide
network lookup and dynamic resolution of event type and dynamic sourcing of event instances.

Currently, EsperlO provides the following additional event representations:

» Apache Axiom: Streaming API for XML (StAX) implementation
Please see the EsperlO documentation for details on the above.

The chapter on Section 19.8, “Event Type And Event Object” explains how to create your own
custom event representation.

18

Updating, Merging and Versioning Events

2.8. Updating, Merging and Versioning Events

To summarize, an event is an immutable record of a past occurrence of an action or state change,
and event properties contain useful information about an event.

The length of time an event is of interest to the event processing engine (retention time) depends
on your EPL statements, and especially the data window, pattern and output rate limiting clauses
of your statements.

During the retention time of an event more information about the event may become available,
such as additional properties or changes to existing properties. Esper provides three concepts for
handling updates to events.

The first means to handle updating events is the updat e i st reamclause as further described in
Section 5.20, “Updating an Insert Stream: the Update IStream Clause”. It is useful when you need
to update events as they enter a stream, before events are evaluated by any particular consuming
statement to that stream.

The second means to update events is the on- mer ge and on- updat e clauses, for use with tables
and named windows only, as further described in Section 6.8, “Triggered Upsert using the On-
Merge Clause” and Section 6.6, “Updating Data: the On Update clause”. On-merge is similar to the
SQL ner ge clause and provides what is known as an "Upsert" operation: Update existing events
or if no existing event(s) are found then insert a new event, all in one atomic operation provided
by a single EPL statement. On-update can be used to update individual properties of rows held
in a table or named window.

The third means to handle updating events is the revision event types, for use with named windows
only, as further described in Section 6.11, “Versioning and Revision Event Type Use with Named
Windows”. With revision event types one can declare, via configuration only, multiple different
event types and then have the engine present a merged event type that contains a superset of
properties of all merged types, and have the engine merge events as they arrive without additional
EPL statements.

Note that patterns do not reflect changes to past events. For the temporal nature of patterns, any
changes to events that were observed in the past do not reflect upon current pattern state.

2.9. Coarse-Grained Events

Your application events may consist of fairly comprehensive, coarse-grained structures or
documents. For example in business-to-business integration scenarios, XML documents or other
event objects can be rich deeply-nested graphs of event properties.

To extract information from a coarse-grained event or to perform bulk operations on the rows
of the property graph in an event, Esper provides a convenient syntax: When specifying a filter
expression in a pattern or in a sel ect clause, it may contain a contained-event selection syntax,
as further described in Section 5.19, “Contained-Event Selection”.

19

Chapter 2. Event Representations

2.10. Event Objects Instantiated and Populated by insert

Into

For NEsper .NET also see Section H.10, “.NET Event Objects Instantiated and Populated by
Insert Into”.

The insert into clause can populate instantiate new instances of Java object events,
java.util.Mp events and Obj ect[] (object array) events directly from the results of sel ect
clause expressions and populate such instances. Simply use the event type name as the stream
name intheinsert into clause as described in Section 5.10, “Merging Streams and Continuous
Insertion: the Insert Into Clause”.

If instead you have an existing instance of a Java object returned by an expression, such as a
single-row function or static method invocation for example, you can transpose that expression
result object to a stream. This is described further in Section 5.10.7, “Transposing an Expression
Result” and Section 10.4, “Select-Clause transpose Function”.

The column names specified in the sel ect andi nsert i nt o clause must match available writable
properties in the event object to be populated (the target event type). The expression result types
of any expressions in the sel ect clause must also be compatible with the property types of the
target event type.

If populating a POJO-based event type and the class provides a matching constructor, the
expression result types of expressions in the sel ect clause must be compatible with the
constructor parameters in the order listed by the constructor. The i nsert into clause column
names are not relevant in this case.

Consider the following example statement:

insert into com myconpany. NeweEnpl oyeeEvent
sel ect fnane as firstNanme, | nane as | astName from HRSyst enEvent

The above example specifies the fully-qualified class name of NewEnpl oyeeEvent . The engine
instantianes NewEnpl oyeeEvent for each result row and populates the fi r st Nanme and | ast Narme
properties of each instance from the result of sel ect clause expressions. The HRSyst enEvent in
the example is assumed to have | nane and f name properties, and either setter-methods and a
default constructor, or a matching constructor.

Note how the example uses the as-keyword to assign column names that match the property
names of the NewEnpl oyeeEvent target event. If the property names of the source and target
events are the same, the as-keyword is not required.

The next example is an alternate form and specifies property names within the i nsert into
clause instead. The example also assumes that NewEnpl oyeeEvent has been defined or imported
via configuration since it does not specify the event class package name:

20

Event Objects Instantiated and Populated by Insert Into

i nsert into NeweEnpl oyeeEvent (firstName, |astNane)
sel ect fnanme, |name from HRSyst enEvent

Finally, this example populates HRSyst enEvent events. The example populates the value of a
t ype property where the event has the value 'NEW' and populates a new event object with the
value 'HIRED', copying the f name and | nanme property values to the new event object:

insert into HRSystenEvent
sel ect fname, Iname, 'H RED as type from HRSystenEvent (type=" NEW)

The matching of the sel ect orinsert i nto-clause column names to target event type's property
names is case-sensitive. It is allowed to only populate a subset of all available columns in the
target event type. Wildcard (*) is also allowed and copies all fields of the events or multiple events
in a join.

For Java object events, your event class must provide setter-methods according to JavaBean
conventions or, alternatively, a matching constructor. If the event class provides setter methods
the class should also provide a default constructor taking no parameters. If the event class
provides a matching constructor there is no need for setter-methods. If your event class does not
have a default constructor and setter methods, or a matching constructor, your application may
configure a factory method via Confi gur ati onEvent TypeLegacy. If your event class does not
have a default constructor and there is no factory method provided, the engine uses in connection
with the Oracle JVM the sun.refl ect. Refl ecti onFact ory, noting that in this case member
variables do not get initialized to assigned defaults.

The engine follows Java standards in terms of widening, performing widening automatically in
cases where widening type conversion is allowed without loss of precision, for both boxed and
primitive types and including Biginteger and BigDecimal.

When inserting array-typed properties into a Java, Map-type or Object-array underlying event the
event definition should declare the target property as an array.

Please note the following limitations:

« Event types that utilize XML or g. w3c. dom Node underlying event objects cannot be target of
aninsert into clause.

21

22

Chapter 3.

Chapter 3. Processing Model

3.1. Introduction

For NEsper .NET also see Section H.11, “.NET Processing Model Introduction”.

The Esper processing model is continuous: Update listeners and/or subscribers to statements
receive updated data as soon as the engine processes events for that statement, according to the
statement's choice of event streams, views, filters and output rates.

As outlined in Chapter 16, APl Reference the interface for listeners is
com espertech. esper. client. UpdateLi stener. Implementations must provide a single
updat e method that the engine invokes when results become available:

(Updatel istener w

update[EventBean]] newEvents,
EventBean[] aldEvents)

A second, strongly-typed and native, highly-performant method of result delivery is provided: A
subscriber object is a direct binding of query results to a Java object. The object, a POJO, receives
statement results via method invocation. The subscriber class need not implement an interface
or extend a superclass. Please see Section 16.3.3, “Setting a Subscriber Object”.

The engine provides statement results to update listeners by placing results in
com espertech. esper. client. Event Bean instances. A typical listener implementation queries
the Event Bean instances via getter methods to obtain the statement-generated results.

(EventBean w

get{Siring properyName) : Object
getUnderlying(y : Object
getEventType) | EventType

The get method on the Event Bean interface can be used to retrieve result columns by name. The
property name supplied to the get method can also be used to query nested, indexed or array
properties of object graphs as discussed in more detail in Chapter 2, Event Representations and
Section 16.6, “Event and Event Type”

The get Under | yi ng method on the Event Bean interface allows update listeners to obtain the
underlying event object. For wildcard selects, the underlying event is the event object that was
sent into the engine via the sendEvent method. For joins and select clauses with expressions,
the underlying object implements j ava. uti | . Map.

23

Chapter 3. Processing Model

Tip

The engine calls application-provided update listeners and subscribers for output.
These commonly encapsulate the actions to take when there is output. This design
decouples EPL statements from actions and places actions outside of EPL. It
allows actions to change independently from statements: A statement does not
need to be updated when its associated action(s) change.

While action-taking, in respect to the code or script taking the action, is not a part
of the EPL language, here are a few noteworthy points. Through the use of EPL
annotations one can attach information to EPL that can be used by applications
to flexibly determine actions. The convenient St at ement Awar eUpdat eLi st ener
interface is a listener that receives the statement itself and subscribers can
accept EPSt at ement as a parameter. The i nsert into-clause can be used
to send results into a further stream and input and output adapters or data
flows can exist to process output events from that stream. Also the data flow
EPSt at ement Sour ce operator can be used to hook up actions declaratively. The
EPSt at enent St at eLi stener can inform your application of new statements
coming online.

3.2. Insert Stream

In this section we look at the output of a very simple EPL statement. The statement selects an
event stream without using a data window and without applying any filtering, as follows:

select * from Wt hdrawal

This statement selects all Wt hdr awal events. Every time the engine processes an event of type
W t hdr awal or any sub-type of Wt hdr awal , it invokes all update listeners, handing the new event
to each of the statement's listeners.

The term insert stream denotes the new events arriving, and entering a data window or
aggregation. The insert stream in this example is the stream of arriving Withdrawal events, and
is posted to listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. The number in
parenthesis is the withdrawal amount, an event property that is used in the examples that discuss
filtering.

24

Insert and Remove Stream

UpdatelListener

Incoming Events New Events Old Events
| |
Wi (500) ——m Wy | |
| |
| |
W(100) ——= W | |
| |
| |
Wa(200) — W : :
| |
Wa(50) ——m= Wa | |
| |
| |
We(150) —= W : :
| |
Ws(300) — Ws | |
| |

Time

Figure 3.1. Output example for a simple statement

The example statement above results in only new events and no old events posted by the engine
to the statement's listeners.

3.3. Insert and Remove Stream

A length window instructs the engine to only keep the last N events for a stream. The next
statement applies a length window onto the Withdrawal event stream. The statement serves to
illustrate the concept of data window and events entering and leaving a data window:

sel ect * from Wt hdrawal # engt h(5)

The size of this statement's length window is five events. The engine enters all arriving Withdrawal
events into the length window. When the length window is full, the oldest Withdrawal event is
pushed out the window. The engine indicates to listeners all events entering the window as new
events, and all events leaving the window as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes events
leaving a data window, or changing aggregation values. In this example, the remove stream is
the stream of Withdrawal events that leave the length window, and such events are posted to
listeners as old events.

25

Chapter 3. Processing Model

The next diagram illustrates how the length window contents change as events arrive and shows
the events posted to an update listener.

UpdateListener

Incoming Events Length Window - 5 Events NewEvents Old Events
| | |
W4(500) —| | W, | |
| | |
| | |
Wo(100) — g oW |
| | |
| | |
W:(200) —] : Wi : :
Wa(50) — ! : Wy : :
| | |
| | |
W5(150) —— Gw5||w4||w3||w2||w,D : Ws : :
| | |
woy —sf - (jfm]mw]w]) 1 ow 1w
| | |

Time

Figure 3.2. Output example for a length window

As before, all arriving events are posted as new events to listeners. In addition, when event W,
leaves the length window on arrival of event W, it is posted as an old event to listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time
period. A time window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds
pass, the time window actively pushes the oldest events out of the window resulting in one or
more old events posted to update listeners.

Section 5.3.7, “Selecting insert and remove stream events”
Section 17.4.20, “Engine Settings

related to Stream Selection”

26

Filters and Where-clauses

3.4. Filters and Where-clauses

Filters to event streams allow filtering events out of a given stream before events enter a data
window (if there are data windows defined in your query). The statement below shows a filter that
selects Withdrawal events with an amount value of 200 or more.

select * from Wt hdrawal (ambunt >=200) #l engt h(5)

With the filter, any Withdrawal events that have an amount of less then 200 do not enter the length
window and are therefore not passed to update listeners. Filters are discussed in more detail in
Section 5.4.1, “Filter-based Event Streams” and Section 7.4, “Filter Expressions In Patterns”.

Updatelistener

; Filter: Length Window — 5 Events New Events Old Events
Incoming Events Amoeunt==200

| |

Wi(500) — gl W, | |
| |

| |

W(100) — gl >< | |
| |

| |

Wa(200) — Ws | |
| |

| |

Wa(30) —m

X | |

| |

| |

Wis{150) ——p» >< | |
| |

| |

We(300) ——mf W | |
| |

Time

Figure 3.3. Output example for a statement with an event stream filter

The where-clause and having-clause in statements eliminate potential result rows at a later stage
in processing, after events have been processed into a statement's data window or other views.

The next statement applies a where-clause to Withdrawal events. Where-clauses are discussed
in more detail in Section 5.5, “Specifying Search Conditions: the Where Clause”.

select * from Wt hdrawal # engt h(5) where ampbunt >= 200

27

Chapter 3. Processing Model

The where-clause applies to both new events and old events. As the diagram below shows,
arriving events enter the window however only events that pass the where-clause are handed to
update listeners. Also, as events leave the data window, only those events that pass the conditions
in the where-clause are posted to listeners as old events.

Updatel istener

Filter:
Incoming Events Length Window — 5 Events Amount>=200 New Events Old Events
|
Wi(500) ——p | Wy
|
|
W(100) — o X |
|
|
W3(200) ——m : W,
|
W4(50) ——pml X |
|
|
W(150) — G ws | [wi [ws][we |[wy U X :
|
We(300) ——] G Wi || Ws || Wi || wa || wa j | Ws Wi
|

Time
Figure 3.4. Output example for a statement with where-clause

3.5. Time Windows

In this section we explain the output model of statements employing a time window view and a
time batch view.

3.5.1. Time Window

A time window is a moving window extending to the specified time interval into the past based on
the system time. Time windows enable us to limit the number of events considered by a query,
as do length windows.

As a practical example, consider the need to determine all accounts where the average withdrawal
amount per account for the last 4 seconds of withdrawals is greater then 1000. The statement to
solve this problem is shown below.

sel ect account, avg(anount)
from Wt hdrawal #ti ne(4 sec)

28

Time Window

group by account
havi ng anmbunt > 1000

The next diagram serves to illustrate the functioning of a time window. For the diagram, we assume
a query that simply selects the event itself and does not group or filter events.

select * from Wthdrawal #ti me(4 sec)

The diagram starts at a given time t and displays the contents of the time window att + 4 and
t + 5 seconds and so on.

UpdateListener

Time Window — 4 seconds

Incoming Events MNew Events Old Events
At f+d At i+E A t+ES At t+3
1

(\ | |
= | |
(\ | |
2 | |
| |
3 (\ | |
— s | |
) |] | w1 o |

W, e \—) | —| |Y—|
(\ | |
Ws Wa Wa W | |
Wo gl 5 _/_1 u u | |
s | |
"o |
Wy ——=| — | |

| 7

| |
- P ~— : Wi :
| |

Figure 3.5. Output example for a statement with a time window

The activity as illustrated by the diagram:

1. Attimet + 4 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

2. Attimet + 5 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

3. Attimet + 6.5 seconds an event W arrives and enters the time window. The engine reports
the new event to update listeners.

29

Chapter 3. Processing Model

4. Attimet + 8 seconds event W leaves the time window. The engine reports the event as an
old event to update listeners.

3.5.2. Time Batch

The time batch view buffers events and releases them every specified time interval in one update.
Time windows control the evaluation of events, as does the length batch window.

The next diagram serves to illustrate the functioning of a time batch view. For the diagram, we
assume a simple query as below:

select * from Wt hdrawal #ti ne_bat ch(4 sec)

The diagram starts at a given time t and displays the contents of the time window att + 4 and
t + 5 seconds and so on.

UpdateListener
Time Batch — 4 seconds

Incoming Events New Events Old Events
Att+1 Att+3 Att+d AtH+6.5 AL+

|
"
R

2

Bl

t+3

2

§E
E

/—\ (——-\ W and Wa

t+5
+6

t+7

Wiand Ws

Figure 3.6. Output example for a statement with a time batch view

The activity as illustrated by the diagram:

1. Attimet + 1 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

30

Batch Windows

2. Attimet + 3 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

3. Attimet + 4 seconds the engine processes the batched events and a starts a new batch.
The engine reports events W and W to update listeners.

4. Attimet + 6.5 seconds an event W arrives and enters the batch. No call to inform update
listeners occurs.

5. Attimet + 8 seconds the engine processes the batched events and a starts a new batch.
The engine reports the event W as new data to update listeners. The engine reports the events
W and W as old data (prior batch) to update listeners.

3.6. Batch Windows

The built-in data windows that act on batches of events are the win:time_batch and the
wi n: | engt h_bat ch views, among others. The wi n: ti ne_bat ch data window collects events
arriving during a given time interval and posts collected events as a batch to listeners at the end
of the time interval. The wi n: | engt h_bat ch data window collects a given number of events and
posts collected events as a batch to listeners when the given number of events has collected.

For more detailed information on batch windows please see Section 14.2, “A Note on Batch
Windows”.

Related to batch data windows is output rate limiting. While batch data windows retain events the
out put clause offered by output rate limiting can control or stabilize the rate at which events are
output, see Section 5.7, “Stabilizing and Controlling Output: the Output Clause”.

Let's look at how a time batch window may be used:

sel ect account, amount from Wt hdrawal #ti ne_bat ch(1 sec)

The above statement collects events arriving during a one-second interval, at the end of which
the engine posts the collected events as new events (insert stream) to each listener. The engine
posts the events collected during the prior batch as old events (remove stream). The engine starts
posting events to listeners one second after it receives the first event and thereon.

For statements containing aggregation functions and/or a group by clause, the engine posts
consolidated aggregation results for an event batch. For example, consider the following
statement:

sel ect sum(anpunt) as nysum from Wt hdrawal #ti me_batch(1 sec)

Note that output rate limiting also generates batches of events following the output model as
discussed here.

31

Chapter 3. Processing Model

3.7. Aggregation and Grouping

3.7.1. Insert and Remove Stream

Statements that aggregate events via aggregation functions also post remove stream events as
aggregated values change.

Consider the following statement that alerts when 2 Withdrawal events have been received:
sel ect count(*) as nycount from Wthdrawal having count(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update
listeners. The value of the "mycount"” property on that new event is 2. Additionally, when the engine
encounters the third Withdrawal event, it posts an old event to update listeners containing the
prior value of the count, if specifing the r st r eamkeyword in the select clause to select the remove
stream. The value of the "mycount" property on that old event is also 2.

Note the statement above does not specify a data window and thereby counts all arriving events
since statement start. The statement above retains no events and its memory allocation is only
the aggregation state, i.e. a single long value to represent count (*).

Thei st reamor r st r eamkeyword can be used to eliminate either new events or old events posted
to listeners. The next statement uses the i st r eamkeyword causing the engine to call the listener
only once when the second Withdrawal event is received:

sel ect istreamcount(*) as mycount from Wthdrawal having count(*) = 2

3.7.2. Output for Aggregation and Group-By

Following SQL (Standard Query Language) standards for queries against relational databases,
the presence or absence of aggregation functions and the presence or absence of the gr oup by
clause and gr oup_by named parameters for aggregation functions dictates the number of rows
posted by the engine to listeners. The next sections outline the output model for batched events
under aggregation and grouping. The examples also apply to data windows that don't batch events
and post results continously as events arrive or leave data windows. The examples also apply to
patterns providing events when a complete pattern matches.

In summary, as in SQL, if your query only selects aggregation values, the engine provides one row
of aggregated values. It provides that row every time the aggregation is updated (insert stream),
which is when events arrive or a batch of events gets processed, and when the events leave a data
window or a new batch of events arrives. The remove stream then consists of prior aggregation
values.

32

Output for Aggregation and Group-By

Also as in SQL, if your query selects non-aggregated values along with aggregation values in
the select clause, the engine provides a row per event. The insert stream then consists of the
aggregation values at the time the event arrives, while the remove stream is the aggregation value
at the time the event leaves a data window, if any is defined in your query.

EPL allows each aggregation function to specify its own grouping criteria. Please find further
information in Section 5.6.4, “Specifying grouping for each aggregation function”.

The documentation provides output examples for query types in Appendix A, Output Reference
and Samples, and the next sections outlines each query type.

3.7.2.1. Un-aggregated and Un-grouped

An example statement for the un-aggregated and un-grouped case is as follows:

select * from Wt hdrawal #ti ne_bat ch(1 sec)

At the end of a time interval, the engine posts to listeners one row for each event arriving during
the time interval.

The appendix provides a complete example including input and output events over time at
Section A.2, “Output for Un-aggregated and Un-grouped Queries”.

3.7.2.2. Fully Aggregated and Un-grouped

If your statement only selects aggregation values and does not group, your statement may look
as the example below:

sel ect sumanount)
from Wt hdrawal #ti ne_batch(1 sec)

At the end of a time interval, the engine posts to listeners a single row indicating the aggregation
result. The aggregation result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at
Section A.3, “Output for Fully-aggregated and Un-grouped Queries”.

If any aggregation functions specify the group_by parameter and a dimension, for example
sum(anmount, group_by: account), the query executes as an aggregated and grouped query
instead.

3.7.2.3. Aggregated and Un-Grouped

If your statement selects non-aggregated properties and aggregation values, and does not group,
your statement may be similar to this statement:

33

Chapter 3. Processing Model

sel ect account, sun{anount)
from Wt hdrawal #ti ne_batch(1 sec)

At the end of a time interval, the engine posts to listeners one row per event. The aggregation
result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at
Section A.4, “Output for Aggregated and Un-grouped Queries”.

3.7.2.4. Fully Aggregated and Grouped

If your statement selects aggregation values and all non-aggregated properties in the sel ect
clause are listed in the gr oup by clause, then your statement may look similar to this example:

sel ect account, sun{anount)
from Wt hdrawal #ti ne_bat ch(1 sec)
group by account

At the end of a time interval, the engine posts to listeners one row per unique account number.
The aggregation result aggregates per unique account.

The appendix provides a complete example including input and output events over time at
Section A.5, “Output for Fully-aggregated and Grouped Queries”.

If any aggregation functions specify the gr oup_by parameter and a dimension other than gr oup
by dimension(s), for example sun{ anount, group_by: account Cat egory), the query executes
as an aggregated and grouped query instead.

3.7.2.5. Aggregated and Grouped

If your statement selects non-aggregated properties and aggregation values, and groups only
some properties using the group by clause, your statement may look as below:

sel ect account, accountNanme, sun{anount)
from Wt hdrawal #ti ne_batch(1 sec)
group by account

At the end of a time interval, the engine posts to listeners one row per event. The aggregation
result aggregates per unique account.

The appendix provides a complete example including input and output events over time at
Section A.6, “Output for Aggregated and Grouped Queries”.

34

Event Visibility and Current Time

3.8. Event Visibility and Current Time

An event sent by your application or generated by statements is visible to all other statements in the
same engine instance. Similarly, current time (the time horizon) moves forward for all statements
in the same engine instance. Please see the Chapter 16, API Reference chapter for how to send
events and how time moves forward through system time or via simulated time, and the possible
threading models.

Within an Esper engine instance you can additionally control event visibility and current time on a
statement level, under the term isolated service as described in Section 16.9, “Service Isolation”.

An isolated service provides a dedicated execution environment for one or more statements.
Events sent to an isolated service are visible only within that isolated service. In the isolated
service you can move time forward at the pace and resolution desired without impacting other
statements that reside in the engine runtime or other isolated services. You can move statements
between the engine and an isolated service.

3.9. Indexes

3.9.1. Index Kinds

Esper, depending on the EPL statements, builds and maintains two kinds of indexes: filter indexes
and event indexes.

Esper builds and maintains indexes for efficiency so as to achieve good performance.

The following table compares the two kinds of indexes:

Table 3.1. Kinds of Indexes

Filter Indexes Event Indexes

Improve the speed of Matching incoming events Lookup of rows
to currently-active filters that
should process the event

Similar to A structured registry of Database index
callbacks; or content-based
routing
Index stores values Of Values provided by Values for certain column(s)

expressions

Index points to Currently-active filters Rows

Comparable to A sieve or a switchboard An index in a book

3.9.2. Filter Indexes

Filter indexes organize filters so that they can be searched efficiently. Filter indexes link back to
the statement that the filter(s) come from.

35

Chapter 3. Processing Model

We use the term filter or filter criteria to mean the selection predicate, such as synbol =* googl e”
and price > 200 and volume > 111000. Statements provide filter criteria in the f r omclause,
and/or in EPL patterns and/or in context declarations. Please see Section 5.4.1, “Filter-based
Event Streams”, Section 7.4, “Filter Expressions In Patterns” and Section 4.2.7.1, “Filter Context
Condition”.

When the engine receives an event, it consults the filter indexes to determine which statements,
if any, must process the event.

The purpose of filter indexes is to enable:

« Efficient matching of events to only those statements that need them.
« Efficient discarding of events that are not needed by any statement.

« Efficient evaluation with best case approximately O(1) to O(log n) i.e. in the best case executes
in approximately the same time regardless of the size of the input data set which is the number
of active filters.

Filter index building is a result of the engine analyzing the filter criteria in the f r omclause and also
in EPL patterns. It is done automatically by the engine.

Esper builds and maintains separate sets of filter indexes per event type, when such event type
occurs in the f r omclause or pattern. Filter indexes are sharable within the same event type filter.
Thus various f r omclauses and patterns that refer for the same event type can contribute to the
same set of filter indexes.

Esper builds filter indexes in a nested fashion: Filter indexes may contain further filter indexes,
forming a tree-like structure, a filter index tree. The nesting of indexes is beyond the introductory
discussion provided here.

3.9.2.1. Filter Index Multi-Statement Example

The f r omclause in a statement and, in special cases, also the wher e-clause provide filter criteria
that the engine analyzes and for which it builds filter indexes.

For example, assume the W t hdr awal Event has an account I d field. One could create three EPL
statements like so:

@ane(' A') select * from Wt hdrawal Event (accountld = 1)
@ane('B') select * from Wthdrawal Event (accountld = 1)
@ane('C) select * from Wthdrawal Event (accountld = 2)

36

Filter Indexes

In this example, both statement A and statement B register interest in W t hdr awal Event events
that have an account I d value of 1. Statement C registers interest in Wt hdr awal Event events
that have an account | d value of 2.

The below table is a sample filter index for the three statements:

Table 3.2. Sample Filter Index Multi-Statement Example

Value of account 1 d Filter
1 Statement A, Statement B
2 Statement C

When a W t hdr awal event arrives, the engine extracts the account | d and performs a lookup into
above table. If there are no matching rows in the table, for example when the account I d is 3, the
engine knows that there is no further processing for the event.

3.9.2.2. Filter Index Pattern Example

As part of a pattern you may specify event types and filter criteria. The engine analyzes patterns
and determines filter criteria for filter index building.

Consider the following example pattern that fires for each Wt hdr awal Event that is followed by
another W t hdr awal Event for the same account I d value:

@ane(' P') sel ect * from pattern [every wl=Wt hdr awal Event ->
w2=W't hdr awal Event (accountld = w. account|d)]

Upon creating the above statement, the engine starts looking for W t hdr awal Event events. At
this time there is only one active filter:

« A filter looking for W t hdr awal Event events regardless of account id.

Assume a Wt hdr awal Event W, for account 1 arrives. The engine then activates a filter looking
for another W t hdr awal Event for account 1. At this time there are 2 active filters:

 Afilter looking for Wt hdr awal Event events regardless of account id.

« A filter looking for W t hdr awal Event (account | d=1) associated to wi1=W,.

Assume another W t hdr awal Event W, for account 1 arrives. The engine then activates a filter
looking for another W t hdr awal Event for account 1. At this time there are 3 active filters:

« Afilter looking for W t hdr awal Event events regardless of account id.

« A filter looking for W t hdr awal Event (account | d=1) associated to w1=W,.

37

Chapter 3. Processing Model

« A filter looking for W t hdr awal Event (account | d=1) associated to w2=Wj,.

Assume another W t hdr awal Event W, for account 2 arrives. The engine then activates a filter
looking for another W t hdr awal Event for account 2. At this time there are 4 active filters:

A filter looking for W t hdr awal Event events regardless of account id.

A filter looking for W t hdr awal Event (account | d=1) associated to w1=Wj,.

A filter looking for W t hdr awal Event (account | d=1) associated to w1=W,,.

A filter looking for W t hdr awal Event (account | d=2) associated to wi=W..

The below table is a sample filter index for the pattern after the W,, Wyand W, events arrived:

Table 3.3. Sample Filter Index Pattern Example

Value of account I d Filter

1 Statement P Pattern wi=W,, Statement P
Pattern w1=W

2 Statement P Pattern wi=W,

When a W t hdr awal event arrives, the engine extracts the account | d and performs a lookup into
above table. If a matching row is found, the engine can hand off the event to the relevant pattern
subexpressions.

3.9.2.3. Filter Index Context Example

This example is similar to the previous example of multiple statements, but instead it declares a
context and associates a single statement to the context.

For example, assume the Logi nEvent has an account I d field. One could declare a context
initiated by a Logi nEvent for a user:

@ane(' A') create context UserSession initiated by Logi nEvent as | ogi nEvent

By associating the statement to the context we can tell the engine to analze per Logi nEvent , for
example:

@ane(' B') context UserSession select count(*) from Wthdrawal Event (accountld =
cont ext. | ogi nEvent . account | d)

Upon creating the above two statements, the engine starts looking for Logi nEvent events. At this
time there is only one active filter:

38

Event Indexes

« A filter looking for Logi nEvent events (any account id).

Assume a Logi nEvent L, for account 1 arrives. The engine then activates a context partition of
statement B and therefore the filter looking for W t hdr awal Event for account 1. At this time there
are 2 active filters:

« Afilter looking for Logi nEvent events (any account id).
« A filter looking for W t hdr awal Event (account | d=1) associated to | ogi nEvent =L,.

Assume a Logi nEvent Ly, for account 1 arrives. The engine then activates a context partition of
statement B and therefore the filter looking for W t hdr awal Event for account 1. At this time there
are 3 active filters:

« Afilter looking for Logi nEvent events (any account id).
« Afilter looking for W t hdr awal Event (account | d=1) associated to | ogi nEvent =Lj.
« A filter looking for W t hdr awal Event (account | d=1) associated to | ogi nEvent =Ly,

Assume a Logi nEvent L. for account 2 arrives. The engine then activates a context partition of
statement B and therefore the filter looking for W t hdr awal Event for account 2. At this time there
are 4 active filters:

A filter looking for Logi nEvent events (any account id).

A filter looking for W t hdr awal Event (account | d=1) associated to | ogi nEvent =L,.

A filter looking for W t hdr awal Event (account | d=1) associated to | ogi nEvent =L,

A filter looking for W t hdr awal Event (account | d=2) associated to | ogi nEvent =L..

The below table is a sample filter index for the three statement context partitions:

Table 3.4. Sample Filter Index Context Example

Value of account I d Filter

1 Statement B Context Partition #0 | ogi nEvent =L,, Statement B
Context Partition #1 | ogi nEvent =L
2 ‘ Statement B Context Partition #2 | ogi nEvent =L

When a W t hdr awal event arrives, the engine extracts the account | d and performs a lookup into
above table. It can then hand of the event directly to the relevant statement context partitions, or
ignore the event if no rows are found for a given account id.

3.9.3. Event Indexes

Event indexes organize certain columns so that they can be searched efficiently. Event indexes
link back to the row that the column(s) come from.

39

Chapter 3. Processing Model

As event indexes are similar to database indexes, for this discussion, we use the term column to
mean a column in a EPL table or named window and to also mean an event property or field. We
use the term row to mean a row in an EPL table or named window and to also mean an event.

When the engine performs statement processing it may use event indexes to find correlated rows
efficiently.

The purpose of event indexes is to enable:

Efficient evaluation of subqueries.

Efficient evaluation of joins.

Efficient evaluation of on-action statements.

Efficient evaluation of fire-and-forget queries.

Event index building is a result of the engine analyzing the wher e- clause correlation criteria for
joins (on- clause for outer joins), subqueries, on-action and fire-and-forget queries. It is done
automatically by the engine. You may utilize the creat e i ndex clause to explicitly index named
windows and tables. You may utilize query planner hints to influence index building, use and
sharing.

40

Chapter 4.

Chapter 4. Context and Context
Partitions

4.1. Introduction

This section discusses the notion of context and its role in the Esper event processing language
(EPL).

When you look up the word context in a dictionary, you may find: Context is the set of
circumstances or facts that surround a particular event, situation, etc..

Context-dependent event processing occurs frequently: For example, consider a requirement that
monitors banking transactions. For different customers your analysis considers customer-specific
aggregations, patterns or data windows. In this example the context of detection is the customer.
For a given customer you may want to analyze the banking transactions of that customer by using
aggregations, data windows, patterns including other EPL constructs.

In a second example, consider traffic monitoring to detect speed violations. Assume the speed
limit must be enforced only between 9 am and 5 pm. The context of detection is of temporal nature.

A context takes a cloud of events and classifies them into one or more sets. These sets are called
context partitions. An event processing operation that is associated with a context operates on
each of these context partitions independently. (Credit: Taken from the book "Event Processing
in Action" by Opher Etzion and Peter Niblett.)

A context is a declaration of dimension and may thus result in one or more context partitions.
In the banking transaction example there the context dimension is the customer and a context
partition exists per customer. In the traffic monitoring example there is a single context partition
that exists only between 9 am and 5 pm and does not exist outside of that daily time period.

In an event processing glossary you may find the term event processing agent. An EPL statement
is an event processing agent. An alternative term for context partition is event processing agent
instance.

’ Tip
! Think of context partitions as instances of a class, wherein the class is the EPL
statement.

Esper EPL allows you to declare contexts explicitly, offering the following benefits:

1. Context can apply to multiple statements thereby eliminating the need to duplicate context
dimensional information between statements.

41

Chapter 4. Context and Contex...

2. Context partitions can be temporally overlapping.

3. Context partitions provide a fine-grained lifecycle that is independent of the lifecycle of
statement lifecycle, making it easy to specify when an analysis should start and end.

4. Fine-grained lock granularity: The engine locks on the level of context partitions thereby
allowing very high concurrency, with a maximum (theoretical) degree of parallelism at 2/31-1
(2,147,483,647) parallel threads working to process a single EPL statement under a hash
segmented context.

5. EPL can become easier to read as common predicate expressions can be factored out into
a context.

6. You may specify a nested context that is composed from two or more contexts. In particular a
temporal context type is frequently used in combination with a segmentation-oriented context.

7. Using contexts your application can aggregate events over time periods (overlapping or non-
overlapping) without retaining any events in memory.

8. Using contexts your application can coordinate boundaries for multiple statements.

Esper EPL allows you to declare a context explicitly via the creat e cont ext syntax introduced
below.

After you have declared a context, one or more EPL statements can refer to that context by
specifying cont ext name. When an EPL statement refers to a context, all EPL-statement related
state such as aggregations, patterns or data windows etc. exists once per context partition.

If an EPL statement does not declare a context, it implicitly has a single context partition. The
single context partition lives as long as the EPL statement is started and ends when the EPL
statement is stopped.

You may have heard of the term session. A context partition is the same as a session.

You may have heard of the term session window to describe the duration between when a session
becomes alive to when a session gets destroyed. We use the term context partition lifecycle
instead.

The context declaration specifies how the engine manages context partitions (or sessions):

» For keyed segmented context there is a context partition (or session) per key or multiple keys,
see Section 4.2.2, “Keyed Segmented Context”.

« For hash segmented context there is a context partition (or session) per hash code of one or
more keys, see Section 4.2.3, “Hash Segmented Context”.

« For overlapping contexts there can be multiple overlapping context partitions (or sessions), see
Section 4.2.6, “Overlapping Context”.

« For non-overlapping contexts there is only zero or one single context partition (or session), see
Section 4.2.5, “Non-Overlapping Context”.

» For category segmented context there is a context partition (or session) per predefined category,
see Section 4.2.4, “Category Segmented Context”.

42

Context Declaration

For more information on locking and threading please see Section 16.7, “Engine Threading and
Concurrency”. For performance related information please refer to Chapter 22, Performance.

4.2. Context Declaration

The create context statement declares a context by specifying a context name and context
dimension information.

A context declaration by itself does not consume any resources or perform any logic until your
application starts at least one statement that refers to that context. Until then the context is inactive
and not in use.

When your application creates or starts the first statement that refers to the context, the engine
activates the context.

As soon as your application stops or destroys all statements that refer to the context, the context
becomes inactive again.

When your application stops or destroys a statement that refers to a context, the context partitions
associated to that statement also end (context partitions associated to other started statements
live on).

When your application stops or destroys the statement that declared the context and does not
also stop or destroy any statements that refer to the context, the context partitions associated to
each such statement do not end.

When your application destroys the statement that declared the context and destroys all
statements that refer to that context then the engine removes the context declaration entirely.

The creat e cont ext statement posts no output events to listeners or subscribers and does not
return any rows when iterated.

4.2.1. Context-Provided Properties

Each of the context declarations makes available a set of built-in context properties as well as
initiating event or pattern properties, as applicable. You may select these context properties for
output or use them in any of the statement expressions.

Refer to built-in context properties as cont ext . property_name, wherein property_name refers to
the name of the built-in context property.

Refer to initiating event or pattern match event properties as
cont ext . stream_name.property _name, wherein stream_name refers to the name assigned to
the event or the tag name specified in a pattern and property_name refers to the name of the
initiating event or pattern match event property.

4.2.2. Keyed Segmented Context

This context assigns events to context partitions based on the values of one or more event
properties, using the value of these property(s) as a key that picks a unique context partition

43

Chapter 4. Context and Contex...

directly. Each event thus belongs to exactly one context partition or zero context partitions if the
event does not match the optional filter predicate expression(s). Each context partition handles
exactly one set of key values.

The syntax for creating a keyed segmented context is as follows:

create context context_nanme partition [by]
event _property [and event _property [and ...]] from stream def
[, event property [...] from stream def]

[

The context_name you assign to the context can be any identifier.

Following the context name is one or more lists of event properties and a stream definition for
each entry, separated by comma (,).

The event_property is the name(s) of the event properties that provide the value(s) to pick a unique
partition. Multiple event property names are separated by the and keyword.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions. The name
of a named window or table is not allowed.

You may list multiple event properties for each stream definition. You may list multiple stream
definitions. Please refer to usage guidelines below when specifying multiple event properties and/
or multiple stream definitions.

The next statement creates a context Segnent edByCust oner that considers the value of the
cust | d property of the BankTxn event type to pick the context partition to assign events to:

create context SegnmentedByCustoner partition by custld from BankTxn

The following statement refers to the context created as above to compute a total withdrawal
amount per account for each customer:

cont ext Segnent edByCust oner
sel ect custld, account, sun{anount) from BankTxn group by account

The following statement refers to the context created as above and detects a withdrawal of more
then 400 followed by a second withdrawal of more then 400 that occur within 10 minutes of the
first withdrawal, all for the same customer:

cont ext Segnent edByCust oner

44

Keyed Segmented Context

select * frompattern [
every a=BankTxn(anount > 400) -> b=BankTxn(anount > 400) where tinmer:w thin(10
m nut es)

]

The EPL statement that refers to a keyed segmented context must have at least one filter
expression, at any place within the EPL statement that looks for events of any of the event types
listed in the context declaration.

For example, the following is not valid:

/1 Neither Logi nEvent nor LogoutEvent are listed in the context declaration
cont ext Segnent edByCust oner

select * frompattern [every a=Logi nEvent -> b=Logout Event where tiner:w thin(10
m nut es)]

4.2.2.1. Multiple Stream Definitions

If the context declaration lists multiple streams, each event type must be unrelated: You may not
list the same event type twice and you may not list a sub- or super-type of any event type already
listed.

The following is not a valid declaration since the BankTxn event type is listed twice:

/] Not valid
create context SegnentedByCustoner partition by custld from BankTxn, account
from BankTxn

If the context declaration lists multiple streams, the number of event properties provided for each
event type must also be the same. The value type returned by event properties of each event
type must match within the respective position it is listed in, i.e. the first property listed for each
event type must have the same type, the second property listed for each event type must have
the same type, and so on.

The following is not a valid declaration since the customer id of BankTxn and login time of
Logi nEvent is not the same type:

/'l Invalid: Type m smatch between properties
create context SegnmentedByCustomer partition by custld from BankTxn, | oginTime
from Logi nEvent

The next statement creates a context Segment edByCust oner that also considers Logi nEvent and
Logout Event :

45

Chapter 4. Context and Contex...

create context Segnment edByCustoner partition by
custld from BankTxn, loginld from Logi nEvent, |oginld from Logout Event

As you may have noticed, the above example refers to | ogi nl d as the event property name for
Logi nEvent and Logout Event events. The assumption is that the | ogi nl d event property of the
login and logout events has the same type and carries the same exact value as the cust 1 d of
bank transaction events, thereby allowing all events of the three event types to apply to the same
customer-specific context partition.

4.2.2.2. Filters

You may add a filter expression to each of the event types listed. The engine applies the filter
expression to the EPL statement that refers to the context and to the same event type.

The next statement creates a context Segnment edByCust oner that does not consider login events
that indicate that the login failed.

create context SegnentedByCustoner partition by
custld from BankTxn, | oginld from Logi nEvent (fail ed=fal se)

4.2.2.3. Multiple Properties Per Event Type

You may assign events to context partitions based on the values of two or more event properties.
The engine thus uses the combination of values of these properties to pick a context partition.

An example context declaration follows:

create context ByCustoner AndAccount partition by custld and account from BankTxn

The next statement refers to the context and computes a total withdrawal amount, per account
and customer:

cont ext ByCust omer AndAccount sel ect custld, account, sun{anount) from BankTxn

As you can see, the above statement does not need to specify gr oup by clause to aggregate per
customer and account, since events of each unique combination of customer id and account are
assigned to separate context partitions.

4.2.2.4. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a keyed
segmented context:

46

Keyed Segmented Context

Table 4.1. Keyed Segmented Context Properties

Name Description

nane The string-type context name.

id The integer-type internal context id that the engine assigns to the context
partition.

keyl The event property value for the first key.

keyN The event property value for the Nth key.

Assume the keyed segmented context is declared as follows:

create context ByCustoner AndAccount partition by custld and account from BankTxn

You may, for example, select the context properties as follows:

cont ext ByCust omer AndAccount
sel ect context.nane, context.id, context.keyl, context.key2 from BankTxn

4.2.2.5. Examples of Joins

This section discusses the impact of contexts on joins to provide further samples of use and
deepen the understanding of context partitions.

Consider a context declared as follows:

create context ByCust partition by custld from BankTxn

The following statement matches, within the same customer id, the current event with the last 30
minutes of events to determine those events that match amounts:

cont ext ByCust
sel ect * from BankTxn as t1 unidirectional, BankTxn#tinme(30) t2
where t1.anmount = t2.anmount

Note that the wher e-clause in the join above does not mention customer id. Since each BankTxn
applies to a specific context partition the join evaluates within that single context partition.

Consider the next statement that matches a security event with the last 30 minutes of transaction
events for each customer:

47

Chapter 4. Context and Contex...

cont ext ByCust
select * from SecurityEvent as t1 unidirectional, BankTxn#tinme(30) t2
where t1.customerName = t2.customer Name

When a security event comes in, it applies to all context partitions and not any specific context
partition, since the Securi t yEvent event type is not part of the context declaration.

4.2.3. Hash Segmented Context

This context assigns events to context partitions based on result of a hash function and modulo
operation. Each event thus belongs to exactly one context partition or zero context partitions if the
event does not match the optional filter predicate expression(s). Each context partition handles
exactly one result of hash value modulo granularity.

The syntax for creating a hashed segmented context is as follows:

create context context_nanme coal esce [by]
hash_f unc_nane(hash_func_paran) from stream def
[, hash_func_nanme(hash_func_param) from stream def]

[...1]
granul arity granularity_val ue
[preal | ocat €]

The context_name you assign to the context can be any identifier.

Following the context name is one or more lists of hash function name and parameters pairs and
a stream definition for each entry, separated by comma (,).

The hash_func_name can either be consi st ent _hash_crc32 or hash_code or a plug-in single-
row function. The hash_func_param is a list of parameter expressions.

« If you specify consi st ent _hash_cr c¢32 the engine computes a consistent hash code using the
CRC-32 algorithm.

* If you specify hash_code the engine uses the Java object hash code.

« If you specify the name of a plug-in single-row function your function must return an integer
value that is the hash code. You may use the wildcard (*) character among the parameters to
pass the underlying event to the single-row function.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions. The name
of a named window or table is not allowed.

You may list multiple stream definitions. Please refer to usage guidelines below when specifying
multiple stream definitions.

48

Hash Segmented Context

The granul arity is required and is an integer number that defines the maximum number of
context partitions. The engine computes hash code modulo granularity hash(params) nod
granularity to determine the context partition. When you specify the hash_code function the engine
uses the object hash code and the computation is params.hashCode() %granularity.

Since the engine locks on the level of context partition to protect state, the granularity defines
the maximum degree of parallelism. For example, a granularity of 1024 means that 1024 context
partitions handle events and thus a maximum 1024 threads can process each assigned statement
concurrently.

The optional pr eal | ocat e keyword instructs the engine to allocate all context partitions at once
at the time a statement refers to the context. This is beneficial for performance as the engine
does not need to determine whether a context partition exists and dynamically allocate, but may
require more memory.

The next statement creates a context Segnent edByCust omer Hash that considers the CRC-32
hash code of the cust | d property of the BankTxn event type to pick the context partition to assign
events to, with up to 16 different context partitions that are preallocated:

create context Segment edByCust oner Hash
coal esce by consistent_hash _crc32(custld) from BankTxn granularity 16
preal | ocate

The following statement refers to the context created as above to compute a total withdrawal
amount per account for each customer:

cont ext Segnent edByCust oner Hash
sel ect custld, account, sun{anopunt) from BankTxn group by custld, account

Note that the statement above groups by cust | d: Since the events for different customer ids can
be assigned to the same context partition, it is necessary that the EPL statement also groups by
customer id.

The context declaration shown next assumes that the application provides a conput eHash single-
row function that accepts BankTxn as a parameter, wherein the result of this function must be an
integer value that returns the context partition id for each event:

create context MyHashCont ext
coal esce by conput eHash(*) from BankTxn granularity 16 preall ocate

The EPL statement that refers to a hash segmented context must have at least one filter
expression, at any place within the EPL statement that looks for events of any of the event types
listed in the context declaration.

49

Chapter 4. Context and Contex...

For example, the following is not valid:

/1 Neither LoginEvent nor LogoutEvent are listed in the context declaration

cont ext Segnent edByCust oner Hash

select * frompattern [every a=Logi nEvent -> b=Logout Event where timer:wthin(10
m nut es)]

4.2.3.1. Multiple Stream Definitions

If the context declaration lists multiple streams, each event type must be unrelated: You may not
list the same event type twice and you may not list a sub- or super-type of any event type already
listed.

If the context declaration lists multiple streams, the hash code function should return the same
hash code for the related keys of all streams.

The next statement creates a context HashedByCust oner that also considers Logi nEvent and
Logout Event :

create context HashedByCustomer as coal esce
consi stent _hash_crc32(custld) from BankTxn,
consi stent _hash_crc32(1 ogi nld) from Logi nEvent,
consi st ent _hash_crc32(1 ogi nld) from Logout Event
granul arity 32 preallocate

4.2.3.2. Filters

You may add a filter expression to each of the event types listed. The engine applies the filter
expression to the EPL statement that refers to the context and to the same event type.

The next statement creates a context HashedByCust omer that does not consider login events

that indicate that the login failed.

create context HashedByCust oner
coal esce consi stent _hash_crc32(loginld) from Logi nEvent(failed = fal se)
granul arity 1024 preall ocate

4.2.3.3. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a keyed
segmented context:

50

Category Segmented Context

Table 4.2. Hash Segmented Context Properties

Name Description

nane The string-type context name.
id The integer-type internal context id that the engine assigns to the context
partition.

Assume the hashed segmented context is declared as follows:

create context ByCustonerHash coal esce consistent_hash_crc32(custlid) from
BankTxn granul arity 1024

You may, for example, select the context properties as follows:

cont ext ByCust onmer Hash
sel ect context.nanme, context.id from BankTxn

4.2.3.4. Performance Considerations

The hash_code function based on the Java object hash code is generally faster then the
CRC32 algorithm. The CRC32 algorithm, when used with a non-String parameter or with multiple
parameters, requires the engine to serialize all expression results to a byte array to compute the
CRC32 hash code.

We recommend keeping the granularity small (1k and under) when using pr eal | ocat e.

When specifying a granularity greater then 65536 (64k) the engine switches to a Map-based
lookup of context partition state which can slow down statement processing.

4.2.4. Category Segmented Context

This context assigns events to context partitions based on the values of one or more event
properties, using a predicate expression(s) to define context partition membership. Each event
can thus belong to zero, one or many context partitions depending on the outcome of the predicate
expression(s).

The syntax for creating a category segmented context is as follows:

create context context_nane
group [by] group_expression as category_| abel
[, group [by] group_expression as category_| abel]
[...1

from stream def

51

Chapter 4. Context and Contex...

The context_name you assign to the context can be any identifier.

Following the context name is a list of groups separated by the gr oup keyword. The list of group
is followed by the f r omkeyword and a stream definition.

The group_expression is an expression that categorizes events. Each group expression must be
followed by the as keyword and a category label which can be any identifier.

Group expressions are predicate expression and must return a Boolean true or false when applied
to an event. For a given event, any number of the group expressions may return true thus
categories can be overlapping.

The stream_def is a stream definition which consists of an event type name optionally followed by
parenthesis that contains filter expressions. If providing filter expressions, only events matching
the provided filter expressions for that event type are considered by context partitions.

The next statement creates a context Cat egor yBy Tenp that consider the value of the t enper at ure

property of the Sensor Event event type to pick context partitions to assign events to:

create context CategoryByTenp
group tenp < 65 as cold,
group tenp between 65 and 85 as nornal,
group tenp > 85 as |large
from Sensor Event

The following statement simply counts, for each category, the number of events and outputs the
category label and count:

cont ext CategoryByTenp sel ect context.label, count(*) from SensorEvent

4.2.4.1. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a category
segmented context:

Table 4.3. Category Segmented Context Properties

Name Description

nane The string-type context name.

id The integer-type internal context id that the engine assigns to the context
partition.

| abel The category label is the string identifier value after the as keyword that is
specified for each group.

52

Non-Overlapping Context

You may, for example, select the context properties as follows:

cont ext CategoryByTenp
sel ect context.nane, context.id, context.|abel from SensorEvent

4.2.5. Non-Overlapping Context

You may declare a non-overlapping context that exists once or that repeats in a regular fashion
as controlled by a start condition and an optional end condition. The number of context partitions
is always either one or zero: Context partitions do not overlap.

The syntax for creating a non-overlapping context is as follows:

create context context_nane
start (@ow | start_condition)
[end end_condition]

The context_name you assign to the context can be any identifier.

Following the context name is the st art keyword, either @ow or a start_condition. It follows the
optional end keyword and an end_condition.

Both the start condition and the end condition, if specified, can be an event filter, a pattern, a
crontab or a time period. The syntax of start and end conditions is described in Section 4.2.7,
“Context Conditions”.

Once the start condition occurs, the engine no longer observes the start condition and begins
observing the end condition, if an end condition was provided. Once the end condition occurs,
the engine observes the start condition again. If you specified @ow instead of a start condition,
the engine begins observing the end condition instead. If there is no end condition the context
partition remains alive and does not end.

If you specified an event filter as the start condition, then the event also counts towards the
statement(s) that refer to that context. If you specified a pattern as the start condition, then the
events that may constitute the pattern match can also count towards the statement(s) that refer
to the context provided that @ ncl usi ve and event tags are both specified (see below).

At the time of context activation when your application creates a statement that utilizes the context,
the engine checks whether the start and end condition are crontab expressions. The engine
evaluates the start and end crontab expressions and determines whether the current time is a time
between start and end. If the current time is between start and end times, the engine allocates
the context partition and waits for observing the end time. Otherwise the engine waits to observe
the start time and does not allocate a context partition.

The built-in context properties that are available are the same as described in Section 4.2.6.2,
“Built-In Context Properties”.

53

Chapter 4. Context and Contex...

The next statement creates a context Ni neToFi ve that declares a daily time period that starts at
9 am and ends at 5 pm:

create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

The following statement outputs speed violations between 9 am and 5 pm, considering a speed
of 100 or greater as a violation:

context NineToFive select * from TrafficEvent(speed >= 100)

The example that follows demonstrates the use of an event filter as the start condition and a
pattern as the end condition.
The next statement creates a context Power Qut age that starts when the first Power Qut ageEvent

event arrives and that ends 5 seconds after a subsequent Power OnEvent arrives:

create context PowerCQutage start Power QutageEvent end pattern [Power OnEvent -
> tinmer:interval (5)]

The following statement outputs the temperature during a power outage and for 5 seconds after
the power comes on:

context Power Qut age sel ect * from Tenperat ureEvent

To output only the last value when a context partition ends (terminates, expires), please read on
to the description of output rate limiting.

The next statement creates a context Ever y15M nut es that starts immediately and lasts for 15
minutes, repeatedly allocating a new context partition at the end of 15 minute intervals:

create context Everyl5M nutes start @ow end after 15 minutes

The next example declares an Al waysOn context: It starts immediately and does not end unless
the application uses the API to terminate the context partition:

create context Al waysOn start @ow

54

Overlapping Context

Tip

A non-overlapping context with @ow is always-on: A context partition is always
allocated at any given point in time. Only if @ow is specified will a context partition
always exist at any point in time.

create context MyCtx start MyStartEvent end MyEndEvent

context MyCtx select count(*) as cnt from M/EndEvent output when
term nat ed

4.2.6. Overlapping Context

This context initiates a new context partition when an initiating condition occurs, and terminates
one or more context partitions when the terminating condition occurs, if a terminating condition
was specified. Thus multiple overlapping context partitions can be active at any point and context
partitions can overlap.

The syntax for creating an overlapping context is as follows:

create context context_nane

55

Chapter 4. Context and Contex...

initiated [by] [distinct (distinct_value_expr [,...])] [@uow
and] initiating_condition
[termnated [by] term nating_condition]

The context_name you assign to the context can be any identifier.

Following the context name is the i niti at ed keyword. After the i ni ti at ed keyword you can
optionally specify the di sti nct keyword and, within parenthesis, list one or more distinct value
expressions. After the i ni ti at ed keyword you can also specify @ow and as explained below.

Afterthei ni ti at ed keyword you must specify the initiating condition. You may optionally use the
t er m nat ed keyword followed by the terminating condition. If no terminating condition is specified
each context partition remains alive and does not terminate.

Both the initiating condition and the terminating condition, if specified, can be an event filter, a
pattern, a crontab or a time period. The syntax of initiating and terminating conditions is described
in Section 4.2.7, “Context Conditions”.

If you specified @ow and before the initiating condition then the engine initiates a new context
partition immediately. The @owis only allowed in conjunction with initiation conditions that specify
a pattern, crontab or time period and not with event filters.

If you specified an event filter for the initiating condition, then the event that initiates a new context
partition also counts towards the statement(s) that refer to that context. If you specified a pattern
to initiate a new context partition, then the events that may constitute the pattern match can also
count towards the statement(s) that refer to the context provided that @ ncl usi ve and event tags
are both specified (see below).

The next statement creates a context &t xTr ai nEnt er that allocates a new context partition when
a train enters a station, and that terminates each context partition 5 minutes after the time the
context partition was allocated:

create context CtxTrainEnter
initiated by Trai nEnterEvent as te
termnated after 5 m nutes

The context declared above assigns the stream name t e. Thereby the initiating event's properties
can be accessed, for example, by specifying cont ext . te. trainl d.

The following statement detects when a train enters a station as indicated by a Tr ai nEnt er Event ,
but does not leave the station within 5 minutes as would be indicated by a matching
Trai nLeaveEvent :

context CtxTrainEnter
select t1 frompattern [

56

Overlapping Context

t 1=Trai nEnterEvent -> tinmer:interval (5 nmin) and not TrainLeaveEvent(trainld
= context.te.trainld)

]

Since the Trai nEnt er Event that initiates a new context partition also counts towards the
statement, the first part of the pattern (the t 1=Tr ai nEnt er Event) is satisfied by that initiating
event.

The next statement creates a context Ct xEachM nut e that allocates a new context partition
immediately and every 1 minute, and that terminates each context partition 1 minute after the time
the context partition was allocated:

create context CtxEachM nute
initiated @ow and pattern [every tiner:interval (1 m nute)]
termnated after 1 m nutes

The statement above specifies @ow to instruct the engine to allocate a new context partition
immediately as well as when the pattern fires. Without the @ow the engine would only allocate a
new context partition when the pattern fires after 1 minute and every minute thereafter.

The following statement averages the temperature, starting anew every 1 minute and outputs the
aggregate value continuously:

context CtxEachM nute sel ect avg(tenp) from Sensor Event

To output only the last value when a context partition ends (terminates, expires), please read on
to the description of output rate limiting.

By providing no terminating condition, we can tell the engine to allocate context partitions that
never terminate, for example:

create context CtxTrainEnter initiated by Trai nEnterEvent as te

7 Note
AL

If you specified an event filter or pattern as the termination condition for a context
partition, and statements that refer to the context specify an event filter or pattern
that matches the same conditions, use @Priority to instruct the engine whether
the context management or the statement evaluation takes priority (see below for
configuring prioritized execution). See the note above for more information.

57

Chapter 4. Context and Contex...

4.2.6.1. Distinct Events for the Initiating Condition

If your initiating condition is a filter context condition, you may specify the di sti nct keyword
followed by one or more distinct-value expressions.

The following sample EPL specifies a context that initiates a context partition for distinct order id

values, remembering that order id until the time the context partition terminates:

create context O derContext
initiated by distinct(orderld) NewOrderEvent as newOrder
term nated by C oseOrderEvent (cl oseOrderld = newOrder. orderld)

The engine allocates a new context partition only when a context partition does not already
exist for a given order|d value of NewOr der Event . When the context partition terminates at
the time a C oseOr der Event arrives, the engine forgets about the or der | d, allowing the next
NewOr der Event event for the same or der | d to allocate a new context partition.

Please note the following limitations:

e Thedi stinct keyword requires the initiating condition to be an event stream (and not a crontab
or pattern, for example) and a stream name must be assigned using the as keyword.

» Subqueries, aggregations and the special pr ev and pri or functions are not allowed among the
distinct-value expressions.

4.2.6.2. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a context:

Table 4.4. Context Properties

Name Description

nane The string-type context name.

start Ti me The start time of the context partition.

endTi me The end time of the context partition. This field is only available in the case that
it can be computed from the crontab or time period expression that is provided.

You may, for example, select the context properties as follows:

context Ni neToFi ve
sel ect context.nanme, context.startTine, context.endTine from TrafficEvent (speed
>= 100)

58

Context Conditions

The following statement looks for the next train leave event for the same train id and selects a
few of the context properties:

context CtxTrainEnter
select *, context.te.trainld, context.id, context.nane
from Trai nLeaveEvent (trainld = context.te.trainld)

4.2.7. Context Conditions

Context start/initiating and end/terminating conditions are for use with overlapping and non-
overlapping contexts. Any combination of conditions may be specified.

4.2.7.1. Filter Context Condition

Use the syntax described here to define the stream that starts/initiates a context partition or that
ends/terminates a context partition.

The syntax is:

event _streamnane [(filter _criteria)] [as stream nane]

The event_stream_name is either the name of an event type or name of an event stream populated
by an insert into statement. The filter_criteria is optional and consists of a list of expressions
filtering the events of the event stream, within parenthesis after the event stream name.

Two examples are:

/1 A non-overl appi ng context that starts when MyStart Event arrives and ends when
M/EndEvent arrives
create context MyContext start MyStartEvent end MyEndEvent

/1 An overl appi ng context where each MyEvent with | evel greater zero
/[l initiates a new context partition that term nates after 10 seconds
create context MyContext initiated M/Event (level > 0) ternmi nated after 10 seconds

You may correlate the start/initiating and end/terminating streams by providing a stream name
following the as keyword, and by referring to that stream name in the filter criteria of the end
condition.

Two examples that correlate the start/initiating and end/terminating condition are:

/1 A non-overl appi ng context that starts when MyEvent arrives
/1 and ends when a matching MyEvent arrives (sane id)

59

Chapter 4. Context and Contex...

create context MyContext
start MyEvent as nyevent
end MyEvent (i d=nyevent . i d)

/1 An overlapping context where each MilInitEvent initiates a new context
partition

/1 that termi nates when a matching MyTernEvent arrives

create context M/Context

initiated by MyInitEvent as el

term nated by MyTernEvent (id=el.id, level <> el.level)

4.2.7.2. Pattern Context Condition

You can define a pattern that starts/initiates a context partition or that ends/terminates a context
partition.

The syntax is:

pattern [pattern_expression] [@nclusive]

The pattern_expression is a pattern at Chapter 7, EPL Reference: Patterns.

Specify @ ncl usi ve after the pattern to have those same events that constitute the pattern match
also count towards any statements that are associated to the context. You must also provide a
tag for each event in a pattern that should be included.

Examples are:

/'l A non-overlapping context that starts when either StartEventOne or
Start Event Two arrive
// and that ends after 5 seconds.
/'l Here neither StartEventOne or StartEvent Two count towards any statements
/1 that are referring to the context.
create context M/Context
start pattern [StartEvent One or StartEvent Two]
end after 5 seconds

/] Same as above.
/! Here both StartEventOne or StartEvent Two do count towards any statenents
// that are referring to the context.
create context MyContext
start pattern [a=StartEventOne or b=StartEvent Two] @ ncl usive
end after 5 seconds

60

Context Conditions

/1 An over | appi ng cont ext where each di stinct Myl nitEvent initiates a new context
/1 and each context partition term nates after 20 seconds
/1 W use @nclusive to say that the sane MylnitEvent that fires the pattern
/Il also applies to statenents that are associated to the context.
create context M/Context
initiated by pattern [every-distinct(a.id, 20 sec) a=MlnitEvent] @ ncl usi ve
termnated after 20 sec

/1 An overl appi ng context where each pattern match initiates a new context

/1l and all context partitions term nate when MyTernEvent arrives.

/'l The MylnitEvent and MyQt her Event that trigger the pattern are thensel ves not
i ncl uded

/'l in any statenents that are associated to the context.

create context M/Context
initiated by pattern [every Myl nitEvent -> MyQt her Event where tiner:w thin(5)]
term nated by MyTernEvent

You may correlate the start and end streams by providing tags as part of the pattern, and by
referring to the tag name(s) in the filter criteria of the end condition.

An example that correlates the start and end condition is:

/1 A non-overlapping context that starts when either StartEventOne or
Start Event Two arrive
/1 and that ends when either a matchi ng EndEvent One or EndEvent Two arrive
create context M/Context

start pattern [a=StartEvent One or b=StartEvent Two] @ ncl usi ve

end pattern [EndEvent One(id=a.id) or EndEvent Two(id=b.id)]

4.2.7.3. Crontab Context Condition

Crontab expression are described in Section 7.6.4, “Crontab (timer:at)”.
Examples are:
/1 A non-overl appi ng context started daily between 9 amto 5 pm

// and not started outside of these hours:
create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

/1 An overl appi ng context where crontab initiates a new context every 1 m nute
/1 and each context partition term nates after 10 seconds:

61

Chapter 4. Context and Contex...

create context MyContext initiated (*, *, *, *, *) terminated after 10 seconds

4.2.7.4. Time Period Context Condition

You may specify a time period that the engine observes before the condition fires. Time period
expressions are described in Section 5.2.1, “Specifying Time Periods”.

The syntax is:

after time_period_expression

Examples are:

/1 A non-overl appi ng context started after 10 seconds
/1 that ends 1 minute after it starts and that again starts 10 seconds t hereafter.
create context NonOverl aplOSecFor1M n start after 10 seconds end after 1 minute

/1 An overl apping context that starts a new context partition every 5 seconds
/1 and each context partition lasts 1 minute

create context Overl ap5SecForlMn initiated after 5 seconds termnated after 1
m nut e

4.3. Context Nesting

A nested context is a context that is composed from two or more contexts.

The syntax for creating a nested context is as follows:

create context context_nane
cont ext nested_context_nanme [as] nested_context_definition ,
context nested_context_nane [as] nested context_definition [, ...]

The context_name you assign to the context can be any identifier.

Following the context name is a comma-separated list of nested contexts. For each nested context
specify the cont ext keyword followed a nested context name and the nested context declaration.
Any of the context declarations as outlined in Section 4.2, “Context Declaration” are allowed for
nested contexts. The order of nested context declarations matters as outlined below. The nested
context names have meaning only in respect to built-in properties and statements may not be
assigned to nested context names.

The next statement creates a nested context Ni neToFi veSegnent ed that, between 9 am and 5
pm, allocates a new context partition for each customer id:

62

Nested Context Sample Walk-Through

create context N neToFi veSegnent ed
context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *),
cont ext Segnent edByCustoner partition by custld from BankTxn

The following statement refers to the nested context to compute a total withdrawal amount per
account for each customer but only between 9 am and 5 pm:

context N neToFi veSegnent ed
sel ect custld, account, sun{anount) from BankTxn group by account

Esper implements nested contexts as a context tree: The context declared first controls the
lifecycle of the context(s) declared thereafter. Thereby, in the above example, outside of the
9am-to-5pm time the engine has no memory and consumes no resources in relationship to bank
transactions or customer ids.

When combining segmented contexts, the set of context partitions for the nested context
effectively is the Cartesian product of the partition sets of the nested segmented contexts.

When combining temporal contexts with other contexts, since temporal contexts may overlap and
may terminate, it is important to understand that temporal contexts control the lifecycle of sub-
contexts (contexts declared thereafter). The order of declaration of contexts in a nested context
can thereby change resource usage and output result.

The next statement creates a context that allocates context partition only when a train enters a
station and then for each hash of the tag id of a passenger as indicated by PassengerScanEvent
events, and terminates all context partitions after 5 minutes:

create context CtxNestedTrainEnter
context InitCtx initiated by Trai nEnterEvent as te terninated after 5 mnutes,
cont ext HashCt x coal esce by consi stent _hash_crc32(t agl d) from
Passenger ScanEvent
granularity 16 preallocate

In the example above the engine does not start tracking PassengerScanEvent events or hash
codes or allocate context partitions until a TrainEnterEvent arrives.

4.3.1. Nested Context Sample Walk-Through

This section declares a nested context with nested non-overlapping contexts and walks through
a specific scenario to help you better understand nested context lifecycles.

Assume event types ASt art , AEnd, BSt art , BEnd and C. The following EPL counts C-events that
occur within the span of ASt art and AEnd and a span of BSt art and BEnd, wherein the span of
ASt ar t -to-AEnd must contain the span of BSt ar t -to-BEnd:

63

Chapter 4. Context and Contex...

create context C xSanpl eNestedCont ext
context SpanA start AStart end AEnd,
context SpanB start BStart end BEnd

context CtxSanpl eNest edContext sel ect count(*) fromC

Upon creating the EPL statements above, the engine starts looking for an ASt art event only and
does not yet look for AEnd, BSt art, BEnd or C events.

In the scenario that we analyze here, assume that an ASt art event arrives next. This is, logically,
the beginning of the SpanA lifecycle (aka. session, interval):

« The engine stops looking for an ASt art event.

« The engine starts looking for an AEnd event, since that would mean the end of the current SpanA
lifecycle.

» The engine starts looking for a BSt ar t event, in order to detect the beginning of a SpanB lifecycle.

In the scenario, assume that a BSt art event arrives. This is, logically, the beginning of the SpanB
lifecycle:

» The engine stops looking for further BSt art events.

« The engine starts looking for a BEnd event, since that would mean the end of the current SpanB
lifecycle.

» The engine keeps looking for an AEnd event, since that would mean the end of the current
SpanA lifecycle.

* The engine starts looking for C events and now starts counting each Cthat arrives.

In the scenario, assume that a BEnd event arrives. This is, logically, the end of the SpanB lifecycle:

« The engine stops looking for a BEnd event.
« The engine stops looking for C events and stops counting each.

* The engine starts looking for a BSt art event, since that would mean the beginning of another
SpanB lifecycle.

In the scenario, assume that an AEnd event arrives. This is, logically, the end of the SpanA lifecycle:

* The engine stops looking for an AEnd event.

» The engine stops looking for a BSt art event.

64

Built-In Nested Context Properties

* The engine starts looking for an ASt art event, since that would mean the beginning of another
SpanaA lifecycle.

In the scenario describe above, after the AEnd arrives, the engine is back to the same state as the
engine had after the statements were created originally.

If your use case calls for alogical OR relationships, please consider a pattern for the start condition,
like for example so (not equivalent to above):

create context Ct xSanpl eNestedCont ext
start pattern[every a=AStart or every a=BStart] as nypattern
end pattern[every AEnd or every BEnd]

4.3.2. Built-In Nested Context Properties

Context properties of all nested contexts are available for use. Specify
cont ext . nested_context_name. property _name or if nested context declaration provided stream
names or tags for patterns then cont ext . nested_context_name. stream_name. property_name.

For example, consider the CtxNestedTrai nEnter context declared earlier. The following
statement selects a few of the context properties:

context CtxNestedTrai nEnter
select context.lnitCtx.te.trainld, context.HashCx.id,
tagld, count(*) from Passenger ScanEvent group by tagld

In a second example, consider the Ni neToFi veSegnent ed context declared earlier. The following
statement selects a few of the context properties:

cont ext Ni neToFi veSegnent ed
sel ect cont ext. Ni neToFi ve. startTi ne, cont ext . Segnent edByCust oner. keyl from
BankTxn

The following context properties are available in your EPL statement when it refers to a nested
context:

Table 4.5. Nested Context Properties

Name Description

name The string-type context name.
id The integer-type internal context id that the engine assigns to the context
partition.

65

Chapter 4. Context and Contex...

This example selects the nested context name and context partition id:

context Ni neToFi veSegnent ed sel ect context.nane, context.id from BankTxn

4.4. Partitioning Without Context Declaration

You do not need to declare a context to partition data windows, aggregation values or patterns
themselves individually. You may mix-and-match partitioning as needed.

The table below outlines other partitioning syntax supported by EPL:

Table 4.6. Partition in EPL without the use of Context Declaration

Partition Description Example
Type
Grouped Partitions at the level of dat
Data window, only applies to appender // Length window of 2 events per
Window data window(s). BUSE EE
select * from

Syntax: st d: gr oupby(. . .) BankTxn#gr oupwi n(cust | d) #l engt h(2)

Grouped Partitions at the level

Aggregation aggregation, only applies to an

aggregations.

Syntax: group by

sel ect avg(price), w ndow*)
from BankTxn group by custld

Pattern Partitions pattern subexpressions.
select * frompattern [
Syntax: every or every-di sti ncl every a=BankTxn -> BankTxn(custld
= a.custld)...]
Match- Partitions match-recogniz
Recognize patterns. sel ect * from mat ch_recogni ze

Syntax: partition by

Join and Partitions join and subqueries.

Subquery
Syntax: where . ..

partition by custld

select * from ... where a.custld =

b. custld

4.5. Output When Context Partition Ends

You may use output rate limiting to trigger output when a context partition ends, as further
described in Section 5.7, “Stabilizing and Controlling Output: the Output Clause”.

66

Output When Context Partition Ends

Consider the fixed temporal context: A new context partition gets allocated at the designated start
time and the current context partition ends at the designated end time. To trigger output when the
context partition ends and before it gets removed, read on.

The same is true for the initiated temporal context: That context starts a new context partition when
trigger events arrive or when a pattern matches. Each context partition expires (ends, terminates)
after the specified time period passed. To trigger output at the time the context partition expires,
read on.

You may use the when t er ni nat ed syntax with output rate limiting to trigger output when a context
partition ends. The following example demonstrates the idea by declaring an initiated temporal
context.

The next statement creates a context Ct xEachM nut e that initiates a new context partition every
1 minute, and that expires each context partition after 5 minutes:

create context CxEachM nute
initiated by pattern [every tinmer:interval (1 mn)]
term nated after 5 m nutes

The following statement computes an ongoing average temperature however only outputs the last
value of the average temperature after 5 minutes when a context partition ends:

context CtxEachM nute
sel ect context.id, avg(tenp) from Sensor Event output snapshot when terninated

The when terni nat ed syntax can be combined with other output rates.

The next example outputs every 1 minute and also when the context partition ends:

context CtxEachM nute
sel ect context.id, avg(tenmp) from SensorEvent output snapshot every 1 ninute
and when term nated

In the case that the end/terminating condition of the context partition is an event or pattern, the
context properties contain the information of the tagged events in the pattern or the single event
that ended/terminated the context partition.

For example, consider the following context wherein the engine initializes a new context partition
for each arriving MySt art Event event and that terminates a context partition when a matching
M/EndEvent arrives:

create context CtxSanple

67

Chapter 4. Context and Contex...

initiated by MyStart Event as startevent
term nated by MyEndEvent (id = startevent.id) as endevent

The following statement outputs the id property of the initiating and terminating event and only
outputs when a context partition ends:

context CtxSanple
sel ect context.startevent.id, context.endevent.id, count(*) from M/Event
out put snapshot when terninated

You may in addition specify a termination expression that the engine evaluates when a context
partition terminates. Only when the terminaton expression evaluates to true does output occur.
The expression may refer to built-in properties as described in Section 5.7.1.1, “Controlling Output
Using an Expression”. The syntax is as follows:

...output when term nated and terni nati on_expression

The next example statement outputs when a context partition ends but only if at least two events
are available for output:

context CtxEachM nute
sel ect * from Sensor Event out put when terminated and count _i nsert >= 2

The final example EPL outputs when a context partition ends and sets the variable nyvar to a
new value:

context CtxEachM nute
sel ect * from Sensor Event out put when term nated then set myvar=3

4.6. Context and Named Window

Named windows are globally-visible data windows that may be referred to by multiple statements.
You may refer to named windows in statements that declare a context without any special
considerations, with the exception of on-action statements (latter must refer to the same context
associated with the named window).

You may also create a named window and declare a context for the named window. In this case
the engine in effect manages separate named windows, one for each context partition. Limitations
apply in this case that we discuss herein.

For example, consider the 9 am to 5 pm fixed temoral context as shown earlier:

68

Context and Named Window

create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

You may create a hamed window that only exists between 9 am and 5 pm:

context N neToFi ve create w ndow Speedi ngEvent s1Hour #ti ne(30 min) as Traffi cEvent

You can insert into the named window:

insert into Speedi ngEvent slHour select * from Traffi cEvent (speed > 100)

Any on-merge, on-select, on-update and on-delete statements must however declare the same
context.
The following is not a valid statement as it does not declare the same context that was used to

declare the named window:

/1l You nust declare the same context for on-trigger statenents
on Truncat eEvent del ete from Speedi ngEvent s1Hour

The following is valid:

context Ni neToFive on Truncat eEvent del ete from Speedi ngEvent s1Hour

For context declarations that require specifying event types, such as the hash segmented context
and keyed segmented context, please provide the named window underlying event type.

The following sample EPL statements define a type for the named window, declare a context and

associate the named window to the context:

create schema ScoreCycle (userld string, keyword string, productld string, score
| ong)

create context HashByUserCtx as
coal esce by consistent_hash_crc32(userld) from ScoreCycle granularity 64

69

Chapter 4. Context and Contex...

cont ext HashByUser Ct x create w ndow Scor eCycl eW ndow#uni que(product|d, keyword)
as ScoreCycl e

4.7. Context and Tables

Tables are globally-visible data structures that hold rows organized by primary key(s) and that
may be referred to by multiple statements. You may refer to tables in statements that declare a
context without any special considerations, with the exception of on-action statements (latter must
refer to the same context associated with the table).

You may also create a table and declare a context for the table. In this case the engine in effect
manages separate tables, one for each context partition. Limitations apply in this case that we
discuss herein.

For example, consider the 9 am to 5 pm fixed temoral context as shown earlier:

create context N neToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

You may create a table that only exists between 9 am and 5 pm:

context N neToFive create table AverageSpeedTabl e (
carld string primry key,
avgSpeed avg(doubl e))

You can aggregate-into the table only if the aggregating statement declares the same context:

/] declare the same context as for the table
context Ni neToFive into table AverageSpeedTabl e
sel ect avg(speed) as avgSpeed

from Traf fi cEvent

group by carld

When you declare a context for a table, any select, on-merge, on-select, on-update and on-delete
statements as well as statements that subquery the table must declare the same context.

For example, this EPL truncates the AverageSpeedTable:

context Ni neToFive on Truncat eEvent del ete from AverageSpeedTabl e

70

Context and Variables

4.8. Context and Variables

A variable is a scalar, object or event value that is available for use in all statements. Variables
can be either global variables or context variables.

The value of a global variable is the same for all context partitions. The next example declares
a global threshold variable:

create variable integer var_global _threshold = 100

For context variables, there is a variable value per context partition. The next example declares
a context and a context variable:

create context ParkinglLotContext initiated by CarArrival Event as cae term nated
by CarDepartureEvent(l ot = cae.lot)

cont ext Par ki ngLot Cont ext create variabl e i nteger var_parki ngl ot _threshol d = 100

The variable var _par ki ngl ot _t hreshol d is a context variable. Each context partition can have
its own value for the variable.

For more information on variables, please refer to Section 5.17, “Variables and Constants”.

Context variables can only be used in statements that associated to the same context.

4.9. Operations on Specific Context Partitions

Selecting specific context partitions and interrogating context partitions is useful for:

1. Iterating a specific context partition or a specific set of context partitions. Iterating a statement
is described in Section 16.3.5, “Using Iterators”.

2. Executing an on-demand (fire-and-forget) query against specific context partition(s). On-
demand queries are described in Section 16.5, “On-Demand Fire-And-Forget Query
Execution”.

Esper provides APIs to identify, filter and select context partitions for statement iteration and on-
demand queries. The APIs are described in detail at Section 16.18, “Context Partition Selection”.

For statement iteration, your application can provide context selector objects to the iterate
and saf el t er at e methods on EPSt at emrent . If your code does not provide context selectors the
iteration considers all context partitions. At the time of iteration, the engine obtains the current set
of context partitions and iterates each independently. If your statement has an order-by clause,
the order-by clause orders within the context partition and does not order across context partitions.

71

Chapter 4. Context and Contex...

For on-demand queries, your application can provide context selector objects to the
execut eQuer y method on EPRunt i me and to the execut e method on EPOnDenmandPr epar edQuery.
If your code does not provide context selectors the on-demand query considers all context
partitions. At the time of on-demand query execution, the engine obtains the current set of context
partitions and queries each independently. If the on-demand query has an order-by clause, the
order-by clause orders within the context partition and does not order across context partitions.

72

Chapter 5.

Chapter 5. EPL Reference: Clauses

5.1. EPL Introduction

The Event Processing Language (EPL) is a SQL-standard language with extensions, offering
SELECT, FROM WHERE, GROUP BY, HAVI NG and ORDER BY clauses. Streams replace tables as the
source of data with events replacing rows as the basic unit of data. Since events are composed
of data, the SQL concepts of correlation through joins, filtering and aggregation through grouping
can be effectively leveraged.

The I NSERT | NTO clause is recast as a means of forwarding events to other streams for further
downstream processing. External data accessible through JDBC may be queried and joined with
the stream data. Additional clauses such as the PATTERN and OUTPUT clauses are also available
to provide the missing SQL language constructs specific to event processing.

The purpose of the UPDATE clause is to update event properties. Update takes place before an
event applies to any selecting statements or pattern statements.

EPL statements are used to derive and aggregate information from one or more streams of events,
and to join or merge event streams. This section outlines EPL syntax. It also outlines the built-in
views, which are the building blocks for deriving and aggregating information from event streams.

EPL statements contain definitions of one or more views. Similar to tables in a SQL statement,
views define the data available for querying and filtering. Some views represent windows over
a stream of events. Other views derive statistics from event properties, group events or handle
unigue event property values. Views can be staggered onto each other to build a chain of views.
The Esper engine makes sure that views are reused among EPL statements for efficiency.

The built-in set of views is:

1. Data window views: |ength, |length_batch, time, tinme_batch, tine_| ength_batch,
ti me_accum ext _timed, ext _ti ned_batch, sort, rank, tine_order, tinetolive, uni que,
groupwi n, | astevent, firstevent,firstuni que,firstlength,firsttinme.

2. Views that derive statistics: si ze, uni, | i nest, correl , wei ght ed_avg.

EPL provides the concept of named window. Named windows are data windows that can be
inserted-into and deleted-from by one or more statements, and that can queried by one or more
statements. Named windows have a global character, being visible and shared across an engine
instance beyond a single statement. Use the CREATE W NDOWCclause to create named windows.
Use the ON MERGE clause to atomically merge events into named window state, the | NSERT | NTO
clause to insert data into a named window, the ON DELETE clause to remove events from a named
window, the ON UPDATE clause to update events held by a nhamed window and the ON SELECT
clause to perform a query triggered by a pattern or arriving event on a named window. Finally, the
name of the named window can occur in a statement's FROMclause to query a named window or
include the named window in a join or subquery.

73

Chapter 5. EPL Reference: Clauses

EPL provides the concept of table. Tables are globally-visible data structures that typically have
primary key columns and that can hold aggregation state. You can create tables using CREATE
TABLE. An overview of named windows and tables, and a comparison between them, can be found
at Section 6.1, “Overview”. The aforementioned ON SELECT/ MERGE/ UPDATE/ | NSERT/ DELETE,
I NSERT | NTOas well as joins and subqueries can be used with tables as well.

EPL allows execution of on-demand (fire-and-forget, non-continuous, triggered by API) queries
against named windows and tables through the runtime API. The query engine automatically
indexes named window data for fast access by ON SELECT/ MERGE/ UPDATE/ | NSERT/ DELETE
without the need to create an index explicitly, or can access explicit (secondary) table indexes for
operations on tables. For fast on-demand query execution via runtime API use the CREATE | NDEX
syntax to create an explicit index for the named window or table in question.

Use CREATE SCHEMA to declare an event type.

Variables can come in handy to parameterize statements and change parameters on-the-fly and
in response to events. Variables can be used in an expression anywhere in a statement as well
as in the output clause for dynamic control of output rates.

Esper can be extended by plugging-in custom developed views and aggregation functions.

5.2. EPL Syntax

EPL queries are created and stored in the engine, and publish results to listeners as events are
received by the engine or timer events occur that match the criteria specified in the query. Events
can also be obtained from running EPL queries via the safelterator and iterator methods
that provide a pull-data API.

The sel ect clause in an EPL query specifies the event properties or events to retrieve. The f rom
clause in an EPL query specifies the event stream definitions and stream names to use. The wher e
clause in an EPL query specifies search conditions that specify which event or event combination
to search for. For example, the following statement returns the average price for IBM stock ticks
in the last 30 seconds.

sel ect avg(price) from StockTi ck#time(30 sec) where synbol =' | BM

EPL queries follow the below syntax. EPL queries can be simple queries or more complex queries.
A simple select contains only a sel ect clause and a single stream definition. Complex EPL
queries can be build that feature a more elaborate select list utilizing expressions, may join multiple
streams, may contain a wher e clause with search conditions and so on.

[annot ati ons]

[expressi on_decl arati ons]
[cont ext cont ext nane]
[into table tabl e _nane]

74

Specifying Time Periods

[insert into insert_into_def]

sel ect select _list

fromstreamdef [as nane] [, streamdef [as nane]] [,...]
[where search_conditions]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_condi ti ons]

[out put out put _specification]

[order by order_by expression_list]

[limt numrows]

5.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter.
Time periods follow the syntax below.

time-period : [year-part] [nonth-part] [week-part] [day-part] [hour-part]
[m nute-part] [seconds-part] [mlliseconds-part] [m croseconds-part]

year-part : (nunber|variable_nane) ("years" | "year")

nmont h-part : (numnber|variabl e_nanme) ("nmonths" | "nonth")

week-part : (nunber|variable_nane) ("weeks" | "week")

day-part : (nunber|variable_nane) ("days" | "day")

hour-part : (nunber|variable_nane) ("hours" | "hour")

m nute-part : (nunber|variable_nanme) ("minutes" | "mnute" | "mn")

seconds-part : (nunber|variabl e nane) ("seconds" | "second" | "sec")

m | liseconds-part : (nunber|variable_nane) ("mlliseconds" | "mllisecond"
"msec")

m croseconds-part : (nunber|variable _nanme) ("m croseconds" | "m crosecond"
"usec")

Some examples of time periods are:

10 seconds

10 minutes 30 seconds

20 sec 100 nsec

1 day 2 hours 20 m nutes 15 seconds 110 nilliseconds 5 m croseconds
0.5 minutes

1 year

1 year 1 nonth

Variable names and substitution parameters '?' for prepared statements are also allowed as part
of a time period expression.

75

Chapter 5. EPL Reference: Clauses

/ Note
-

values.

5.2.2. Using Comments

When the time period has a month or year part, all values must be integer-type

Comments can appear anywhere in the EPL or pattern statement text where whitespace is
allowed. Comments can be written in two ways: slash-slash (// ...) comments and slash-star

(/* ... *I)comments.

Slash-slash comments extend to the end of the line:

// This conment extends to the end of the line.

I/ Two forward sl ashes with no whitespace between them begin such comments.

select * fromMEvent // this is a slash-slash coment

I/ Al of this text together is a valid statenent.
Slash-star comments can span multiple lines:

/* This coment is a "slash-star" conment that spans nultiple |ines.

* It begins with the slash-star sequence with no space between the '/'
"*' characters.

* By convention, subsequent |ines can begin with a star and are aligned,
this is

* not required.

*/

select * fromMWEvent /* this also works */

Comments styles can also be mixed:

select fieldl, // first coment
/* second comment*/ field2
from MyEvent

5.2.3. Reserved Keywords

and

but

Certain words such as sel ect, del et e or set are reserved and may not be used as identifiers.
Please consult Appendix B, Reserved Keywords for the list of reserved keywords and permitted

keywords.

76

Escaping Strings

Names of built-in functions and certain auxiliary keywords are permitted as event property names
and in the rename syntax of the sel ect clause. For example, count is acceptable.

Consider the example below, which assumes that ' | ast' is an event property of MyEvent:

/1 valid
sel ect last, count(*) as count from MyEvent

This example shows an incorrect use of a reserved keyword:

I/ invalid
sel ect insert from MyEvent

EPL offers an escape syntax for reserved keywords: Event properties as well as event or stream
names may be escaped via the backwards apostrophe * (ASCII 96) character.
The next example queries an event type by name O der (a reserved keyword) that provides a

property by name i nsert (areserved keyword):

/1l valid
select “insert” from Oder’

5.2.4. Escaping Strings

You may surround string values by either double-quotes (") or single-quotes (*). When your string
constant in an EPL statement itself contains double quotes or single quotes, you must escape
the quotes.

Double and single quotes may be escaped by the backslash (\) character or by unicode notation.
Unicode 0027 is a single quote (*) and 0022 is a double quote ().

Escaping event property names is described in Section 2.2.1, “Escape Characters”.
The sample EPL below escapes the single quote in the string constant John' s, and filters out

order events where the name value matches:

sel ect * from O der Event (nane='John\'s")
/'l ...equivalent to...
sel ect * from Order Event (nanme="' John\ u0027s"')

The next EPL escapes the string constant Quote "Hel | 0":

77

Chapter 5. EPL Reference: Clauses

select * from Order Event (description |ike "Quote \"Hello\"")
/1 is equivalent to
select * from OrderEvent (description |ike "Quote \u0022Hel | o\ u0022")

When building an escape string via the API, escape the backslash, as shown in below code
shippet:

epServi ce. get EPAdmi ni strator().createEPL("sel ect * from O der Event (name="'John\
Vs
/1 ... and for double quotes...
epServi ce. get EPAdm ni strator().createEPL("sel ect * from O der Event (
description like \"Quote \\\"Hello\\\"\")");

5.2.5. Data Types

For NEsper .NET also see Section H.12, “.NET EPL Syntax - Data Types”.

EPL honors all Java built-in primitive and boxed types, including j ava. mat h. Bi gl nt eger and
j ava. nat h. Bi gDeci nal .

EPL also follows Java standards in terms of widening, performing widening automatically in cases
where widening type conversion is allowed without loss of precision, for both boxed and primitive
types and including Bi gl nt eger and Bi gDeci mal :

. byte to short, int, long, float, double, Biginteger or BigDecimal
. short to int, long, float, or double, Biginteger or BigDecimal

. char to int, long, float, or double, Biginteger or BigDecimal

. int to long, float, or double, Biginteger or BigDecimal

. long to float or double, Biginteger or BigDecimal

. float to double or BigDecimal

. double to BigDecimal

N O 0ok WN P

In cases where loss of precision is possible because of narrowing requirements, EPL compilation
outputs a compilation error.

EPL supports casting via the cast function.

EPL returns double-type values for division regardless of operand type. EPL can also be
configured to follow Java rules for integer arithmetic instead as described in Section 17.4.25,
“Engine Settings related to Expression Evaluation”.

Division by zero returns positive or negative infinity. Division by zero can be configured to return
null instead.

5.2.5.1. Data Type of Constants

78

Data Types

An EPL constant is a number or a character string that indicates a fixed value. Constants can
be used as expressions in many EPL statements, including variable assignment and case-when
statements. They can also be used as parameter values for many built-in objects and clauses.
Constants are also called literals.

EPL supports the standard SQL constant notation as well as Java data type literals.

The following are types of EPL constants:

Table 5.1. Types of EPL constants

Type ‘ Description Examples

string A single character to an unlimited number ¢
characters. Valid delimiters are the single quot: S€l éct "volune’ as fiel dl,

() or double quote (*). "sleep" as field2,
"\u0041" as uni codeA

boolean A boolean value.
select true as fieldil,

false as field2

integer An integer value (4 byte).
select 1 as fieldil,

-1 as field2,
le2 as field3

long A long value (8 byte). Use the "L" ¢

"I" (lowercase L) suffix. select 1L as fieldil,
1l as field2

double A double-precision 64-bit IEEE 754 floatin
point. sel ect 1.67 as fieldl,

167e-2 as field2,
1.67d as field3

float A single-precision 32-bit IEEE 754 floating poin
Use the "f* suffix. select 1.2f as fieldil,

1.2F as field2

byte A 8-bit signed two's complement integer.
sel ect 0x10 as fieldl

EPL does not have a single-byte character data type for its literals. Single character literals are
treated as string.

Internal byte representation and boundary values of constants follow the Java standard.

79

Chapter 5. EPL Reference: Clauses

5.2.5.2. BigInteger and BigDecimal

EPL automatically performs widening of numbers to Bi gl nt eger and Bi gDeci nal as required,
and employs the respective equal s, conpar eTo and arithmetic methods provided by Bi gl nt eger
and Bi gDeci mal .

To explicitly create Bi gl nt eger and Bi gDeci mal constants in EPL, please use the cast syntax :
cast (value, Biglnteger).

Note that since Bi gDeci mal . val ueXf (1. 0) is not the same as Bi gDeci mal . val ueX (1) (in
terms of equality through equal s), care should be taken towards the consistent use of scale.

When using aggregation functions for Bi gl nt eger and Bi gDeci nal values, please note these

limitations:

1. The nedi an, stddev and avedev aggregation functions operate on the double value of the
object and return a double value.

2. All other aggregation functions return Bi gDeci mal or Bi gl nt eger values (except count).

For Bi gDeci mal precision and rounding, please see Section 17.4.25.6, “Math Context”. For
division operations with BigDecimal number we recommend configuring a math context.

5.2.6. Using Constants and Enum Types

This chapter is about Java language constants and enum types and their use in EPL expressions.

Java language constants are public static final fields in Java that may participate in expressions
of all kinds, as this example shows:

select * from MyEvent where property = MyConstant Cl ass. Fl ELD VALUE
Event properties that are enumeration values can be compared by their enum type value:
select * from MyEvent where enunProp = EnunCl ass. ENUM VALUE 1

Event properties can also be passed to enum type functions or compared to an enum type method
result:

select * from MyEvent where soneval ue = EnunCl ass. ENUM VALUE_ 1. get SoneVal ue()
or EnuntCl ass. ENUM VALUE 2. anal yze(soneot herval ue)

Enum types have a val ueOf method that returns the enum type value:

80

Annotation

select * from MyEvent where enunProp = Enun(Cl ass. val ueO (' ENUM VALUE 1')

If your application does not import, through configuration, the package that contains the
enumeration class, then it must also specify the package name of the class. Enum types that are
inner classes must be qualified with $ following Java conventions.

For example, the Color enum type as an inner class to MyEvent in package or g. nyor g can be
referenced as shown:

select * from MyEvent (enunProp=org. myorg. MyEvent $Col or . GREEN) #f i r st event

Instance methods may also be invoked on event instances by specifying a stream name, as shown
below:

sel ect myevent. conput eSonet hi ng() as result from MyEvent as nyevent

Chaining instance methods is supported as this example shows:

sel ect myevent. get Comput er For (' books', 'novies').calculate() as result
from M/Event as nyevent

5.2.7. Annotation

An annotation is an addition made to information in a statement. Esper provides certain built-in
annotations for defining statement name, adding a statement description or for tagging statements
such as for managing statements or directing statement output. Other than the built-in annotations,
applications can provide their own annotation classes that the EPL compiler can populate.

An annotation is part of the statement text and precedes the EPL select or pattern statement.
Annotations are therefore part of the EPL grammar. The syntax for annotations follows the host
language (Java, .NET) annotation syntax:

@nnot ati on_nane [(annotati on_paraneters)]

An annotation consists of the annotation name and optional annotation parameters. The
annotation_name is the simple class name or fully-qualified class name of the annotation class.
The optional annotation_parameters are a list of key-value pairs following the syntax:

@nnot ati on_nane (attribute_nane = attribute_val ue, [nanme=value, ...])

81

Chapter 5. EPL Reference: Clauses

The attribute_name is an identifier that must match the attributes defined by the annotation class.
An attribute_value is a constant of any of the primitive types or string, an array, an enum type
value or another (nested) annotation. Null values are not allowed as annotation attribute values.
Enumeration values are supported in EPL statements and not support in statements created via
the cr eat ePat t er n method.

Use the get Annot at i ons method of EPSt at enment to obtain annotations provided via statement
text.

5.2.7.1. Application-Provided Annotations

Your application may provide its own annotation classes. The engine detects and populates
annotation instances for application annotation classes.

The name of application-provided annotations is case-sensitive.

To enable the engine to recognize application annotation classes, your annotation name must
include the package name (i.e. be fully-qualified) or your engine configuration must import the
annotation class or package via the configuration API.

For example, assume that your application defines an annotation in its application code as follows:

public @nterface ProcessMnitor {
String processNane();
bool ean i sLongRunni ng default fal se;
int[] subProcesslds;

Shown next is an EPL statement text that utilizes the annotation class defined earlier:

@r ocessMoni t or (processName=" Cr edi t Approval ',
i sLongRunni ng=t rue, subProcesslds = {1, 2, 3})

sel ect count (*) from ProcessEvent (processld in (1, 2, 3)#tinme(30)
Above example assumes the Pr ocessMni t or annotation class is imported via configuration XML
or API.

If ProcessMoni t or should only be visible for use in annotations, use addAnnot at i onl nport (or
the aut o-i nport-annot ati ons XML tag). If ProcessMbnitor should be visible in all of EPL
including annotations, use addl mport (or the aut o-i nport XML tag).

Here is an example APl call to import for annotation-only all classes in package
com myconpany. app. myannot ati ons:

82

Annotation

epSer vi ce. get EPAdmi ni strator (). get Confi guration().addAnnotati onl nmport ("com myconpany. app. myannc

The next example imports the ProcessMoni t or class only and only for annotation use:

epServi ce. get EPAdm ni strator (). getConfiguration().addAnnotati onl nport("com myconpany. nyannot at i

5.2.7.2. Annotations With Enumeration Values

For annotations that accept an enumeration value, the enumeration name does not need to be
specified and matching is not case-sensitive.

For example, assume the enum is:

public enum MyEnum {
ENUM VALUE_1,
ENUM _VALUE_2;

Assume the annotation is:

public @nterface MyAnnotati onWt hEnum {
MyEnum nyEnun() ;

The EPL statement can specify:

Annot ati onW t hEnu Enum = enum val ue_1) select * from MyEvent
ny

5.2.7.3. Built-In Statement Annotations

The name of built-in annotations is not case-sensitive, allowing both @GNAVE or @ane, for example.

The list of built-in EPL statement-level annotations is:

Table 5.2. Built-In EPL Statement Annotations

Name ‘ Purpose and Attributes Example
Name Provides a statement name. Attribute
are: @Nane(" MySt at enent Nane")

83

Chapter 5. EPL Reference: Clauses

Name Purpose and Attributes
value : Statement name.

Example

Description Provides a statement textual descriptior
Attributes are:

value : Statement description.

Tag For tagging a statement with additione
information. Attributes are:

name : Tag name.

value : Tag value.

@escription("Place
st at enent
description here.")

@ag(nane="M/TagNane",
val ue="MyTagVal ue")

Priority Applicable when an event (or schedule
matches filter criteria for multipl
statements: Defines the order c.
statement processing (requires an
engine-level setting).

Attributes are:

value : priority value.

@riority(10)

Drop Applicable when an event (or schedule
matches filter criteria for multipl
statements, drops the event afte.
processing the statement (requires an
engine-level setting).

No attributes.

@x op

Hint For providing one or more hints toward
how the engine should execute
statement. Attributes are:

value : A comma-separated list of one or
more case-insensitive keywords.

Hook Use this annotation to register one ¢
more statement-specific hooks providin
a hook type for each individual hook, sucl
as for SQL parameter, column or rov
conversion.

Attributes are the hook t ype and the hook
itself (usually a import or class name):

@int('iterate_only')

@1ook(t ype=HookType. SQLCOL,

hook=" MyDBTypeConvertor"')

84

Annotation

Name Purpose and Attributes Example

Audit Causes the engine to output detaile:
processing information for a statement. @udi t

optional value : Acomma-separated list of
one or more case-insensitive keywords.

EventRepresentation Causes the engine to use object-array or For Object-Array:
Avro event representation, if possible, for

output and internal event types.
@vent Represent ati on(obj ect arr ay)

For Avro:

@vent Represent ati on(avr o)

IterableUnbound For use when iterating statements wit|
unbound streams, instructs the engine t @t erabl eUnbound
retain the last event for iterating.

The following example statement text specifies some of the built-in annotations in combination:

@Nane(" RevenuePer Cust oner ")

@escription("Qutputs revenue per custonmer considering all events encountered
so far.")

@ag(nane="groupi ng", val ue="customner")

sel ect custonerld, sum(revenue) from Custoner RevenueEvent

5.2.7.4. @Name

Use the @Name EPL annotation to specify a statement name within the EPL statement itself, as
an alternative to specifying the statement name via API.

If your application is also providing a statement name through the API, the statement name
provided through the API overrides the annotation-provided statement name.

Example:

@Nanme("SecurityFilterl") select * from SecurityFilter(ip="127.0.0.1")

5.2.7.5. @Description

Use the @Description EPL annotation to add a statement textual description.

85

Chapter 5. EPL Reference: Clauses

Example:

@escription(' This st at enent filters | ocal host. ") sel ect * from
SecurityFilter(ip="127.0.0.1")

5.2.7.6. @Tag

Use the @Tag EPL annotation to tag statements with name-value pairs, effectively adding a
property to the statement. The attributes name and val ue are of type string.

Example:

@ag(nanme="ip_sensitive', value=Y")
@ag(nanme="aut hor', value="Jim)
select * from SecurityFilter(ip="127.0.0.1")

5.2.7.7. @Priority

This annotation only takes effect if the engine-level setting for prioritized execution is set
via configuration, as described in Section 17.4.26, “Engine Settings related to Execution of
Statements”.

Use the @Priority EPL annotation to tag statements with a priority value. The default priority value
is zero (0) for all statements. When an event (or single timer execution) requires processing the
event for multiple statements, processing begins with the highest priority statement and ends with
the lowest-priority statement.

Example:

@riority(10) select * from SecurityFilter(ip="127.0.0.1")

5.2.7.8. @Drop

This annotation only takes effect if the engine-level setting for prioritized execution is set
via configuration, as described in Section 17.4.26, “Engine Settings related to Execution of
Statements”.

Use the @Drop EPL annotation to tag statements that preempt all other same or lower-priority
statements. When an event (or single timer execution) requires processing the event for multiple
statements, processing begins with the highest priority statement and ends with the first statement
marked with @Drop, which becomes the last statement to process that event.

Unless a different priority is specified, the statement with the @Drop EPL annotation executes at
priority 1. Thereby @Drop alone is an effective means to remove events from a stream.

86

Annotation

Example:

@xop select * from SecurityFilter(ip="127.0.0.1")

5.2.7.9. @Hint

A hint can be used to provide tips for the engine to affect statement execution. Hints change
performance or memory-use of a statement but generally do not change its output.

The string value of a H nt annotation contains a keyword or a comma-separated list of multiple
keywords. Hint keywords are case-insensitive. A list of hints is available in Section 22.2.22,
“Consider using Hints”.

Example:

@i nt (' di sabl e_recl ai m group')
sel ect ipaddress, count(*) from SecurityFilter#time(60 sec) group by ipaddress

5.2.7.10. @Hook

A hook is for attaching a callback to a statement.

The type value of a @ook annotation defines the type of hook and the hook value is an imported
or fully-qualified class name providing the callback implementation.

5.2.7.11. @Audit

Causes the engine to output detailed information about the statements processing. Described in
more detail at Section 18.3.1, “@Audit Annotation”.

5.2.7.12. @EventRepresentation

Use the @vent Repr esent at i on annotation with cr eat e schenma and cr eat e wi ndow statements
to instruct the engine to use a specific event representation for the schema or named window.

Use the @vent Repr esent at i on annotation with sel ect statements to instruct the engine to use
a specific event representation for output events.

When no @vent Repr esent ati on annotation is specified, the engine uses the default event
representation as configured, see Section 17.4.13.1, “Default Event Representation”.

Use @vent Repr esent ati on(obj ect array) to instruct the engine to use object-array events.

Use @vent Repr esent ati on(avro) to instruct the engine to use Avro events.

87

Chapter 5. EPL Reference: Clauses

Use @vent Repr esent ati on(map) to instruct the engine to use Map events.

5.2.7.13. @IterableUnbound

Causes the engine, for statements with unbound streams, to retain the last event for the purpose
of iterating using the iterator API. An engine-wide configuration is also available as described in
Section 17.4.14.2, “Iterator Behavior For Unbound Streams”.

5.2.8. Expression Alias

An expression alias simply assigns a name to an expression. The alias name can be used in other
expressions to refer to that expression, without the need to duplicate the expression.

The expression alias obtains its scope from where it is used. Parameters cannot be provided.
A second means to sharing expressions is the expression declaration as described next, which
allows passing parameters and is more tightly scoped.

An EPL statement can contain and refer to any number of expression aliases. For expressions
aliases that are visible across multiple EPL statements please consult Section 5.18.1, “Global
Expression Aliases” that explains the cr eat e expr essi on clause.

The syntax for an expression alias is:

expressi on expression_nane alias for { expression }

An expression alias consists of the expression name and an expression in curly braces. The
return type of the expression is determined by the engine and need not be specified. The scope
is automatic and determined by where the alias name is used therefore parameters cannot be
specified.

This example declares an expression alias t woPI that substitutes Mat h. Pl * 2:

expression twoPl alias for { Math.Pl * 2}
sel ect twoPl from Sanpl eEvent

The next example specifies an alias count Peopl e and uses the alias in the sel ect -clause and
the havi ng-clause:

expressi on count People alias for { count(*) }
sel ect count Peopl e from Ent er RoonEvent #ti me(10 seconds) havi ng count Peopl e > 10

When using the expression alias in an expression, empty parentheses can optionally be specified.
In the above example, count Peopl e() can be used instead and equivalently.

The following scope rules apply for expression aliases:

88

Expression Declaration

1. Expression aliases do not remove implicit limitations: For example, aggregation functions
cannot be used in a filter expression even if assigned an alias.

5.2.9. Expression Declaration

An EPL statement can contain expression declarations. Expressions that are common to multiple
places in the same EPL statement can be moved to a named expression declaration and reused
within the same statement without duplicating the expression itself.

For declaring expressions that are visible across multiple EPL statements i.e. globally visible
expressions please consult Section 5.18.2, “Global Expression Declarations” that explains the
create expression clause.

The engine may cache declared expression result values and reuse cache values, see
Section 17.4.26.8, “Declared Expression Value Cache Size”.

An expression declaration follows the lambda-style expression syntax. This syntax was chosen
as it typically allows for a shorter and more concise expression body that can be easier to read
then most procedural code.

The syntax for an expression declaration is:

expressi on expressi on_name { expression_body }

An expression declaration consists of the expression name and an expression body. The
expression_name is any identifier. The expression_body contains optional parameters and the
expression. The parameter types and the return type of the expression is determined by the engine
and do not need to be specified.

Parameters to a declared expression can be a stream name, pattern tag name or wildcard (*).
Use wildcard to pass the event itself to the expression. In a join or subquery, or more generally
in an expression where multiple streams or pattern tags are available, the EPL must specify the
stream name or pattern tag name and cannot use wildcard.

In the expression body the => lambda operator reads as "goes to" (-> may be used and is
equivalent). The left side of the lambda operator specifies the input parameters (if any) and the
right side holds the expression. The lambda expression x => x * x is read "x goes to x times x".

In the expression body, if your expression takes no parameters, you may simply specify the
expression and do not need the => lambda operator.

If your expression takes one parameters, specify the input parameter name followed by the
=> lambda operator and followed by the expression. The synopsis for use with a single input
parameter is:

expr essi on_body: i nput _par am nane => expressi on

89

Chapter 5. EPL Reference: Clauses

If your expression takes two or more parameters, specify the input parameter names in
parenthesis followed by the => lambda operator followed by the expression. The synopsis for use
with a multiple input parameter is:

expr essi on_body: (i nput _param [,input_param|[,...]]) => expression

The following example declares an expression that returns two times Pl (ratio of the circumference
of a circle to its diameter) and demonstrates its use in a select-clause:

expression twoPl { Math.Pl * 2} select twoPl () from Sanpl eEvent

The parentheses are optional when the expression accepts no parameters. The below is
equivalent to the previous example:

expression twoPl { Math.Pl * 2} select twoPl from Sanpl eEvent

The next example declares an expression that accepts one parameter: a MarketData event. The
expression computes a new "mid"” price based on the buy and sell price:

expression mdPrice { x => (x.buy + x.sell) / 2}
sel ect midPrice(nd) from MarketDat aEvent as nd

The variable name can be left off if event property names resolve without ambiguity.

This example EPL removes the variable name x:

expression mdPrice { x => (buy + sell) / 2}
sel ect midPrice(nd) from MarketDat aEvent as nd

The next example EPL specifies wildcard instead:

expression mdPrice { x => (buy + sell) / 2}
sel ect m dPrice(*) from Market Dat aEvent

A further example that demonstrates two parameters is listed next. The example joins two streams
and uses the price value from MarketDataEvent and the sentiment value of NewsEvent to compute
a weighted sentiment:

expressi on wei ghtedSentinent { (x, y) => x.price * y.sentinment }

90

Script Declaration

sel ect wei ghtedSenti nent (nd, news)
from Mar ket Dat aEvent #l ast event as nd, NewsEvent #l ast event news

Any expression can be used in the expression body including aggregations, variables, subqueries
or further declared or alias expressions. Sub-queries, when used without i n or exi st's, must be
placed within parenthesis.

An example subquery within an expression declaration is shown next:

expressi on newsSubg { nmd ->
(sel ect sentinent from NewsEvent#uni que(synbol) where synbol = nd.synbol)

}
sel ect newsSubq(ndstream
from Mar ket Dat aEvent ndstream

When using expression declarations please note these limitations:

1. Parameters to a declared expression can only be a stream name, pattern tag name or wildcard
(*)-

2. Expression declarations do not remove implicit limitations: For example, aggregation functions
cannot be used in a filter expression even if using an expression declaration.

The following scope rules apply for declared expressions:

1. The scope of the expression body of a declared expression only includes the parameters
explicitly listed. Consider using an expression alias instead.

5.2.10. Script Declaration

Esper allows the use of scripting languages within EPL. Any scripting language that supports JSR
223 and also the MVEL scripting language can be specified in EPL.

Please see Chapter 20, Script Support for more information.

5.2.11. Referring to a Context

You may refer to a context in the EPL text by specifying the cont ext keyword followed by a context
name. Context are described in more detail at Chapter 4, Context and Context Partitions

The effect of referring to a context is that your statement operates according to the context
dimensional information as declared for the context.

The synopsis is:

91

Chapter 5. EPL Reference: Clauses

cont ext context_nanme ...

You may refer to a context in all statements except for the following types of statements:

1. creat e schema for declaring event types.
2. create vari abl e for declaring a variable.
3. create i ndex for creating an index on a named window or table.

4. updat e i st reamfor updating insert stream events.

5.3. Choosing Event Properties And Events: the Select
Clause

The sel ect clause is required in all EPL statements. The sel ect clause can be used to select all
properties via the wildcard *, or to specify a list of event properties and expressions. The sel ect
clause defines the event type (event property names and types) of the resulting events published
by the statement, or pulled from the statement via the iterator methods.

The sel ect clause also offers optional i stream irstreamand rstreamkeywords to control
whether input stream, remove stream or input and remove stream events are posted to
Updat eLi st ener instances and observers to a statement. By default, the engine provides only the
insert stream to listener and observers. See Section 17.4.20, “Engine Settings related to Stream
Selection” on how to change the default.

The syntax for the sel ect clause is summarized below.

select [istream | irstream| rstrean] [distinct] * | expression_list

The i streamkeyword is the default, and indicates that the engine only delivers insert stream
events to listeners and observers. The i r st r eamkeyword indicates that the engine delivers both
insert and remove stream. Finally, the r st r eamkeyword tells the engine to deliver only the remove
stream.

The di st i nct keyword outputs only unique rows depending on the column list you have specified
after it. It must occur after the sel ect and after the optional stream keywords, as described in
more detail below.

5.3.1. Choosing all event properties: select *

The syntax for selecting all event properties in a stream is:

select * from stream def

92

Choosing specific event properties

The following statement selects StockTick events for the last 30 seconds of IBM stock ticks.
select * from StockTi ck(synbol =" 1 BM) #ti me(30 sec)

You may well be asking: Why does the statement specify a time window here? First, the statement
is meant to demonstrate the use of * wildcard. When the engine pushes statement results to your
listener and as the statement does not select remove stream events via r st r eamkeyword, the
listener receives only new events and the time window could be left off. By adding the time window
the pull API (iterator API or JDBC driver) returns the last 30 seconds of events.

The * wildcard and expressions can also be combined in a sel ect clause. The combination
selects all event properties and in addition the computed values as specified by any additional
expressions that are part of the sel ect clause. Here is an example that selects all properties
of stock tick events plus a computed product of price and volume that the statement names
‘pricevolume’:

select *, price * volunme as pricevol une from St ockTi ck

When using wildcard (*), Esper does not actually read or copy your event properties out of your
event or events, neither does it copy the event object. It simply wraps your native type in an
Event Bean interface. Your application has access to the underlying event object through the
get Under | yi ng method and has access to the property values through the get method.

In a join statement, using the sel ect * syntax selects one event property per stream to hold the
event for that stream. The property name is the stream name in the f r omclause.

5.3.2. Choosing specific event properties

To choose the particular event properties to return:

sel ect event _property [, event_property] [, ...] from stream def

The following statement simply selects the symbol and price properties of stock ticks, and the total
volume for stock tick events in a 60-second time window.

sel ect synbol, price, sun(volune) from StockTick(symbol ="1BM) #tinme(60 sec)

The following statement declares a further view onto the event stream of stock ticks: the univariate
statistics view (st at : uni). The statement selects the properties that this view derives from the
stream, for the last 100 events of IBM stock ticks in the length window.

sel ect datapoints, total, average, variance, stddev, stddevpa

93

Chapter 5. EPL Reference: Clauses

from St ockTi ck(synbol = | BM) #| engt h(100) #uni (vol une)

5.3.3. Expressions

The sel ect clause can contain one or more expressions.

sel ect expression [, expression] [, ...] from stream def

The following statement selects the volume multiplied by price for a time batch of the last 30
seconds of stock tick events.

sel ect volune * price from StockTi ck#time_batch(30 sec)

5.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

sel ect [event _property | expression] [as] identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for
the resulting column.

sel ect volume * price as vol Price from StockTick

Identifiers cannot contain the "." (dot) character, i.e. "vol.price" is not a valid identifier for the
rename syntax.

The as keyword is optional. The following EPL is therefore equivalent to above:

sel ect volunme * price volPrice from StockTi ck

5.3.5. Choosing event properties and events in a join

If your statement is joining multiple streams, your may specify property hames that are unique
among the joined streams, or use wildcard (*) as explained earlier.

In case the property hame in your sel ect or other clauses is not unique considering all joined
streams, you will need to use the name of the stream as a prefix to the property.

This example is a join between the two streams StockTick and News, respectively named as 'tick
and 'news'. The example selects from the StockTick event the symbol value using the 'tick' stream
name as a prefix:

94

Choosing event properties and events in a join

sel ect tick.synmbol from StockTick#tinme(10) as tick, News#tinme(10) as news
where news. symbol = tick. symbol

Use the wildcard (*) selector in a join to generate a property for each stream, with the property
value being the event itself. The output events of the statement below have two properties: the
‘tick' property holds the StockTick event and the 'news' property holds the News event:

select * from StockTi ck#time(10) as tick, News#tinme(10) as news

The following syntax can also be used to specify what stream's properties to select:

sel ect streamnane.* [as nane] from...

The selection of ti ck. * selects the StockTick stream events only:

select tick.* from StockTick#time(10) as tick, News#tine(1l0) as news
where tick.symbol = news. synbol

The next example uses the as keyword to name each stream's joined events. This instructs the
engine to create a property for each named event:

select tick.* as stocktick, news.* as news
from St ockTi ck#tine(10) as tick, News#tinme(10) as news
wher e stock.synbol = news. synbol

The output events of the above example have two properties 'stocktick’ and 'news' that are the
StockTick and News events.

The stream name itself, as further described in Section 5.4.5, “Using the Stream Name”, may be
used within expressions or alone.

This example passes events to a user-defined function named conput e and also shows i nsert -
i nt o to populate an event stream of combined events:

insert into TickNewStreamsel ect tick, news, M/Lib.conpute(news, tick) as result
from St ockTi ck#tinme(10) as tick, News#tine(10) as news
where tick.symbol = news.synbol

/| second statenment that uses the Ti ckNewStream stream

95

Chapter 5. EPL Reference: Clauses

select tick.price, news.text, result from Ti ckNewStream

In summary, the stream_name.* streamname wildcard syntax can be used to select a stream
as the underlying event or as a property, but cannot appear within an expression. While the
stream_name syntax (without wildcard) always selects a property (and not as an underlying
event), and can occur anywhere within an expression.

5.3.6. Choosing event properties and events from a pattern

If your statement employs pattern expressions, then your pattern expression tags events with a
tag name. Each tag name becomes available for use as a property in the sel ect clause and all
other clauses.

For example, here is a very simple pattern that matches on every StockTick event received within
30 seconds after start of the statement. The sample selects the symbol and price properties of
the matching events:

sel ect tick.synbol as synbol, tick.price as price
frompattern[every tick=StockTick where tinmer:wthin(10 sec)]

The use of the wildcard selector, as shown in the next statement, creates a property for each
tagged event in the output. The next statement outputs events that hold a single 'tick' property
whose value is the event itself:

select * frompattern[every tick=StockTick where tinmer:wi thin(10 sec)]

You may also select the matching event itself using the ti ck. * syntax. The engine outputs the
StockTick event itself to listeners:

select tick.* frompattern[every tick=StockTick where tinmer:w thin(10 sec)]

A tag name as specified in a pattern is a valid expression itself. This example uses the i nsert
i nt o clause to make available the events matched by a pattern to further statements:

/'l make a new stream of ticks and news avail abl e

insert into StockTi ckAndNews

sel ect tick, news from pattern [every ti ck=St ockTi ck ->
news=News(symbol =t i ck. synbol)]

/'l second statement to select fromthe streamof ticks and news

96

Selecting insert and remove stream events

sel ect tick.symbol, tick.price, news.text from StockTi ckAndNews

5.3.7. Selecting insert and remove Stream events

The optional i st ream i rstreamand r st r eamkeywords in the sel ect clause control the event
streams posted to listeners and observers to a statement.

If neither keyword is specified, and in the default engine configuration, the engine posts only insert
stream events via the newEvent s parameter to the updat e method of Updat eLi st ener instances
listening to the statement. The engine does not post remove stream events, by default.

The insert stream consists of the events entering the respective window(s) or stream(s) or
aggregations, while the remove stream consists of the events leaving the respective window(s) or
the changed aggregation result. See Chapter 3, Processing Model for more information on insert
and remove streams.

The engine posts remove stream events to the ol dEvent s parameter of the updat e method only
if the i r st r eamkeyword occurs in the sel ect clause. This behavior can be changed via engine-
wide configuration as described in Section 17.4.20, “Engine Settings related to Stream Selection”.

By specifying the i st r eamkeyword you can instruct the engine to only post insert stream events
via the newEvent s parameter to the updat e method on listeners. The engine will then not post
any remove stream events, and the ol dEvent s parameter is always a null value.

By specifying the i r st r eamkeyword you can instruct the engine to post both insert stream and
remove stream events.

By specifying the r st r eamkeyword you can instruct the engine to only post remove stream events
via the newEvent s parameter to the updat e method on listeners. The engine will then not post
any insert stream events, and the ol dEvent s parameter is also always a null value.

The following statement selects only the events that are leaving the 30 second time window.
sel ect rstream™* from StockTi ck#tine(30 sec)

The i st reamand r st r eamkeywords in the sel ect clause are matched by same-name keywords
available in the i nsert i nto clause. While the keywords in the sel ect clause control the event
stream posted to listeners to the statement, the same keywords in the i nsert i nt o clause specify
the event stream that the engine makes available to other statements.

5.3.8. Qualifying property names and stream names

Property or column names can optionally be qualified by a stream name and the provider URI.
The syntax is:

[[provider URI.]stream nane.]property name

97

Chapter 5. EPL Reference: Clauses

The provider_URI is the URI supplied to the EPSer vi cePr ovi der Manager class, or the string
def aul t for the default provider.

This example assumes the provider is the default provider:
sel ect MyEvent. nmyProperty from MyEvent

/[l ... equivalent to ...
sel ect default. MEvent. nyProperty from MyEvent

Stream names can also be qualified by the provider URI. The syntax is:

[provider _URI.]stream nane

The next example assumes a provider URI by name of Processor:

sel ect Processor. MyEvent. myProperty from Processor. MyEvent

5.3.9. Select bistinct

The optional di sti nct keyword removes duplicate output events from output. The keyword must
occur after the sel ect keyword and after the optional i r st r eamkeyword.

The di sti nct keyword in your sel ect instructs the engine to consolidate, at time of output, the
output event(s) and remove output events with identical property values. Duplicate removal only
takes place when two or more events are output together at any one time, therefore di sti nct
is typically used with a batch data window, output rate limiting, on-demand queries, on-select or
iterator pull API.

If two or more output event objects have same property values for all properties of the event, the
di sti nct removes all but one duplicated event before outputting events to listeners. Indexed,
nested and mapped properties are considered in the comparison, if present in the output event.

The next example outputs sensor ids of temperature sensor events, but only every 10 seconds
and only unique sensor id values during the 10 seconds:

sel ect distinct sensorld from Tenperat ureSensor Event output every 10 seconds
Use di sti nct with wildcard (*) to remove duplicate output events considering all properties of
an event.

This example statement outputs all distinct events either when 100 events arrive or when 10
seconds passed, whichever occurs first:

98

Transposing an Expression Result to a Stream

sel ect distinct * from Tenper at ureSensor Event #ti ne_| engt h_bat ch(10, 100)

When selecting nested, indexed, mapped or dynamic properties in a sel ect clause with
di stinct, it is relevant to know that the comparison uses hash code and the Java equal s
semantics.

5.3.10. Transposing an Expression Result to a Stream

For transposing an instance of a Java object returned by an expression to a stream use the
transpose function as described in Section 10.4, “Select-Clause transpose Function”.

5.3.11. Selecting EventBean instead of Underlying Event

By default, for certain select-clause expressions that output events or a collection of events, the
engine outputs the underlying event objects. With outputs we refer to the data passed to listeners,
subscribers and inserted-into into another stream via insert-into.

The select-clause expressions for which underlying event objects are output by default are:

» Event Aggregation Functions (including extension API)

e The previ ous family of single-row functions

Subselects that select events

Declared expressions and enumeration methods that operate on any of the above

To have the engine output Event Bean instance(s) instead, add @vent bean to the relevant
expressions of the sel ect -clause.

The sample EPL shown below outputs current data window contents as Event Bean instances into
the stream Qut St r eam thereby statements consuming the stream may operate on such instances:

insert into QutStream
sel ect prevw ndow(s0) @ventbean as wi n
from MyEvent #l engt h(2) as sO

The next EPL consumes the stream and selects the last event:

select win.lastOf () from Qut Stream

It is not necessary to use @vent bean if an event type by the same name (Qut Streamin the
example) is already declared and a property exist on the type by the same name (wi n in this

99

Chapter 5. EPL Reference: Clauses

example) and the type of the property is the event type (MyEvent in the example) returned by the
expression. This is further described in Section 5.10.8, “Select-Clause Expression And Inserted-
Into Column Event Type”.

5.4. Specifying Event Streams: the From Clause

The f r omclause is required in all EPL statements. It specifies one or more event streams, named
windows or tables. Each event stream, named window or table can optionally be given a name
by means of the as keyword.

fromstreamdef [as nane] [unidirectional] [retain-union | retain-
i ntersection]
[, streamdef [as streamnnane]] [, ...]

The event stream definition stream_def as shown in the syntax above can consists of either a
filter-based event stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins and the uni di recti onal
keyword are described in more detail in Section 5.12, “Joining Event Streams”. Joins are handy
when multiple streams or patterns can trigger output and outer joins can be used to union and
connect streams via or .

Esper supports joins against relational databases for access to historical or reference data as
explained in Section 5.13, “Accessing Relational Data via SQL”. Esper can also join results
returned by an arbitrary invocation, as discussed in Section 5.14, “Accessing Non-Relational Data
via Method, Script or UDF Invocation”.

The stream_name is an optional identifier assigned to the stream. The stream name can itself
occur in any expression and provides access to the event itself from the named stream. Also, a
stream name may be combined with a method name to invoke instance methods on events of
that stream.

For all streams with the exception of historical sources your query may employ data window views
as outlined below. The r et ai n-i nt er sect i on (the default) and r et ai n- uni on keywords build a
union or intersection of two or more data windows as described in Section 5.4.4, “Multiple Data
Window Views”.

5.4.1. Filter-based Event Streams

The stream_def syntax for a filter-based event stream is as below:

event _streamnane [(filter _criteria)] [contained sel ection] [#view spec]
[#view spec] [...]

The event_stream_name is either the name of an event type or name of an event stream populated
by aninsert i nto statement or the name of a named window or table.

100

Filter-based Event Streams

The filter_criteria is optional and consists of a list of expressions filtering the events of the event
stream, within parenthesis after the event stream name. Filter criteria cannot be specified for
tables.

The contained_selection is optional and is for use with coarse-grained events that have properties
that are themselves one or more events, see Section 5.19, “Contained-Event Selection” for the
synopsis and examples. Contained-event cannot be specified for tables.

The view_spec are optional view specifications, which are combinable definitions for retaining
events and for deriving information from events. Views cannot be specified for tables. Instead of
the # hash character the . dot character can also be used, however the dot character requires
the view namespace.

The following EPL statement shows event type, filter criteria and views combined in one statement.
It selects all event properties for the last 100 events of IBM stock ticks for volume. In the
example, the event type is the fully qualified Java class hame or g. esper . exanpl e. St ockTi ck.
The expression filters for events where the property synbol has a value of "IBM". The optional
view specifications for deriving data from the StockTick events are a length window and a view
for computing statistics on volume. The name for the event stream is "volumeStats".

select * from
or g. esper. exanpl e. St ockTi ck(synbol =" | BM) #| engt h(100) #uni (vol une) as
vol umeSt at s

The above is equivalent to:

select * from
org. esper. exanpl e. St ockTi ck(synbol ="' I BM). w n: | engt h(100). stat: uni (vol ume) as
vol uneSt at s

Esper filters out events in an event stream as defined by filter criteria before it sends events to
subsequent views. Thus, compared to search conditions in a wher e clause, filter criteria remove
unneeded events early. In the above example, events with a symbol other than IBM do not enter
the time window.

5.4.1.1. Specifying an Event Type
The simplest form of filter is a filter for events of a given type without any conditions on the event

property values. This filter matches any event of that type regardless of the event's properties.
The example below is such a filter.

sel ect * from com nypackage. nyevents. Rfi dEvent

101

Chapter 5. EPL Reference: Clauses

Instead of the fully-qualified Java class name any other event name can be mapped via
Configuration to a Java class, making the resulting statement more readable:

select * from Rfi dEvent

Interfaces and superclasses are also supported as event types. In the below example
| Rf i dReadabl e is an interface class.

select * fromorg. myorg.rfid.|Rfi dReadabl e

5.4.1.2. Specifying Filter Criteria

The filtering criteria to filter for events with certain event property values are placed within
parenthesis after the event type name:

select * from Rfi dEvent (cat egory="Peri shabl e")

All expressions can be used in filters, including static methods that return a boolean value:

select * from com myconpany. Rf i dEvent (MyRFI DLi b. i sl nRange(x, y) or (x < 0 and
y <0))

Filter expressions can be separated via a single comma ', '. The comma represents a logical AND
between filter expressions:

select * from Rfi dEvent (zone=1, category=10)
...is equivalent to...
select * from Rfi dEvent (zone=1 and cat egor y=10)

The following operators are highly optimized through indexing and are the preferred means of
filtering in high-volume event streams and especially in the presence of a larger number of filters
or statements:

e equals =
e notequals! =
e comparison operators < , >, >=, <=
* ranges
» use the bet ween keyword for a closed range where both endpoints are included

102

Filter-based Event Streams

» usethein keywordandround () orsquare brackets[] to control how endpoints are included
« for inverted ranges use the not keyword and the bet ween or i n keywords

« list-of-values checks using the i n keyword or the not in keywords followed by a comma-
separated list of values

« single-row functions that have been registered and are invoked via function name (see user-
defined functions) and that either return a boolean value or that have their return value compared
to a constant

 the and and or logical operators

At compile time as well as at run time, the engine scans new filter expressions for sub-expressions
that can be indexed. Indexing filter values to match event properties of incoming events enables
the engine to match incoming events faster, especially if your application creates a large number
of statements or requires many similar filters. The above list of operators represents the set of
operators that the engine can best convert into indexes. The use of comma or logical and in filter
expressions does not impact optimizations by the engine.

5.4.1.3. Filtering Ranges

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates
whether an endpoint is included or excluded. The low point and the high-point of the range are
separated by the colon : character.

« Open ranges that contain neither endpoint (| ow: hi gh)

» Closed ranges that contain both endpoints [| ow: hi gh] . The equivalent 'between' keyword also
defines a closed range.

« Half-open ranges that contain the low endpoint but not the high endpoint [| ow. hi gh)

» Half-closed ranges that contain the high endpoint but not the low endpoint (| ow: hi gh]

The next statement shows a filter specifying a range for x and y values of RFID events. The range
includes both endpoints therefore uses [] hard brackets.

nypackage. Rfi dEvent (x in [100:200], y in [0:100])

The bet ween keyword is equivalent for closed ranges. The same filter using the bet ween keyword
is:

nypackage. Rfi dEvent (x between 100 and 200, y between 0 and 50)
The not keyword can be used to determine if a value falls outside a given range:

nypackage. Rfi dEvent (x not in [0:100])

103

Chapter 5. EPL Reference: Clauses

The equivalent statement using the bet ween keyword is:

nypackage. Rfi dEvent (x not between 0 and 100)

5.4.1.4. Filtering Sets of Values

The i n keyword for filter criteria determines if a given value matches any value in a list of values.
In this example we are interested in RFID events where the category matches any of the given
values:

nypackage. Rfi dEvent (category in ('Perishable', 'Container'))

By using the not in keywords we can filter events with a property value that does not match
any of the values in a list of values:

nypackage. Rfi dEvent (category not in (' Household', 'Electrical'))

5.4.1.5. Filter Limitations

The following restrictions apply to filter criteria:

* Range and comparison operators require the event property to be of a numeric or string type.
« Aggregation functions are not allowed within filter expressions.

e The prev previous event function and the pri or prior event function cannot be used in filter
expressions.

5.4.2. Pattern-based Event Streams

Event pattern expressions can also be used to specify one or more event streams in an EPL
statement. For pattern-based event streams, the event stream definition stream_def consists of
the keyword pat t ern and a pattern expression in brackets []. The syntax for an event stream
definition using a pattern expression is below. As in filter-based event streams, an optional list of
views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view spec] [.view spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade
events. The example tags stock tick events with the name "tick" and trade events with the name
"trade".

104

Specifying Views

select * frompattern [every tick=StockTi ckEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types.
The generated events resemble a map with "tick" and "trade" keys. For stock tick events, the "tick"
key value is the underlying stock tick event, and the "trade" key value is a null value. For trade
events, the "trade" key value is the underlying trade event, and the "tick" key value is a null value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock
tick or trade events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,
sum(tick.price) + sum(trade.price) as total
frompattern [every tick=StockTi ckEvent or every trade=TradeEvent] #ti me(30 sec)

Note that in the statement above ti ckPri ce and t r adePri ce can each be null values depending
on the event processed. Therefore, an aggregation function such as sum(tick.price +
trade. price)) would always return null values as either of the two price properties are always
a null value for any event matching the pattern. Use the coal esce function to handle null values,
for example: sun{ coal esce(tick.price, 0) + coal esce(trade.price, 0)).

5.4.3. Specifying Views

Views are used to specify an expiry policy for events (data window views) and also to derive data.
Views can be staggered onto each other. See the section Chapter 14, EPL Reference: Views
on the views available that also outlines the different types of views: Data Window views and
Derived-Value views.

Views can optionally take one or more parameters. These parameters are expressions themselves
that may consist of any combination of variables, arithmetic, user-defined function or substitution
parameters for prepared statements, for example.

The example statement below outputs a count per expressway for car location events (contains
information about the location of a car on a highway) of the last 60 seconds:

sel ect expressway, count(*) from CarLocEvent#ti me(60)
group by expressway

The next example serves to show staggering of views. It uses the st d: gr oupwi n view to create
a separate length window per car id:

sel ect cardld, expressway, direction, segnent, count(*)
from Car LocEvent #gr oupwi n(car | d) # engt h(4)

105

Chapter 5. EPL Reference: Clauses

group by carld, expressway, direction, segnent

The first view st d: gr oupwi n(car | d) groups car location events by car id. The second view
wi n: | engt h(4) keeps a length window of the 4 last events, with one separate length window for
each car id. The example reports the number of events per car id and per expressway, direction
and segment considering the last 4 events for each car id only.

Note that the gr oup by syntax is generally preferable over st d: gr oupwi n for grouping information
as itis SQL-compliant, easier to read and does not create a separate data window per group. The
st d: gr oupwi n in above example creates a separate data window (length window in the example)
per group, demonstrating staggering views.

When views are staggered onto each other as a chain of views, then the insert and remove stream
received by each view is the insert and remove stream made available by the view (or stream)
earlier in the chain.

The special keep-all view keeps all events: It does not provide a remove stream, i.e. events are not
removed from the keep-all view unless by means of the on- del et e syntax or by revision events.

5.4.4. Multiple Data Window Views

Data window views provide an expiry policy that indicates when to remove events from the data
window, with the exception of the keep-all data window which has no expiry policy and the
st d: gr oupwi n grouped-window view for allocating a new data window per group.

EPL allows the freedom to use multiple data window views onto a stream and thus combine expiry
policies. Combining data windows into an intersection (the default) or a union can achieve a useful
strategy for retaining events and expiring events that are no longer of interest. Named windows,
tables and the on- del et e syntax provide an additional degree of freedom.

In order to combine two or more data window views there is no keyword required. The retain-
intersection keyword is the default and the retain-union keyword may instead be provided for a
stream.

The concept of union and intersection come from Set mathematics. In the language of Set
mathematics, two sets A and B can be "added" together: The intersection of A and B is the set of
all things which are members of both A and B, i.e. the members two sets have "in common". The
union of A and B is the set of all things which are members of either A or B.

Use the retain-intersection (the default) keyword to retain an intersection of all events as defined
by two or more data windows. All events removed from any of the intersected data windows are
entered into the remove stream. This is the default behavior if neither retain keyword is specified.

Use the retain-union keyword to retain a union of all events as defined by two or more data
windows. Only events removed from all data windows are entered into the remove stream.

The next example statement totals the price of OrderEvent events in a union of the last 30 seconds
and unigue by product name:

106

Multiple Data Window Views

sel ect sun(price) from O derEvent#tine(30 sec)#uni que(product Nane) retai n-uni on

In the above statement, all OrderEvent events that are either less then 30 seconds old or that are
the last event for the product name are considered.

Here is an example statement totals the price of OrderEvent events in an intersection of the last
30 seconds and unique by product name:

select sun(price) from OderEvent#tinme(30 sec)#unique(productNane) retain-
i ntersection

In the above statement, only those OrderEvent events that are both less then 30 seconds old and
are the last event for the product name are considered. The number of events that the engine
retains is the number of unique events per product name in the last 30 seconds (and not the
number of events in the last 30 seconds).

For an intersection the engine retains the minimal number of events representing that intersection.
Thus when combining a time window of 30 seconds and a last-event window, for example, the
number of events retained at any time is zero or one event (and not 30 seconds of events).

When combining a batch window into an intersection with another data window the combined
data window gains batching semantics: Only when the batch criteria is fulfilled does the engine
provide the batch of intersecting insert stream events. Multiple batch data windows may not be
combined into an intersection.

In below table we provide additional examples for data window intersections:

Table 5.3. Intersection Data Window Examples

Example Description

wi n:time(30)#firstuni que(keys) Retains 30 seconds of events unique per keys
value (first event per value).

wi n: firstlength(3)#firstunique(keys) Retains the first 3 events that are also unique
per keys value.

wi n: ti me_bat ch(N seconds) #uni que(keys) Posts a batch every N seconds that contains
the last of each unique event per keys value.

wi n:tinme_batch(N Posts a batch every N seconds that contains
seconds) #f i rstuni que(keys) the first of each unique event per keys value.
wi n: | engt h_bat ch(N) #uni que(keys) Posts a batch of unique events (last event per

value) when N unique events per keys value
are encountered.

107

Chapter 5. EPL Reference: Clauses

Example Description

wi n: | engt h_bat ch(N) #f i r st uni que(keys) Posts a batch of unique events (first event per
value) when N unique events per keys value
are encountered.

For advanced users and for backward compatibility, it is possible to configure Esper to
allow multiple data window views without either of the retain keywords, as described in
Section 17.4.14.3, “Configuring Multi-Expiry Policy Defaults”.

5.4.5. Using the Stream Name

Your f r omclause may assign a name to each stream. This assigned stream name can serve any
of the following purposes.

First, the stream name can be used to disambiguate property names. The
stream name. property_nane syntax uniquely identifies which property to select if property
names overlap between streams. Here is an example:

sel ect prod. productld, ord. productld fromProduct Event as prod, O derEvent as ord

Second, the stream name can be used with a wildcard (*) character to select events in a join, or
assign new names to the streams in a join:

/1 Sel ect ProductEvent only
sel ect prod.* from Product Event as prod, OrderEvent

/'l Assign colum nanmes 'product' and 'order' to each event
select prod.* as product, ord.* as order from Product Event as prod, O derEvent
as ord

Further, the stream name by itself can occur in any expression: The engine passes the event itself
to that expression. For example, the engine passes the ProductEvent and the OrderEvent to the
user-defined function 'checkOrder":

sel ect prod. productld, M/Func.checkOrder(prod, ord)
from Product Event as prod, O-derEvent as ord

Last, you may invoke an instance method on each event of a stream, and pass parameters to the
instance method as well. Instance method calls are allowed anywhere in an expression.

108

Specifying Search Conditions: the Where Clause

The next statement demonstrates this capability by invoking a method '‘computeTotal' on
OrderEvent events and a method 'getMultiplier' on ProductEvent events:

sel ect ord.conputeTotal (prod.getMultiplier()) from ProductEvent as prod,
O der Event as ord

Instance methods may also be chained: Your EPL may invoke a method on the result returned
by a method invocation.

Assume that your product event exposes a method get Zone which returns a zone object. Assume
that the Zone class declares a method checkZone. This example statement invokes a method
chain:

sel ect prod. get Zone().checkZone("zone 1") from Product Event as prod

5.5. Specifying Search Conditions: the Where Clause

The wher e clause is an optional clause in EPL statements. Via the wher e clause event streams
can be joined and correlated.

Tip

For filtering events in order to remove unwanted events, use filters as part of the
from clause as described in Section 5.4.1, “Filter-based Event Streams” or for
patterns in Section 7.4, “Filter Expressions In Patterns”.

Place expressions that remove unwanted events into parenthesis right after the
event type, like ... from OrderEvent(fraud.severity = 5 and anount >
500)There isrelated information at Section 3.4, “Filters and Where-clauses”
and Section 22.2.5, “Prefer stream-level filtering over where-clause filtering”.

Any expression can be placed in the wher e clause. Typically you would use comparison operators
= <, >, >, <=, I= <> is null, is not null and logical combinations via and and
or for joining, correlating or comparing events. The wher e clause introduces join conditions as
outlined in Section 5.12, “Joining Event Streams”.

Some examples are listed below.

...where settlenent.orderld = order.orderld

109

Chapter 5. EPL Reference: Clauses

... where exi sts (sel ect orderld from Settlement#tine(l m n) wher e
settl ement.orderld = order.orderld)

The following two EPL statements are equivalent since both queries filter events by the anount
property value and both queries do not specify a data window.

Il preferable: specify filter criteria with the "eventtype(...filters...)"
not ati on
@ane('first') select * from Wt hdrawal (amount > 200)

/1 equivalent only when there is no data w ndow
@ane(' second') select * from Wthdrawal where anount > 200

You can control whether the engine rewrites the second query to the form of the first query. If
you specify @Hint('disable_whereexpr_moveto_filter') you can instruct the engine to not move the
wher e-clause expression into the filter.

5.6. Aggregates and grouping: the Group-by Clause
and the Having Clause

5.6.1. Using aggregate functions

The aggregate functions are further documented in Section 10.2, “Aggregation Functions”. You
can use aggregate functions to calculate and summarize data from event properties.

For example, to find out the total price for all stock tick events in the last 30 seconds, type:
sel ect sun{price) from StockTi ckEvent #ti me(30 sec)

Aggregation functions do not require the use of data windows. The examples herein specify data
windows for the purpose of example. An alternative means to instruct the engine when to start
and stop aggregating and on what level to aggregate is via context declarations.

For example, to find out the total price for all stock tick events since statement start, type:
sel ect sun{price) from StockTi ckEvent

Here is the syntax for aggregate functions:

110

Using aggregate functions

aggregate_function([all | distinct] expression [,expression [,...]]
[, group_by:local _group_by] [, filter:filter_expression])

You can apply aggregate functions to all events in an event stream window or other view, or to
one or more groups of events. From each set of events to which an aggregate function is applied,
Esper generates a single value.

Expr essi on is usually an event property name. However it can also be a constant, function, or any
combination of event property names, constants, and functions connected by arithmetic operators.

You can provide a grouping dimension for each aggregation function by providing the optional
group_by parameter as part of aggregation function parameters. Please refer to Section 5.6.4,
“Specifying grouping for each aggregation function”.

You can provide a filter expression for each aggregation function by providing the optional fi | t er
parameter as part of aggregation function parameters. Please refer to Section 5.6.5, “Specifying
a filter expression for each aggregation function”.

For example, to find out the average price for all stock tick events in the last 30 seconds if the
price was doubled:

sel ect avg(price * 2) from StockTi ckEvent#ti me(30 seconds)

You can use the optional keyword di sti nct with all aggregate functions to eliminate duplicate
values before the aggregate function is applied. The optional keyword al | which performs the
operation on all events is the default.

You can use aggregation functions in a sel ect clause and in a havi ng clause. You cannot use
aggregate functions in a wher e clause, but you can use the wher e clause to restrict the events to
which the aggregate is applied. The next query computes the average and sum of the price of stock
tick events for the symbol IBM only, for the last 10 stock tick events regardless of their symbol.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent #1 engt h(10)
wher e synbol =' | BM

In the above example the length window of 10 elements is not affected by the wher e clause, i.e.
all events enter and leave the length window regardless of their symbol. If we only care about the
last 10 IBM events, we need to add filter criteria as below.

select 'IBMstats' as title, avg(price) as avgPrice, sun(price) as sunPrice
from St ockTi ckEvent (synbol =' | BM) # engt h(10)
where synbol =' | BM

111

Chapter 5. EPL Reference: Clauses

You can use aggregate functions with any type of event property or expression, with the following
exceptions:

1. You can use sum avg, nedian, stddev, avedev with numeric event properties only

Esper ignores any null values returned by the event property or expression on which the aggregate
function is operating, except for the count (*) function, which counts null values as well. All
aggregate functions return null if the data set contains no events, or if all events in the data set
contain only null values for the aggregated expression.

5.6.2. Organizing statement results into groups: the Group-by
clause

The group by clause is optional in all EPL statements. The group by clause divides the output
of an EPL statement into groups. You can group by one or more event property names, or by
the result of computed expressions. When used with aggregate functions, gr oup by retrieves the
calculations in each subgroup. You can use gr oup by without aggregate functions, but generally
that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in
the last 30 seconds:

sel ect synbol, sum(price) from StockTi ckEvent#tine(30 sec) group by synbol

The syntax of the gr oup by clause is:
group by aggregate_free_expression [, aggregate_free_expression] [, ...]
Esper places the following restrictions on expressions in the gr oup by clause:

1. Expressions in the gr oup by cannot contain aggregate functions.

2. When grouping an unbound stream, i.e. no data window is specified onto the stream providing
groups, or when using output rate limiting with the ALL keyword, you should ensure your group-
by expression does not return an unlimited number of values. If, for example, your group-by
expression is a fine-grained timestamp, group state that accumulates for an unlimited number
of groups potentially reduces available memory significantly. Use a @Hint as described below
to instruct the engine when to discard group state.

You can list more then one expression in the gr oup by clause to nest groups. Once the sets are
established with gr oup by the aggregation functions are applied. This statement posts the median
volume for all stock tick events in the last 30 seconds per symbol and tick data feed. Esper posts
one event for each group to statement listeners:

sel ect synbol, tickDataFeed, nedi an(vol une)

112

Organizing statement results into groups: the Group-by clause

from St ockTi ckEvent #ti ne(30 sec)
group by synbol, tickDataFeed

In the statement above the event properties in the sel ect list (symbol, tickDataFeed) are also
listed in the gr oup by clause. The statement thus follows the SQL standard which prescribes that
non-aggregated event properties in the sel ect list must match the group by columns.

Esper also supports statements in which one or more event properties in the sel ect list are not
listed in the group by clause. The statement below demonstrates this case. It calculates the
standard deviation since statement start over stock ticks aggregating by symbol and posting for
each event the symbol, tickDataFeed and the standard deviation on price.

sel ect synbol, tickDataFeed, stddev(price) from StockTi ckEvent group by synbol

The above example still aggregates the pri ce event property based on the synbol , but produces
one event per incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the gr oup by
clause are not listed in the sel ect list. This is an example that calculates the mean deviation per
synmbol and ti ckDat aFeed and posts one event per group with symbol and mean deviation of
price in the generated events. Since tickDataFeed is not in the posted results, this can potentially
be confusing.

sel ect synbol, avedev(price)
from St ockTi ckEvent #ti ne(30 sec)
group by synbol, tickDataFeed

Expressions are also allowed in the group by list:

sel ect synbol * price, count(*) from StockTi ckEvent#ti me(30 sec) group by synbol
* price

If the group by expression resulted in a null value, the null value becomes its own group.
All null values are aggregated into the same group. If you are using the count (expr essi on)
aggregate function which does not count null values, the count returns zero if only null values
are encountered.

You can use awher e clause in a statement with gr oup by. Events that do not satisfy the conditions
in the wher e clause are eliminated before any grouping is done. For example, the statement below
posts the number of stock ticks in the last 30 seconds with a volume larger then 100, posting one
event per group (symbol).

113

Chapter 5. EPL Reference: Clauses

sel ect synbol, count(*) fromStockTi ckEvent#ti ne(30 sec) where vol unme > 100 group
by synbol

5.6.2.1. Hints Pertaining to Group-By

The Esper engine reclaims aggregation state agressively when it determines that a group has no
data points, based on the data in the data windows. When your application data creates a large
number of groups with a small or zero number of data points then performance may suffer as state
is reclaimed and created anew. Esper provides the @1 nt (' di sabl e_recl ai m group') hint that
you can specify as part of an EPL statement text to avoid group reclaim.

When aggregating values over an unbound stream (i.e. no data window is specified onto the
stream) and when your group-by expression returns an unlimited number of values, for example
when a timestamp expression is used, then please note the next hint.

A sample statement that aggregates stock tick events by timestamp, assuming the event type
offers a property by name t i mest anp that, reflects time in high resolution, for example arrival or
system time:

I/ Note the bel ow statement could | ead to an out-of-nmenory problem
sel ect synmbol, sum(price) from StockTi ckEvent group by timestanp

As the engine has no means of detecting when aggregation state (sums per symbol) can be
discarded, you may use the following hints to control aggregation state lifetime.

The @Hint("recl ai m gr oup_aged=age_in_seconds") hint instructs the engine to discard
aggregation state that has not been updated for age_in_seconds seconds.

The optional @Hint("r ecl ai m gr oup_f r eq=sweep_frequency_in_seconds"”) can be used in
addition to control the frequency at which the engine sweeps aggregation state to determine
aggregation state age and remove state that is older then age_in_seconds seconds. If the hint is
not specified, the frequency defaults to the same value as age_in_seconds.

The updated sample statement with both hints:

/1 Instruct engine to renove state ol der then 10 seconds and sweep every 5 seconds
@i nt (' recl ai m group_aged=10, recl ai m group_freq=5")
sel ect symbol, sum(price) from StockTi ckEvent group by timestanp

Variables may also be wused to provide values for age in_seconds and
sweep_frequency_in_seconds.

114

Using Group-By with Rollup, Cube and Grouping Sets

This example statement uses a variable named var Age to control how long aggregation state
remains in memory, and the engine defaults the sweep frequency to the same value as the variable
provides:

@+ nt (' recl ai m_group_aged=var Age')
sel ect synmbol, sum(price) from StockTi ckEvent group by tinmestanp

5.6.3. Using Group-By with Rollup, Cube and Grouping Sets

EPL supports the SQL-standard r ol | up, cube and gr oupi ng sets keywords. These keywords
are available only in the group- by clause and instruct the engine to compute higher-level (or
super-aggregate) aggregation values, i.e. to perform multiple levels of analysis (groupings) at the
same time.

EPL also supports the SQL-standard gr oupi ng and gr oupi ng_i d functions. These functions can
be used in the sel ect -clause, havi ng-clause or or der by-clause to obtain information about the
current row's grouping level in expressions. Please see Section 10.1.7, “The Grouping Function”.

Detailed examples and information in respect to output rate limiting can be found in Section A.7,
“Output for Fully-Aggregated, Grouped Queries With Rollup”.

Use the rol | up keyword in the gr oup- by lists of expressions to compute the equivalent of an
OLAP dimension or hierarchy.

For example, the following statement outputs for each incoming event three rows. The first row
contains the total volume per symbol and feed, the second row contains the total volume per
symbol and the third row contains the total volume overall. This example aggregates across all
events for each aggregation level (3 groupings) since it declares no data window:

sel ect synbol, tickDataFeed, sun{volunme) from StockTi ckEvent
group by rollup(synbol, tickDataFeed)

The value of ti ckDat aFeed is nul | for the output row that contains the total per symbol and the
output row that contains the total volume overall. The value of both synbol andti ckDat aFeed is
nul | for the output row that contains the overall total.

Use the cube keyword in the gr oup- by lists of expressions to compute a cross-tabulation.

The following statement outputs for each incoming event four rows. The first row contains the total
volume per symbol and feed, the second row contains the total volume per symbol, the third row
contains the total volume per feed and the forth row contains the total volume overall (4 groupings):

sel ect synbol, tickDataFeed, sun{volune) from StockTi ckEvent
group by cube(synbol, tickDataFeed)

115

Chapter 5. EPL Reference: Clauses

The gr oupi ng set s keywords allows you to specify only the groupings you want. It can thus be
used to generate the same groupings that simple gr oup- by expressions, rol | up or cube would
produce.

In this example each incoming event causes the engine to compute two output rows: The first
row contains the total volume per symbol and the second row contains the total volume per feed
(2 groupings):

sel ect symbol, tickDataFeed, sumvolune) from StockTi ckEvent
group by grouping sets(synbol, feed)

Your gr oup- by expression can list grouping expressions and use rol | up, cube and gr oupi ng
set s keywords in addition or in combination.
This statement outputs the total per combination of symbol and feed and the total per symbol (2

groupings):

sel ect synbol, tickDataFeed, sun{volune) from StockTi ckEvent

group by synbol, rollup(tickDataFeed)

You can specify combinations of expressions by using parenthesis.

The next statement is equivalent and also outputs the total per symbol and feed and the total per

symbol (2 groupings, note the parenthesis):

sel ect synbol, tickDataFeed, sun{volune) from StockTi ckEvent
group by grouping sets ((synbol, tickDataFeed), synbol)
Use empty parenthesis to aggregate across all dimensions.

This statement outputs the total per symbol, the total per feed and the total overall (3 groupings):

sel ect synbol, tickDataFeed, sum(vol unme) from StockTi ckEvent
group by grouping sets (synbol, tickDataFeed, ())

The order of any output events for both insert and remove stream data is well-defined and exactly
as indicated before. For example, specifying groupi ng sets ((), synbol, tickDataFeed)
outputs a total overall, a total by symbol and a total by feed in that order. If the statement has an
or der - by-clause then the ordering criteria of the or der - by-clause take precedence.

You can use rol | up and cube within gr oupi ng sets.

116

Using Group-By with Rollup, Cube and Grouping Sets

This statement outputs the total per symbol and feed, the total per symbol, the total overall and
the total by feed (4 groupings):

sel ect symbol, tickDataFeed, sumvolune) from StockTi ckEvent
group by grouping sets (rollup(synbol, tickDataFeed), tickDataFeed)

j Note

= In order to use any of the rol | up, cube and groupi ng sets keywords the
statement must be fully-aggregated. All non-aggregated properties in the sel ect -
clause, havi ng-clause or or der - by-clause must also be listed in the group by
clause.

5.6.3.1. Grouping Dimension Examples

This section provides additional examples of gr oup- by-clauses and groupings or dimensions.
The examples use event properties a, b, c, d, e to keep the examples easy to read. Empty
parenthesis () stand for aggregation overall (across all dimensions).

If a statement provides no or der - by clause, its order of output events is exactly as indicated
below. Otherwise or der - by takes precedence and within the same ordering criteria the order of
output events is as indicated below.

Table 5.4.
G oup- By Clause Grouping
group by a, b, c a, b, c
group by rollup(a, b, c) a, b, c
a, b
a
0
group by a, rollup(b, c) a, b, c
a, b
a

group by rollup(a, b), rollup(c a,b,c,d

d) a, b, c
a, b
a,c,d

117

Chapter 5. EPL Reference: Clauses

G oup- By Clause Grouping

a,c
a
c,d
c

Q)

(¢}

group by cube(a, b, c)

O T T

S oo oo o
(]

~

group by cube(a, b, c, d) a,b,c,d
a, b, c
a, b, d
a, b
a,c,d
a,c
a,d

b,c,d
b, c
b, d

c,d

0

group by grouping sets(a, b, c) a

group by grouping sets((a, b) a,b
rollup(c, d)) c,d
c

0

The following table outlines sample equivalent gr oup- by-clauses.

118

Specifying grouping for each aggregation function

Table 5.5. Equivalent G oup- By-Clause Expressions

Expression ‘ Equivalent

group by a, b

group by rollup(a,
b)

group by cube(a, b)

group by grouping
sets((a, b))

group by grouping
sets((a, b), a, ())

group by grouping
sets((a, b), a, b, ())

group by a, b,
rollup(c, d)

group by rollup((a,
b), ¢)

group by grouping
sets((a))

group by grouping
sets((a, b, c, d), (a,
b, ¢), (a, b))

group by grouping
sets((a, b, ¢), (a, b),
0)

group by grouping
sets(a)

5.6.3.2. Rollup Usage Notes

The prev and pri or functions returns the previous event's property values and since they are
not aggregation functions return the same value for each grouping. Declared or alias expressions
and correlated subqueries also receive the same value for each grouping.

Context partitions operate on a higher level then rollups, i.e. rollups are never across context
partitions.

5.6.4. Specifying grouping for each aggregation function

EPL allows each aggregation function to specify its own grouping criteria. This is useful for
aggregating across multiple dimensions.

The syntax for the gr oup_by parameter for use with aggregation functions is:

group_by: ([expression [,expression [,...]]])

The group_by identifier can occur at any place within the aggregation function parameters. It
follows a colon and within parenthesis an optional list of grouping expressions. The parenthesis
are not required when providing a single expression. For grouping on the top level (overall
aggregation) please use () empty parenthesis.

The presence of gr oup_by aggregation function parameters, the grouping expressions as well
as the gr oup- by clause determine the number of output rows for queries as further described in
Section 3.7.2, “Output for Aggregation and Group-By”.

119

Chapter 5. EPL Reference: Clauses

For un-grouped queries (without a group by clause), if any aggregation function specifies a
gr oup_by other than the () overall group, the query executes as aggregated and un-grouped.

For example, the next statement is an aggregated (but not fully aggregated) and ungrouped query
and outputs various totals for each arriving event:

sel ect sun{price, group_by:()) as total PriceQverall,

sun(price, group_by:account) as total PricePerAccount,

sun(price, group_by: (account, feed)) as total PricePer Account AndFeed
from Orders

For grouped queries (with a group by clause), if all aggregation functions specifiy either
no group_by or group_by criteria that subsume the criteria in the group by clause, the
query executes as a fully-aggregated and grouped query. Otherwise the query executes as an
aggregated and grouped query.

The next example is fully-aggregated and grouped and it computes, for the last one minute of
orders, the ratio of orders per account compared to all orders:

sel ect count(*)/count(*, group_by:()) as ratio
from Orders#time(1 mn) group by account

The next example is an aggregated (and not fully-aggregated) and grouped query that in addition
outputs a count per order category:

sel ect count(*) as cnt, count(*, group_by:()) as cntOverall, count(*, group_by:
(category)) as cntPerCategory
fromOders#tinme(l mn) group by account

Please note the following restrictions:

1. Expressions in the gr oup_by cannot contain aggregate functions.

2. Hints pertaining to group-by are not available when a statement specifies aggregation functions
with gr oup_by.

3. The group_by aggregation function parameters are not available in subqueries, match-
recognize, statements that aggregate into tables using i nto tabl e or in combination with
rol | up and groupi ng sets.

5.6.5. Specifying a filter expression for each aggregation
function

EPL allows each aggregation function to specify its own filter expression. This is useful for
conditionally aggregating.

120

Selecting groups of events: the Having clause

The syntax for the fi | t er parameter for use with aggregation functions is:

filter:expression

Thefil t er identifier can occur at any place within the aggregation function parameters. It follows
a colon and the filter expression. The filter expression must return a bool ean-type value.

If a filter expression is present, the engine evaluates the filter expression to determine whether
to update the aggregation.

For example, the next statement returns the total price of small orders (price less 100), the total
price of large orders (price >= 100), as well as the events themselves of each category, considering
the last 10 seconds of orders:

sel ect
sunm(price, filter: price < 100) as smal | OrderTot al ,
sun(price, filter: price >= 100) as |argeOrderTotal,
wi ndow *, filter: price < 100) as smul | Order Events,
wi ndow(*, filter: price >= 100) as | argeOr der Events
from O ders#tine(10)

7 Note
[

Filter expression that are parameters to aggregation functions must return
reproducible results: When the expression is evaluated against the same input
values it should return the same result. Aggregation functions and subqueries are
not allowed therein.

5.6.6. Selecting groups of events: the Having clause

Use the havi ng clause to pass or reject events defined by the gr oup- by clause. The havi ng
clause sets conditions for the group by clause in the same way wher e sets conditions for the
sel ect clause, except wher e cannot include aggregate functions, while havi ng often does.

This statement is an example of a havi ng clause with an aggregate function. It posts the total
price per symbol for the last 30 seconds of stock tick events for only those symbols in which the
total price exceeds 1000. The havi ng clause eliminates all symbols where the total price is equal
or less then 1000.

sel ect synbol, sun(price)

from St ockTi ckEvent #ti ne(30 sec)
group by synbol

havi ng sum(price) > 1000

121

Chapter 5. EPL Reference: Clauses

To include more then one condition in the havi ng clause combine the conditions with and, or or
not . This is shown in the statement below which selects only groups with a total price greater then
1000 and an average volume less then 500.

sel ect symbol, sum(price), avg(vol ume)

from St ockTi ckEvent #ti ne(30 sec)

group by synbol

havi ng sum(price) > 1000 and avg(vol une) < 500

A statement with the havi ng clause should also have a group by clause. If you omit gr oup- by,
all the events not excluded by the wher e clause return as a single group. In that case havi ng acts
like a wher e except that havi ng can have aggregate functions.

The havi ng clause can also be used without gr oup by clause as the below example shows. The
example below posts events where the price is less then the current running average price of all
stock tick events in the last 30 seconds.

sel ect synbol, price, avg(price)
from St ockTi ckEvent #ti ne(30 sec)
havi ng price < avg(price)

5.6.7. How the stream filter, Where, Group By and Having
clauses interact

When you include filters, the wher e condition, the group by clause and the havi ng condition in
an EPL statement the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is
used). The filter discards any events not meeting filter criteria.

2. The wher e clause excludes events that do not meet its search condition.

3. Aggregate functions in the select list calculate summary values for each group.

4. The havi ng clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and havi ng clauses in one
statement with a sel ect clause containing an aggregate function.

sel ect tickDataFeed, stddev(price)

from St ockTi ckEvent (synbol =' | BM) #1 engt h(10)
where vol une > 1000

group by tickDat aFeed

havi ng stddev(price) > 0.8

122

Comparing Keyed Segmented Context, the Group By clause and the std:groupwin view

Esper filters events using the filter criteria for the event stream St ockTi ckEvent . In the example
above only events with symbol IBM enter the length window over the last 10 events, all other
events are simply discarded. The where clause removes any events posted by the length
window (events entering the window and event leaving the window) that do not match the
condition of volume greater then 1000. Remaining events are applied to the st ddev standard
deviation aggregate function for each tick data feed as specified in the group by clause. Each
ti ckDat aFeed value generates one event. Esper applies the havi ng clause and only lets events
pass for t i ckDat aFeed groups with a standard deviation of price greater then 0.8.

5.6.8. Comparing Keyed Segmented Context, the Group By
clause and the std:groupwin view

The keyed segmented context create context ... partition by and the group by clause as well as
the built-in std:groupwin view are similar in their ability to group events but very different in their
semantics. This section explains the key differences in their behavior and use.

The keyed segmented context as declared with create context ... partition by and context
select ... creates a new context partition per key value(s). The engine maintains separate
data window views as well as separate aggregations per context partition; thereby the keyed
segmented context applies to both. See Section 4.2.2, “Keyed Segmented Context” for additional
examples.

The group by clause works together with aggregation functions in your statement to produce an
aggregation result per group. In greater detail, this means that when a new event arrives, the
engine applies the expressions in the group by clause to determine a grouping key. If the engine
has not encountered that grouping key before (a new group), the engine creates a set of new
aggregation results for that grouping key and performs the aggregation changing that new set of
aggregation results. If the grouping key points to an existing set of prior aggregation results (an
existing group), the engine performs the aggregation changing the prior set of aggregation results
for that group.

The std:groupwin view is a built-in view that groups events into data windows. The view is
described in greater detail in Section 14.4.2, “Grouped Data Window (groupwin or std:groupwin)”.
Its primary use is to create a separate data window per group, or more generally to create separate
instances of all its sub-views for each grouping key encountered.

The table below summarizes the point:

Table 5.6. Grouping Options

Option Description

Keyed Segmented Context Separate context partition per key value.

Affects all of data windows, aggregations, patterns, etc. (except
variables which are global).

Grouped Data Window | Separate data window per key value.
(std:groupwin)

123

Chapter 5. EPL Reference: Clauses

Option Description

Affects only the data window that is declared next to it.

Group By Clause (group by) | Separate aggregation values per key value.

Affects only aggregation values.

Please review the performance section for advice related to performance or memory-use.

The next example shows queries that produce equivalent results. The query using the group by
clause is generally preferable as is easier to read. The second form introduces the st at : uni view
which computes univariate statistics for a given property:

sel ect synbol, avg(price) from StockTi ckEvent group by synbol
/Il ... is equivalent to ...
sel ect symbol, average from StockTi ckEvent #gr oupwi n(synbol) #uni (price)

The next example shows two queries that are NOT equivalent as the length window is ungrouped
in the first query, and grouped in the second query:

sel ect synbol, sum(price) from StockTi ckEvent#l engt h(10) group by symnbol
/1 ... NOT equivalent to ...
sel ect synmbol, sum(price) from StockTi ckEvent #groupw n(synbol) #l engt h(10)

The key difference between the two statements is that in the first statement the length window is
ungrouped and applies to all events regardless of group. While in the second query each group
gets its own instance of a length window. For example, in the second query events arriving for
symbol "ABC" get a length window of 10 events, and events arriving for symbol "DEF" get their
own length window of 10 events.

5.7. Stabilizing and Controlling Output: the Output
Clause

5.7.1. Output Clause Options

The out put clause is optional in Esper and is used to control or stabilize the rate at which events
are output and to suppress output events. The EPL language provides for several different ways
to control output rate.

Here is the syntax for the out put clause that specifies a rate in time interval or number of events:

out put [after suppression_def]
[[all | first | last | snapshot] every output_rate [seconds | events]]
[and when term nat ed]

124

Output Clause Options

An alternate syntax specifies the time period between output as outlined in Section 5.2.1,
“Specifying Time Periods” :

out put [after suppression_def]
[[all | first | last | snapshot] every tinme_peri od]
[and when tern nated]

A crontab-like schedule can also be specified. The schedule parameters follow the pattern
observer parameters and are further described in Section 7.6.4, “Crontab (timer:at)” :

out put [after suppression_def]

[[all | first | last | snapshot] at

(m nutes, hours, days of nonth, nonths, days of week [, seconds])]
[and when term nated]

For use with contexts, in order to trigger output only when a context partition terminates, specify
when terni nat ed as further described in Section 4.5, “Output When Context Partition Ends”:

out put [after suppression_def]

[[all | first | last | snapshot] when term nated

[and term nati on_expression]

[then set variable nane = assign_expression [, variable nanme =
assi gn_expression [,...]]]

]

Last, output can be controlled by an expression that may contain variables, user-defined functions
and information about the number of collected events. Output that is controlled by an expression
is discussed in detail below.

The after keyword and suppression_def can appear alone or together with further output
conditions and suppresses output events.

For example, the following statement outputs, every 60 seconds, the total price for all orders in
the 30-minute time window:

sel ect sunm(price) from OrderEvent#tine(30 m n) output snapshot every 60 seconds

The al | keyword is the default and specifies that all events in a batch should be output, each
incoming row in the batch producing an output row. Note that for statements that group via the
group by clause, the al I keyword provides special behavior as below.

The first keyword specifies that only the first event in an output batch is to be output. Using
the first keyword instructs the engine to output the first matching event as soon as it arrives,
and then ignores matching events for the time interval or number of events specified. After the
time interval elapsed, or the number of matching events has been reached, the next first matching

125

Chapter 5. EPL Reference: Clauses

event is output again and the following interval the engine again ignores matching events. For
statements that group via the group by clause, the first keywords provides special behavior
as below.

The | ast keyword specifies to only output the last event at the end of the given time interval or
after the given number of matching events have been accumulated. Again, for statements that
group via the group by clause the | ast keyword provides special behavior as below.

The snapshot keyword is often used with unbound streams and/or aggregation to output
current aggregation results. While the other keywords control how a batch of events between
output intervals is being considered, the snapshot keyword outputs current state of a statement
independent of the last batch. Its output is comparable to the iterat or method provided by
a statement. More information on out put snapshot can be found in Section 5.7.1.3, “Output
Snapshot”.

The output_rate is the frequency at which the engine outputs events. It can be specified in terms
of time or number of events. The value can be a number to denote a fixed output rate, or the
name of a variable whose value is the output rate. By means of a variable the output rate can be
controlled externally and changed dynamically at runtime.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert
and remove stream output for the various out put clause keywords.

For use with contexts you may append the keywords and when ter ni nat ed to trigger output at
the rate defined and in addition trigger output when the context partition terminates. Please see
Section 4.5, “Output When Context Partition Ends” for details.

The time interval can also be specified in terms of minutes; the following statement is identical
to the first one.

select * from StockTi ckEvent output every 1.5 minutes

A second way that output can be stabilized is by batching events until a certain number of events
have been collected:

select * from StockTi ckEvent output every 5 events

Additionally, event output can be further modified by the optional | ast keyword, which causes
output of only the last event to arrive into an output batch.

select * from StockTi ckEvent output |ast every 5 events

126

Output Clause Options

Using the first keyword you can be notified at the start of the interval. The allows to watch for
situations such as a rate falling below a threshold and only be informed every now and again after
the specified output interval, but be informed the moment it first happens.

select * from Ti ckRate where rate<100 output first every 60 seconds

A sample statement using the Unix "crontab"-command schedule is shown next. See
Section 7.6.4, “Crontab (timer:at)” for details on schedule syntax. Here, output occurs every 15
minutes from 8am to 5:45pm (hours 8 to 17 at 0, 15, 30 and 45 minutes past the hour):

sel ect synbol, sun{price) from StockTi ckEvent group by synbol output at
(*/15, 8:17, *, *, *)

5.7.1.1. Controlling Output Using an Expression
Output can also be controlled by an expression that may check variable values, use user-defined

functions and query built-in properties that provide additional information. The synopsis is as
follows:

out put [after suppression_def]

[[all | first | last | snapshot] when trigger_expression
[then set variable_nane = assign_expression [, variable_name
= assign_expression [,...]]1]

[and when term nated
[and term nati on_expression]
[then set variable _nane = assign_expression [, variable_name =
assi gn_expression [,...]]]

]

The when keyword must be followed by a trigger expression returning a boolean value of true
or false, indicating whether to output. Use the optional t hen keyword to change variable values
after the trigger expression evaluates to true. An assignment expression assigns a new value to
variable(s).

For use with contexts you may append the keywords and when terninated to also trigger
output when the context partition terminates. Please see Section 4.5, “Output When Context
Partition Ends” for details. You may optionally specify a termination expression. If that expression
is provided the engine evaluates the expression when the context partition terminates: The
evaluation result of t r ue means output occurs when the context partition terminates, f al se means
no output occurs when the context partition terminates. You may specify t hen set followed by a
list of assignments to assign variables. Assignments are executed on context partition termination
regardless of the termination expression, if present.

127

Chapter 5. EPL Reference: Clauses

Lets consider an example. The next statement assumes that your application has defined a
variable by name OutputTriggerVar of boolean type. The statement outputs rows only when the
OutputTriggerVar variable has a boolean value of true:

sel ect sun(price) from StockTi ckEvent out put when Qut put Tri ggerVar = true

The engine evaluates the trigger expression when streams and data views post one or more
insert or remove stream events after considering the wher e clause, if present. It also evaluates
the trigger expression when any of the variables used in the trigger expression, if any, changes
value. Thus output occurs as follows:

1. When there are insert or remove stream events and the when trigger expression evaluates to
true, the engine outputs the resulting rows.

2. When any of the variables in the when trigger expression changes value, the engine evaluates
the expression and outputs results. Result output occurs within the minimum time interval of
timer resolution.

By adding a t hen part to the EPL, we can reset any variables after the trigger expression evaluated
to true:

sel ect sun{price) from StockTi ckEvent
out put when CQut put Tri ggerVar = true
then set QutputTriggerVar = fal se

Expressions in the when and t hen may, for example, use variables, user defined functions or any
of the built-in named properties that are described in the below list.

The following built-in properties are available for use:

Table 5.7. Built-In Properties for Use with Output When

Built-In Property Name Description

| ast _out put _ti mest anp | Timestamp when the last output occurred for the statement; Initially
set to time of statement creation

count _insert Number of insert stream events

count _i nsert _tot al Number of insert stream events in total (not reset when output
occurs).

count _renove Number of remove stream events

count _renove_t ot al Number of remove stream events in total (not reset when output
occurs).

The values provided by count _i nsert and count _renmove are non-continues: The number
returned for these properties may ‘jump' up rather then count up by 1. The counts reset to zero
upon output.

128

Output Clause Options

The following restrictions apply to expressions used in the output rate clause:

« Event property names cannot be used in the output clause.
« Aggregation functions cannot be used in the output clause.

e The prev previous event function and the pri or prior event function cannot be used in the
output clause.

5.7.1.2. Suppressing Output With after

The af t er keyword and its time period or number of events parameters is optional and can occur
after the out put keyword, either alone or with output conditions as listed above.

The synopsis of af t er is as follows:

output after tine_period | nunber events [...]

When using af t er either alone or together with further output conditions, the engine discards all
output events until the time period passed as measured from the start of the statement, or until
the number of output events are reached. The discarded events are not output and do not count
towards any further output conditions if any are specified.

For example, the following statement outputs every minute the total price for all orders in the 30-
minute time window but only after 30 minutes have passed:

sel ect sun(price) from OrderEvent#tinme(30 mn) output after 30 mn snapshot
every 1 mn

An example in which aft er occur alone is below, in a statement that outputs total price for all
orders in the last minute but only after 1 minute passed, each time an event arrives or leaves
the data window:

sel ect sun(price) from OrderEvent#time(l mn) output after 1 mn

To demonstrate af t er when used with an event count, this statement find pairs of orders with the
same id but suppresses output for the first 5 pairs:

select * from pattern[every o=OrderEvent->p=COrderEvent(id=o0.id)] output after
5 events

5.7.1.3. Output Snapshot

129

Chapter 5. EPL Reference: Clauses

For fully aggregated and un-grouped statements, out put snapshot outputs a single row with
current aggregation value(s).

For aggregated ungrouped and grouped statements, as well as for unaggregated statements,
out put snapshot considers events held by the data window and outputs a row for each event. If
the statement specifies no data window or a join results in no rows, the output is no rows.

For fully aggregated and grouped statements that select from a single stream (or pattern, non-
joining) and that do not specify a data window, the engine outputs current aggregation results
for all groups. For fully aggregated and grouped statements with a join and/or data windows the
output consists of aggregation values according to events held in the data window (single stream)
or that are join results (join).

When the f r omclause lists only tables, use out put snapshot to output table contents.

5.7.2. Aggregation, Group By, Having and Output clause
Interaction

Remove stream events can also be useful in conjunction with aggregation and the out put
clause: When the engine posts remove stream events for fully-aggregated queries, it presents the
aggregation state before the expiring event leaves the data window. Your application can thus
easily obtain a delta between the new aggregation value and the prior aggregation value.

The engine evaluates the having-clause at the granularity of the data posted by views. That is, if
you utilize a time window and output every 10 events, the havi ng clause applies to each individual
event or events entering and leaving the time window (and not once per batch of 10 events).

The out put clause interacts in two ways with the group by and havi ng clauses. First, in the
output every n events case, the number n refers to the number of events arriving into the
group by cl ause. Thatis, if the gr oup by clause outputs only 1 event per group, or if the arriving
events don't satisfy the havi ng clause, then the actual number of events output by the statement
could be fewer than n.

Second, the | ast, al | and first keywords have special meanings when used in a statement
with aggregate functions and the gr oup by clause:

« When no keyword is specified, the engine produces an output row for each row in the batch
or when using group-by then an output per group only for those groups present in the batch,
following Section 3.7.2, “Output for Aggregation and Group-By”.

e The al | keyword (the default) specifies that the most recent data for all groups seen so far
should be output, whether or not these groups' aggregate values have just been updated

e Thel ast keyword specifies that only groups whose aggregate values have been updated with
the most recent batch of events should be output.

e The first keyword specifies that only groups whose aggregate values have been updated
with the most recent batch of events should be output following the defined frequency, keeping
frequency state for each group.

130

Runtime Considerations

e The snapshot keyword does not consider the recent batch and has special behavior as
discussed in Section 5.7.1.3, “Output Snapshot”.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert
and remove stream output for aggregation and group-by.

By adding an output rate limiting clause to a statement that contains a group by clause we can
control output of groups to obtain one row for each group, generating an event per group at the
given output frequency.

The next statement outputs total price per symbol cumulatively (no data window was used here).
As it specifies the al | keyword, the statement outputs the current value for all groups seen so far,
regardless of whether the group was updated in the last interval. Output occurs after an interval
of 5 seconds passed and at the end of each subsequent interval:

sel ect synbol, sun(price) from StockTi ckEvent group by synbol output all every
5 seconds

The below statement outputs total price per symbol considering events in the last 3 minutes.
When events leave the 3-minute data window output also occurs as new aggregation values are
computed. The | ast keyword instructs the engine to output only those groups that had changes.
Output occurs after an interval of 10 seconds passed and at the end of each subsequent interval:

sel ect synbol, sunm(price) from StockTi ckEvent#tine(3 mnin)
group by synbol output |ast every 10 seconds

This statement also outputs total price per symbol considering events in the last 3 minutes. The
first keyword instructs the engine to output as soon as there is a new value for a group. After
output for a given group the engine suppresses output for the same group for 10 seconds and
does not suppress output for other groups. Output occurs again for that group after the interval
when the group has new value(s):

sel ect synbol, sunm(price) from StockTi ckEvent#tine(3 min)
group by synbol output first every 10 seconds

5.7.3. Runtime Considerations

Output rate limiting provides output events to your application in regular intervals. Between
intervals, the engine may use a buffer to hold data until the output condition is reached, as
described below. If your application has high-volume streams, you may need to be mindful of the
memory needs for buffers especially if the output condition triggers infrequently.

The out put clause with the snapshot keyword does not require a buffer for any type of query.

131

Chapter 5. EPL Reference: Clauses

The out put clause with the first keyword does not require a buffer for any type of query.

We use the term change set to describe all insert and remove stream events that occur since the
last triggering of the output condition. The change set is one type of buffer as mentioned above.

You can override the default behavior for some types of queries by specifying a hint.

Please see Section 3.7.2, “Output for Aggregation and Group-By” for information on the types of
queries discussed below.

5.7.3.1. For Un-aggregated and Un-grouped Queries

5.7.3.1.1. cut put Last

For queries that define out put | ast the engine retains only the first remove stream event and
the last insert stream event, both matching the havi ng-clause, if present, to compute insert and
remove stream output when the output condition triggers.

5.7.3.1.2. cutput All

The engine by default retains the change set and computes output from the change set at the time
the output condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out put | init_opt') hint only for queries that do not have an or der by-clause:

» Upon arrival of any row the engine applies the havi ng-clause and retains only matching events,
or retains all events if there is no havi ng-clause.

« Upon triggering of the output condition the engine computes the insert and remove stream
output events according to the sel ect -clause for output.

5.7.3.2. For Fully Aggregated and Un-grouped Queries

5.7.3.2.1. cutput Last

By default, the engine retains the change set and computes output from the change set at the
time the output condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out put | i m t_opt') hint only for queries that do not have an or der by-clause:

e Upon arrival of the first row since the last triggering of the output condition the engine
computes the remove stream output event according to the sel ect -clause for later output (when
applicable).

« Upon triggering of the output condition the engine computes the insert stream output event
according to the sel ect -clause for output.

132

Runtime Considerations

5.7.3.2.2. cutput Al

The engine retains the change set and computes output from the change set at the time the output
condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out put | i m t_opt') hint only for queries that do not have an or der by-clause:

« Upon arrival of rows the engine applies the havi ng-clause and computes the insert and remove
stream output event according to the sel ect -clause for later output (when applicable).

« Upon triggering of the output condition the engine outputs the insert and remove stream output
events.

5.7.3.3. For Aggregated and Un-Grouped Queries

5.7.3.3.1. cut put Last

By default, the engine retains the change set and computes output from the change set at the
time the output condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out putlinmt_opt') hint only for queries that do not have an or der by-clause:

» Upon arrival of the first row since the last triggering of the output condition the engine computes
the insert and remove stream output event according to the havi ng-clause (if present) and the
sel ect -clause for later output (when applicable), retaining only the last computed insert and
remove stream output event.

« Upon triggering of the output condition the engine outputs the precomputed last insert stream
and remove stream output event.

5.7.3.3.2. autput Al

The engine retains the change set and computes output from the change set at the time the output
condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out putlinmit_opt') hintonly for queries that do not have an or der by-clause:

« Upon arrival of rows the engine computes the insert and remove stream output events according
to the havi ng-clause (if present) and the sel ect -clause for later output, retaining only the
computed insert and remove stream output events.

» Upon triggering of the output condition the engine outputs the retained output events.

5.7.3.4. For Fully Aggregated and Grouped Queries (Includes Rollup)

5.7.3.4.1. cutput Last

By default, the engine retains the change set and computes output from the change set at the
time the output condition triggers, after which it discards the change set.

133

Chapter 5. EPL Reference: Clauses

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out put | init_opt') hint only for queries that do not have an or der by-clause:

» Upon arrival of the first row for a given group since the last triggering of the output condition the
engine computes the remove stream output event for that group according to the sel ect -clause
for later output (when applicable), and also retains a single insert stream event per group.

» Upon triggering of the output condition the engine uses the retained insert stream events per
group to compute output events according to the sel ect -clause.

5.7.3.4.2. cutput Al

The engine retains the change set and computes output from the change set at the time the output
condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out put | i m t_opt') hint only for queries that do not have an or der by-clause:

« The engine retains, for each group, a row to represent the group.

« Upon arrival of rows the engine computes the remove stream output events according to the
havi ng-clause (if present) and the sel ect -clause for later output.

« Upon triggering of the output condition the engine computes the insert stream output events
according to the havi ng-clause (if present) and the sel ect -clause for output, for each group.

5.7.3.5. For Aggregated and Grouped Queries

5.7.3.5.1. cutput Last

By default, the engine retains the change set and computes output from the change set at the
time the output condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out put | i mi t_opt') hint only for queries that do not have an or der by-clause:

» Upon arrival of the first row for a given group since the last triggering of the output condition
the engine computes the insert and remove stream output event for that group according to the
sel ect -clause for later output (when applicable), and retains a last insert and remove stream
event per group.

« Upon triggering of the output condition the engine outputs the retained insert and remove stream
output events per group.

5.7.3.5.2. autput Al

The engine retains the change set and computes output from the change set at the time the output
condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the
@i nt (' enabl e_out put | i mt_opt') hint only for queries that do not have an or der by-clause:

134

Sorting Output: the Order By Clause

« The engine retains, for each group, a row to represent the group.

« Upon arrival of rows the engine computes the insert and remove stream output events according
to the havi ng-clause (if present) and the sel ect -clause for later output.

« Upon triggering of the output condition the engine computes insert stream output events
according to the havi ng-clause (if present) and the sel ect -clause for output for each group
that does not have output events yet, and outputs all events.

5.8. Sorting Output: the Order By Clause

The order by clause is optional. It is used for ordering output events by their properties, or by
expressions involving those properties. .

For example, the following statement outputs batches of 5 or more stock tick events that are sorted
first by price ascending and then by volume ascending:

sel ect synbol from StockTi ckEvent #ti me(60 sec)
out put every 5 events
order by price, volune

Here is the syntax for the or der by clause:
order by expression [asc | desc] [, expression [asc | desc]] [, ...]

If the or der by clause is absent then the engine still makes certain guarantees about the ordering
of output:

« If the statement is not a join, does not group via gr oup by clause and does not declare grouped
data windows via st d: gr oupwi n view, the order in which events are delivered to listeners and
through the i t er at or pull APl is the order of event arrival.

« If the statement is a join or outer join, or groups, then the order in which events are delivered
to listeners and through the i t er at or pull API is not well-defined. Use the or der by clause if
your application requires events to be delivered in a well-defined order.

Esper places the following restrictions on the expressions in the or der by clause:
1. All aggregate functions that appear in the order by clause must also appear in the sel ect
expression.

Otherwise, any kind of expression that can appear in the sel ect clause, as well as any name
defined in the sel ect clause, is also valid in the order by clause.

By default all sort operations on string values are performed via the conpar e method and are
thus not locale dependent. To account for differences in language or locale, see Section 17.4.24,
“Engine Settings related to Language and Locale” to change this setting.

135

Chapter 5. EPL Reference: Clauses

5.9. Limiting Row Count: the Limit Clause

The l'i mit clause is typically used together with the order by and out put clause to limit your
query results to those that fall within a specified range. You can use it to receive the first given
number of result rows, or to receive a range of result rows.

There are two syntaxes for the |'i mi t clause, each can be parameterized by integer constants or
by variable names. The first syntax is shown below:

limt row count [offset offset count]

The required row_count parameter specifies the number of rows to output. The row_count can be
an integer constant and can also be the name of the integer-type variable to evaluate at runtime.

The optional offset_count parameter specifies the number of rows that should be skipped (offset)
at the beginning of the result set. A variable can also be used for this parameter.

The next sample EPL query outputs the top 10 counts per property 'uri' every 1 minute.

sel ect uri, count(*) from WbEvent
group by uri

out put snapshot every 1 minute
order by count(*) desc

limt 10

The next statement demonstrates the use of the of f set keyword. It outputs ranks 3 to 10 per
property 'uri' every 1 minute:

select uri, count(*) from WbEvent
group by uri

out put snapshot every 1 mnute
order by count(*) desc

limt 8 offset 2

The second syntax for the | i mi t clause is for SQL standard compatibility and specifies the offset
first, followed by the row count:

limt offset_count[, row_ count]

The following are equivalent:

limt 8 offset 2
Il ...equivalent to

136

Merging Streams and Continuous Insertion: the Insert Into Clause

limt 2, 8

A negative value for row_count returns an unlimited number or rows, and a zero value returns
no rows. If variables are used, then the current variable value at the time of output dictates the
row count and offset. A variable returning a null value for row_count also returns an unlimited
number or rows.

A negative value for offset is not allowed. If your variable returns a negative or null value for offset
then the value is assumed to be zero (i.e. no offset).

The i terator pull APl also honors the |l i mit clause, if present.

5.10. Merging Streams and Continuous Insertion: the
Insert Into Clause

The insert into clause is optional in Esper. The clause can be specified to make the results
of a statement available as an event stream for use in further statements, or to insert events into
a named window or table. The clause can also be used to merge multiple event streams to form
a single stream of events.

The syntax for the i nsert into clause is as follows:

insert [istream| irstream| rstrean] into event_stream nane
[([property_nanme [, property_name]])]

The i st r eam(default) and r st r eamkeywords are optional. If no keyword or the i st r eamkeyword
is specified, the engine supplies the insert stream events generated by the statement. The insert
stream consists of the events entering the respective window(s) or stream(s). If the rstream
keyword is specified, the engine supplies the remove stream events generated by the statement.
The remove stream consists of the events leaving the respective window(s).

If your application specifies i r st r eam the engine inserts into the new stream both the insert and
remove stream. This is often useful in connection with the i st r eambuilt-in function that returns an
inserted/removed boolean indicator for each event, see Section 10.1.10, “The Istream Function”.

The event _st r eam nane is an identifier that names the event stream (and also implicitly names
the types of events in the stream) generated by the engine. It may also specify a named window
name or a table name. The identifier can be used in further statements to filter and process events
of that event stream, unless inserting into a table. The i nsert i nt o clause can consist of just an
event stream name, or an event stream name and one or more property names.

The engine also allows listeners to be attached to a statement that containani nsert i nt o clause.
Listeners receive all events posted to the event stream.

To merge event streams, simply use the same event _st r eam nane identifier in all EPL statements
that merge their result event streams. Make sure to use the same number and names of event
properties and event property types match up.

137

Chapter 5. EPL Reference: Clauses

Esper places the following restrictions on the i nsert i nt o clause:

1. The number of elements in the sel ect clause must match the number of elementsinthei nsert
i nt o clause if the clause specifies a list of event property names

2. If the event stream name has already been defined by a prior statement or configuration, and
the event property names and/or event types do not match, an exception is thrown at statement
creation time.

The following sample inserts into an event stream by name CombinedEvent:

insert into Conbi nedEvent
sel ect A customerld as custld, A timestanp - B.tinestanp as |atency
from Event A#tinme(30 nmin) A EventB#time(30 nin) B
where A txnld = B.txnld

Each event in the Conmbi nedEvent event stream has two event properties hamed "custld" and
"latency”. The events generated by the above statement can be used in further statements, such
as shown in the next statement:

sel ect custld, sun(latency)
from Conbi nedEvent #t i me(30 min)
group by custld

The example statement below shows the alternative form of the i nsert i nt o clause that explicitly
defines the property names to use.

insert into Conmbi nedEvent (custld, I|atency)
sel ect A custonerld, A tinmestanp - B.tinestanp

The r st reamkeyword can be useful to indicate to the engine to generate only remove stream
events. This can be useful if we want to trigger actions when events leave a window rather
then when events enter a window. The statement below generates Conbi nedEvent events when
EventA and EventB leave the window after 30 minutes.

insert rstreaminto Combi nedEvent

sel ect A custonmerld as custld, A tinestanp - B.tinestanp as |atency
from Event A#tinme(30 mn) A EventB#time(30 nmin) B

where A txnld = B.txnld

138

Transposing a Property To a Stream

The i nsert into clause can be used in connection with patterns to provide pattern results to
further statements for analysis:

insert into ReUpEvent

select linkUp.ip as ip

from pattern [every | i nkDown=Li nkDownEvent ->
I i nkUp=Li nkUpEvent (i p=l i nkDown. i p)]

5.10.1. Transposing a Property To a Stream

Sometimes your events may carry properties that are themselves event objects. Therefore EPL
offers a special syntax to insert the value of a property itself as an event into a stream:

insert into streamnane sel ect property _nane.* from...

This feature is only supported for JavaBean events and for Map and Object-array (Obj ect []) event
types that associate an event type name with the property type. It is not supported for XM events.
Nested property names are also not supported.

In this example, the class Sumary with properties bi d and ask that are of type Quot e is:

public class Summary {
private Quote bid;
private Quote ask;

The statement to populate a stream of Quot e events is thus:

insert into MyBidStream sel ect bid.* from Sunmary

5.10.2. Merging Streams By Event Type

The i nsert into clause allows to merge multiple event streams into a event single stream.
The clause names an event stream to insert into by specifing an event_stream_name. The first
statement that inserts into the named stream defines the stream's event types. Further statements
that insert into the same event stream must match the type of events inserted into the stream as
declared by the first statement.

One approach to merging event streams specifies individual colum names either in the sel ect
clause or in the i nsert i nto clause of the statement. This approach has been shown in earlier
examples.

139

Chapter 5. EPL Reference: Clauses

Another approach to merging event streams specifies the wildcard (*) in the sel ect clause (or the
stream wildcard) to select the underlying event. The events in the event stream must then have
the same event type as generated by the f r omclause.

Assume a statement creates an event stream named MergedStream by selecting OrderEvent
events:

insert into MergedStream sel ect * from O der Event
A statement can use the stream wildcard selector to select only OrderEvent events in a join:
insert into MergedStream sel ect ord.* fromltenScanEvent, O derEvent as ord

And a statement may also use an application-supplied user-defined function to convert events to
OrderEvent instances:

insert into MergedStream sel ect MyLib. convert(item) fromltenScanEvent as item

Esper specifically recognizes a conversion function as follows: A conversion function must be
the only selected column, and it must return either a Java object or j ava. uti | . Map or Qoj ect []
(object array). Your EPL should not use the as keyword to assign a column name.

5.10.3. Merging Disparate Types of Events: Variant Streams

A variant stream is a predefined stream into which events of multiple disparate event types can
be inserted.

A variant stream name may appear anywhere in a pattern or f romclause. In a pattern, a filter
against a variant stream matches any events of any of the event types inserted into the variant
stream. In a f r omclause including for named windows, views declared onto a variant stream may
hold events of any of the event types inserted into the variant stream.

A variant stream is thus useful in problems that require different types of event to be treated the
same.

Variant streams can be declared by means of creat e vari ant schema or can be predefined via
runtime or initialization-time configuration as described in Section 17.4.30, “Variant Stream”. Your
application may declare or predefine variant streams to carry events of a limited set of event types,
or you may choose the variant stream to carry any and all types of events. This choice affects
what event properties are available for consuming statements or patterns of the variant stream.

Assume that an application predefined a variant stream named O der Stream to carry only
Servi ceOrder and Product Or der events. Aninsert into clause inserts events into the variant
stream:

140

Decorated Events

insert into OrderStream select * from Servi ceOrder

insert into OrderStream sel ect * from Product Order

Here is a sample statement that consumes the variant stream and outputs a total price per
customer id for the last 30 seconds of Ser vi ceOr der and Pr oduct Or der events:

sel ect custonerld, sun(price) from O derStrean#ti me(30 sec) group by custonerld

If your application predefines the variant stream to hold specific type of events, as the sample
above did, then all event properties that are common to all specified types are visible on the variant
stream, including nested, indexed and mapped properties. For access to properties that are only
available on one of the types, the dynamic property syntax must be used. In the example above,
the cust oner I d and pri ce were properties common to both Servi ceOrder and Pr oduct Or der
events.

For example, here is a consuming statement that selects a ser vi ce dur acti on property that only
Ser vi ceOr der events have, and that must therefore be casted to double and null values removed
in order to aggregate:

sel ect custonerld, sumcoal esce(cast(servicebDuraction?, double), 0))
from Order Streantti ne(30 sec) group by custonerld

If your application predefines a variant stream to hold any type of events (the any type variance),
then all event properties of the variant stream are effectively dynamic properties.

For example, an application may define an Qut goi ngEvent s variant stream to hold any type of
event. The next statement is a sample consumer of the Qut goi ngEvent s variant stream that looks
for the desti nati on property and fires for each event in which the property exists with a value
of "email"':

sel ect * from Qutgoi ngEvents(destination = '"email")

5.10.4. Decorated Events

Yoursel ect clause may use the *' wildcard together with further expressions to populate a stream
of events. A sample statement is:

141

Chapter 5. EPL Reference: Clauses

insert into OrderStream select *, price*units as linePrice from PurchaseO der

When using wildcard and selecting additional expression results, the engine produces what is
called decorating events for the resulting stream. Decorating events add additional property values
to an underlying event.

In the above example the resulting OrderStream consists of underlying PurchaseOrder events
decorated by a | i nePri ce property that is a result of the pri ce*uni t s expression.

Inordertouseinsert into toinsertinto an existing stream of decorated events, your underlying
event type must match, and all additional decorating property hames and types of the sel ect
clause must also match.

5.10.5. Event as a Property

Your sel ect clause may use the stream name to populate a stream of events in which each event
has properties that are itself an event. A sample statement is:

insert into ConpositeStream sel ect order, service, order.price+service.price as
total Price
from Pur chaseOr der #l ast event as order, ServiceEvent#l astevent as service

When using the stream name (or tag in patterns) in the select-clause, the engine produces
composite events: One or more of the properties of the composite event are events themselves.

In the above example the resulting CompositeStream consists of 3 columns: the PurchaseOrder
event, the ServiceEvent event and the t ot al Pri ce property that is a result of the order. pri ce
+servi ce. pri ce expression.

In order to use i nsert into toinsertinto an existing stream of events in which properties are
themselves events, each event column's event type must match, and all additional property names
and types of the sel ect clause must also match.

5.10.6. Instantiating and Populating an Underlying Event Object

Yourinsert into clause may also directly instantiate and populate application underlying event
objects or Map or Qbj ect [] event objects. This is described in greater detail in Section 2.10, “Event
Objects Instantiated and Populated by Insert Into”.

If instead you have an expression that returns an event object, please read on to the next section.
5.10.7. Transposing an Expression Result

You can transpose an object returned as an expression result into a stream using the t r anspose
function as described further in Section 10.4, “Select-Clause transpose Function”.

142

Select-Clause Expression And Inserted-Into Column Event Type

5.10.8. Select-Clause Expression And Inserted-Into Column
Event Type

When you declare the inserted-into event type in advance to the statement that inserts, the engine
compares the inserted-into event type information to the return type of expressions in the select-
clause. The comparison uses the column alias assigned to each select-clause expression using
the as keyword.

When the inserted-into column type is an event type and when using a subquery or the new
operator, the engine compares column names assigned to subquery columns or new operator
columns.

For example, assume a Pur chaseOr der event type that has a property called i t ens that consists
of I t emrows:

create schema Item(name string, price double)

create schenm PurchaseOrder(orderld string, itens Iltenf])

Declare a statement that inserts into the Pur chaseOr der stream:

insert into PurchaseOrder
select '001' as orderld, new {nanme='i1l', price=10} as itens
from Tri gger Event

The alias assigned to the first and second expression in the select-clause, namely or der I d and
i tens, both match the event property names of the Pur chase O der event type. The column
names provided to the new operator also both match the event property names of the | t emevent

type.

When the event type declares the column as a single value (and not an array) and when the
select-clause expression produces a multiple rows, the engine only populate the first row.

Consider a Pur chaseOr der event type that has a property called i t emthat consists of a single
I t emevent:

create schema PurchaseOrder(orderld string, itenms Iten)

The sample subquery below populates only the very first event, discarding remaining subquery
result events, since the i t ens property above is declared as holding a single 1t emtyped event
only (versus | ten] to hold multiple | t emtyped events).

143

Chapter 5. EPL Reference: Clauses

insert into PurchaseOrder sel ect
(select "i1" as nane, 10 as price fromH storyEvent#l ength(2)) as itens
from Tri gger Event

Consider using a subquery with filter, or one of the enumeration methods to select a specific
subquery result row.

5.10.9. Insert Into for Event Types without Properties

When using insert-into and the type information for the inserted-into stream exists and the type
has no properties, specify a sel ect -clause that selects a single column of value nul | and that
provides no column name.

For example, the next EPL declares a Tri gger St r eamtype that has no event properties:
create schena TriggerStream ()

To populate events of type Tri gger St r eam let the sel ect -clause simply select nul I, like this:
insert into TriggerStreamselect null from...

This example uses a pattern to populate a Tr gger St r eamevent every 10 seconds:

insert into TriggerStreamselect null frompattern[every timer:interval (10 sec)]

5.11. Subqueries

A subquery is asel ect within another statement. Esper supports subqueriesinthe sel ect clause,
wher e clause, havi ng clause and in stream and pattern filter expressions. Subqueries provide an
alternative way to perform operations that would otherwise require complex joins. Subqueries can
also make statements more readable then complex joins.

Esper supports both simple subqueries as well as correlated subqueries. In a simple subquery,
the inner query is not correlated to the outer query. Here is an example simple subguery within
asel ect clause:

sel ect assetld, (select zone from Zoned osed#l astevent) as lastC osed from
RFI DEvent

144

Subqueries

If the inner query is dependent on the outer query, we will have a correlated subquery. An example
of a correlated subquery is shown below. Notice the wher e clause in the inner query, where the
condition involves a stream from the outer query:

select * from Rfi dEvent as RFID where 'Dock 1' =
(sel ect nane from Zones#uni que(zonel d) where zoneld = RFID. zonel d)

The example above shows a subquery in the wher e clause. The statement selects RFID events
in which the zone name matches a string constant based on zone id. The statement uses the
view st d: uni que to guarantee that only the last event per zone id is held from processing by
the subquery.

The next example is a correlated subquery within a sel ect clause. In this statement the sel ect
clause retrieves the zone name by means of a subquery against the Zones set of events correlated
by zone id:

sel ect zoneld, (select nanme from Zones#uni que(zonel d)
where zoneld = RFID. zoneld) as nane from RFI DEvent

Note that when a simple or correlated subquery returns multiple rows, the engine returns a nul |
value as the subquery result. To limit the number of events returned by a subquery consider using
one of the views st d: | ast event, st d: uni que and st d: gr oupwi n or aggregation functions or the
multi-row and multi-column selects as described below.

The sel ect clause of a subquery also allows wildcard selects, which return as an event property
the underlying event object of the event type as defined in the f r omclause. An example:

sel ect (select * from Market Dat a#l ast event) as nd
frompattern [every tinmer:interval (10 sec)]

The output events to the statement above contain the underlying MarketData event in a property
named "md". The statement populates the last MarketData event into a property named "md"
every 10 seconds following the pattern definition, or populates a nul | value if no MarketData
event has been encountered so far.

Aggregation functions may be used in the sel ect clause of the subselect as this example outlines:

sel ect * from Market Dat a
where price > (select max(price) from Market Dat a(synbol =" GOOG) #l ast event)

145

Chapter 5. EPL Reference: Clauses

As the sub-select expression is evaluated first (by default), the query above actually never fires
for the GOOG symbol, only for other symbols that have a price higher then the current maximum
for GOOG. As a sidenote, the i nsert i nto clause can also be handy to compute aggregation
results for use in multiple subqueries.

When using aggregation functions in a correlated subselect the engine computes the aggregation
based on data window (if provided), named window or table contents matching the where-clause.

The following example compares the quantity value provided by the current order event against
the total quantity of all order events in the last 1 hour for the same client.

select * from Order Event oe

where qty >
(sel ect sun(qty) from OrderEvent#tine(1l hour) pd
where pd.client = oe.client)

Filter expressions in a pattern or stream may also employ subqueries. Subqueries can be
uncorrelated or can be correlated to properties of the stream or to properties of tagged events in
a pattern. Subqueries may reference named windows and tables as well.

The following example filters Bar Dat a events that have a close price less then the last moving
average (field movAgv) as provided by stream SMA20St r eam(an uncorrelated subquery):

select * from BarData(ticker="MSFT', closePrice <
(sel ect nmovAgv from SMA20Strean(ti cker="MSFT') #l ast event))

A few generic examples follow to demonstrate the point. The examples use short event and
property names so they are easy to read. Assume A and B are streams and DNanedW ndow is a
named window, and ETabl e is a table and propertiesa_id, b_id, d_id, e_id, a_val, b_val,
d_val, e_val respectively:

/1 Sanple correl ated subquery as part of streamfilter criteria
select * fromA(a_val in
(select b_val from B#unique(b_val) as b where a.a_id = b.b_id)) as a

/1 Sanple correl ated subquery agai nst a named w ndow
select * fromA(a_val in
(sel ect d_val from DNanedW ndow as d where a.a_id = d.d_id)) as a

/1 Sample correlated subquery in the filter criteria as part of a pattern,
querying a named w ndow

146

Subqueries

select * frompattern [
a=A -> b=B(bval ue =
(select d_val from DNamedW ndow as d where d.d_id = b.b_id and d.d_id =
a.a_id))
]

/1 Sanple correl ated subquery against a table
select * fromA(a_val in
(select e _val fromETable as e where a.a_id = e.e_id)) as a

Subquery state starts to accumulate as soon as a statement starts (and not only when a pattern-
subexpression activates).

The following restrictions apply to subqueries:

1. Subqueries can only consist of a sel ect clause, a f romclause, a wher e clause, a group by
clause and a havi ng clause. Joins, outer-joins and output rate limiting are not permitted within
subqueries.

2. If using aggregation functions in a subquery, note these limitations:

a. None of the properties of the correlated stream(s) can be used within aggregation functions.
b. The properties of the subselect stream must all be within aggregation functions.

3. With the exception of subqueries against named windows and tables and subqueries that are
both uncorrelated and fully-aggregated, the subquery stream definition must define a data
window to limit subquery results, for the purpose of identifying the events held for subquery
execution.

4. The havi ng-clause, if present, requires that properties of the selected stream are aggregated
and does not allow un-aggregated properties of the selected stream. You may use the fi r st
aggregation function to obtain properties of the selected stream instead.

The order of evaluation of subqueries relative to the containing statement is guaranteed: If the
containing statement and its subqueries are reacting to the same type of event, the subquery will
receive the event first before the containing statement's clauses are evaluated. This behavior can
be changed via configuration. The order of evaluation of subqueries is not guaranteed between
subqueries.

Performance of your statement containing one or more subqueries principally depends on two
parameters. First, if your subquery correlates one or more columns in the subquery stream with
the enclosing statement's streams, the engine automatically builds the appropriate indexes for fast
row retrieval based on the key values correlated (joined). The second parameter is the number of
rows found in the subquery stream and the complexity of the filter criteria (wher e clause), as each
row in the subquery stream must evaluate against the wher e clause filter.

147

Chapter 5. EPL Reference: Clauses

5.11.1. The 'exists' Keyword

The exi st s condition is considered "to be met" if the subquery returns at least one row. The not
exi st s condition is considered true if the subquery returns no rows.

The synopsis for the exi st s keyword is as follows:

exi sts (subquery)

Let's take a look at a simple example. The following is an EPL statement that uses the exi sts
condition:

sel ect assetld from RFl DEvent as RFID
where exi sts (select * fromAsset #uni que(asset| d) where assetld = RFID. asset| d)

This select statement will return all RFID events where there is at least one event in Assets unique
by asset id with the same asset id.

5.11.2. The 'in" and 'not in' Keywords

The i n subquery condition is true if the value of an expression matches one or more of the values
returned by the subquery. Consequently, the not i n condition is true if the value of an expression
matches none of the values returned by the subquery.

The synopsis for the i n keyword is as follows:

expression in (subquery)

The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the i n subquery condition:

sel ect assetld from RFl DEvent
where zone in (select zone from ZoneUpdat e(status = 'closed')#tine(10 min))

The above statement demonstrated the i n subquery to select RFID events for which the zone
status is in a closed state.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of the i n construct will be null, not false (or true for
not - i n). This is in accordance with SQL's normal rules for Boolean combinations of null values.

148

The 'any' and 'some' Keywords

5.11.3. The 'any' and 'sore' Keywords

The any subquery condition is true if the expression returns true for one or more of the values
returned by the subquery.

The synopsis for the any keyword is as follows:

expressi on operator any (subquery)
expressi on operator sone (subquery)

The left-hand expression is evaluated and compared to each row of the subquery result using
the given operator, which must yield a Boolean result. The result of any is "true" if any true result
is obtained. The result is "false" if no true result is found (including the special case where the
subquery returns no rows).

The operator can be any of the following values: =, '=, <>, <, <=, >, >=,
The sone keyword is a synonym for any. The i n construct is equivalent to = any.
The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the any subquery condition:

select * from ProductOrder as ord
where quantity < any
(select mnimunuantity from M ni numQuanti t y#keepal |')

The above query compares ProductOrder event's quantity value with all rows from the
MinimumQuantity stream of events and returns only those ProductOrder events that have a
quantity that is less then any of the minimum quantity values of the MinimumQuantity events.

Note that if there are no successes and at least one right-hand row yields null for the operator's
result, the result of the any construct will be null, not false. This is in accordance with SQL's normal
rules for Boolean combinations of null values.

5.11.4. The 'a1' Keyword

The al | subquery condition is true if the expression returns true for all of the values returned by
the subquery.

The synopsis for the al | keyword is as follows:

expressi on operator all (subquery)

The left-hand expression is evaluated and compared to each row of the subquery result using
the given operator, which must yield a Boolean result. The result of al | is "true" if all rows yield
true (including the special case where the subquery returns no rows). The result is "false" if any

149

Chapter 5. EPL Reference: Clauses

false result is found. The result is nul | if the comparison does not return false for any row, and
it returns nul | for at least one row.

The operator can be any of the following values: =, =, <>, <, <=, >, >=
The not i n construct is equivalentto!= all.
The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the al | subquery condition:

select * from ProductOrder as ord
where quantity < all
(select mnimunuantity from M ni munQuant it y#keepal |)

The above query compares ProductOrder event's quantity value with all rows from the
MinimumQuantity stream of events and returns only those ProductOrder events that have a
quantity that is less then all of the minimum quantity values of the MinimumQuantity events.

5.11.5. Subquery With aoup By Clause

The optional gr oup by clause in subqueries works the same way as the group-by clause outside
of subqueries, except that it impacts only those aggregations within the subquery.

The following restrictions apply:

1. Expressions in the group-by clause cannot contain aggregate functions, subqueries or the pr ev
and pri or functions.

2. Subqueries only support the fully-aggregated case when using group-by: All nhon-aggregated
properties in the select clause must be listed in the group by clause.

3. The group-by expressions cannot be correlated. All properties in the gr oup by must be provided
by the subselect stream.

5.11.6. Multi-Column Selection

Your subquery may select multiple columns in the sel ect clause including multiple aggregated
values from a data window or named window or table.

The following example is a correlated subquery that selects wildcard and in addition selects the
bi d and of fer properties of the last Mar ket Dat a event for the same symbol as the arriving
O der Event :

sel ect *,
(select bid, offer from Market Dat a#uni que(synbol) as nd
where nd. synbol = oe.synbol) as bidoffer

from O der Event oe

150

Multi-Row Selection

Output events for the above query contain all properties of the original Or der Event event. In
addition each output event contains a bi dof f er nested property that itself contains the bi d
and of f er properties. You may retrieve the bid and offer from output events directly via the
bi dof f er. bi d property name syntax for nested properties.

The next example is similar to the above query but instead selects aggregations and selects
from a named window by name O der NanmedW ndow (creation not shown here). For each arriving
Or der Event it selects the total quantity and count of all order events for the same client, as
currently held by the named window:

sel ect *,
(select sun(qty) as sunPrice, count(*) as count Rows
from O der NanedW ndow as onw
where onw. client = oe.client) as pastOderTotal s
from O der Event as oe

The next EPL statement computes a prorated quantity considering the maximum and minimum
quantity for the last 1 minute of order events:

expressi on subqg {
(sel ect max(quantity) as nmaxg, mn(quantity) as mingq from O derEvent#tinme(l
min))
}
sel ect (quantity - nming) / (subqg().nmaxg - subqg().m ng) as prorated
from O der Event

Output events for the above query contain all properties of the original Or der Event event. In
addition each output event contains a past Or der Tot al s nested property that itself contains the
sunPri ce and count Rows properties.

5.11.7. Multi-Row Selection

While a subquery cannot change the cardinality of the selected stream, a subquery can return
multiple values from the selected data window or named window or table. This section shows
examples of the wi ndow aggregation function as well as the use of enumeration methods with
subselects.

Consider using an inner join, outer join or unidirectional join instead to achieve a 1-to-many
cardinality in the number of output events.

The next example is an uncorrelated subquery that selects all current ZoneEvent events
considering the last ZoneEvent per zone for each arriving RFI DEvent .

sel ect assetld,

151

Chapter 5. EPL Reference: Clauses

(sel ect window(z.*) as w nzones from ZoneEvent #uni que(zone) as z) as zones
from RFI DEvent

Output events for the above query contain two properties: the asset | d property and the zones
property. The latter property is a nested property that contains the wi nzones property. You may
retrieve the zones from output events directly via the zones. wi nzones property nhame syntax for
nested properties.

In this example for a correlated subquery against a named window we assume that the
O der NanmedW ndow has been created and contains order events. The query returns for each
Mar ket Dat a event the list of order ids for orders with the same symbol:

sel ect price,
(sel ect wi ndow(orderld) as wi norders
from O der NamedW ndow onw
where onw. synmbol = nd.synbol) as orderlds
from Mar ket Data nd

Output events for the above query contain two properties: the pri ce property and the or der | ds
property. The latter property is a nested property that contains the wi nor der s property of type
array.

Another option to reduce selected rows to a single value is through the use of enumeration
methods.

sel ect price,
(select * from O der NanedW ndow onw
where onw. synbol = nd. synbol).sel ectFronm{v => v) as ordersSynbol
from Mar ket Data nd

Output events for the above query also contain a Collection of underlying events in the
or der sSynbol property.

5.11.8. Hints Related to Subqueries

The following hints are available to tune performance and memory use of subqueries.

Use the @i nt (' set _noi ndex') hint for a statement that utilizes one or more subqueries. It
instructs the engine to always perform a full scan. The engine does not build an implicit index or
use an explicitly-created index when this hint is provided. Use of the hint may result in reduced
memory use but poor statement performance.

The following hints are available to tune performance and memory use of subqueries that select
from named windows (does not apply to tables).

152

Hints Related to Subqueries

Named windows are globally-visible data windows. As such an application may create explicit
indexes as discussed in Section 6.9, “Explicitly Indexing Named Windows and Tables”. The engine
may also elect to create implicit indexes (no create-index EPL required) for index-based lookup
of rows when executing on- sel ect, on- ner ge, on- updat e and on- del et e statements and for
statements that subquery a named window.

By default and without specifying a hint, each statement that subqueries a named window also
maintains its own index for looking up events held by the named window. The engine maintains
the index by consuming the named window insert and remove stream. When the statement is
destroyed it releases that index.

Specify the @1 nt (' enabl e_wi ndow _subquery_i ndexshare') hint to enable subquery index
sharing for named windows. When using this hint, indexes for subqueries are maintained by the
named window itself (and not each statement context partition), are shared between one or more
statements and may also utilize explicit indexes. Specify the hint once as part of the create
wi ndow statement.

This sample EPL statement creates a named window with subquery index sharing enabled:

@+ nt (' enabl e_wi ndow_subquery_i ndexshare')
create wi ndow O der sNamedW ndowt#keepal | as O der MapEvent Type

When subquery index sharing is enabled, performance may increase as named window stream
consumption is no longer needed for correlated subqueries. You may also expect reduced memory
use especially if a large number of EPL statements perform similar subqueries against a named
window. Subquery index sharing may require additional short-lived object creation and may slightly
increase lock held time for named windows.

The following statement performs a correlated subquery against the named window above. When
a settlement event arrives it select the order detail for the same order id as provided by the
settlement event:

sel ect
(select * from OrdersNamedW ndow as onw
where onw. orderld = se.orderld) as orderDetail
from Settl enment Event as se

With subquery index sharing enabled the engine maintains an index of order events by order id for
the named window, and shares that index between additional statements until the time all utilizing
statements are destroyed.

You may disable subquery index sharing for a specific statement by specifying the
@i nt (' di sabl e_wi ndow_subquery_i ndexshare') hint, as this example shows, causing the
statement to maintain its own index:

153

Chapter 5. EPL Reference: Clauses

@ nt (' di sabl e_wi ndow_subquery_i ndexshare')
sel ect
(select * from O dersNamedW ndow as onw
where onw. orderld = se.orderld) as orderDetail
from Settl enent Event as se

5.12. Joining Event Streams

5.12.1. Introducing Joins

Two or more event streams can be part of the f r omclause and thus both (all) streams determine
the resulting events. This section summarizes the important concepts. The sections that follow
present more detail on each topic.

The default join is an inner join which produces output events only when there is at least one
match in all streams.

Consider the sample statement shown next:
sel ect * from Ti ckEvent #| ast event, NewsEvent #| ast event

The above statement outputs the last TickEvent and the last NewsEvent in one output event when
either a TickEvent or a NewsEvent arrives. If no TickEvent was received before a NewsEvent
arrives, no output occurs. Similarly when no NewsEvent was received before a TickEvent arrives,
no output occurs.

The wher e-clause lists the join conditions that Esper uses to relate events in the two or more
streams.

The next example statement retains the last TickEvent and last NewsEvent per symbol, and joins
the two streams based on their symbol value:

select * from Ti ckEvent #uni que(synbol) as t, NewsEvent#uni que(synbol) as n
where t.synbol = n.synbol

As before, when a TickEvent arrives for a symbol that has no matching NewsEvent then there
iS no output event.

An outer join does not require each event in either stream to have a matching event. The full outer
join is useful when output is desired when no match is found. The different outer join types (full,
left, right) are explained in more detail below.

This example statement is an outer-join and also returns the last TickEvent and last NewsEvent
per symbol:

154

Introducing Joins

sel ect * from Ti ckEvent #uni que(synbol) as t
full outer join NewsEvent#uni que(synbol) as n on t.synmbol = n.synbol

In the sample statement above, when a TickEvent arrives for a symbol that has no matching
NewsEvent, or when a NewsEvent arrives for a symbol that has no matching TickEvent, the
statement still produces an output event with a null column value for the missing event.

Note that each of the sample queries above defines a data window. The sample queries above
use the last-event data window (std:lastevent) or the unique data window (std:unique). A data
window serves to indicate the subset of events to join from each stream and may be required
depending on the join.

In above queries, when either a TickEvent arrives or when a NewsEvent arrives then the query
evaluates and there is output. The same holds true if additional streams are added to the fr om
clause: Each of the streams in the f r omclause trigger the join to evaluate.

The uni di recti onal keyword instructs the engine to evaluate the join only when an event arrives
from the single stream that was marked with the uni di recti onal keyword. In this case no data
window should be specified for the stream marked as uni di r ect i onal since the keyword implies
that the current event of that stream triggers the join.

Here is the sample statement above with uni di recti onal keyword, so that output occurs only
when a TickEvent arrives and not when a NewsEvent arrives:

select * from TickEvent as t unidirectional, NewsEvent#uni que(synbol) as n
where t.synmbol = n.synbol

It is oftentimes the case that an aggregation (count, sum, average) only needs to be calculated
in the context of an arriving event or timer. Consider using the uni di recti onal keyword when
aggregating over joined streams.

An EPL pattern is a normal citizen also providing a stream of data consisting of pattern matches. A
time pattern, for example, can be useful to evaluate a join and produce output upon each interval.

This sample statement includes a pattern that fires every 5 seconds and thus triggers the join to
evaluate and produce output, computing an aggregated total quantity per symbol every 5 seconds:

sel ect synbol , sun(qty) from pattern[every timer:interval (5 sec)]
uni di rectional ,
Ti ckEvent #uni que(synbol) t, NewsEvent #uni que(synbol) as n
where t.synmbol = n.synbol group by synbol

Named windows as well as reference and historical data such as stored in your relational
database, and data returned by a method/script/UDF invocation, can also be included in joins as

155

Chapter 5. EPL Reference: Clauses

discussed in Section 5.13, “Accessing Relational Data via SQL” and Section 5.14, “Accessing
Non-Relational Data via Method, Script or UDF Invocation”.

Related to joins are subqueries: A subquery is a sel ect within another statement, see
Section 5.11, “Subqueries”

The engine performs extensive query analysis and planning, building internal indexes and
strategies as required to allow fast evaluation of many types of queries.

5.12.2. Inner (Default) Joins

Each point in time that an event arrives to one of the event streams, the two event streams are
joined and output events are produced according to the wher e clause when matching events are
found for all joined streams.

This example joins 2 event streams. The first event stream consists of fraud warning events for
which we keep the last 30 minutes. The second stream is withdrawal events for which we consider
the last 30 seconds. The streams are joined on account number.

sel ect fraud. account Nunber as accnt Num fraud.warning as warn, wthdraw anmount
as anount,
max(fraud.ti mestanp, withdraw.timestanp) as tinmestanp, 'wthdraw Fraud'
as desc
from com espertech. esper. exanpl e. at m Fr audWar ni ngEvent #ti ne(30 nmin) as fraud,
com espertech. esper. exanpl e. at m Wt hdrawal Event #ti me(30 sec) as withdraw
wher e fraud. account Number = wi t hdraw. account Nurrber

Joins can also include one or more pattern statements as the next example shows:

sel ect * from FraudWar ni ngEvent #ti me(30 mi n) as fraud,
pattern [every w=Wt hdrawal Event -> Pl NChangeEvent (acct=w. acct)]#l ast event
as withdraw
where fraud. account Number = wit hdraw. w. account Nurmber

The statement above joins the last 30 minutes of fraud warnings with a pattern. The pattern
consists of every withdrawal event that is followed by a PIN change event for the same account
number. It joins the two event streams on account number. The last-event view instucts the join
to only consider the last pattern match.

In a join and outer join, your statement must declare a data window view or other view onto each
stream. Streams that are marked as unidirectional and named windows and tables as well as
database or methods in a join are an exception and do not require a view to be specified. If you
are joining an event to itself via contained-event selection, views also do not need to be specified.
The reason that a data window must be declared is that a data window specifies which events are
considered for the join (i.e. last event, last 10 events, all events, last 1 second of events etc.).

156

Outer, Left and Right Joins

The next example joins all FraudWarningEvent events that arrived since the statement was
started, with the last 20 seconds of PINChangeEvent events:

sel ect * from FraudWarni ngEvent #keepal | as fraud, PINChangeEvent#time(20 sec)
as pin
where fraud. account Nunber = pin. account Nunber

The above example employed the special keep-all view that retains all events.

5.12.3. Outer, Left and Right Joins

Esper supports left outer joins, right outer joins, full outer joins and inner joins in any combination
between an unlimited number of event streams. Outer and inner joins can also join reference and
historical data as explained in Section 5.13, “Accessing Relational Data via SQL”", as well as join
data returned by a method, script or UDF invocation as outlined in Section 5.14, “Accessing Non-
Relational Data via Method, Script or UDF Invocation”.

The keywords 1 eft, right, full andinner control the type of the join between two streams.
The optional on clause specifies one or more properties that join each stream. The synopsis is
as follows:

...from stream def [as nane]

((left|right|full outer) | inner) join stream def
[on property = property [and property = property ...]]
[((left|right|[full outer) | inner) join streamdef [on ...]]...

If the outer join is a left outer join, there will be at least one output event for each event of the
stream on the left-hand side of the clause. For example, in the left outer join shown below we will
get output for each event in the stream RfidEvent, even if the event does not match any event
in the event stream OrderList.

select * from Rfi dEvent#tine(30 sec) as rfid
left outer join
Or der Li st #l engt h(10000) as orderli st
on rfid.itemd = orderList.itemd

Similarly, if the join is a Right Outer Join, then there will be at least one output event for each
event of the stream on the right-hand side of the clause. For example, in the right outer join shown
below we will get output for each event in the stream OrderList, even if the event does not match
any event in the event stream RfidEvent.

select * from Rfi dEvent#tine(30 sec) as rfid
right outer join

157

Chapter 5. EPL Reference: Clauses

Or der Li st #l engt h(10000) as orderli st
on rfid.itemd = orderList.itenmd

For all types of outer joins, if the join condition is not met, the select list is computed with the event
properties of the arrived event while all other event properties are considered to be null.

The next type of outer join is a full outer join. In a full outer join, each point in time that an event
arrives to one of the event streams, one or more output events are produced. In the example below,
when either an RfidEvent or an OrderList event arrive, one or more output event is produced. The
next example shows a full outer join that joins on multiple properties:

select * from Rfi dEvent#tine(30 sec) as rfid
full outer join
Or der Li st #l engt h(10000) as orderli st
on rfid.itemd = orderList.itemd and rfid.assetld = orderlList.assetld

The last type of join is an inner join. In an inner join, the engine produces at least one output event
for each event of the stream on the left-hand side that matches at least one event on the right
hand side considering the join properties. For example, in the inner join shown below we will get
output for each event in the RfidEvent stream that matches one or more events in the OrderList
data window:

select * fromRfidEvent#tine(30 sec) as rfid
inner join
Or der Li st #l engt h(10000) as orderli st
on rfid.itemd = orderList.itemld and rfid.assetld = orderlList.assetld

Patterns as streams in a join follow this rule: If no data window view is declared for the pattern
then the pattern stream retains the last match. Thus a pattern must have matched at least once for
the last row to become available in a join. Multiple rows from a pattern stream may be retained by
declaring a data window view onto a pattern using the pattern [...]. view_specification syntax.

This example outer joins multiple streams. Here the RfidEvent stream is outer joined to both
ProductName and LocationDescription via left outer join:

select * from RfidEvent#tine(30 sec) as rfid
| eft outer join ProductNane#keepall as refprod
on rfid.productld = refprod. prodld
I eft outer join LocationDescription#keepall as refdesc
on rfid.location = refdesc.locld

158

Unidirectional Joins

If the optional on clause is specified, it may only employ the = equals operator and property names.
Any other operators must be placed in the wher e-clause. The stream names that appear in the
on clause may refer to any stream in the f r omclause.

Your EPL may also provide no on clause. This is useful when the streams that are joined do not
provide any properties to join on, for example when joining with a time-based pattern.

The next example employs a unidirectional left outer join such that the engine, every 10 seconds,
outputs a count of the number of RfidEvent events in the 60-second time window.

sel ect count(*) from
pattern[every tinmer:interval (1)] unidirectional
left outer join
Rfi dEvent #t i me(60 sec)

5.12.4. Unidirectional Joins

In a join or outer join your statement lists multiple event streams, views and/or patterns in the f r om
clause. As events arrive into the engine, each of the streams (views, patterns) provides insert and
remove stream events. The engine evaluates each insert and remove stream event provided by
each stream, and joins or outer joins each event against data window contents of each stream,
and thus generates insert and remove stream join results.

The direction of the join execution depends on which stream or streams are currently providing an
insert or remove stream event for executing the join. A join is thus multidirectional, or bidirectional
when only two streams are joined. A join can be made unidirectional if your application does not
want new results when events arrive on a given stream or streams.

The uni di recti onal keyword can be used in the f r omclause to identify streams that provide the
events to execute the join. If the keyword is present for a stream, all other streams in the from
clause become passive streams. When events arrive or leave a data window of a passive stream
then the join does not generate join results.

For example, consider a use case that requires us to join stock tick events (TickEvent) and
news events (NewsEvent). The uni di recti onal keyword allows to generate results only when
TickEvent events arrive, and not when NewsEvent arrive or leave the 10-second time window:

select * from Ti ckEvent unidirectional, NewsEvent#tine(10 sec)
where tick. synmbol = news. synbol

Aggregation functions in a unidirectional join aggregate within the context of each
unidirectional event evaluation and are not cumulative. Thereby aggregation functions when used
with uni di rect i onal may evaluate faster as they do not need to consider a remove stream (data
removed from data windows or named windows).

159

Chapter 5. EPL Reference: Clauses

The count function in the next query returns, for each TickEvent, the number of matching
NewEvent events:

sel ect count(*) from Ti ckEvent unidirectional, NewsEvent#time(10 sec)
where tick. symbol = news. symbol

The following restrictions apply to unidirectional joins:

1. The uni directi onal keyword can only be specified for a single stream in the f r omclause,
unless all streams are in a full outer join and all streams declare uni di r ecti onal .

2. Receiving data from a unidirectional join via the pull API (i t er at or method) is not allowed.
This is because the engine holds no state for the single stream that provides the events to
execute the join.

3. The stream that declares the uni di r ect i onal keyword cannot declare a data window view or
other view for that stream, since remove stream events are not processed for the single stream.

5.12.5. Unidirectional Full Outer Joins

In a full outer join all streams can be marked as uni di recti onal . This is useful for declaring
multiple triggering events and for performing a union or merge of streams.

When marking more than one stream as unidirectional, all streams must be unidirectional and
inner, left and right joins are not allowed. This is because unidirectional streams have an undefined
depth and cannot be looked-up against.

For example, consider a use case where output should occur when either a tick event or a news
event arrives:

select * from Ti ckEvent as te unidirectional,
full outer join
NewsEvent as ne unidirectional

Place filter criteria for a given stream into parenthesis, for example:

sel ect * from Ti ckEvent (synbol =' I BM) uni directional,
full outer join
TradeEvent (synbol =" I BM) uni di recti onal
full outer join
Sett| enent Event (synbol =' I BM) uni directi onal
wher e coal esce(Ti ckEvent. price, TradeEvent. price) > 100 // place conmon critera
into a where-clause that may use coal esce

160

Hints Related to Joins

5.12.6. Hints Related to Joins

When joining 3 or more streams (including any relational or non-relational sources as below) it
can sometimes help to provide the query planner instructions how to best execute the join. The
engine compiles a query plan for the EPL statement at statement creation time. You can output
the query plan to logging (see configuration).

An outer join that specifies only i nner keywords for all streams is equivalent to an default (inner)
join. The following two statements are equivalent:

sel ect * from Ti ckEvent #] ast event,
NewsEvent #| ast event where tick. synbol = news. symnbol

Equivalent to:

select * from Ti ckEvent #| ast event
i nner join NewsEvent#|l ast event on tick.synbol = news.synbol

For all types of joins, the query planner determines a query graph: The term is used here for all
the information regarding what properties or expressions are used to join the streams. The query
graph thus includes the where-clause expressions as well as outer-join on-clauses if this statement
is an outer join. The query planner also computes a dependency graph which includes information
about all historical data streams (relational and non-relational as below) and their input needs.

For default (inner) joins the query planner first attempts to find a path of execution as a nested
iteration. For each stream the query planner selects the best order of streams available for the
nested iteration considering the query graph and dependency graph. If the full depth of the join
is achievable via nested iteration for all streams without full table scan then the query planner
uses that nested iteration plan. If not, then the query planner re-plans considering a merge join
(Cartesian) approach instead.

Specify the @Hint('prefer_merge_join') to instruct the query planner to prefer a merge join plan
instead of a nested iteration plan. Specify the @Hint('force_nested_iter") to instruct the query
planner to always use a nested iteration plan.

For example, consider the below statement. Depending on the number of matching rows in
OrderBookOne and OrderBookTwo (named windows in this example, and assumed to be defined
elsewhere) the performance of the join may be better using the merge join plan.

@i nt (' prefer_nerge_join')
select * from Ti ckEvent #| ast event t,
Or der BookOne obl, O der BookOne ob2
where obl.synbol = t.synbol and ob2.synmbol = t.synbol

161

Chapter 5. EPL Reference: Clauses

and obl.price between t.buy and t.sell and ob2.price between t.buy and t.sell

For outer joins the query planner considers nested iteration and merge join (Cartesian) equally
and above hints don't apply.

5.13. Accessing Relational Data via SQL

For NEsper .NET also see Section H.13, “.NET Accessing Relational Data via SQL".

This chapter outlines how reference data and historical data that are stored in a relational database
can be queried via SQL within EPL statements.

Esper can access via join and outer join as well as via iterator (poll) API all types of event streams
to stored data. In order for such data sources to become accessible to Esper, some configuration is
required. The Section 17.4.11, “Relational Database Access” explains the required configuration
for database access in greater detail, and includes information on configuring a query result cache.

Esper does not parse or otherwise inspect your SQL query. Therefore your SQL can make use of
any database-specific SQL language extensions or features that your database provides.

If you have enabled query result caching in your Esper database configuration, Esper retains SQL
query results in cache following the configured cache eviction policy.

Also if you have enabled query result caching in your Esper database configuration and provide
EPL wher e clause and/or on clause (outer join) expressions, then Esper builds indexes on the
SQL query results to enable fast lookup. This is especially useful if your queries return a large
number of rows. For building the proper indexes, Esper inspects the expression found in your EPL
query wher e clause, if present. For outer joins, Esper also inspects your EPL query on clause.
Esper analyzes the EPL on clause and wher e clause expressions, if present, looking for property
comparison with or without logical AND-relationships between properties. When a SQL query
returns rows for caching, Esper builds and caches the appropriate index and lookup strategies
for fast row matching against indexes.

Joins or outer joins in which only SQL statements or method, script and UDF invocations are
listed in the fromclause and no other event streams are termed passive joins. A passive join
does not produce an insert or remove stream and therefore does not invoke statement listeners
with results. A passive join can be iterated on (polled) using a statement's saf el t erat or and
i terator methods.

There are no restrictions to the number of SQL statements or types of streams joined. The
following restrictions currently apply:

* Sub-views on an SQL query are not allowed; That is, one cannot create a time or length window
on an SQL query. However one can use the i nsert i nt o syntax to make join results available
to a further statement.

162

Joining SQL Query Results

» Your database software must support JDBC prepared statements that provide statement meta
data at compilation time. Most major databases provide this function. A workaround is available
for databases that do not provide this function.

» JDBC drivers must support the getMetadata feature. A workaround is available as below for
JDBC drivers that don't support getting metadata.

The next sections assume basic knowledge of SQL (Structured Query Language).

5.13.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of
the database and a parameterized SQL query. The syntax to use in the f romclause of an EPL
statement is:

sql : dat abase_nane [" paraneterized_sql _query "]

The engine uses the database name identifier to obtain configuration information in order to
establish a database connection, as well as settings that control connection creation and removal.
Please see Section 17.4.11, “Relational Database Access” to configure an engine for database
access.

Following the database name is the SQL query to execute. The SQL query can contain one or
more substitution parameters. The SQL query string is placed in single brackets [and] . The SQL
query can be placed in either single quotes (') or double quotes (*). The SQL query grammer is
passed to your database software unchanged, allowing you to write any SQL query syntax that
your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${ expression} . The engine resolves
expression at statement execution time to the actual expression result by evaluating the events
in the joined event stream or current variable values, if any event property references or variables
occur in the expression. An expression may not contain EPL substitution parameters.

The engine determines the type of the SQL query output columns by means of the result set
metadata that your database software returns for the statement. The actual query results are
obtained via the get Obj ect onj ava. sql . Resul t Set .

The sample EPL statement below joins an event stream consisting of Cust oner Cal | Event events
with the results of an SQL query against the database named MyCust omer DB and table Cust omrer :

sel ect custld, cust_nane from CustonerCal | Event,
sql : MyCustoner DB [' sel ect cust_name from Cust oner where cust_id = ${custld} ']

The example above assumes that Cust oner Cal | Event supplies an event property named
custld. The SQL query selects the customer name from the Customer table. The where
clause in the SQL matches the Customer table column cust _id with the value of custld

163

Chapter 5. EPL Reference: Clauses

in each CustonerCal | Event event. The engine executes the SQL query for each new
Cust oner Cal | Event encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event.
Else the engine generates one output event for each row returned by the SQL query. An outer
join as described in the next section can be used to control whether the engine should generate
output events even when the SQL query returns no rows.

The next example adds a time window of 30 seconds to the event stream Cust oner Cal | Event . It
also renames the selected properties to customerName and customerld to demonstrate how the
naming of columns in an SQL query can be used in the sel ect clause in the EPL query. And the
example uses explicit stream names via the as keyword.

sel ect custonerld, custonmerName from
Cust oner Cal | Event #ti ne(30 sec) as cce,
sql : MyCustonmerDB ["sel ect cust_id as custonerld, cust_nane as custoner Nane
from Cust omer
where cust_id = ${cce.custld}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events
enter the window, and remove stream (rstream) events as events leave the window. The engine
executes the given SQL query for each Cust omer Cal | Event in both the insert stream and the
remove stream. As a performance optimization, the i st r eamor r st r eamkeywords in the sel ect
clause can be used to instruct the engine to only join insert stream or remove stream events,
reducing the number of SQL query executions.

Since any expression may be placed within the ${. ..} syntax, you may use variables or user-
defined functions as well.

The next example assumes that a variable by name var Lower Li ni t is defined and that a user-
defined function get Li ni t exists on the MyLi b imported class that takes a Li nit Event as a
parameter:

select * fromLimtEvent |e,
sql : MyCustoner DB [' sel ect cust_nane from Custoner where
amount > ${nmax(varLowerLimt, MyLib.getLimt(le))} ']

The example above takes the higher of the current variable value or the value returned by the user-
defined function to return only those customer names where the amount exceeds the computed
limit.

5.13.2. SQL Query and the EPL were Clause

Consider using the EPL wher e clause to join the SQL query result to your event stream. Similar
to EPL joins and outer-joins that join event streams or patterns, the EPL wher e clause provides

164

SQL Query and the EPL Where Clause

join criteria between the SQL query results and the event stream (as a side note, an SQL wher e
clause is a filter of rows executed by your database on your database server before returning
SQL query results).

Esper analyzes the expression in the EPL wher e clause and outer-join on clause, if present, and
builds the appropriate indexes from that information at runtime, to ensure fast matching of event
stream events to SQL query results, even if your SQL query returns a large number of rows. Your
applications must ensure to configure a cache for your database using Esper configuration, as
such indexes are held with regular data in a cache. If you application does not enable caching of
SQL query results, the engine does not build indexes on cached data.

The sample EPL statement below joins an event stream consisting of Or der Event events with the
results of an SQL query against the database named MyRef DB and table Synbol Ref er ence:

sel ect synbol, synbol Desc from Order Event as orders,
sql : MyRef DB [' sel ect synbol Desc from Symbol Ref erence'] as reference
where reference. synbol = orders. synbol

Notice how the EPL wher e clause joins the Or der Event stream to the Synbol Ref er ence table.
In this example, the SQL query itself does not have a SQL wher e clause and therefore returns
all rows from table Synbol Ref er ence.

If your application enables caching, the SQL query fires only at the arrival of the first O der Event
event. When the second Or der Event arrives, the join execution uses the cached query result. If
the caching policy that you specified in the Esper database configuration evicts the SQL query
result from cache, then the engine fires the SQL query again to obtain a new result and places
the result in cache.

If SQL result caching is enabled and your EPL wher e clause, as show in the above example,
provides the properties to join, then the engine indexes the SQL query results in cache and retains
the index together with the query result in cache. Thus your application can benefit from high
performance index-based lookups as long as the SQL query results are found in cache.

The SQL result caches operate on the level of all result rows for a given parameter set. For
example, if your query returns 10 rows for a certain set of parameter values then the cache treats
all 10 rows as a single entry keyed by the parameter values, and the expiry policy applies to all
10 rows and not to each individual row.

It is also possible to join multiple autonomous database systems in a single query, for example:

sel ect symbol, synbol Desc from O der Event as orders,
sql: M/_Oracl e_DB ['sel ect symbol Desc from Synbol Ref erence'] as reference,
sql : My_MWSQ._DB ['select orderList fromorderHi story'] as history
where reference. synbol = orders. synbol
and hi story. synbol = orders. synbol

165

Chapter 5. EPL Reference: Clauses

5.13.3. Outer Joins With SQL Queries

You can use outer joins to join data obtained from an SQL query and control when an event is
produced. Use a left outer join, such as in the next statement, if you need an output event for each
event regardless of whether or not the SQL query returns rows. If the SQL query returns no rows,
the join result populates null values into the selected properties.

sel ect custld, custName from
Cust oner Cal | Event as cce
left outer join
sqgl : MyCust oner DB ["sel ect cust_id, cust_nane as cust Name
from Custoner where cust_id = ${cce.custld}"] as cq
on cce.custld = cqg.cust_id

The statement above always generates at least one output event for each Cust oner Cal | Event,
containing all columns selected by the SQL query, even if the SQL query does not return any
rows. Note the on expression that is required for outer joins. The on acts as an additional filter
to rows returned by the SQL query.

5.13.4. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can also be applied together in useful ways. One such use
is to poll or request data from a database at regular intervals or following the schedule of the
crontab-like ti mer: at .

The next statement is an example that shows a pattern that fires every 5 seconds to query the
NewOrder table for new orders:

insert into NewOrders
sel ect orderld, orderAmount from
pattern [every tiner:interval (5 sec)],
sql : MyCustoner DB [' sel ect orderld, orderAmunt from NewOrders']

5.13.5. Polling SQL Queries via Iterator

Usually your SQL query will take part in a join and thus be triggered by an event or pattern
occurrence. Instead, your application may need to poll a SQL query and thus use Esper query
execution and caching facilities and obtain event data and metadata.

Your EPL statement can specify an SQL statement without a join. Such a stand-alone SQL
statement does not post new events, and may only be queried via the i t er at or poll API. Your
EPL and SQL statement may still use variables.

166

JDBC Implementation Overview

The next statement assumes that a pri ce_var variable has been declared. It selects from the
relational database table named NewOr der all rows in which the pri ce column is greater then the
current value of the pri ce_var EPL variable:

select * from sqgl: M/CustonerDB ['select * from NewOrder where ${price_var} >
price']

Usetheiterator andsafelterator methods on EPSt at enent to obtain results. The statement
does not post events to listeners, it is strictly passive in that sense.

5.13.6. JDBC Implementation Overview

The engine translates SQL queries into JDBC j ava. sql . Prepar edSt at enent statements by
replacing ${name} parameters with '?* placeholders. It obtains name and type of result columns
from the compiled Pr epar edSt at enent meta data when the EPL statement is created.

The engine supplies parameters to the compiled statement via the set Obj ect method on
Pr epar edSt at ement . The engine uses the get Gbj ect method on the compiled statement
Pr epar edSt at enent to obtain column values.

5.13.7. Oracle Drivers and No-Metadata Workaround

Certain JDBC database drivers are known to not return metadata for precompiled prepared SQL
statements. This can be a problem as metadata is required by Esper. Esper obtains SQL result
set metadata to validate an EPL statement and to provide column types for output events. JDBC
drivers that do not provide metadata for precompiled SQL statements require a workaround. Such
drivers do generally provide metadata for executed SQL statements, however do not provide the
metadata for precompiled SQL statements.

Please consult the Chapter 17, Configuration for the configuration options available in relation to
metadata retrieval.

To obtain metadata for an SQL statement, Esper can alternatively fire a SQL statement which
returns the same column names and types as the actual SQL statement but without returning
any rows. This kind of SQL statement is referred to as a sample statement in below workaround
description. The engine can then use the sample SQL statement to retrieve metadata for the
column names and types returned by the actual SQL statement.

Applications can provide a sample SQL statement to retrieve metadata via the net adat asq|l
keyword:

sql : dat abase_nane ["paraneterized_sqgl _query" netadatasql "sql _neta_query"]

The sql_meta_query must be an SQL statement that returns the same number of columns, the
same type of columns and the same column names as the parameterized_sql_query, and does
not return any rows.

167

Chapter 5. EPL Reference: Clauses

Alternatively, applications can choose not to provide an explicit sample SQL statement. If the EPL
statement does not use the net adat asql syntax, the engine applies lexical analysis to the SQL
statement. From the lexical analysis Esper generates a sample SQL statement adding a restrictive
clause "where 1=0" to the SQL statement.

Alternatively, you can add the following tag to the SQL statement: ${ $ESPER- SAMPLE- WHERE} .
If the tag exists in the SQL statement, the engine does not perform lexical analysis and simply
replaces the tag with the SQL wher e clause "where 1=0". Therefore this workaround is applicable
to SQL statements that cannot be correctly lexically analyzed. The SQL text after the placeholder
is not part of the sample query. For example:

sel ect mycol fromsql:nyDB [
"select nmycol from nytesttabl e ${ $ESPER- SAMPLE- WHERE} where'],

If your parameterized_sql_query SQL query contains vendor-specific SQL syntax, generation of
the metadata query may fail to produce a valid SQL statement. If you experience an SQL error
while fetching metadata, use any of the above workarounds with the Oracle JDBC driver.

5.13.8. SQL Input Parameter and Column Output Conversion

As part of database access configuration you may optionally specify SQL type mappings. These
mappings apply to all queries against the same database identified by name.

If your application must perform SQL-query-specific or EPL-statement-specific mapping or
conversion between types, the facility to register a conversion callback exists as follows.

Use the @iook instruction and HookType. SQLCOL as part of your EPL statement text
to register a statement SQL parameter or column conversion hook. Implement the
interface com espert ech. esper. cli ent. hook. SQLCol umTypeConver si on to perform the input
parameter or column value conversion.

A sample statement with annotation is shown:

@Hook(t ype=HookType. SQLCOL, hook=" MyDBTypeConvertor')
select * fromsql: WDB ['select * from M/Event Tabl e]

The engine expects MyDBTypeConvert or to resolve to a class (considering engine imports) and
instantiates one instance of MyDBTypeConvertor for each statement.

5.13.9. SQL Row POJO Conversion

Your application may also directly convert a SQL result row into a Java class which is an
opportunity for your application to interrogate and transform the SQL row result data freely before
packing the data into a Java class. Your application can additionally indicate to skip SQL result
rows.

168

Accessing Non-Relational Data via Method, Script or UDF Invocation

Use the @iook instruction and HookType. SQLROW as part of your EPL statement text
to register a statement SQL output row conversion hook. Implement the interface
com espertech. esper. client. hook. SQLQut put RowConver si on to perform the output row
conversion.

A sample statement with annotation is shown:

@Hook(t ype=HookType. SQLROWN hook="MyDBRowConvertor')
select * fromsql: MWDB ['select * from MyEvent Tabl €]

The engine expects MyDBRowConver t or to resolve to a class (considering engine imports) and
instantiates one MyDBRowConvertor instance for each statement.

5.14. Accessing Non-Relational Data via Method, Script
or UDF Invocation

Your application may need to join data that originates from a web service, a distributed cache, an
object-oriented database or simply data held in memory by your application. One way to join in
external data is by means of method, script or user-defined function invocation (or procedure call
or function) in the f r omclause of a statement.

The results of such a method, script or UDF invocation in the f r omclause plays the same role as
a relational database table in an inner and outer join in SQL.

Esper can join and outer join an unlimited number and all types of event streams to the data
returned by your invocation. In addition, Esper can be configured to cache the data returned by
your method, script or UDF invocations.

Joins or outer joins in which only SQL statements or method, script or UDF invocations are listed
in the fromclause and no other event streams are termed passive joins. A passive join does
not produce an insert or remove stream and therefore does not invoke statement listeners with
results. A passive join can be iterated on (polled) using a statement'ssaf el t erat or andi t er at or
methods.

The following restrictions currently apply:

» Sub-views on invocations are not allowed; That is, one cannot create a time or length window
on an invocation. However one can use the i nsert i nt o syntax to make join results available
to a further statement.

5.14.1. Joining Method, Script or UDF Invocation Results

The syntax for a method, script or UDF invocation in the f r omclause of an EPL statement is:

169

Chapter 5. EPL Reference: Clauses

met hod:
[cl ass_or_variabl e_nane.] met hod_scri pt _udf _nane[(par anet er _expr essi ons) |
[@ype(eventtype_ nane)]

The met hod keyword denotes a method, script or UDF invocation. It is followed by an optional class
or variable name. The method_script_udf_name is the name of the method, script or user-defined
function. If you have parameters to your method, script or UDF invocation, these are placed in
parentheses after the method or script name. Any expression is allowed as a parameter, and
individual parameter expressions are separated by a comma. Expressions may also use event
properties of the joined stream.

In case the return type of the method is Event Bean instances, you must provide the @ ype
annotation to name the event type of events returned. Otherwise @ ype is not allowed.

In the sample join statement shown next, the method | ookupAsset provided by class (or variable)
MyLookupLi b returns one or more rows based on the asset id (a property of the Asset MoveEvent)
that is passed to the method:

select * from Asset MoveEvent, nethod: MyLookupLi b. | ookupAsset (asset | d)

The following statement demonstrates the use of the wher e clause to join events to the rows
returned by an invocation, which in this example does not take parameters:

sel ect assetld, assetDesc from Asset MoveEvent as asset,
met hod: MyLookuplLi b. get Asset Descri ptions() as desc
where asset.assetid = desc. assetid

Your method, scipt or UDF invocation may return zero, one or many rows for each invocation. If
you have caching enabled through configuration, then Esper can avoid the invocation and instead
use cached results. Similar to SQL joins, Esper also indexes cached result rows such that join
operations based on the wher e clause or outer-join on clause can be very efficient, especially if
your invocation returns a large number of rows.

If the time taken by method, script or UDF invocations is critical to your application, you may
configure local caches as Section 17.4.9, “Cache Settings for From-Clause Method Invocations”
describes.

Esper analyzes the expression in the EPL wher e clause and outer-join on clause, if present, and
builds the appropriate indexes from that information at runtime, to ensure fast matching of event
stream events to invocation results, even if your invocation returns a large number of rows. Your
applications must ensure to configure a cache for your invocation using Esper configuration, as
such indexes are held with regular data in a cache. If you application does not enable caching of
invocation results, the engine does not build indexes on cached data.

170

Polling Invocation Results via Iterator

5.14.2. Polling Invocation Results via Iterator

Usually your invocation will take part in a join and thus be triggered by an event or pattern
occurrence. Instead, your application may need to poll an invocation and thus use Esper query
execution and caching facilities and obtain event data and metadata.

Your EPL statement can specify an invocation in the f r omclause without a join. Such a stand-
alone invocation does not post new events, and may only be queried via the i t er at or poll API.
Your EPL statement may still use variables.

The next statement assumes that a cat egory_var variable has been declared. It polls the
get Asset Descri pti ons method passing the current value of the cat egory_var EPL variable:

sel ect * from nmet hod: MyLookupLi b. get Asset Descri ptions(category_var)]

Use theiterator and saf el t er at or methods on EPSt at enent to obtain results. The statement
does not post events to listeners, it is strictly passive in that sense.

5.14.3. Providing the Method

You application can provide a public static method or can provide an instance method of an
existing object. The method must accept the same number and type of parameters as listed in
the parameter expression list.

The examples herein mostly use public static methods. For a detail description of instance
methods please see Section 5.17.5, “Class and Event-Type Variables” and below example.

If your invocation returns either no row or only one row, then the return type of the method can
be a Java class, java. util . Map or Obj ect [] (object-array). If your invocation can return more
then one row, then the return type of the method must be an array of Java class, array of Map,
Qbj ect[][] (object-array 2-dimensional) or Col | ecti on or I t erat or (or subtypes thereof).

If you are using a Java class, an array of Java class or a Coll ection<d ass> or an
I terat or<C ass> as the return type, then the class must adhere to JavaBean conventions: it
must expose properties through getter methods.

If you are using j ava. uti |l . Map or an array of Map or a Col | ecti on<Map> or an | t er at or <Map>
as the return type, please note the following:

» Your application must provide a second method that returns event property metadata, as the
next section outlines.

« Each map instance returned by your method should have St ri ng-type keys and object values
(Map<String, Object>).

171

Chapter 5. EPL Reference: Clauses

If you are using Object[] (object-array) or Qoject[][] (object-array 2-dimensional) or
Col | ection<Chj ect[]> orlterator<Chject[]> as the return type, please note the following:

« Your application must provide a second method that returns event property metadata, as the
next section outlines.

« Each object-array instance returned by your method should have the exact same array position
for values as the property metadata indicates and the array length must be the same as the
number of properties.

Your application method must return either of the following:

1. Anul | value or an empty array to indicate an empty result (no rows).
2. A Java object or Map or Obj ect [] to indicate a zero (null) or one-row result.
3. Return multiple result rows by returning either:

< An array of Java objects.

* An array of Map instances.

* An array of Obj ect [] instances.

« An array of Event Bean[] instances (requires @ ype).

e A Coll ection of Java objects.

* A Col | ection of Map instances.

e ACol |l ection of Object[] instances.

e An Col | ecti on of Event Bean[] instances (requires @ ype).

e Anlterator of Java objects.

* Anlterator of Map instances.

 Anlterator of Object[] instances.

« Anlterator of Event Bean[] instances (requires @ ype).

As an example, consider the method 'getAssetDescriptions' provided by class 'MyLookupLib' as
discussed earlier:

sel ect assetld, assetDesc from Asset MbveEvent as asset,
nmet hod: com nmypackage. MyLookuplLi b. get Asset Descri ptions() as desc
where asset.assetid = desc. assetid

172

Using a Map Return Type

The 'getAssetDescriptions' method may return multiple rows and is therefore declared to return
an array of the class 'AssetDesc'. The class AssetDesc is a POJO class (not shown here):

public class MyLookupLib {
public static AssetDesc[] getAssetDescriptions() {

return new AssetDesc[] {...};

The example above specifies the full Java class name of the class 'MyLookupLib' class in the EPL
statement. The package name does not need to be part of the EPL if your application imports the
package using the auto-import configuration through the API or XML, as outlined in Section 17.4.7,
“Class and package imports”.

Alternatively the example above could return a Col | ecti on wherein the method declares
as public static Col | ecti on<Asset Desc> get Asset Descri ptions() {...} or
an Iterator wherein the method declares as public static |Iterator<AssetDesc>
get Asset Descriptions() {...}.

Method overloading is allowed as long as overloaded methods return the same result type.

5.14.3.1. Providing an Instance Method

If you application has an existing object instance such as a service or a dependency injected bean
then it must make the instance available as a variable. Please see Section 5.17.5, “Class and
Event-Type Variables” for more information.

For example, assuming you provided a st at eChecker variable that points to an object instance
that provides a public get Mat chi ngAsset s instance method and that returns property asset I ds,
you may use the state checker service in the f r omclause as follows:

sel ect asset | ds from Asset MoveEvent ,
nmet hod: st at eChecker . get Mat chi ngAsset s(asset Desc)

5.14.4. Using a wap Return Type

Your application may returnj ava. uti | . Map or an array of Map from invocations. If doing so, your
application must provide metadata about each row: it must declare the property name and property
type of each Map entry of a row. This information allows the engine to perform type checking of
expressions used within the statement.

You declare the property names and types of each row by providing a method that returns property
metadata. The metadata method must follow these conventions:

173

Chapter 5. EPL Reference: Clauses

1. The method name providing the property metadata must have same method name appended
by the literal Met adat a.

2. The method must have an empty parameter list and must be declared public and static.

3. The method providing the metadata must return a Map of Stri ng property name keys and
java. | ang. O ass property name types (Map<Stri ng, C ass>).

In the following example, a class 'MyLookupLib' provides a method to return historical data based
on asset id and asset code:

sel ect assetld, location, x_coord, y_coord from Asset MoveEvent as asset,
met hod: com mypackage. MyLookuplLi b. get Asset Hi story(assetl d, asset Code) as
hi story

A sample implementation of the class 'MyLookupLib' is shown below.

public class MyLookupLib {

/1 For each colum in a row, provide the property name and type

Il

public static Map<String, C ass> getAssetH storyMetadata() {
Map<String, C ass> propertyNames = new HashMap<String, Cass>();
propertyNanes. put ("l ocation", String.class);

propertyNanes. put ("x_coord", |nteger.class);
propertyNanes. put ("y_coord", Integer.class);
return propertyNanes;

}

/'l Lookup rows based on assetld and asset Code
/1
public static Map<String, Object>[] getAssetHi story(String assetld, String
asset Code) {
Map rows = new Map[2]; // this sanple returns 2 rows

for (int i =0; i <2; i++) {
rows[i] = new HashMap();
rows[i].put("location", "someval ue");
rows[i].put("x_coord", 100);
[/l ... set nore values for each row
}
return rows;

In the example above, the 'getAssetHistoryMetadata' method provides the property metadata: the
names and types of properties in each row. The engine calls this method once per statement to
determine event typing information.

174

Using a Object Array Return Type

The 'getAssetHistory' method returns an array of Map objects that are two rows. The
implementation shown above is a simple example. The parameters to the method are the assetld
and assetCode properties of the AssetMoveEvent joined to the method. The engine calls this
method for each insert and remove stream event in AssetMoveEvent.

To indicate that no rows are found in a join, your application method may return either a nul |
value or an array of size zero.

Alternatively the example above could return a Col | ecti on wherein the method declares as
public static Collection<Map> getAssetHistory() {...} oranlterator wherein the
method declares as public static Iterator<Map> get AssetHistory() {...}.

5.14.5. Using a Object Array Return Type

Your application may return Coj ect[] (object-array) or an array of Obj ect[] (object-array 2-
dimensional) from invocations. If doing so, your application must provide metadata about each
row: it must declare the property name and property type of each array entry of a row in the
exact same order as provided by value rows. This information allows the engine to perform type
checking of expressions used within the statement.

You declare the property names and types of each row by providing a method that returns property
metadata. The metadata method must follow these conventions:

1. The method name providing the property metadata must have same method name appended
by the literal Met adat a.

2. The method must have an empty parameter list and must be declared public and static.

3. The method providing the metadata must return a Li nkedHashMap of Stri ng property name
keys and j ava. | ang. d ass property name types (Map<String, C ass>).

In the following example, a class 'MyLookupLib' provides a method to return historical data based
on asset id and asset code:

sel ect assetld, location, x_coord, y_coord from Asset MoveEvent as asset,
met hod: com nmypackage. MyLookuplLi b. get Asset Hi story(asset|d, assetCode) as
hi story

A sample implementation of the class 'MyLookupLib' is shown below.

public class MyLookupLib {

/1 For each colum in a row, provide the property name and type
I
public static LinkedHashMap<String, C ass> getAssetH storyMetadata() {

175

Chapter 5. EPL Reference: Clauses

Li nkedHashMap<String, C ass> propertyNames = new LinkedHashMap<Stri ng,
G ass>();
propertyNanes. put ("l ocation", String.class);

propertyNanes. put ("x_coord", Integer.class);
propertyNanes. put ("y_coord", Integer.class);
return propertyNanes;

}

/'l Lookup rows based on assetld and asset Code

I

public static Object[][] getAssetH story(String assetld, String assetCode) ({
oject[][] rows = new Qbject[5][]; // this sanple returns 5 rows

for (int i =0; i <5; i++) {
rows[i] = new Object[2]; // single row has 2 fields
rows[i][0] = "soneval ue”;
rows[i][1] = 100;
I/l ... set nore values for each row
}
return rows;

In the example above, the 'getAssetHistoryMetadata' method provides the property metadata: the
names and types of properties in each row. The engine calls this method once per statement to
determine event typing information.

The 'getAssetHistory' method returns an Object[][] that represents five rows. The
implementation shown above is a simple example. The parameters to the method are the assetld
and assetCode properties of the AssetMoveEvent joined to the method. The engine calls this
method for each insert and remove stream event in AssetMoveEvent.

To indicate that no rows are found in a join, your application method may return either a nul |
value or an array of size zero.

Alternatively the example above could return a Col | ecti on wherein the method declares as
public static Collection<CObject[]> getAssetH story() {...} oranlterator wherein
the method declares as public static Iterator<bject[]> getAssetH story() {...}.

5.14.6. Using an eventBean Return Type

When the return type is Event Bean[], Col | ecti on<Event Bean> or | t er at or <Event Bean>, you
must specify the event type name using @ ype.

For example assuming the event type I t enEvent is declared as create schema |tenEvent (p0
string):

select * from M/Event, nethod: MyLi b. nyFunc() @ype(ltenEvent)

176

Providing the Script

public static EventBean[] myFunc(EPLMet hodl nvocati onCont ext context) {
Event Bean[1] events = new Event Bean[1] ;
event s[0] =

"hello"), "ltenEvent");
return events;

5.14.7. Providing the Script

Your script must declare the return type as Event Bean[] . In the @ype annotation you must
provide an event type name.

For example assuming the event type I t enEvent is declared as create schema |tentvent (id
string):

select id from MyEvent, nethod: nmyltenProducer Scri pt ()

The example JavaScript script is:

create expression EventBean[] @ype(ltenEvent) js:nyltenProducerScript() [
nmyl t enPr oducer Scri pt ()
function myltenProducerScript() {
var Event BeanArray = Java.type(\"com espertech. esper.client.EventBean[]\");
var events = new EventBeanArray(1);
event s[0] =

V", \"idI\"), \"ItemEvent\");

return events;

H

5.14.8. Providing the UDF

Your script must declare the return type of the UDF as Event Bean[] . In the @ ype annotation you
must provide an event type name.

For example assuming you have registered a user-defined function myUser Def i nedFunct i on:

select id from M/Event, nethod: nyUser Defi nedFunction() @ype(ltenEvent)

5.15. Declaring an Event Type: Create Schema

177

Chapter 5. EPL Reference: Clauses

EPL allows declaring an event type via the cr eat e schena clause and also by means of the static
or runtime configuration APl addEvent Type functions. The term schema and event type has the
same meaning in EPL.

Your application can declare an event type by providing the property names and types or by
providing a class name. Your application may also declare a variant stream schema.

When using the cr eat e schenma syntax to declare an event type, the engine automatically removes
the event type when there are no started statements referencing the event type, including the
statement that declared the event type. When using the configuration API, the event type stays
cached even if there are no statements that refer to the event type and until explicitly removed
via the runtime configuration API.

5.15.1. Declare an Event Type by Providing Names and Types

The synopsis of the creat e schema syntax providing property names and types is:

create [map | objectarray | avro] schema schema_nane [as]
(property_name property type [,property _nane property type [,...])
[inherits inherited_event type[, inherited_event type] [,...]]
[starttinestanp timestanp_property_nane]
[endtimestanp timestanp_property_nane]
[copyfrom copy_type name [, copy_type name] [,...]]

The cr eat e keyword can be followed by nap to instruct the engine to represent events of that type
by the Map event representation, or obj ect ar r ay to denote an Object-array event type, or avr o
to denote an Avro event type. If neither the map or obj ect array or avr o keywords are provided,
the engine-wide default event representation applies.

After creat e schena follows a schema_name. The schema name is the event type name.

The property_name is an identifier providing the event property name. The property_type is also
required for each property. Valid property types are listed in Section 5.17.1, “Creating Variables:
the Create Variable clause” and in addition include:

1. Any Java class name, fully-qualified or the simple class name if imports are configured.
2. Add left and right square brackets [] to any type to denote an array-type event property.
3. Use an event type name as a property type.

4. The nul | keyword for a null-typed property.

The optional i nheri t s keywords is followed by a comma-separated list of event type names that
are the supertypes to the declared type.

The optional st art t i mest anp keyword is followed by a property name. Use this to tell the engine
that your event has a timestamp. The engine checks that the property name exists on the declared
type and returns a date-time value. Declare a timestamp property if you want your events to

178

Declare an Event Type by Providing Names and Types

implicitly carry a timestamp value for convenient use with interval algebra methods as a start
timestamp.

The optional endti nest anp keyword is followed by a property name. Use this together with
starttimestamp to tell the engine that your event has a duration. The engine checks that
the property name exists on the declared type and returns a date-time value. Declare an
endtimestamp property if you want your events to implicitly carry a duration value for convenient
use with interval algebra methods.

The optional copyf r omkeyword is followed by a comma-separate list of event type names. For
each event type listed, the engine looks up that type and adds all event property definitions to the
newly-defined type, in addition to those listed explicitly (if any).

A few example event type declarations follow:

/| Declare type SecurityEvent
create schema SecurityEvent as (i pAddress string, userld String, numAttenpts int)

/| Declare type AuthorizationEvent with the roles property being an array of
String

/1 and the hostinfo property being a PQJO obj ect

create schema AuthorizationEvent(group String, roles String[], hostinfo
com myconpany. Host Nanel nf o)

/1l Declare type ConpositeEvent in which the innerEvents property is an array
of SecurityEvent
create schenm ConpositeEvent (group String, innerEvents SecurityEvent[])

/'l Decl are type WebPageVi sitEvent that inherits all properties fromPageHit Event
create schema WebPageVi sitEvent (userld String) inherits PageH t Event

/1 Declare a type with start and end tinmestanp (i.e. event with duration).
create schenma Roboti cArnmVovenment (robotld string, startts long, endts |ong)
starttimestanp startts endti mestanp endts

/]l Create a type that has all properties of SecurityEvent plus a userName property
create schema ExtendedSecurityEvent (userNane string) copyfrom SecurityEvent

/| Create a type that has all properties of SecurityEvent
create schenm SinilarSecurityEvent () copyfrom SecurityEvent

// Create a type that has all properties of SecurityEvent and WbPageVi sit Event
pl us a userNane property

create schema WebSecurityEvent (userNanme string) copyfrom SecurityEvent,
WebPageVi si t Event

To elaborate on the i nheri t s keyword, consider the following two schema definitions:

179

Chapter 5. EPL Reference: Clauses

create schema Foo as (propl string)

create schema Bar() inherits Foo

Following above schema, Foo is a supertype or Bar and therefore any Bar event also fulfills Foo
and matches where Foo matches. An EPL statement such as sel ect * from Foo returns any Foo
event as well as any event that is a subtype of Foo such as all Bar events. When your EPL queries
don't use any Foo events there is no cost, thus i nheri t s is generally an effective way to share
properties between types. The start and end timestamp are also inherited from any supertype that
has the timestamp property names defined.

The optional copyf r omkeyword is for defining a schema based on another schema. This keyword
causes the engine to copy property definitions: There is no inherits, extends, supertype or subtype
relationship between the types listed.

To define an event type Bar that has the same properties as Foo:

create schema Foo as (propl string)

create schema Bar () copyfrom Foo

To define an event type Bar that has the same properties as Foo and that adds its own property
prop2:

create schena Foo as (propl string)

create schema Bar (prop2 string) copyfrom Foo

If neither the map or objectarray or avro keywords are provided, and if the create-
schema statement provides the @vent Repr esent ati on(obj ect array) annotation the engine
expects object array events. If the statement provides the @tvent Representati on(avro)
annotation the engine expects Avro objects as events. If the statement provides the
@vent Repr esent ati on(map) annotation the engine expects Map objects as events. If neither
annotation is provided, the engine uses the configured default event representation as discussed
in Section 17.4.13.1, “Default Event Representation”.

180

Declare an Event Type by Providing a Class Name

The following two EPL statements both instructs the engine to represent Foo events as object
arrays. When sending Foo events into the engine use the sendEvent (Cbj ect[] data, String
t ypeNane) footprint.

create objectarray schema Foo as (propl string)

@vent Represent ati on(obj ectarray) create schema Foo as (propl string)

The next two EPL statements both instructs the engine to represent Foo events as Maps. When
sending Foo events into the engine use the sendEvent (Map data, String typeNane) footprint.

create map schema Foo as (propl string)

@vent Representati on(map) create schema Foo as (propl string)

The following two EPL statements both instructs the engine to represent Foo events as Avro
Gener i cDat a. Recor d. When sending Foo events into the engine use the sendEvent Avr o(Qbj ect
generi cDat aDot Record, String typeNane) footprint.

create avro schema Foo as (propl string)

@vent Representati on(avro) create schema Foo as (propl string)

5.15.2. Declare an Event Type by Providing a Class Name

When using Java classes as the underlying event representation your application may simply
provide the class name:

create schema schema_nane [as] class_nane
[starttinmestanp tinestanp_property nane]
[endtimestanp timestanp_property_nane]

The class_name must be a fully-qualified class name (including the package name) if imports are
not configured. If you application configures imports then the simple class name suffices without
package name.

The optional st artti mest anp and endt i mest anp keywords have a meaning as defined earlier.

181

Chapter 5. EPL Reference: Clauses

The next example statements declare an event type based on a class:

/1l Shows the use of a fully-qualified class name to declare the Logi nEvent
event type
create schema Logi nEvent as com myconpany. Logi nVal ue

/1 When the configuration includes inports, the declaration does not need a

package name
create schema Logout Event as SignoffVal ue

5.15.3. Declare a Variant Stream

A variant stream is a predefined stream into which events of multiple disparate event types can
be inserted. Please see Section 5.10.3, “Merging Disparate Types of Events: Variant Streams”
for rules regarding property visibility and additional information.

The synopsis is:

create variant schenma schenma_nane [as] eventtype_nane|* [, eventtype_nane|*]

[o.-]

Provide the vari ant keyword to declare a variant stream.

The =" wildcard character declares a variant stream that accepts any type of event inserted into
the variant stream.

Provide eventtype_name if the variant stream should hold events of the given type only. When
usingi nsert int o toinsertinto the variant stream the engine checks to ensure the inserted event
type or its supertypes match the required event type.

A few examples are shown below:
// Create a variant stream that accepts only Logi nEvent and Logout Event event
types

create variant schenma SecurityVariant as Logi nEvent, Logout Event

/'l Create a variant streamthat accepts any event type
create variant schema AnyEvent as *

5.16. Splitting and Duplicating Streams

EPL offers a convenient syntax to splitting, routing or duplicating events into multiple streams, and
for receiving unmatched events among a set of filter criteria.

182

Splitting and Duplicating Streams

For splitting a single event that acts as a container and expose child events as a property of itself
consider the contained-event syntax as described in Section 5.19, “Contained-Event Selection”.
For generating marker events for contained-events please see below.

You may define a triggering event or pattern in the on-part of the statement followed by multiple
i nsert into, sel ect and wher e clauses.

The synopsis is:

[cont ext cont ext_nane]

on event_type[(filter_criteria)] [as stream nane]

insert into insert_into_def select select_|ist [where condition]
[insert into insert_into_def select select |ist [from contained-event-
sel ection] [where condition]]

[insert into insert_into_def select select_list [from contained-event-
sel ection] [where condition]]

[insert into...]

[output first | all]

The event_type is the name of the type of events that trigger the split stream. It is optionally
followed by filter_criteria which are filter expressions to apply to arriving events. The optional
as keyword can be used to assign a stream name. Patterns and named windows can also be
specified in the on clause.

Following the on-clause is one or more insert into clauses as described in Section 5.10, “Merging
Streams and Continuous Insertion: the Insert Into Clause” and select clauses as described in
Section 5.3, “Choosing Event Properties And Events: the Select Clause”.

The second and subsequent i nsert into and sel ect clause pair can have a f r omclause for
contained-event-selection. This is useful when your trigger events themselves contain events that
must be processed individually and that may be delimited by marker events that you can define.

Each sel ect clause may be followed by a wher e clause containing a condition. If the condition
is true for the event, the engine transforms the event according to the sel ect clause and inserts
it into the corresponding stream.

At the end of the statement can be an optional out put clause. By default the engine inserts into
the first stream for which the wher e clause condition matches if one was specified, starting from
the top. If you specify the out put al | keywords, then the engine inserts into each stream (not only
the first stream) for which the wher e clause condition matches or that do not have a wher e clause.

If, for a given event, none of the wher e clause conditions match, the statement listener receives the
unmatched event. The statement listener only receives unmatched events and does not receive
any transformed or inserted events. The i t er at or method to the statement returns no events.

You may specify an optional context name to the effect that the split-stream operates according
to the context dimensional information as declared for the context. See Chapter 4, Context and
Context Partitions for more information.

183

Chapter 5. EPL Reference: Clauses

In the below sample statement, the engine inserts each Or der Event into the Lar geOr der s stream
if the order quantity is 100 or larger, or into the Smal | Or der s stream if the order quantity is smaller
then 100:

on O der Event
insert into LargeOrders select * where orderQy >= 100
insert into Small Orders select *

The next example statement adds a new stream for medium-sized orders. The new stream
receives orders that have an order quantity between 20 and 100:

on Order Event

insert into LargeOrders select orderld, customer where orderQy >= 100

insert into MediunOrders select orderld, customer where orderQy between 20
and 100

insert into Small Orders sel ect orderld, custonmer where orderQy > 0

As you may have noticed in the above statement, orders that have an order quantity of zero don't
match any of the conditions. The engine does not insert such order events into any stream and
the listener to the statement receives these unmatched events.

By default the engine inserts into the first i nsert into stream without a wher e clause or for
which the wher e clause condition matches. To change the default behavior and insert into all
matching streams instead (including those without a wher e clause), the out put al I keywords
may be added to the statement.

The sample statement below shows the use of the output all keywords. The statement
populates both the Lar geOrder s stream with large orders as well as the VI PCust oner Or der s
stream with orders for certain customers based on customer id:

on O derEvent
insert into LargeOrders select * where orderQy >= 100
insert into VIPCustonerCOrders select * where custonerlid in (1001, 1002)
out put all

Since the out put al | keywords are present, the above statement inserts each order event into
either both streams or only one stream or none of the streams, depending on order quantity and
customer id of the order event. The statement delivers order events not inserted into any of the
streams to the listeners and/or subscriber to the statement.

The following limitations apply to split-stream statements:

184

Generating Marker Events for Contained Events

1. Aggregation functions and the prev and pri or operators are not available in conditions and
the sel ect -clause.

5.16.1. Generating Marker Events for Contained Events

When a trigger event contains properties that are themselves events, or more generally when
your application needs to split the trigger event into multiple events, or to generate marker events
(begin, end etc.) or process contained events in a defined order, you may specify a f r omclause.

The f r omclause is only allowed for the second and subsequenti nsert into andsel ect clause
pair. It specifies how the trigger event should get unpacked into individual events and is based on
the Section 5.19, “Contained-Event Selection”.

For example, assume there is an order event that contains order items:

create schema Orderltem(item d string)

create schena OrderEvent(orderld string, items Orderlten{])

We can tell the engine that, for each order event, it should process in the following order:

1. Process a single Or der Begi nEvent that holds just the order id.
2. Process all order items contained in an order event.
3. Process a single O der EndEvent that holds just the order id.

The EPL is:

on OrderEvent
insert into OrderBegi nEvent sel ect orderld
insert into OrderltenEvent select * from|[select orderld, * fromitens]
insert into Order EndEvent select orderld
out put all

When an Or der Event comes in, the engine first processes an O der Begi nEvent . The engine
unpacks the order event and for each order item processes an Order | t enEvent containing the
respective item. The engine last processes an Or der EndEvent .

Such begin and end marker events are useful to initiate and terminate an analysis using context
declaration, for example. The next two EPL statements declare a context and perform a simple
count of order items per order:

create context OrderContext

185

Chapter 5. EPL Reference: Clauses

initiated by OrderBegi nEvent as obe
term nated by Order EndEvent (orderld = obe. orderld)

cont ext Order Cont ext sel ect count (*) as orderltenCount fromOrderltenEvent out put
when term nated

5.17. Variables and Constants

A variable is a scalar, object, event or set of aggregation values that is available for use in all
statements including patterns. Variables can be used in an expression anywhere in a statement
as well as in the out put clause for output rate limiting.

Variables must first be declared or configured before use, by defining each variable's type and
name. Variables can be created via the create variabl e syntax or declared by runtime or
static configuration. Variables can be assigned new values by using the on set syntax or via
the set Vari abl eval ue methods on EPRunt i me. The EPRunt i ne also provides method to read
variable values.

A variable can be declared constant. A constant variable always has the initial value and cannot
be assigned a new value. A constant variable can be used like any other variable and can be used
wherever a constant is required. By declaring a variable constant you enable the Esper engine to
optimize and perform query planning knowing that the variable value cannot change.

When declaring a class-typed, event-typed or aggregation-typed variable you may read or set
individual properties within the same variable.

The engine guarantees consistency and atomicity of variable reads and writes on the level of
context partition (this is a soft guarantee, see below). Variables are optimized for fast read access
and are also multithread-safe.

When you associate a context to the variable then each context partition maintains its own variable
value. See Section 4.8, “Context and Variables” for more information.

Variables can also be removed, at runtime, by destroying all referencing statements including the
statement that created the variable, or by means of the runtime configuration API.

5.17.1. Creating Variables: the ceate varianl e Clause

The create vari abl e syntax creates a new variable by defining the variable type and name. In
alternative to the syntax, variables can also be declared in the runtime and engine configuration
options.

The synopsis for creating a variable is as follows:

create [constant] variable variable type [[]] variabl e_nane
[= assignnment _expression]

186

Creating Variables: the Create Variable clause

Specify the optional const ant keyword when the variable is a constant whose associated value
cannot be altered. Your EPL design should prefer constant variables over non-constant variables.

The variable_type can be any of the following:

vari abl e_type
string
char

char act er
bool

bool ean
byt e

short

i nt

i nt eger

| ong
doubl e

f | oat

obj ect
enum cl ass
cl ass_nane
event _type_nane

Variable types can accept null values. The obj ect type is for an untyped variable that can be
assigned any value. You can provide a class hame (use imports) or a fully-qualified class name
to declare a variable of that Java class type including an enumeration class. You can also supply
the name of an event type to declare a variable that holds an event of that type.

Append [] to the variable type to declare an array variable. A limitation is that if your variable type
is an event type then array is not allowed (applies to variables only and not to named windows or
tables). For arrays of primitives, specify [pri nmi tive], for exampleint[prinitive].

The variable_name is an identifier that names the variable. The variable name should not already
be in use by another variable.

The assi gnnent _expr essi on is optional. Without an assignment expression the initial value for
the variable is nul | . If present, it supplies the initial value for the variable.

The EPSt at enent object of the creat e vari abl e statement provides access to variable values.
The pull API methods i t er at or and saf el t er at or return the current variable value. Listeners to
thecreat e vari abl e statement subscribe to changes in variable value: the engine posts new and
old value of the variable to all listeners when the variable value is updated by an on set statement.

The example below creates a variable that provides a threshold value. The name of the variable
is var _t hreshol d and its type is | ong. The variable's initial value is nul I as no other value has
been assigned:

187

Chapter 5. EPL Reference: Clauses

create variable |ong var_threshol d

This statement creates an integer-type variable named var _out put _r at e and initializes it to the
value ten (10):

create variable integer var_output_rate = 10

The next statement declares a constant string-type variable:

create constant variable string const_filter_synbol ="'GE

In addition to creating a variable via the create variabl e syntax, the runtime and engine
configuration API also allows adding variables. The next code snippet illustrates the use of the
runtime configuration API to create a string-typed variable:

epSer vi ce. get EPAdni ni strator (). get Configuration()
.addVari abl e("myVar", String.class, "init value");

The following example declares a constant that is an array of string:

create constant variable string[] const _ filters = {'GE, 'MSFT'}

The next example declares a constant that is an array of enumeration values. It assumes the
Col or enumeration class was imported:

create constant variable Color[] const_colors = {Col or. RED, Col or. BLUE}

For an array of primitive-type bytes, specify the pri ni ti ve keyword in square brackets, as the
next example shows:

create variable byte[printive] nybytes = Soned ass. get Byt es()

Use the new keyword to initialize object instances (the example assumes the package or class
was imported):

188

Setting Variable Values: the On Set clause

create constant variable Atom clnteger cnt = new Atom clnteger (1)

The engine removes the variable if the statement that created the variable is destroyed and all
statements that reference the variable are also destroyed. The get Var i abl eNameUsedBy and the
renoveVar i abl e methods, both part of the runtime Conf i gur at i onQper at i ons API, provide use
information and can remove a variable. If the variable was added via configuration, it can only be
removed via the configuration API.

5.17.2. Setting Variable Values: the o set clause

The on set statement assigns a new value to one or more variables when a triggering event
arrives or a triggering pattern occurs. Use the set Vari abl eVal ue methods on EPRunt i ne to
assign variable values programmatically.

The synopsis for setting variable values is:

on event _type[(filter_criteria)] [as stream nane]
set variable nane = expression [, variable nane = expression [,...]]

The event_type is the name of the type of events that trigger the variable assignments. It is
optionally followed by filter_criteria which are filter expressions to apply to arriving events. The
optional as keyword can be used to assign an stream name. Patterns and named windows can
also be specified in the on clause.

The comma-separated list of variable names and expressions set the value of one or more
variables. Subqueries may by part of expressions however aggregation functions and the pr ev or
prior function may not be used in expressions.

All new variable values are applied atomically: the changes to variable values by the on set
statement become visible to other statements all at the same time. No changes are visible to other
processing threads until the on set statement completed processing, and at that time all changes
become visible at once.

The EPSt at enent object provides access to variable values. The pull APl methodsi t er at or and
saf el t er at or return the current variable values for each of the variables set by the statement.
Listeners to the statement subscribe to changes in variable values: the engine posts new variable
values of all variables to any listeners.

In the following example, a variable by name var _out put _r at e has been declared previously.
When a NewOutputRateEvent event arrives, the variable is updated to a new value supplied by
the event property 'rate":

on NewQut put Rat eEvent set var_output_rate = rate

The next example shows two variables that are updated when a ThresholdUpdateEvent arrives:

189

Chapter 5. EPL Reference: Clauses

on Threshol dUpdat eEvent as t
set var_threshold_| ower = t.|ower,
var _t hreshol d_hi gher = t. hi gher

The sample statement shown next counts the number of pattern matches using a variable. The
pattern looks for OrderEvent events that are followed by CancelEvent events for the same order
id within 10 seconds of the OrderEvent:

on patternfevery a=OderEvent -> (Cancel Event (order| d=a. orderl d) wher e
timer:w thin(10 sec))]
set var_counter = var_counter + 1

5.17.3. Using Variables

A variable name can be used in any expression and can also occur in an output rate limiting
clause. This section presents examples and discusses performance, consistency and atomicity
attributes of variables.

The next statement assumes that a variable named 'var_threshold' was created to hold a total
price threshold value. The statement outputs an event when the total price for a symbol is greater
then the current threshold value:

sel ect synbol, sun(price) from Ti ckEvent
group by synbol
havi ng sum(price) > var_threshold

In this example we use a variable to dynamically change the output rate on-the-fly. The variable
‘'var_output_rate' holds the current rate at which the statement posts a current count to listeners:

sel ect count(*) from Ti ckEvent output every var_output_rate seconds

Variables are optimized towards high read frequency and lower write frequency. Variable reads
do not incur locking overhead (99% of the time) while variable writes do incur locking overhead.

The engine softly guarantees consistency and atomicity of variables when your statement
executes in response to an event or timer invocation. Variables acquire a stable value
(implemented by versioning) when your statement starts executing in response to an event or
timer invocation, and variables do not change value during execution. When one or more variable
values are updated via on set statements, the changes to all updated variables become visible
to statements as one unit and only when the on set statement completes successfully.

190

Object-Type Variables

The atomicity and consistency guarantee is a soft guarantee. If any of your application statements,
in response to an event or timer invocation, execute for a time interval longer then 15 seconds
(default interval length), then the engine may use current variable values after 15 seconds passed,
rather then then-current variable values at the time the statement started executing in response
to an event or timer invocation.

The length of the time interval that variable values are held stable for the duration of execution of
a given statement is by default 15 seconds, but can be configured via engine default settings.

5.17.4. Object-Type Variables

A variable of type obj ect (orj ava. | ang. Obj ect via the API) can be assigned any value including
null. When using an object-type variable in an expression, your statement may need to cast the
value to the desired type.

The following sample EPL creates a variable by name var obj of type object:

create vari abl e object varobj

5.17.5. Class and Event-Type Variables

The creat e vari abl e syntax and the APl accept a fully-qualified class name or alternatively the
name of an event type. This is useful when you want a single variable to have multiple property
values to read or set.

The next statement assumes that the event type PageHi t Event is declared:

create variabl e PageH t Event varPageHi t Zero

These example statements show two ways of assigning to the variable:

/1 You may assign the conplete event
on PageHi t Event (i p='0.0.0.0"') pagehit set varPageH tZero = pagehit

/1 O assign individual properties of the event
on PageHi t Event (i p="0.0.0.0') pagehit set varPageHitZero.userld = pagehit.userld

Similarly statements may use properties of class or event-type variables as this example shows:

select * from Firewal | Event (user | d=var PageH t Zer 0. user | d)

191

Chapter 5. EPL Reference: Clauses

Instance method can also be invoked:

create variabl e com exanpl e. St at eChecker Servi ce st at eChecker

select * from Test Event as e where stateChecker.checkState(e)

A variable that represents a service for calling instance methods could be initialized by calling a
factory method. This example assumes the classes were added to imports:

create const ant vari abl e St at eChecker Servi ce st at eChecker =
St at eChecker Ser vi ceFact ory. nakeSer vi ce()

Or the variable can be added via the config API; an example code snippet is next:

adm n. get Confi guration().addVari abl e("stat eChecker", StateChecker Service.cl ass,
St at eChecker Servi ceFact ory. nakeServi ce(), true);

Application objects can also be passed via transient configuration information as described in
Section 17.3, “Passing Services or Transient Objects”.

5.18. Declaring Global Expressions, Aliases And
Scripts: Create Expression

Your application can declare an expression or script using the cr eat e expr essi on clause. Such
expressions or scripts become available globally to any EPL statement.

The synopsis of the creat e expr essi on syntax is:

192

Global Expression Aliases

create expression expression_or_script

Use the creat e expressi on keywords and append the expression or scripts.

At the time your application creates the creat e expressi on statement the expression or script
becomes globally visible.

At the time your application destroys the creat e expr essi on statement the expression or script
are no longer visible. Existing statements that use the global expression or script are unaffected.

Expression aliases are the simplest means of sharing expressions and do not accept parameters.
Expression declarations limit the expression scope to the parameters that are passed.

The engine may cache declared expression result values and reuse cache values, see
Section 17.4.26.8, “Declared Expression Value Cache Size”.

5.18.1. Global Expression Aliases

The syntax and additional examples for declaring an expression is outlined in Section 5.2.8,
“Expression Alias”, which discusses expression aliases that are visible within the same EPL
statement i.e. visible locally only.

When using the cr eat e expr essi on syntax to declare an expression the engine remembers the
expression alias and expression and allows the alias to be referenced in all other EPL statements.

The below EPL declares a globally visible expression alias for an expression that computes the
total of the mid-price which is the buy and sell price divided by two:

create expression total MdPrice alias for { sum((buy + sell) / 2) }
The next EPL returns mid-price for events for which the mid-price per symbol stays below 10:
sel ect synmbol, mi dPrice from Market Dat aEvent group by synbol having m dPrice < 10

The expression name must be unique among all other expression aliases and expression
declarations.

Your application can provide an expression alias of the same name local to a given EPL statement
as well as globally using creat e expressi on. The locally-provided expression alias overrides
the global expression alias.

The engine validates global expression aliases at the time your application creates a statement
that references the alias. When a statement references a global alias, the engine uses the that
statement's local expression scope to validate the expression. Expression aliases can therefore
be dynamically typed and type information does not need to be the same for all statements that
reference the expression alias.

193

Chapter 5. EPL Reference: Clauses

5.18.2. Global Expression Declarations

The syntax and additional examples for declaring an expression is outlined in Section 5.2.9,
“Expression Declaration”, which discusses declaring expressions that are visible within the same
EPL statement i.e. visible locally only.

When using the cr eat e expr essi on syntax to declare an expression the engine remembers the
expression and allows the expression to be referenced in all other EPL statements.

The below EPL declares a globally visible expression that computes a mid-price and that requires
a single parameter:

create expression nmidPrice { in => (buy + sell) / 2}

The next EPL returns mid-price for each event:

sel ect midPrice(nd) from MarketDat aEvent as nd

The expression name must be unique for global expressions. It is not possible to declare the same

global expression twice with the same name.

Your application can declare an expression of the same name local to a given EPL statement as
well as globally using cr eat e expr essi on. The locally-declared expression overrides the globally
declared expression.

The engine validates globally declared expressions at the time your application creates a
statement that references the global expression. When a statement references a global
expression, the engine uses that statement's type information to validate the global expressions.
Global expressions can therefore be dynamically typed and type information does not need to be
the same for all statements that reference the global expression.

This example shows a sequence of EPL, that can be created in the order shown, and that
demonstrates expression validation at time of referral:

create expression mnPrice {(select mn(price) from O der Wndow) }

create wi ndow Order Wndow#t i me(30) as Order Event

insert into Order Wndow sel ect * from O der Event

194

Global Scripts

/1 Validates and incorporates the decl ared gl obal expression
select minPrice() as minprice from Market Dat a

5.18.3. Global Scripts

The syntax and additional examples for declaring scripts is outlined in Chapter 20, Script Support,
which discusses declaring scripts that are visible within the same EPL statement i.e. visible locally
only.

When using the creat e expressi on syntax to declare a script the engine remembers the script
and allows the script to be referenced in all other EPL statements.

The below EPL declares a globally visible script in the JavaScript dialect that computes a mid-
price:

create expression nmidPrice(buy, sell) [(buy + sell) / 2]
The next EPL returns mid-price for each event:
sel ect mi dPrice(buy, sell) from Market Dat aEvent

The engine validates globally declared scripts at the time your application creates a statement
that references the global script. When a statement references a global script, the engine uses
that statement's type information to determine parameter types. Global scripts can therefore be
dynamically typed and type information does not need to be the same for all statements that
reference the global script.

The script name in combination with the number of parameters must be unique for global scripts.
It is not possible to declare the same global script twice with the same name and number of
parameters.

Your application can declare a script of the same name and number of parameters that is local to
a given EPL statement as well as globally using cr eat e expr essi on. The locally-declared script
overrides the globally declared script.

5.19. Contained-Event Selection

Contained-event selection is for use when an event contains properties that are themselves
events, or more generally when your application needs to split an event into multiple events. One
example is when application events are coarse-grained structures and you need to perform bulk
operations on the rows of the property graph in an event.

195

Chapter 5. EPL Reference: Clauses

Use the contained-event selection syntax in a filter expression such as in a pattern, f r omclause,
subselect, on-select and on-delete. This section provides the synopsis and examples.

To review, in the f r omclause a contained_selection may appear after the event stream name and
filter criteria, and before any view specifications.

The synopsis for contained_selection is as follows:

[sel ect sel ect _expressions froni
cont ai ned_expressi on [@ype(eventtype_nane)] [as alias_nane]
[where filter_expression]

The sel ect clause and select_expressions are optional and may be used to select specific
properties of contained events.

The contained_expression is required and returns individual events. The expression can, for
example, be an event property name that returns an event fragment, i.e. a property that can itself
be represented as an event by the underlying event representation. The expression can also be
any other expression such as a single-row function or a script that returns either an array or a
java.util. Coll ection of events. Simple values such as integer or string are not fragments but
can be used as well as described below.

Provide the @ ype(nane) annotation after the contained expression to name the event type of
events returned by the expression. The annotation is optional and not needed when the contained-
expression is an event property that returns a class or other event fragment.

The alias_name can be provided to assign a name to the expression result value rows.
The wher e clause and filter_expression is optional and may be used to filter out properties.

As an example event, consider a media order. A media order consists of order items as well as
product descriptions. A media order event can be represented as an object graph (POJO event
representation), or a structure of nested Maps (Map event representation) or a XML document
(XML DOM or Axiom event representation) or other custom plug-in event representation.

To illustrate, a sample media order event in XML event representation is shown below. Also, a
XML event type can optionally be strongly-typed with an explicit XML XSD schema that we don't
show here. Note that Map and POJO representation can be considered equivalent for the purpose
of this example.

Let us now assume that we have declared the event type Medi aOr der as being represented by
the root node <nedi aor der > of such XML snip:

<nmedi aor der >
<or der | d>PQ200901</ or der | d>
<itens>
<itenp
<item d>100001</item d>

196

Contained-Event Selection

<pr oduct | d>B001</ pr oduct | d>
<arnount >10</ anount >
<price>11. 95</price>
</itemp
</items>
<books>
<book>
<bookl| d>B001</ bookl! d>
<aut hor >Hei nl ei n</ aut hor >
<revi ew>
<revi e d>1</revi eM d>
<commrent >best book ever</conment >
</revi ew>
</ book>
<book>
<bookl| d>B002</ bookl! d>
<aut hor >l saac Asi nov</ aut hor >
</ book>
</ books>
</ medi aor der >

The next query utilizes the contained-event selection syntax to return each book:

sel ect * from Medi aOr der [books. book]

The result of the above query is one event per book. Output events contain only the book properties
and not any of the mediaorder-level properties.

Note that, when using listeners, the engine delivers multiple results in one invocation of each
listener. Therefore listeners to the above statement can expect a single invocation passing all
book events within one media order event as an array.

To better illustrate the position of the contained-event selection syntax in a statement, consider
the next two queries:

sel ect * from Medi aOr der (order | d=' PO200901") [books. book]

The above query the returns each book only for media orders with a given order id. This query
illustrates a contained-event selection and a view:

sel ect count(*) from Medi aOr der [books. book] #uni que(bookl d)

The sample above counts each book unique by book id.

197

Chapter 5. EPL Reference: Clauses

Contained-event selection can be staggered. When staggering multiple contained-event
selections the staggered contained-event selection is relative to its parent.

This example demonstrates staggering contained-event selections by selecting each review of
each book:

sel ect * from Medi aOr der [books. book] [revi ew]

Listeners to the query above receive a row for each review of each book. Output events contain
only the review properties and not the book or media order properties.

The following is not valid:

/1 not valid
sel ect * from Medi aOr der [books. book. revi ew

The book property in an indexed property (an array or collection) and thereby requires an index
in order to determine which book to use. The expression books. book[1] . revi ew is valid and
means all reviews of the second (index 1) book.

The contained-event selection syntax is part of the filter expression and may therefore occur in
patterns and anywhere a filter expression is valid.

A pattern example is below. The example assumes that a Cancel event type has been defined
that also has an or der | d property:

select * from pattern [c=Cancel -> books=Medi aOrder(orderld = c.orderld)
[books. book]]

When used in a pattern, a filter with a contained-event selection returns an array of events, similar
to the match-until clause in patterns. The above statement returns, in the books property, an array
of book events.

5.19.1. Select-Clause in a Contained-Event Selection

The optional sel ect clause provides control over which fields are available in output events. The
expressions in the select-clause apply only to the properties available underneath the property in
the f r omclause, and the properties of the enclosing event.

When no sel ect is specified, only the properties underneath the selected property are available
in output events.

In summary, the sel ect clause may contain:

198

Select-Clause in a Contained-Event Selection

1. Any expressions, wherein properties are resolved relative to the property in the f r omclause.
2. Use the wildcard (*) to provide all properties that exist under the property in the f r omclause.

3. Use the alias_name. * syntax to provide all properties that exist under a property in the f rom
clause.

The next query's sel ect clause selects each review for each book, and the order id as well as
the book id of each book:

select * from Medi aOrder[sel ect orderld, bookld from books. book][select * from
revi ew

/[l ... equivalent to ...

select * from Medi aOrder[sel ect orderld, bookld from books. book][review]

Listeners to the statement above receive an event for each review of each book. Each output event
has all properties of the review row, and in addition the bookl! d of each book and the or der | d of
the order. Thus bookl d and or der | d are found in each result event, duplicated when there are
multiple reviews per book and order.

The above query uses wildcard (*) to select all properties from reviews. As has been discussed
as part of the sel ect clause, the wildcard (*) and property alias. * do not copy properties
for performance reasons. The wildcard syntax instead specifies the underlying type, and
additional properties are added onto that underlying type if required. Only one wildcard (*) and
property_alias. * (unless used with a column rename) may therefore occur in the sel ect clause
list of expressions.

All the following queries produce an output event for each review of each book. The next sample
queries illustrate the options available to control the fields of output events.

The output events produced by the next query have all properties of each review and no other
properties available:

sel ect * from Medi aOr der [books. book] [revi ew

The following query is not a valid query, since the order id and book id are not part of the contained-
event selection:

/1 Invalid select-clause: orderld and bookld not produced.
sel ect orderld, bookld from Medi aOrder[books. book] [revi ew]

This query is valid. Note that output events carry only the order | d and bookl d properties and
no other data:

199

Chapter 5. EPL Reference: Clauses

sel ect orderld, bookld from Medi aCrder[books. book] [sel ect orderld, bookld from
revi ew

/l... equivalent to ...

select * from Medi aOrder[sel ect orderld, bookld from books. book][revi ew

This variation produces output events that have all properties of each book and only revi ewl d
and comment for each review:

sel ect * fromMedi aOrder[sel ect * from books. book][sel ect reviewl d, conment from
revi ew

/[l ... equivalent to ...

select * from Medi aOr der [books. book as book][sel ect book.*, review d, comment
fromreview

The output events of the next EPL have all properties of the order and only bookl d and revi ewl d
for each review:

sel ect * from Medi aOr der [books. book as book]
[sel ect nedi aOrder.*, bookld, reviewid fromreview as nedi aOr der

This EPL produces output events with 3 columns: a column named nedi aOr der that is the order
itself, a column named book for each book and a column named r evi ewthat holds each review:

insert into ReviewStream sel ect * from Medi aOr der [books. book as book]
[select np.* as nedi aOrder, book.* as book, review * as review from revi ew
as review] as no

/1 .. and a sanple consuner of ReviewStream..
sel ect nedi aOrder.orderld, book.bookld, review review d from Revi ewSt ream

Please note these limitations:

1. Sub-selects, aggregation functions and the prev and pri or operators are not available in
contained-event selection.

2. Expressions in the sel ect and wher e clause of a contained-event selection can only reference
properties relative to the current event and property.

200

Where Clause in a Contained-Event Selection

5.19.2. Where Clause in a Contained-Event Selection

The optional wher e clause may be used to filter out properties at the same level that the where-
clause occurs.

The properties in the filter expression must be relative to the property in the f r omclause or the
enclosing event.

This query outputs all books with a given author:
sel ect * from Medi aOr der[books. book where author = 'Heinlein']
This query outputs each review of each book where a review comment contains the word 'good':

sel ect * from Medi aOr der [books. book] [revi ew where comrent |i ke 'good']

5.19.3. Contained-Event Selection and Joins

This section discusses contained-event selection in joins.

When joining within the same event it is not required that views are specified. Recall, in a join or
outer join there must be views specified that hold the data to be joined. For self-joins, no views
are required and the join executes against the data returned by the same event.

This query inner-joins items to books where book id matches the product id:
sel ect book. bookld, itemitemnld
from Medi aOr der [books. book] as book,

Medi aOrder[itens.item] as item
where productld = bookld

Query results for the above query when sending the media order event as shown earlier are:

book.bookld item.itemld

BOO1 100001

The next example query is a left outer join. It returns all books and their items, and for books
without item it returns the book and a nul | value:

sel ect book. bookld, itemitemd
from Medi aOr der [books. book] as book

201

Chapter 5. EPL Reference: Clauses

left outer join
Medi aOrder[itens.iteni as item
on productld = bookld

Query results for the above query when sending the media order event as shown earlier are:

book.bookld item.itemld

B0OO1 100001
B002 null

A full outer join combines the results of both left and right outer joins. The joined table will contain
all records from both tables, and fill in nul | values for missing matches on either side.

This example query is a full outer join, returning all books as well as all items, and filling in nul |
values for book id or item id if no match is found:

sel ect orderld, book.bookld,itemitend
from Medi aOr der [books. book] as book
full outer join
Medi aOrder[sel ect orderld, * fromitens.iten] as item
on productld = bookld
order by bookld, itemitemd asc

As in all other continuous queries, aggregation results are cumulative from the time the statement
was created.

The following query counts the cumulative number of items in which the product id matches a
book id:

sel ect count (*)

from Medi aOr der [books. book] as book,
Medi aOrder[itens.item as item

where productld = bookld

The uni di recti onal keyword in a join indicates to the query engine that aggregation state is not
cumulative. The next query counts the number of items in which the product id matches a book
id for each event:

sel ect count (*)

from Medi aOr der [books. book] as book unidirectional,
Medi aOrder[itens.iten]i as item

where productld = bookld

202

Sentence and Word Example

5.19.4. Sentence and Word Example

The next example splits an event representing a sentence into multiple events in which each event
represents a word. It represents all events and the logic to split events into contained events as
Java code. The next chapter has additional examples that use Map-type events and put contained-
event logic into a separate expression or script.

The sentence event in this example is represented by a class declared as follows:

public class SentenceEvent {
private final String sentence;

publi c SentenceEvent(String sentence) {
thi s. sentence = sentence;

public WrdEvent[] getWords() {
String[] split = sentence.split(" ");
WrdEvent[] words = new WordEvent[split.length];
for (int i =0; i <split.length; i++) {
words[i] = new WordEvent (split[i]);
}

return words;

The sentence event as above provides an event property wor ds that returns each word event.

The declaration of word event is also a class:

public class WrdEvent {
private final String word;
public WirdEvent (String word) {

this.word = word;

public String getWord() {
return word;

The EPL statement to populate a stream of words from a sentence event is:

203

Chapter 5. EPL Reference: Clauses

insert into WrdStream sel ect * from Sent enceEvent [wor ds]
Finally, the API call to send a sentence event to the engine is shown here:

epServi ce. get EPRunti ne() . sendEvent (new SentenceEvent("Hello Wrd Contained
Events"));

5.19.5. More Examples

The examples herein are not based on the POJO events of the prior example. They are meant to
demonstrate different types of contained-event expressions and the use of @ ype(type_name) to
identify the event type of the return values of the contained-event expression.

The example first defines a few sample event types:

create schema Sent enceEvent (sentence String)

create schena WordEvent (word String)

create schenm CharacterEvent (char String)

The following EPL assumes that your application defined a plug-in single-row function by name
spl i t Sent ence that returns an array of Map, producting output events that are Wor dEvent events:

i nsert into Wor dSt r eam sel ect * from
Sent enceEvent [spl it Sent ence(sent ence) @ype(Wr dEvent)]

The example EPL shown next invokes a JavaScript function which returns some events of type
Wor dEvent :

expression Collection js:splitSentencelJS(sentence) [

i nport Package(java. util);

var words = new ArraylList();

wor ds. add(Col | ecti ons. si ngl et onMap(' word', 'wordOne'));
wor ds. add(Col | ecti ons. si ngl etonMap(' word', 'wordTwo'));
wor ds;

]

204

Contained Expression Returning an Array of Property Values

sel ect * from SentenceEvent[splitSentencelS(sentence)@ype(WrdEvent)]

In the next example the sentence event first gets split into words and then each word event gets
split into character events via an additional spl i t Wor d single-row function, producing events of
type Char act er Event :

sel ect * from Sent enceEvent
[splitSentence(sentence) @ype(WrdEvent)]
[splitword(word) @ype(CharacterEvent)]

5.19.6. Contained Expression Returning an Array of Property
Values

Your contained_expression may return an array of property values such as an array of integer or
string values. In this case you must specify a @ ype(nane) annotation and provide an event type
name that declares a single column with a type that matches the array component type.

create schema | dContainer(id int)

create schema MyEvent (ids int[])

select * from MWEvent[i ds@ ype(l dCont ai ner)]

This example declares a named window and uses on-delete:

create wi ndow MyW ndow#keepal | (id int)

on MyEvent[ids@ype(ldContainer)] as ny_ids
del ete from MyW ndow nmy_wi ndow
where ny_ids.id = ny_wi ndow.id

5.19.7. Contained Expression Returning an Array of EventBean

Your contained_expression may return an array of Event Bean instances. This is handy when the
expression itself must decide the type of each event to return.

205

Chapter 5. EPL Reference: Clauses

For example:

create schenma BaseEvent();

create schenm AEvent(pa string) inherits BaseEvent;

create schema BEvent (pb string) inherits BaseEvent;

create schenm Val ueEvent (val ue string);

select * from Val ueEvent [nySplitFuncti on(val ue) @ype(BaseEvent)]

Then declare nySpl i t Funct i on returning an array of events, such as:

public static Event Bean|] mySpl it Function(String val ue,
EPLMet hodl nvocat i onCont ext context) {
Event Bean[] events = new Event Bean[1];
if (value.startsWth("A")) {

event s[0] =
val ue), "AEvent");
}
el se {
event s[0] =

val ue), "BEvent");

}

return events;

5.19.8. Generating Marker Events such as a Begin and End
Event

The syntax for splitting and duplicating streams can be used to generate marker events. Please
see Section 5.16.1, “Generating Marker Events for Contained Events” for more information.

206

Contained-Event Limitations

5.19.9. Contained-Event Limitations
The following restrictions apply to contained-event selection:

* When selecting contained events from a named window in a join, the stream must be marked
as uni directional .
» Selecting contained events from a named window in a correlated subquery is not allowed.

5.20. Updating an Insert Stream: the Update IStream
Clause

The updat e i stream statement allows declarative modification of event properties of events
entering a stream. Update is a pre-processing step to each new event, modifying an event before
the event applies to any statements.

The synopsis of updat e i st reamis as follows:

update i stream event type [as stream nane]
set property nane = set_expression [, property name = set_expression]

(.01

[wher e where_expressi on]

The event_type is the name of the type of events that the updat e applies to. The optional as
keyword can be used to assign a hame to the event type for use with subqueries, for example.
Following the set keyword is a comma-separated list of property names and expressions that
provide the event properties to change and values to set.

The optional wher e clause and expression can be used to filter out events to which to apply
updates.

Listeners to an updat e statement receive the updated event in the insert stream (new data) and
the event prior to the update in the remove stream (old data). Note that if there are multiple update
statements that all apply to the same event then the engine will ensure that the output events
delivered to listeners or subscribers are consistent with the then-current updated properties of
the event (if necessary making event copies, as described below, in the case that listeners are
attached to update statements). Iterating over an update statement returns no events.

As an example, the below statement assumes an Al ert Event event type that has properties
named severity and r eason:

update istream Al ert Event
set severity = 'High'
where severity = 'Medium and reason like '%ithdrawal |imt%

The statement above changes the value of the severi t y property to "High" for Al ert Event events
that have a medium severity and contain a specific reason text.

207

Chapter 5. EPL Reference: Clauses

Update statements apply the changes to event properties before other statements receive the
event(s) for processing, e.g. "sel ect * from Al ert Event " receives the updated Al ert Event .
This is true regardless of the order in which your application creates statements.

When multiple update statements apply to the same event, the engine executes updates in the
order in which update statements are created. We recommend the @ri ori ty EPL annotation to
define a deterministic order of processing updates, especially in the case where update statements
get created and destroyed dynamically or multiple update statements update the same fields. The
update statement with the highest @ri ori ty value applies last.

The updat e clause can be used on streams populated viai nsert i nt o, as this example utilizing
a pattern demonstrates:

insert into Doubl eWthdrawal Stream
select a.id, b.id, a.account as account, 0 as m ni num
frompattern [a=Wthdrawal -> b=Wthdrawal (id = a.id)]

updat e i stream Doubl eW t hdr awal St r eam set mi ni mum= 1000 where account in (10002,
10003)

When using updat e i st r eamwith named windows, any changes to event properties apply before
an event enters the named window. The updat e i st reamis not available for tables.

Consider the next example (shown here with statement names in @Name EPL annotation,
multiple EPL statements):
@Nane(" Creat eW ndow') create wi ndow MyW ndow#t i me(30 sec) as Al ert Event

@\ane(" Updat eStreant’) update istream MyW ndow set severity = 'Low where reason
= 'Y%ut of paper%

@Nanme(" I nsert Wndow') insert into MyWndow sel ect * from Al ert Event

@Nane(" Sel ect Wndow') sel ect * from MyW ndow

The Updat eSt r eamstatement specifies an updat e clause that applies to all events entering the
named window. Note that updat e does not apply to events already in the named window at the
time an application creates the Updat eSt r eamstatement, it only applies to new events entering
the named window (after an application created the updat e statement).

Therefore, in the above example listeners to the Sel ect Wndow statement as well as the
Cr eat eW ndow statement receive the updated event, while listeners to the InsertW ndow
statement receive the original Al ert Event event (and not the updated event).

208

Immutability and Updates

Subqueries can also be used in all expressions including the optional wher e clause.

This example demonstrates a correlated subquery in an assignment expression and also
demonstrates the optional as keyword. It assigns the phone property of an Al ert Event event
a new value based on the lookup within all unique PhoneEvent events (according to an enpi d
property) correlating the Al ert Event property r epor t er with the enpi d property of PhoneEvent :

update istream Al ert Event as ae
set phone =
(sel ect phone from PhoneEvent #uni que(enpi d) where enpid = ae.reporter)

When updating indexed properties use the syntax propertyName[index] = value with the
index value being an integer number. When updating mapped properties use the syntax
propertyName(key) = value with the key being a string value.

When using updat e, please note these limitations:

1. Expressions may not use aggregation functions.

2. The prev and pri or functions may not be used.

3. Forunderlying event representations that are Java objects, a event object class mustimplement
thejava.io. Seri al i zabl e interface as discussed below.

4. When using an XML underlying event type, event properties in the XML document
representation are not available for update.

5. Nested properties are not supported for update. Revision event types and variant streams may
also not be updated.

5.20.1. Immutability and Updates

When updating event objects the engine maintains consistency across statements. The engine
ensures that an update to an event does not impact the results of statements that look for or
retain the original un-updated event. As a result the engine may need to copy an event object to
maintain consistency.

In the case your application utilizes Java objects as the underlying event representation and an
updat e statement updates properties on an object, then in order to maintain consistency across
statements it is necessary for the engine to copy the object before changing properties (and thus
not change the original object).

For Java application objects, the copy operation is implemented by serialization. Your event object
must therefore implement the j ava. i o. Seri al i zabl e interface to become eligible for update. As
an alternative to serialization, you may instead configure a copy method as part of the event type
configuration via Conf i gur ati onEvent TypelLegacy.

209

Chapter 5. EPL Reference: Clauses

5.21. Controlling Event Delivery : The ror Clause

The engine delivers all result events of a given statement to the statement's listeners and
subscriber (if any) in a single invocation of each listener and subscriber's updat e method passing
an array of result events. For example, a statement using a time-batch view may provide many
result events after a time period passes, a pattern may provide multiple matching events or in a
join the join cardinality could be multiple rows.

For statements that typically post multiple result events to listeners the f or keyword controls the
number of invocations of the engine to listeners and subscribers and the subset of all result events
delivered by each invocation. This can be useful when your application listener or subscriber code
expects multiple invocations or expects that invocations only receive events that belong together
by some additional criteria.

The f or keyword is a reserved keyword. It is followed by either the gr ouped_del i very keyword
for grouped delivery or the di scret e_del i very keyword for discrete delivery. The f or clause is
valid after any EPL select statement.

The synopsis for grouped delivery is as follows:
for grouped_delivery (group_expression [, group_expression] [,...])

The group_expression expression list provides one or more expressions to apply to result events.
The engine invokes listeners and subscribers once for each distinct set of values returned by
group_expression expressions passing only the events for that group.

The synopsis for discrete delivery is as follows:

for discrete_delivery

With discrete delivery the engine invokes listeners and subscribers once for each result event
passing a single result event in each invocation.

Consider the following example without f or -clause. The time batch data view collects RFIDEvent
events for 10 seconds and posts an array of result events:

sel ect * from RFI DEvent #ti me_bat ch(10 sec)

Let's consider an example event sequence as follows:

Table 5.8. Sample Sequence of Events for For Keyword

RFIDEvent(id:1, zone:'A")

RFIDEvent(id:2, zone:'B")

210

Controlling Event Delivery : The For Clause

RFIDEvent(id:3, zone:'A")

Without f or -clause and after the 10-second time period passes, the engine delivers an array of
3 events in a single invocation to listeners and the subscriber.

The next example specifies the f or -clause and grouped delivery by zone:

sel ect * from RFI DEvent#ti ne_batch(10 sec) for grouped_delivery (zone)

With grouped delivery and after the 10-second time period passes, the above statement delivers
result events in two invocations to listeners and the subscriber: The first invocation delivers an
array of two events that contains zone A events with id 1 and 3. The second invocation delivers
an array of 1 event that contains a zone B event with id 2.

The next example specifies the f or -clause and discrete delivery:

sel ect * from RFlI DEvent #ti ne_bat ch(10 sec) for discrete_delivery

With discrete delivery and after the 10-second time period passes, the above statement delivers
result events in three invocations to listeners and the subscriber: The first invocation delivers an
array of 1 event that contains the event with id 1, the second invocation delivers an array of 1
event that contains the event with id 2 and the third invocation delivers an array of 1 event that
contains the event with id 3.

Remove stream events are also delivered in multiple invocations, one for each group, if your
statement selects remove stream events explicitly via i r st r eamor r st r eamkeywords.

The i nsert into for inserting events into a stream is not affected by the f or -clause.

The delivery order respects the natural sort order or the explicit sort order as provided by the
order by clause, if present.

The following are known limitations:

1. The engine validates group_expression expressions against the output event type, therefore
all properties specified in group_expression expressions must occur in the sel ect clause.

211

212

Chapter 6.

Chapter 6. EPL Reference: Named
Windows And Tables

6.1. Overview

A named window is a globally-visible data window. A table is a globally-visible data structure
organized by primary key or keys.

Named windows and tables both offer a way to share state between statements and are stateful.
Named windows and tables have differing capabilities and semantics.

To query a named window or table, simply use the named window name or table name in the f r om
clause of your statement, including statements that contain subqueries, joins and outer-joins.

Certain clauses operate on either a named window or a table, namely the on- ner ge, on- updat e,
on-del ete and on-sel ect clauses. The fire-and-forget queries also operate on both named
windows and tables.

Both named windows and tables can have columns that hold events as column values, as further
described in Section 6.12, “Events As Property”.

6.1.1. Named Window Overview

A named window is a global data window that can take part in many statement queries, and that
can be inserted-into and deleted-from by multiple statements. A named window holds events of
the same type or supertype, unless used with a variant stream.

The creat e wi ndow clause declares a new named window. The named window starts up empty
unless populated from an existing named window at time of creation. Events must be inserted
into the named window using the i nsert i nt o clause. Events can also be deleted from a named
window via the on del et e clause.

Events enter the named window by means of i nsert i nt o clause of a sel ect statement. Events
leave a named window either because the expiry policy of the declared data window removes
events from the named window, or through statements that use the on del et e clause to explicitly
delete from a named window.

A named window may also decorate an event to preserve original events as described in
Section 5.10.4, “Decorated Events” and Section 6.2.2.1, “Named Windows Holding Decorated
Events”.

To tune subquery performance when the subquery selects from a named window, consider the
hints discussed in Section 5.11.8, “Hints Related to Subqueries”.

6.1.2. Table Overview

213

Chapter 6. EPL Reference: Nam...

A table is a data structure that is globally visible and that holds state.

The columns of a table can store aggregation state, allowing for co-location of event data with
aggregation state. Other statements can directly create and update the shared aggregation state.
Statements can also query the aggregation state conveniently. Aggregation state can include
comprehensive state such as for example a large matrix of long-type values for use in a Count-
min sketch approximation. Common aggregation state can be updated by multiple statements.

Use the creat e t abl e clause to declare a new table.

The atomicity guarantees under multi-threaded evaluation are as follows. For a given statement,
a table row or rows either exists or do not exist, consistently, for the duration of the evaluation of
an event or timer against a context partition of a statement. The same is true for updates in that
for a given context partition of a statement, each table row is either completely updated or not
updated at all for the duration of an evaluation. Stream-level filter expressions against tables are
not part of statement evaluation and the same atomicity applies to stream-level filter expressions.

6.1.3. Comparing Named Windows And Tables

As a general rule-of-thumb, if you need to share a data window between statements, the named
window is the right approach. If however rows are organized by primary key or hold aggregation
state, a table may be preferable. EPL statements allow the combined use of both.

6.1.3.1. Nature of Data

One important difference between named windows and tables is in the data that a row holds:
While named windows hold events, tables can hold additional derived state.

For example, a table column can hold rich derived state such as a distinct values set and rich
aggregation state such as the state of a Count-min sketch approximation aggregation (a large
matrix of long-type values).

I/ Declare a table to hold a Count-min sketch approxi nate count per feed
create tabl e Appoxi mat eCount PerWord (feed string, approx countM nSketch())

6.1.3.2. Data Organization

A second difference between named windows and tables is the organization of rows. For named
windows, the organization of rows follows the data window declaration. Tables, on the other hand,
can be organized by a primary key or by multiple primary keys that make up a compound key.

For example, if your declaration specifies a sliding time window to hold 10 seconds of stock tick
events then the rows are held in a sliding time window, i.e. a list or queue according to arrival order.

/1 Declare a named wi ndow to hold 10 seconds of stock tick events
create wi ndow TenSecOf Ti cksW ndow#t i me(10 sec) as StockTi ckEvent

214

Named Window Usage

An iterator for a named window returns rows in the order as provided by the data window(s)
declared for the named window. An iterator for a table returns rows in an unpredictable order.

6.1.3.3. Insert and Remove Stream

Only named windows provide an insert and remove stream to other statements. Tables do not
provide an insert and remove stream.

For example, considering the TenSecOf Ti cksW ndow named window declared above, the
following statement outputs the current count each time events enter or leave the named window.

sel ect count(*) from TenSecOf Ti cksW ndow

Also for example, considering the Appoxi mat eCount Per Wor d table declared above, the following
EPL does not output any rows when table rows gets inserted, updated or deleted and only outputs
rows when the statement is iterated:

/1 does not continously output for table changes
sel ect * from Appoxi mat eCount Per Wor d

6.1.3.4. Immutability and Copy-On-Write

As named windows hold events and events are immutable, when an update statement updates
events held in a named window, the engine performs a logical copy operation (copy-on-write,
as configured for the type) of each updated event, and only modifies the newly created event,
preserving the immutable original event.

Data in tables are updated in-place. There is no copy operation for table rows.
6.1.3.5. Removal of Rows

For named windows, the data window declared for the named window instructs the engine to
expire and remove events from the named window. Events can also be removed via on- ner ge,
on- del et e and fire-and-forget del et e.

For tables, row can only be removed via on- mer ge, on- del et e, on- sel ect - and- del et e and fire-
and-forget del et e.

6.2. Named Window Usage

6.2.1. Creating Named Windows: the ceate wndowClause

The creat e wi ndow statement creates a named window by specifying a window name and one
or more data window views, as well as the type of event to hold in the named window.

215

Chapter 6. EPL Reference: Nam...

There are two syntaxes for creating a named window: The first syntax allows modeling a named
window after an existing event type or an existing named window. The second syntax is similar to
the SQL create-table syntax and provides a list of column names and column types.

A new named window starts up empty. It must be explicitly inserted into by one or more statements,
as discussed below. A nhamed window can also be populated at time of creation from an existing
named window.

If your application stops or destroys the statement that creates the named window, any consuming
statements no longer receive insert or remove stream events. The named window can also not
be deleted from after it was stopped or destroyed.

The create wi ndow statement posts to listeners any events that are inserted into the named
window as new data. The statement posts all deleted events or events that expire out of the data
window to listeners as the remove stream (old data). The named window contents can also be
iterated on via the pull API to obtain the current contents of a named window.

6.2.1.1. Creation by Modeling after an Existing Type

The benefit of modeling a named window after an existing event type is that event properties can
be nested, indexed, mapped or other types that your event objects may provide as properties,
including the type of the underlying event itself. Also, using the wildcard (*) operator means your
EPL does not need to list each individual property explicitly.

The syntax for creating a named window by modeling the named window after an existing event
type, is as follows:

[cont ext cont ext nane]
create w ndow wi ndow_nane. vi ew_speci fi cati ons
[as] [select list_of properties fron] event_type_ or_w ndownane
[insert [where filter_expression]]

The window_name you assign to the named window can be any identifier. The name should not
already be in use as an event type or stream name or table name.

The view_specifications are one or more data window views that define the expiry policy for
removing events from the data window. Named windows must explicitly declare a data window
view. This is required to ensure that the policy for retaining events in the data window is well
defined. To keep all events, use the keep-all view: It indicates that the named window should
keep all events and only remove events from the named window that are deleted via the on
del et e clause. The view specification can only list data window views, derived-value views are not
allowed since these don't represent an expiry policy. Data window views are listed in Chapter 14,
EPL Reference: Views. View parameterization and staggering are described in Section 5.4.3,
“Specifying Views”.

The sel ect clause and list_of properties are optional. If present, they specify the column names
and, implicitly by definition of the event type, the column types of events held by the named

216

Creating Named Windows: the Create Window clause

window. Expressions other than column names are not allowed in the sel ect list of properties.
Wildcards (*) and wildcards with additional properties can also be used.

The event_type_or_windowname is required if using the model-after syntax. It provides the name
of the event type of events held in the data window, unless column names and types have been
explicitly selected via sel ect. The name of an (existing) other named window is also allowed
here. Please find more details in Section 6.2.1.4, “Populating a Named Window from an Existing
Named Window”.

Finally, the i nsert clause and optional filter_expression are used if the new named window
is modelled after an existing named window, and the data of the new named window is to be
populated from the existing named window upon creation. The optional filter_expression can be
used to exclude events.

You may refer to a context by specifying the cont ext keyword followed by a context name.
Contexts are described in more detail at Chapter 4, Context and Context Partitions. The effect of
referring to a context is that your named window operates according to the context dimensional
information as declared for the context. For usage and limitations please see the respective
chapter.

The next statement creates a named window O der sNamedW ndow for which the expiry policy is
simply to keep all events. Assume that the event type '‘OrderMapEventType' has been configured.
The named window is to hold events of type 'OrderMapEventType":

create wi ndow O der sNamedW ndow#keepal | as O der MapEvent Type

The below sample statement demonstrates the sel ect syntax. It defines a named window in
which each row has the three properties 'symbol’, ‘'volume' and 'price'. This named window actively
removes events from the window that are older than 30 seconds.

create wi ndow OrdersTi meW ndow#t i me(30 sec) as
sel ect synbol, volune, price from O der Event

In an alternate form, the as keyword can be used to rename columns, and constants may occur
in the select-clause as well:

create wi ndow OrdersTi meW ndow#t i me(30 sec) as
sel ect synbol as sym volume as vol, price, 1 as alertld from Order Event

6.2.1.2. Creation By Defining Columns Names and Types

The second syntax for creating a named window is by supplying column names and types:

217

Chapter 6. EPL Reference: Nam...

[cont ext context_nane]
create wi ndow wi ndow_nane. vi ew_speci fications [as] (col um_nane col um_type
[, col um_nane colum_type [,...])

The column_name is an identifier providing the event property name. The column_type is also
required for each column. Valid column types are listed in Section 5.17.1, “Creating Variables: the
Create Variable clause” and are the same as for variable types.

For attributes that are array-type append [] (left and right brackets).

The next statement creates a named window:

create wi ndow SecurityEvent#time(30 sec)
(i pAddress string, userld String, numAttenpts int, properties String[])

Named window columns can hold events by declaring the column type as the event type name.
Array-type in combination with event-type is also supported.

The next two statements declare an event type and create a named window with a column of the
defined event type:

create schema SecurityData (nane String, roles String[])

create wi ndow SecurityEvent#time(30 sec)
(i pAddress string, wuserld String, secData SecurityData, historySecData
SecuritybDatal])

Whether the named window uses a Map, Object-array or Avro event representation
for the rows can be specified as follows. If the create-window statement provides the
@vent Repr esent ati on(obj ect array) annotation the engine maintains named window rows as
object array. If the statement provides the @vent Repr esent at i on(map) annotation the engine
maintains named window rows using Map objects. If neither annotation is provided, the engine
uses the configured default event representation as discussed in Section 17.4.13.1, “Default Event
Representation”.

The following EPL statement instructs the engine to represent FooWindow rows as object arrays:

@vent Represent ati on(obj ectarray) create wi ndow FooW ndow#ti ne(5 sec) as (string
propl)

218

Inserting Into Named Windows

6.2.1.3. Dropping or Removing Named Windows

There is no syntax to drop or remove a named window.

The dest r oy method on the EPSt at enent that created the named window removes the named
window. However the implicit event type associated with the named window remains active since
further statements may continue to use that type. Therefore a named window of the same name
can only be created again if the type information matches the prior declaration for a named window.

6.2.1.4. Populating a Named Window from an Existing Named
Window

Your EPL statement may specify the name of an existing hamed window when creating a new
named window, and may use the i nsert keyword to indicate that the new named window is to
be populated from the events currently held by the existing named window.

For example, and assuming the named window Order sNamedW ndow already exists, this
statement creates a new named window ScratchOrders and populates all orders in
O der sNanmedW ndow into the new named window:

create wi ndow Scrat chOr der s#keepal | as O der sNamedW ndow i nsert
The wher e keyword is also available to perform filtering, for example:

create wi ndow ScratchBuyOrders#tine(10) as O der sNamedW ndow i nsert where side
= ' buy'

6.2.2. Inserting Into Named Windows

The i nsert into clause inserts events into named windows. Your application must ensure that
the column names and types match the declared column names and types of the named window
to be inserted into.

For inserting into a named window and for simultaneously checking if the inserted row already
exists in the named window or for atomic update-insert operation on a named window, consider
using on- ner ge as described in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-
merge is similar to the SQL mer ge clause and provides what is known as an "Upsert" operation:
Update existing events or if no existing event(s) are found then insert a new event, all in one
atomic operation provided by a single EPL statement.

In this example we first create a named window using some of the columns of an OrderEvent
event type:

219

Chapter 6. EPL Reference: Nam...

create w ndow OrdersW ndowtkeepall as select synbol, volune, price from
Or der Event

The insert into the named window selects individual columns to be inserted:

insert into OrdersW ndow(synbol, volune, price) select name, count, price from
FXCOr der Event

An alternative form is shown next:

insert into O dersWndow select nane as synmbol, vol as volune, price from
FXOr der Event

Following above statement, the engine enters every FXOrderEvent arriving into the engine into
the named window 'OrdersWindow'.
The following EPL statements create a named window for an event type backed by a Java class

and insert into the window any 'OrderEvent’ where the symbol value is IBM:

create wi ndow O der sW ndow#t i me(30) as com myconpany. O der Event

insert into OrdersW ndow sel ect * from com nyconpany. O der Event (synbol =" | BM)

The last example adds one column named 'derivedPrice' to the 'OrderEvent’ type by specifying a
wildcard, and uses a user-defined function to populate the column:

create wi ndow OrdersW ndow#tine(30) as select *, price as derivedPrice from
Or der Event

insert into OrdersWndow select *, MyFunc.func(price, percent) as derivedPrice
from Order Event

Event representations based on Java base classes or interfaces, and subclasses or implementing
classes, are compatible as these statements show:

/'l create a naned w ndow for the base class

220

Selecting From Named Windows

create wi ndow O der sW ndow#uni que(nane) as select * from Product BaseEvent

/'l The ServiceProduct Event cl ass subcl asses the Product BaseEvent class
insert into OrdersW ndow sel ect * from Servi ceProduct Event

/'l The Merchandi seProduct Event cl ass subcl asses the Product BaseEvent cl ass
insert into OrdersW ndow sel ect * from Merchandi seProduct Event

To avoid duplicate events inserted in a named window and atomically check if a row already
exists, use on- ner ge as outlined in Section 6.8, “Triggered Upsert using the On-Merge Clause”.
An example:

on Servi ceProduct Event as spe nerge OrdersW ndow as wi n
where win.id = spe.id when not matched then insert select *

6.2.2.1. Named Windows Holding Decorated Events

Decorated events hold an underlying event and add additional properties to the underlying event,
as described further in Section 5.10.4, “Decorated Events”.

Here we create a nhamed window that decorates OrderEvent events by adding an additional
property named pri ceTot al to each OrderEvent. A matchingi nsert i nt o statement is also part
of the sample:

create w ndow O dersWndow#tinme(30) as select *, price as priceTotal from
Or der Event

insert into OdersWndow select *, price * wunit as priceTotal from
Servi ceOr der Event

The property type of the additional pri ceTot al column is the property type of the existing pri ce
property of OrderEvent.

6.2.3. Selecting From Named Windows

A named window can be referred to by any statement in the f r omclause of the statement. Filter
criteria can also be specified. Additional views may be used onto named windows however such
views cannot include data window views.

221

Chapter 6. EPL Reference: Nam...

A statement selecting all events from a named window O der sNanedW ndow is shown next. The
named window must first be created via the cr eat e wi ndow clause before use.

select * from O der sNanedW ndow

The statement as above simply receives the unfiltered insert stream of the named window and
reports that stream to its listeners. Thei t er at or method returns all events in the named window,
if any.

If your application desires to obtain the events removed from the named window, use the r st r eam
keyword as this statement shows:

sel ect rstream* from O der sNanedW ndow

The next statement derives an average price per symbol for the events held by the named window:

sel ect synbol, avg(price) from O der sNamedW ndow group by synbol

A statement that consumes from a named window, like the one above, receives the insert and
remove stream of the named window. The insert stream represents the events inserted into the
named window. The remove stream represents the events expired from the named window data
window and the events explicitly deleted via on- del et e for on-demand (fire-and-forget) del et e.

Your application may create a consuming statement such as above on an empty named window,
or your application may create the above statement on an already filled named window. The
engine provides correct results in either case: At the time of statement creation the Esper engine
internally initializes the consuming statement from the current named window, also taking your
declared filters into consideration. Thus, your statement deriving data from a named window does
not start empty if the named window already holds one or more events. A consuming statement
also sees the remove stream of an already populated named window, if any.

If you require a subset of the data in the named window, you can specify one or more filter
expressions onto the named window as shown here:

sel ect synbol, avg(price) fromO der sNamedW ndow sect or ="' energy') group by symbol

By adding a filter to the named window, the aggregation and grouping as well as any views that
may be declared onto to the named window receive a filtered insert and remove stream. The
above statement thus outputs, continuously, the average price per symbol for all orders in the
named window that belong to a certain sector.

222

Table Usage

A side note on variables in filters filtering events from named windows: The engine initializes
consuming statements at statement creation time and changes aggregation state continuously as
events arrive. If the filter criteria contain variables and variable values changes, then the engine
does not re-evaluate or re-build aggregation state. In such a case you may want to place variables
in the havi ng clause which evaluates on already-built aggregation state.

The following example further declares a view into the named window. Such a view can be a plug-
in view or one of the built-in views, but cannot be a data window view (with the exception of the
st d: gr oupwi n grouped-window view which is allowed).

sel ect * from O der sNamedW ndow vol ume>0, price>0). myconpany: nmypl ugi nvi ew()

Data window views cannot be used onto named windows since named windows post insert and
remove streams for the events entering and leaving the named window, thus the expiry policy and
batch behavior are well defined by the data window declared for the named window. For example,
the following is not allowed and fails at time of statement creation:

/1 not a valid statenent
select * from O der sNanedW ndow#t i me(30 sec)

6.3. Table Usage

6.3.1. Creating Tables: The ceate Tani e clause

The creat e t abl e statement creates a table.

A new table starts up empty. It must be explicitly aggregated-into using i nt o t abl e, or populated
by an on- ner ge statement, or populated by i nsert into.

The syntax for creating a table provides the table name, lists column names and types and
designates primary key columns:

[cont ext cont ext nane]
create table table_nanme [as] (columm_nanme colum_type [prinmary key]
[, col um_nane columm_type [primary key] [,...]1])

The table_name you assign to the table can be any identifier. The nhame should not already be in
use as an event type or named window name.

You may refer to a context by specifying the cont ext keyword followed by a context name.
Contexts are described in more detail at Chapter 4, Context and Context Partitions. The effect of
referring to a context is that your table operates according to the context dimensional information
as declared for the context. For usage and limitations please see the respective chapter.

The column_name is an identifier providing the column name.

223

Chapter 6. EPL Reference: Nam...

The column_type is required for each column. There are two categories of column types:

1. Non-aggregating column types: Valid column types are listed in Section 5.17.1, “Creating
Variables: the Create Variable clause” and are the same as for variable types. For attributes that
are array-type append [] (left and right brackets). Table columns can hold events by declaring
the column type as the event type name. Array-type in combination with event-type is also
supported.

2. Aggregation column types: These instruct the engine to retain aggregation state.

After each column type you may add the pri mary key keywords. This keyword designates the
column as a primary key. When multiple columns are designated as primary key columns the
combination of column values builds a compound primary key. The order in which the primary key
columns are listed is important.

The next statement creates a table to hold a numat t enpt s count aggregation state and a column
named act i ve of type boolean, per i pAddr ess and user | d:

create tabl e SecuritySummaryTabl e (
i pAddress string primry key,
userld String prinmary key,
numit t enpts count (*),
active bool ean)

The example above specifies i pAddr ess and user | d as primary keys. This instructs the engine
that the table holds a single row for each distinct combination of i pAddr ess and user | d. The two
values make up the compound key and there is a single row per compound key value.

If you do not designate any columns of the table as a primary key column, the table holds only
one row (or no rows).

The create table statement does not provide output to its listeners. The table contents can be
iterated on via the pull API to obtain the current contents of a table.

6.3.1.1. Column Types for Aggregation Functions

All aggregation functions can be used as column types for tables. Please simply list the
aggregation function name as the column type and provide type information, when required.
See Section 10.2.1, “SQL-Standard Functions” for a list of the functions and required parameter
expressions for which you must provide type information.

Consider the next example that declares a table with columns for different aggregation functions
(not a comprehensive example of all possible aggregation functions):

create table MyStats (
nmyKey string primry key,
nyAvedev avedev(int), // colum holds a nean deviation of int-typed val ues

224

Creating Tables: The Create Table clause

nyAvg avg(double), // colum holds an average of double-typed val ues

nmyCount count(*), // colum holds a count

nyMax max(int), // colum holds a highest int-typed val ue

nmyMedi an medi an(float), // colum holds the nmedian of float-typed val ues

nySt ddev stddev(java. math. BigDecinmal), // colum holds a standard deviation
of Bi gDeci mal val ues

nmySum sum(l ong), // colum holds a sum of |ong val ues

nyFirstEver firstever(string), // colum holds a first-ever val ue of type string

myCount Ever countever(*) // colum holds the count-ever (regardless of data
wi ndows)

)

Additional keywords such as di sti nct can be used as well. If your aggregation will be associated
with a filter expression, you must add bool ean to the parameters in the column type declaration.

For example, the next EPL declares a table with aggregation-type columns that hold an average
of filtered double-typed values and an average of distinct double-typed values:

create table MyStatshre (
nyKey string primry key,
myAvgFi | tered avg(double, boolean), // colum holds an average of doubl e-
typed val ues
/1 and filtered by a bool ean expression to be provided
nmyAvgDi stinct avg(distinct double) // colum holds an average of distinct
doubl e-typed val ues

)

6.3.1.2. Column Types for Event Aggregation Functions

The event aggregation functions can be used as column types for tables. For event aggregation
functions you must specify the event type using the @ ype(hame) annotation.

The wi ndow event aggregation function requires the * wildcard. The first and | ast cannot be
used in a declaration, please use wi ndow instead and access as described in Section 6.3.3.2,
“Accessing Aggregation State With The Dot Operator”.

The sorted, maxbyever and minbyever event aggregation functions require the criteria
expression as a parameter. The criteria expression must only use properties of the provided event
type. The maxby and mi nby cannot be used in a declaration, please use sorted instead and
access as described in Section 6.3.3.2, “Accessing Aggregation State With The Dot Operator”.

In this example the table declares sample event aggregations (not a comprehensive example of
all possible aggregations):

create tabl e MyEvent Aggregati onTabl e (
nyKey string primry key,

225

Chapter 6. EPL Reference: Nam...

nyW ndow wi ndow(*) @ype(MEvent), // colum holds a wi ndow of MyEvent events
nySorted sorted(nySortValue) @ype(MEvent), // colum holds M/Event events
sorted by mnySort Val ue
nyMaxByEver nmaxbyever (nmySortVal ue) @ype(M/Event) // columm hol ds the single
M/Event event that
/1 provided the highest val ue of mySortVal ue ever

6.3.1.3. Column Types for Plug-In Custom Aggregation Functions

Any custom single-function and multi-function aggregation can be used as a table column type.
If the aggregation has multiple different return values and aggregations share common state, the
multi-function aggregation is the preferred API.

For example, the next EPL declares a table with a single column that holds the state of the
aggregation function nyAggr egat i on:

create tabl e MyStatsCustom (myCust om nyAggregation(' sone code', 100))

The above example passes the values some code and 100 to show how to pass constants to your
custom aggregation function at declaration time.

6.3.1.4. Dropping or Removing Tables

There is no syntax to drop or remove a table.

The dest r oy method on the EPSt at enent that created the table removes the table unless it is
used by another statement. If your application destroys the statement that creates the table and
also destroys all statements referring to the table, the engine removes the table. The table contents
can be iterated on, by iterating over the statement that creates the table, to obtain the current
contents of a table.

The st op method on the EPSt at enent that created the table has no effect.

6.3.2. Aggregating Into Table Rows: The into Table Clause

Use the i nto tabl e keywords to instruct the engine to aggregate into table columns. A given
statement can only aggregate into a single table.

For example, consider a table that holds the count of intrusion events keyed by the combination
of from-address and to-address:

create tabl e Intrusi onCount Table (
fromAddress string prinmary key,
t oAddress string primary key,
count I ntrusi on10Sec count (*),

226

Aggregating Into Table Rows: The Into Table clause

count I nt rusi on60Sec count (*)

The next sample statement updates the count considering the last 10 seconds of events:

into table IntrusionCount Tabl e

sel ect count(*) as countlntrusionl0Sec
from I ntrusi onEvent #ti ne(10)

group by fromAddress, toAddress

Multiple statements can aggregate into the same table columns or different table columns. The
co-aggregating ability allows you to co-locate aggregation state conveniently.

The sample shown below is very similar to the previous statement except that it updates the count

considering the last 60 seconds of events:

into table IntrusionCount Tabl e

sel ect count (*) as countlntrusi on60Sec
from I ntrusi onEvent #ti ne(60)

group by fromAddress, toAddress

Considering the example above, when an intrusion event arrives and a row for the group-by key
values (from and to-address) does not exists, the engine creates a new row and updates the
aggregation-type columns. If the row for the group-by key values exists, the engine updates the
aggregation-type columns of the existing row.

Tables can have no primary key columns. In this case a table either has a single row or is empty.

The next two EPL statements demonstrate table use without a primary key column:

create table Total I ntrusi onCount Tabl e (totallntrusions count(*))

into table TotallntrusionCountTable select count(*) as totallntrusions from
I nt rusi onEvent

In conjunction with i nt o t abl e the uni di recti onal keyword is not supported.

6.3.2.1. Group-By Clause Requirements

The use of the into table clause requires that the group by clause must list group-by
expressions that match the table's primary key declarations in terms of the number, return type

227

Chapter 6. EPL Reference: Nam...

and order of group-by expressions. It is not necessary that table column names match group-by
expression texts.

For example consider a table with a single long-type primary key column:

create table MyTable (theKey long prinmary key, theCount count(*))

The following EPL are all not valid:

/1 Invalid: No group-by clause however the table declares a primary key
into table MyTabl e sel ect count(*) as theCount from MyEvent

/1 Invalid: Two expressions in the group-by clause however the table declares
a single primary key

into table MTable select count(*) as theCount from MEvent group by
| ongPropertyOne, | ongPropertyTwo

/1 Invalid: The group-by clause expression returns a string-typed val ue however
the tabl e expects a |long-type prinmary key

into table MTable select count(*) as theCount from MEvent group by
stringProperty

You may use the rol | up, cube and gr oupi ng sets keywords in conjunction with tables.
6.3.2.2. Aggregation State Requirements

The use of the i nt o t abl e clause requires that all aggregation state of the EPL statement resides
in table columns.

For example consider a simple table as follows:

create table MyTable (theKey long prinmary key, theCount count(*))

The following EPL is not valid:

/1 Invalid: the sum aggregation state is not available in a table colum
into table MyTable select count(*) as theCount, sun(intProperty) from M/Event
group by | ongProperty

228

Table Column Keyed-Access Expressions

6.3.2.3. Aggregation Function Requirements

The use of the into table clause requires that all aggregation functions that are listed in
the statement are compatible with table column types, and that the statement has at least one
aggregation function.

For example consider a simple table as follows:

create table MyTable (theKey long primary key, theCount count(*))

The following EPL is not valid:

/1 lnvalid: the sum aggregation state is not conmpatible with count(*) that was
declared for the table colum's type

into table MyTabl e select sun{(intProperty) as theCount from MyEvent group by
| ongProperty

If declared, the distinct keyword and filter expressions must also match. The event type
information must match for event aggregation functions.

6.3.2.4. Column Naming Requirements

The use of the i nt o t abl e clause requires that the aggregation functions are named. You can
name an expression two ways.

1. First, you can name the aggregation function expression by adding it to the select-clause and
by providing the as-keyword followed by the table column name. The examples earlier use this
technique.

2. Second, you can name the aggregation function by placing it into a declared expression that
carries the same name as the table column.

This example demonstrates the second method of naming an aggregation function:

expression alias totallntrusions {count(*)}
sel ect total Intrusions fromlntrusi onEvent

6.3.3. Table Column Keyed-Access Expressions

For accessing table columns by primary key, EPL provides a convenient syntax that allows you
to read table column values simply by providing the table name, primary key value expressions
(if required by the table) and the column name.

229

Chapter 6. EPL Reference: Nam...

The synopsis for table-column access expressions is:

tabl e-nanme[primary_key expr [, primary_key expr] [,...]][.col um-nane]

The expression starts with the table name. If the table declares primary keys you must provide
the primary_key_expr value expressions for each primary key within square brackets. To access
a specific column, add the (.) dot character and the column name.

For example, consider a table that holds the count of intrusion events keyed by the combination
of from-address and to-address:

create table IntrusionCountTabl e (
fromAddress string prinmary key,
t oAddress string primry key,
count I ntrusi on10Sec count (*)

Assuming that a Fi r eval | Event has string-type properties named fromand t o, the next EPL
statement outputs the current 10-second intrusion count as held by the | nt r usi onCount Tabl e
row for the matching combination of keys:

sel ect IntrusionCount Tabl e[from to].countlntrusionl0Sec from Firewal | Event

The number of primary key expressions, the return type of the primary key expressions and the
order in which they are provided must match the primary key columns that were declared for the
table. If the table does not have any primary keys declared, you cannot provide any primary key
expressions.

If a row for the primary key (or compound key) cannot be found, the engine returns a nul | value.

An example table without primary key columns is shown next:

create table Total I ntrusi onCount Tabl e (totallntrusions count(*))

A sample statement that outputs the current total count every 60 seconds is:

sel ect Tot al I nt rusi onCount Tabl e. total I ntrusi ons from pattern[every
timer:interval (60 sec)]

Table access expressions can be used anywhere in statements except as parameter expressions
for data windows, the updat e i stream context declarations, output limit expressions, pattern

230

Inserting Into Tables

observer and guard parameters, pattern every-distinct, pattern match-until bounds, pattern
followed-by max and create w ndow insert or select expression and as a create variable
assignment expression.

6.3.3.1. Reading All Column Values

If your keyed-access expression emits the column name, the engine returns all current column
values.

An example EPL:
sel ect I ntrusionCount Tabl e[from to] from Firewal | Event

The engine returns each column value, or null if no row is found. For aggregation-type columns
it returns the current aggregation value.

6.3.3.2. Accessing Aggregation State With The Dot Operator

Certain aggregation functions allow accessing aggregation state using the (.) dot operator. This
includes the wi ndowand the sor t ed aggregation function as well as all other custom multi-function
aggregation function.

The first and| ast aggregation functions can be used with table columns that declare wi ndow.
The maxby and mi nby aggregation functions can be used with table columns that declare sort ed.

The EPL shown below declares a table that keeps an unsorted set of events and a sorted set of
events. This sample table has no primary key columns:

create table MyTable (
t heW ndow wi ndow(*) @ ype(MEvent),
theSorted sorted(mnmySortVal ue) @ype(MEvent)

The EPL to read the fi r st and the maxBy value is:
sel ect MyTabl e.theW ndow. first(), MTabl e.theSorted. maxBy() from SomeQ her Event

Plug-in custom multi-function aggregations can be used the same way.

6.3.4. Inserting Into Tables

The i nsert into clause inserts rows into a table. Your application must ensure that the column
names and types match the declared column names and types of the table to be inserted into,
when provided.

231

Chapter 6. EPL Reference: Nam...

For inserting into a table and for simultaneously checking if the inserted row already exists in
the table or for atomic update-insert operation on a table, consider using on- mer ge as described
in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-merge is similar to the SQL
mer ge clause and provides what is known as an "Upsert" operation; Update existing rows or if
no existing rows(s) are found then insert a new row, all in one atomic operation provided by a
single EPL statement.

The following statement populates the example table declared earlier:
insert into I ntrusi onCount Tabl e sel ect fromAddress, toAddress fromFirewal | Event

Note that when a row with the same primary key values already exists, your statement may
encounter a unigue index violation at runtime. If the inserted-into table does not have primary
key columns, the table holds a maximum of one row and your statement may also encounter a
unigue index violation upon attempting to insert a second row. Use on- mer ge to prevent inserts
of duplicate rows.

Table columns that are aggregation functions cannot be inserted-into and must be updated using
into tabl e instead.

You may also explicitly list column names as discussed earlier in Section 6.2.2, “Inserting Into
Named Windows”. For i nsert-into, the context name must be the same context name as
declared for the creat e t abl e statement or the context name must be absent for both.

6.3.5. Selecting From Tables

A table can be referred to by any statement in the f r omclause of the statement.

Tables do not provide an insert and remove stream. When a table appears alone in the from
clause (other than as part of a subquery), the statement produces output only when iterated (see
pull API) or when executing an on-demand (fire-and-forget) query.

Assuming you have declared a table by name | ntrusi onCount Tabl e as shown earlier, the
following statement only returns rows when iterated or when executing the EPL as an on-demand
query or when adding an out put snapshot :

select * from Intrusi onCount Tabl e

For tables, the contained-event syntax and the declaration of views is not supported. In a join, a
table in the f r omclause cannot be marked as uni di recti onal . You may not specify any of the
retain-flags. Tables cannot be used in the f r omclause of match-recognize statements, in context
declarations, in pattern filter atoms and updat e i stream

The following are examples of invalid statements:

232

Selecting From Tables

/1 invalid statenment exanples

select * from I ntrusionCount Tabl e#ti me(30 sec) /1 views not allowed

select * from |ntrusionCount Tabl e unidirectional, MEvent /1 tables cannot
be marked as uni directional

Tables can be used in subqueries and joins.

It follows a sample subselect and join against the table:

sel ect
(select * fromlIntrusionCountTable as intr
where intr.fromAddress = firewall.fromAddress and intr.toAddress
firewal | .toAddress)
from I ntrusi onEvent as firewall

select * fromIntrusionCountTable as intr, IntrusionEvent as firewall
wher e i ntr.fromAddress = firewal |l .fromAddress and i ntr.toAddress
firewal | .t oAddress

If the subselect or join specifies all of a table's primary key columns, please consider using the
table-access expression instead. It offers a more concise syntax.

Note that for a subquery against a table that may return multiple rows, the information about
subquery multi-row selection applies. For subselects, consider using @vent bean to preserve
table type information in the output event.

Note that for joins against tables the engine does not allow specifying table filter expressions in
parenthesis, in the f r omclause. Filter expressions must instead be placed into the wher e-clause.

You may access aggregation state the same way as in table-access expressions, using the dot
(.) operator.

The EPL shown below declares a table that keeps a set of events, and shows a join that selects
window aggregation state:

create tabl e MyW ndowTabl e (t heW ndow wi ndowm *) @ype(M/Event))

sel ect thewWndow first(), thewWndow last(), thewWndow wi ndow() from M/Event,
MW ndowTabl e

233

Chapter 6. EPL Reference: Nam...

6.4. Triggered Select: the o select Clause

The on sel ect clause performs a one-time, non-continuous query on a hamed window or table
every time a triggering event arrives or a triggering pattern matches. The query can consider all
rows, or only rows that match certain criteria, or rows that correlate with an arriving event or a
pattern of arriving events.

The syntax for the on sel ect clause is as follows:

on event _type[(filter_criteria)] [as stream nane]
[insert into insert _into_def]

sel ect select |ist

from w ndow_or_tabl e _name [as stream nane]

[where criteria_expression]

[group by groupi ng_expression_list]

[havi ng groupi ng_search_condi ti ons]

[order by order by expression_list]

The event_type is the name of the type of events that trigger the query against the named window
or table. It is optionally followed by filter_criteria which are filter expressions to apply to arriving
events. The optional as keyword can be used to assign a stream name. Patterns or named
windows can also be specified in the on clause, see the samples in Section 6.7.1, “Using Patterns
inthe On Delete Clause” (for a named window as a trigger only insert stream events trigger actions)
(tables cannot be triggers).

The insert into clause works as described in Section 5.10, “Merging Streams and Continuous
Insertion: the Insert Into Clause”. The select clause is described in Section 5.3, “Choosing Event
Properties And Events: the Select Clause”. For all clauses the semantics are equivalent to a join
operation:; The properties of the triggering event or events are available in the sel ect clause and
all other clauses.

The window_or_table_name in the fromclause is the name of the named window or table to
select rows from. The as keyword is also available to assign a stream name to the table or named
window. The as keyword is helpful in conjunction with wildcard in the sel ect clause to select rows
via the syntax sel ect streamane. * .

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the rows to be considered from the table or named window. The criteria_expression may
also simply filter for rows to be considered by the query.

The group by clause, the havi ng clause and the order by clause are all optional and work as
described in earlier chapters.

Queries against tables and named windows work the same. The examples herein use the
O der sNamedW ndow named window and the Secur i t ySummar yTabl e table to provide examples
for each.

234

Triggered Select: the On Select clause

The sample statement below outputs, when a query event arrives, the count of all rows held by
the Securi t ySummar yTabl e table:

on QueryEvent select count(*) from SecuritySunmaryTabl e

This sample query outputs the total volume per symbol ordered by symbol ascending and only
non-zero volumes of all rows held by the O der sNanedW ndow named window:

on QueryEvent
sel ect synbol, sum(vol une) from O der sNamedW ndow
group by synbol having volune > 0 order by synbol

When using wildcard (*) to select from streams in an on-select clause, each stream, that is the
triggering stream and the selected-upon table or named window, are selected, similar to a join.
Therefore your wildcard select returns two columns: the triggering event and the selection result
row, for each row.

on QueryEvent as queryEvent
sel ect * from O der sNamedW ndow as wi n

The query above returns a quer yEvent column and a wi n column for each event. If only a single
stream's event is desired in the result, use sel ect wi n. * instead.

Upon arrival of a QueryEvent event, this statement selects all rows in the Or der sNanedW ndow
named window:

on QueryEvent select win.* from O der sNanedW ndow as w n

The engine executes the query on arrival of a triggering event, in this case a QueryEvent. It posts
the query results to any listeners to the statement, in a single invocation, as the new data array.
The wher e clause filters and correlates rows in the table or named window with the triggering

event, as shown next:

on QueryEvent (vol ume>0) as query
sel ect query.synbol, query.volune, w n.synbol from O dersNanedW ndow as win
where wi n.synbol = query. synmbol

235

Chapter 6. EPL Reference: Nam...

Upon arrival of a QueryEvent, if that event has a value for the volume property that is greater
than zero, the engine executes the query. The query considers all events currently held by the
O der sNanmedW ndow that match the symbol property value of the triggering QueryEvent event.

6.4.1. Notes on On-Select With Named Windows

For correlated queries that correlate triggering events with rows held by a named window, Esper
internally creates efficient indexes to enable high performance querying of rows. It analyzes the
wher e clause to build one or more indexes for fast lookup in the named window based on the
properties of the triggering event.

To trigger an on-select when an update to the selected named window occurs or when the
triggering event is the same event that is being inserted into the named window, specify the named
window name as the event type.

The next query fires the select for every change to the named window OrdersNamedWindow:
on OrdersNanedW ndow as trig
sel ect onw. synbol, sum(onw. vol une)

from Or der sNamedW ndow as onw
where onw. synbol = trig.synbol

For named windows, the i t er at or of the EPSt at enent object representing the on sel ect clause
returns the last batch of selected events in response to the last triggering event, or null if the last
triggering event did not select any rows.

An on- sel ect statement executes under a shareable named window context partition lock.

6.4.2. Notes on On-Select With Tables

For tables, the i t er at or of the EPSt at enent object representing the on sel ect clause returns
no events.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes
either primary key columns or secondary explicitly-created indexes to enable high performance
querying of rows, based on an analysis of the wher e clause.

6.4.3. On-Select Compared To Join

The similarities and differences between an on sel ect clause and a regular or outer join (and
not unidirectional) are as follows:

1. A join is evaluated when any of the streams participating in the join have new events (insert
stream) or events leaving data windows (remove stream). A join is therefore bi-directional or

236

Triggered Select+Delete: the On Select Delete clause

multi-directional. However, the on sel ect statement has one triggering event or pattern that
causes the query to be evaluated and is thus uni-directional.

2. The query within the on sel ect statement is not continuous: It executes only when a triggering
event or pattern occurs. Aggregation and groups are computed anew considering the contents
of the table or named window at the time the triggering event arrives.

On- sel ect and the unidirectional join can be compared as follows.

On-sel ect, on-ner ge, on-i nsert, on-del et e, on- updat e and on- sel ect - and- del et e operate
only on named windows or tables. Unidirectional joins however can operate on any stream. If the
unidirectional join is between a single named window or table and a triggering event or pattern
and that triggering event or pattern is marked unidirectional, the unidirectional join is equivalent
to on-sel ect .

A unidirectional join does not execute under a named window context partition lock and instead
is a consumer relationship to the named window.

6.5. Triggered Select+Delete: the on select meiete Clause

The on sel ect del et e clause performs a one-time, non-continuous query on a table or named
window every time a triggering event arrives or a triggering pattern matches, similar to on- sel ect
as described in the previous section. In addition, any selected rows are also deleted.

The syntax for the on sel ect del et e clause is as follows:

on trigger
sel ect [and] delete select list...
(pl ease see on-select for insert into, from group by, having, order

by) ...

The syntax follows the syntax of on- sel ect as described earlier. The sel ect clause follows the
optional and keyword and the del et e keyword. The f r omclause can list either a table or a named
window.

The example statement below selects and deletes all rows from O der sNamedW ndow named
window when a QueryEvent arrives:

on QueryEvent select and delete windowmwi n.*) as rows from O der sNamedW ndow
as win

The sample EPL above also shows the use of the wi ndow aggregation function. It specifies the
wi ndow aggregation function to instruct the engine to output a single event, regardless of the
number of rows in the named window, and that contains a column r ows that contains a collection
of the selected event's underlying objects.

6.6. Updating Data: the o wdate Clause

237

Chapter 6. EPL Reference: Nam...

An on updat e clause updates rows held by a table or named window. The clause can be used
to update all rows, or only rows that match certain criteria, or rows that correlate with an arriving
event or a pattern of arriving events.

For updating a table or named window and for simultaneously checking if the updated row exists
or for atomic update-insert operation on a named window or table, consider using on- nmer ge as
described in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-merge is similar to
the SQL ner ge clause and provides what is known as an "Upsert" operation: Update existing
events or if no existing event(s) are found then insert a new event, all in one atomic operation
provided by a single EPL statement.

The syntax for the on updat e clause is as follows:

on event_type[(filter_criteria)] [as stream nane]
updat e wi ndow_or _t abl e_nanme [as stream nane]

set nutation_expression [, nmutation_expression [,...]]
[where criteria_expression]

The event_type is the name of the type of events that trigger an update of rows in a named window.
It is optionally followed by filter_criteria which are filter expressions to apply to arriving events. The
optional as keyword can be used to assign a name for use in expressions and the wher e clause.
Patterns and named windows can also be specified in the on clause.

The window_or_table_name is the name of the table or named window to update rows. The as
keyword is also available to assign a name to the named window or table.

After the set keyword follows a list of comma-separated mutation_expression expressions. A
mutation expression is any valid EPL expression. Subqgueries may by part of expressions however
aggregation functions and the prev or pri or function may not be used in expressions.

The below table shows some typical mutation expessions:

Table 6.1. Mutation Expressions in Update And Merge

Description Syntax and Examples

Assignment
property_nane

= val ue_expressi on

price = 10, side = 'BUY

Event Method Invocation (not available for tables)

or der W ndow. cl ear ()

238

al i as_or_w ndownane. net hodnane(. . .

Updating Data: the On Update clause

Description Syntax and Examples

Property Method Invocation

property name. net hodnanme(...)

account Map. cl ear ()

User-Defined Function Call .
functionnane(...)

cl ear Quantiti es(order Row

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the rows to be updated in the table or named window. The criteria_expression may also
simply filter for rows to be updated.

Queries against tables and named windows work the same. We use the term property and column
interchangeably. The examples herein use the O der sNamedW ndow hamed window and the
Securi t ySummar yTabl e table to provide examples for each. Let's look at a couple of examples.

In the simplest form, this statement updates all rows in the named window O der sNanedW ndow
when any Updat eOr der Event event arrives, setting the price property to zero for all rows currently
held by the named window:

on Updat eOrder Event update O der sNanedW ndow set price = 0

This example demonstrates the use of a wher e clause and updates the Securi t ySunmar yTabl e
table. Upon arrival of a triggering Reset Event it updates the acti ve column value to false for all
table rows that have an act i ve column value of true:

on Reset Event update SecuritySummaryTabl e set active = fal se where active = true

The next example shows a more complete use of the syntax, and correlates the triggering event
with rows held by the Or der sNamedW ndow named window:

on NewOr der Event (vol ume>0) as nyNewOrders
updat e Or der sNamedW ndow as nyNanedW ndow

set price = nyNewOrders. price

wher e nmyNanedW ndow. synbol = nyNewOr ders. synbol

239

Chapter 6. EPL Reference: Nam...

In the above sample statement, only if a NewOr der Event event with a volume greater then zero
arrives does the statement trigger. Upon triggering, all rows in the named window that have the
same value for the symbol property as the triggering NewOr der Event event are then updated (their
price property is set to that of the arriving event). The statement also showcases the as keyword
to assign a name for use in the wher e expression.

Your application can subscribe a listener to your on updat e statements to determine update
events. The statement post any rows that are updated to all listeners attached to the statement
as new data, and the events prior to the update as old data.

The following example shows the use of tags and a pattern. It sets the price value of orders to
that of either a Fl ushQr der Event or Or der Updat eEvent depending on which arrived:

on pattern [every ord=Cr der Updat eEvent (vol ume>0) or every fl ush=Fl ushOr der Event]
updat e Or der sNamedW ndow as wi n

set price = case when ord.price is null then flush.price else ord.price end
where ord.id = win.id or flush.id = win.id

When updating indexed properties use the syntax propertyName[index] = value with the
index value being an integer number. When updating mapped properties use the syntax
propertyName(key) = value with the key being a string value.

The engine executes assignments in the order they are listed. When performing multiple
assignments, the engine takes the most recent column value according to the last assignment,
if any. To instruct the engine to use the initial value before update, prefix the column name with
the literal i ni ti al .

The following statement illustrates:

on Updat eEvent as upd
update MyW ndow as w n
set field_a = 1,
field_ b =win.field_a, // assigns the value 1
field c =initial.field_a // assigns the field_a original value before update

The next example assumes that your application provides a user-defined function copyFi el ds
that receives 3 parameters: The update event, the new row and the initial state before-update row.

on Updat eEvent as upd update MyW ndow as wi n set copyFields(win, upd, initial)

You may invoke a method on a value object, for those properties that hold value objects, as follows:

240

Notes on On-Update With Named Windows

on Updat eEvent update MyW ndow as wi n set soneproperty.clear()

For named windows only, you may also invoke a method on the named window event type.

The following example assumes that your event type provides a method by name popul at eFr om
that receives the update event as a parameter:

on Updat eEvent as upd update MyW ndow as wi n set w n. popul at eFr on(upd)

The following restrictions apply:

1. Each property to be updated via assignment must be writable. For tables, all columns are
always writable.

2. Forunderlying event representations that are Java objects, a event object class mustimplement
the java.io.Serializable interface as discussed in Section 5.20.1, “Immutability and Updates”
and must provide setter methods for updated properties.

3. When using an XML underlying event type, event properties in the XML document
representation are not available for update.

4. Nested properties are not supported for update. Revision event types and variant streams may
also not be updated.

6.6.1. Notes on On-Update With Named Windows

Statements that reference the named window receive the new event in the insert stream and the
event prior to the update in the remove stream.

For correlated queries (as above) that correlate triggering events with events held by a named
window, Esper internally creates efficient indexes to enable high performance update of events.

The it erator of the EPSt at enent object representing the on updat e clause can also be helpful:
It returns the last batch of updated events in response to the last triggering event, in any order,
or null if the last triggering event did not update any rows.

6.6.2. Notes on On-Update With Tables

On-Update may not update primary key columns.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes
either primary key columns or secondary explicitly-created indexes to enable high performance
querying of rows, based on an analysis of the wher e clause.

The i terator of the EPSt at ement object representing the on updat e clause does not return
any rows.

6.7. Deleting Data: the on meiete Clause

241

Chapter 6. EPL Reference: Nam...

An on del et e clause removes rows from a named window or table. The clause can be used to
remove all rows, or only rows that match certain criteria, or rows that correlate with an arriving
event or a pattern of arriving events.

The syntax for the on del et e clause is as follows:

on event _type[(filter_criteria)] [as stream nane]
del ete from wi ndow or _tabl e nane [as stream nane]
[where criteria_expression]

The event_type is the name of the type of events that trigger removal from the table or named
window. It is optionally followed by filter_criteria which are filter expressions to apply to arriving
events. The optional as keyword can be used to assign a name for use in the where clause.
Patterns and named windows can also be specified in the on clause as described in the next
section.

The window_or_table _name is the name of the named window or table to delete rows from. The
as keyword is also available to assign a name to the table or named window.

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the rows to be removed. The criteria_expression may also simply filter for rows without
correlating.

On-delete can be used against tables and named windows. The examples herein use the
O der sNanmedW ndow named window and the Secur i t ySummar yTabl e table to provide examples
for each.

In the simplest form, this statement deletes all rows from the Securi t ySummar yTabl e table when
any d ear Event arrives:

on Cl earEvent delete from SecuritySunmmaryTabl e

The next example shows a more complete use of the syntax, and correlates the triggering event
with events held by the Or der sNanmedW ndow named window:

on NewOr der Event (vol ume>0) as nyNewOr ders
del ete from Order sNanedW ndow as nyNanedW ndow
wher e nmyNamedW ndow. synbol = nyNewOr der s. synbol

In the above sample statement, only if a NewOr der Event event with a volume greater then zero
arrives does the statement trigger. Upon triggering, all rows in the named window that have the
same value for the symbol property as the triggering NewOr der Event event are removed. The
statement also showcases the as keyword to assign a name for use in the wher e expression.

242

Using Patterns in the On Delete Clause

6.7.1. Using Patterns in the on peiete Clause

By means of patterns the on del et e clause and on sel ect clause (described below) can look
for more complex conditions to occur, possibly involving multiple events or the passing of time.
The syntax for on del et e with a pattern expression is show next:

on pattern [pattern_expression] [as stream nane]
del ete from wi ndow _or_tabl e nane [as stream nane]
[where criteria_expression]

The pattern_expression is any pattern that matches zero or more arriving events. Tags can be
used to name events in the pattern and can occur in the optional wher e clause to correlate to
events to be removed from a named window.

In the next example the triggering pattern fires every 10 seconds. The effect is that every 10
seconds the statement removes all rows from the Securi t ySunmar yTabl e table:

on pattern [every tiner:interval (10 sec)] delete from SecuritySunmaryTabl e

The following example shows the use of tags in a pattern and executes against the
O der sNanmedW ndow nhamed window instead:

on pattern [every ord=Order Event (vol une>0) or every fl ush=Fl ushOr der Event]
del ete from Order sNanedW ndow as wi n
where ord.id = win.id or flush.id = win.id

The pattern above looks for OrderEvent events with a volume value greater then zero and tags
such events as 'ord". The pattern also looks for FlushOrderEvent events and tags such events
as 'flush'. The wher e clause deletes from the Or der sNamedW ndow named window any rows that
match in the value of the 'id' property either of the arriving events.

6.7.2. Notes on On-Delete With Named Windows

Statements that reference the named window receive the deleted event as part of the remove
stream.

For correlated queries (as above) that correlate triggering events with rows held by a named
window, Esper internally creates efficient indexes to enable high performance deletion of rows.

Theiterator of the EPSt at enent object representing the on updat e clause can also be helpful:
It returns the last batch of deleted rows in response to the last triggering event, in any order, or
null if the last triggering event did not update any rows.

243

Chapter 6. EPL Reference: Nam...

6.7.3. Notes on On-Update With Tables

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes
either primary key columns or secondary explicitly-created indexes to enable high performance
querying of rows, based on an analysis of the wher e clause.

The i terator of the EPSt at ement object representing the on del et e clause does not return
any rows.

6.8. Triggered Upsert using the o-wrge Clause

The on mer ge clause is similar to the SQL ner ge clause. It provides what is known as an "Upsert"
operation: Update existing rows or if no existing row(s) are found then insert a new row, all in an
atomic operation provided by a single EPL statement.

The syntax for the on ner ge clause is as follows:

on event _type[(filter_criteria)] [as stream nane]
nerge [into] wi ndow or_table nane [as stream nane]
[where criteria_expression]

when [not] matched [and search_condition]

then [
insert [into streamang]
[(property_nane [, property nanme] [,...]) |
sel ect sel ect _expression [, select_expression[,...]]
[where filter_expression]
|
updat e set mutation_expression [, nutation_expression [,...]]
[where filter_expression]
I
del ete
[where filter_expression]
]
[then [insert|update|delete]] [,then ...]
[when ... then ... [...]]

The event_type is the name of the type of events that trigger the merge. It is optionally followed
by filter_criteria which are filter expressions to apply to arriving events. The optional as keyword
can be used to assign a name for use in the wher e clause. Patterns and named windows can also
be specified in the on clause as described in prior sections.

The window_or_table_name is the name of the named window or table to insert, update or delete
rows. The as keyword is also available to assign a name to the named window or table.

The optional wher e clause contains a criteria_expression that correlates the arriving (triggering)
event to the rows to be considered of the table or named window. We recommend specifying a
criteria expression that is as specific as possible.

244

Triggered Upsert using the On-Merge Clause

Following the wher e clause is one or more when nat ched or when not mat ched clauses in any
order. Each may have an additional search condition associated.

After each when [not] nat ched follow one or more t hen clauses that each contains the action
to take: Either an i nsert, updat e or del et e keyword.

After when not matched only i nsert action(s) are available. After wnen nat ched any i nsert,
updat e and del et e action(s) are available.

Afteri nsert follows, optionally, the i nt o keyword followed by the stream name or named window
to insert-into. If no i nt o and stream name is specified, the insert applies to the current table
or named window. It follows an optional list of columns inserted. It follows the required sel ect
keyword and one or more select-clause expressions. The wildcard (*) is available in the select-
clause as well. It follows an optional where-clause that may return Boolean false to indicate that
the action should not be applied.

After updat e follows the set keyword and one or more mutation expressions. For mutation
expressions please see Section 6.6, “Updating Data: the On Update clause”. It follows an optional
where-clause that may return Boolean false to indicate that the action should not be applied.

After del et e follows an optional where-clause that may return Boolean false to indicate that the
action should not be applied.

When according to the where-clause criteria_expression the engine finds no rows in the named
window or table that match the condition, the engine evaluates each when not matched clause.
If the optional search condition returns true or no search condition was provided then the engine
performs all of the actions listed after each t hen.

When according to the where-clause criteria_expression the engine finds one or more rows in
the named window or table that match the condition, the engine evaluates each when matched
clause. If the optional search condition returns true or no search condition was provided the engine
performs all of the actions listed after each t hen.

The engine executes when mat ched and when not mat ched in the order specified. If the optional
search condition returns true or no search condition was specified then the engine takes the
associated action (or multiple actions for multiple t hen keywords). When the block of actions
completed the engine proceeds to the next matching row, if any. After completing all matching
rows the engine continues to the next triggering event if any.

On-merge can be used with tables and named windows. The examples herein declare a
Pr oduct W ndow named window and also use the SecuritySumaryTabl e table to provide
examples for each.

This example statement updates the Securi t ySummar yTabl e table when a Reset Event arrives
setting the act i ve column's value to false:

on Reset Event nerge SecuritySumaryTabl e

245

Chapter 6. EPL Reference: Nam...

when matched and active = true then update set active = false

A longer example utilizing a named window follows. We start by declaring a schema that provides
a product id and that holds a total price:

create schema Product Total Rec as (productld string, total Price doubl e)

We create a named window that holds a row for each unique product:

create w ndow Product W ndow#uni que(productld) as Product Tot al Rec

The events for this example are order events that hold an order id, product id, price, quantity and
deleted-flag declared by the next schema:

create schema OrderEvent as (orderld string, productld string, price double,
quantity int, del etedFl ag bool ean)

The following EPL statement utilizes on- ner ge to total up the price for each product based on
arriving order events:

on OrderEvent oe
nmer ge Product W ndow pw
where pw. productld = oe. productld
when mat ched
then update set totalPrice = total Price + oe.price
when not mat ched
then insert select productld, price as total Price

In the above example, when an order event arrives, the engine looks up in the product named
window the matching row or rows for the same product id as the arriving event. In this example the
engine always finds no row or one row as the product named window is declared with a unique
data window based on product id. If the engine finds a row in the named window, it performs the
update action adding up the price as defined under when nat ched. If the engine does not find
a row in the named window it performs the insert action as defined under when not nat ched,
inserting a new row.

The i nsert keyword may be followed by a list of columns as shown in this EPL snippet:

/1 equivalent to the insert shown in the last 2 lines in above EPL
... when not matched

246

Triggered Upsert using the On-Merge Clause

then insert(productld, total Price) select productld, price

The second example demonstrates the use of a select-clause with wildcard, a search condition
and the del et e keyword. It creates a hamed window that holds order events and employs on-
merge to insert order events for which no corresponding order id was found, update quantity to the
quantity provided by the last arriving event and delete order events that are marked as deleted:

create wi ndow O der Wndow#keepal | as Order Event

on OrderEvent oe
nmerge Order W ndow pw
where pw.orderld = oe.orderld
when not mat ched
then insert select *
when mat ched and oe. del et edFl ag=t rue
then del ete
when mat ched
then update set pw. quantity = oe.quantity, pw. price = oe.price

In the above example the oe. del et edFl ag=t r ue search condition instructs the engine to take
the delete action only if the deleted-flag is set.

You may specify multiple actions by providing multiple t hen keywords each followed by an action.
Each ofthei nsert, updat e and del et e actions can itself have a where-clause as well. If a where-
clause exists for an action, the engine evaluates the where-clause and applies the action only if
the where-clause returns Boolean true.

This example specifies two update actions and uses the where-clause to trigger different update
behavior depending on whether the order event price is less than zero. This example assumes
that the host application defined a cl ear or der user-defined function, to demonstrate calling a
user-defined function as part of the update mutation expressions:

on OrderEvent oe
mer ge Order W ndow pw
where pw.orderld = oe.orderld
when mat ched
then update set clearorder(pw) where oe.price < 0
then update set pw. quantity = oe.quantity, pw price = oe.price where oe.price
>= 0

To insert events into another stream and not the named window, use i nsert i nt o streamname.

247

Chapter 6. EPL Reference: Nam...

In the next example each matched-clause contains two actions, one action to insert a log event
and a second action to insert, delete or update:

on OrderEvent oe

nerge Order W ndow pw

where pw.orderld = oe.orderld

when not mat ched
then insert into LogEvent select 'this is an insert' as nane
then insert select *

when nmat ched and oe. del et edFl ag=true
then insert into LogEvent select 'this is a delete' as nane
then del ete

when mat ched
then insert into LogEvent select 'this is a update' as name
then update set pw. quantity = oe.quantity, pw. price = oe.price

While the engine evaluates and executes all actions listed under the same matched-clause in
order, you may not rely on updated field values of an earlier action to trigger the where-clause of
a later action. Similarly you should avoid simultaneous update and delete actions for the same
match: the engine does not guarantee whether the update or the delete take final affect.

Your application can subscribe a listener to on ner ge statements to determine inserted, updated
and removed events. Statements post any events that are inserted to, updated or deleted from a
named window to all listeners attached to the statement as new data and removed data.

The following limitations apply to on-merge statements:

1. Aggregation functions and the prev and pri or operators are not available in conditions and
the sel ect -clause.

6.8.1. Notes on On-Merge With Named Windows

Statements that reference the named window receive an insert and remove stream represening
the insertions, changes and deletions to named window rows.

For correlated queries (as above) that correlate triggering events with rows held by a named
window, Esper internally creates efficient indexes to enable high performance update and removal
of events especially from named windows that hold large numbers of events.

Upon iteration, the statement provides the last inserted events, if any.

6.8.2. Notes on On-Merge With Tables

On-Merge may not update primary key columns.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes
either primary key columns or secondary explicitly-created indexes to enable high performance
querying of rows, based on an analysis of the wher e clause.

248

Explicitly Indexing Named Windows and Tables

The i t erat or of the EPSt at ement object representing the on ner ge clause does not return any
rows.

6.9. Explicitly Indexing Named Windows and Tables

You may explicitly create an index on a table or a named window. The engine considers explicitly-
created as well as implicitly-allocated indexes (named windows only) in query planning and
execution of the following types of usages of tables and named windows:

1. On-demand (fire-and-forget, non-continuous) queries as described in Section 16.5, “On-
Demand Fire-And-Forget Query Execution”.

2. On-sel ect, on- er ge, on- updat e, on-del et e and on-i nsert.
3. Subqueries against tables and named windows.

4. For joins (including outer joins) with named windows the engine considers the filter criteria listed
in parenthesis using the syntax

nane_w ndow _name(filter_criteria)

for index access.

5. For joins with tables the engine considers the primary key columns (if any) as well as any table
indexes.

The syntax to create an explicit index on a named window or table is:

create [unique] index index_nanme on w ndow or_tabl e_nane (
col utm_expr essi on [hash| btree|index_type_expression]
[, columm_expression] [hash|btree|index_type_expression]

[o..-]

The optional unique keyboard indicates that the column expressions uniquely identify rows. If
unigue is not specified the index allows duplicate rows.

The index_name is the name assigned to the index. The name uniquely identifies the index and
is used in engine query plan logging.

The window_or_table_name is the name of an existing table or named window. If the named
window or table has rows already, the engine builds an index for the rows.

After the table name or named window name follows a list of pairs of column_expression column
expression and index type.

A column expression is the expression that is subject to index building. Typically a column
expression is an event property or column name. For special application-provided or spatial
indexes other column expressions are allowed and such indexes may allow multiple columns to
be combined.

249

Chapter 6. EPL Reference: Nam...

Following each column expression you may specify the index type by providing the optional
hash or bt r ee keywords or an index_type_expression. For special application-provided or spatial
indexes please use the index_type_expression.

If you specify no keyword or the hash keyword for a property, the index will be a hash-based
(unsorted) index in respect to that property. If you specify the bt r ee keyword, the index will be
a binary-tree-based sorted index in respect to that property. You may combine hash and bt ree
properties for the same index. Specify bt r ee for a property if you expect to perform numerical
or string comparison using relational operators (<, >, >=, <=), the bet ween or the i n keyword for
ranges and inverted ranges. Use hash (the default) instead of bt r ee if you expect to perform exact
comparison using =.

For hash and bt r ee index types the column expression must be an event property or column
name. Expressions such as col +1 are not currently supported for hash and bt r ee index types
but are supported for other index types.

Thecreat e t abl e syntax is the same for tables and named windows. The examples herein create
a new User Prof i | eW ndow named window and also use the Securi t ySunmar yTabl e table.

This sample EPL creates an non-unique index on the active column of table
Securi tySummar yTabl e:

create i ndex Myl ndex on SecuritySunmaryTabl e(acti ve)

We list a few example EPL statements next that create a named window and create a single index:

/] create a named w ndow
create wi ndow UserProfil eWndow#tine(1l hour) select * from UserProfile

/1 create a non-unique index (duplicates allowed) for the user id property only
create index UserProfilelndex on UserProfil eWndow userl d)

Next, execute an on-demand fire-and-forget query as shown below, herein we use the prepared
version to demonstrate:

String query = "select * from UserProfil eWndow where userld="Joe'";
EPOnDermandPr epar edQuery prepared = epRunti ne. prepareQuery(query);

/1 query performance excellent in the face of |arge nunber of rows
EPOnDemandQuer yResult result = prepared. execute();

Il ...later

prepared. execute(); // execute a second tine

250

Explicitly Indexing Named Windows and Tables

A unique index is generally preferable over non-unique indexes. For named windows, if your data
window declares a unique data window (st d: uni que, st d: fi rstuni que, including intersections
and grouped unique data windows) it is not necessary to create a unique index unless index
sharing is enabled, since the engine considers the unique data window declaration in query
planning.

The engine enforces uniqueness (e.g. unigue constraint) for unique indexes. If your application
inserts a duplicate row the engine raises a runtime exception when processing the statement and
discards the row. The default error handler logs such an exception and continues.

For example, if the user id together with the profile id uniquely identifies an entry into the named

window, your application can create a unigue index as shown below:

// create a unique index on user id and profile id
create unique i ndex UserProfilelndex on UserProfil eWndow(userld, profileld)

By default, the engine builds a hash code -based index useful for direct comparison via equals
(=). Filter expressions that look for ranges or use i n, between do not benefit from the hash-
based index and should use the bt r ee keyword. For direct comparison via equals (=) then engine
does not use bt r ee indexes.

The next example creates a composite index over two fields synbol and buyPri ce:

/'l create a naned wi ndow
create wi ndow Ti ckEvent W ndow#ti me(1 hour) as (synbol string, buyPrice double)

/1 create a non-uni que index
create index idxl on TickEvent Wndow synbol hash, buyPrice btree)

A sample fire-and-forget query is shown below (this time the API calls are not shown):

/'l query performance excellent in the face of |arge nunber of rows
sel ect * from Ti ckEvent W ndow where synbol = GE' and buyPrice between 10 and 20

7 Note
!

A table that does not declare one or more primary key columns cannot have a
secondary index, as the table holds a maximum of one row.

o

251

Chapter 6. EPL Reference: Nam...

6.10. Using Fire-And-Forget Queries with Named
Windows and Tables

Fire-and-Forget queries can be run against both tables and named windows. We use the term
property and column interchangeably.

For selecting from named windows and tables, please see the examples in Section 16.5, “On-
Demand Fire-And-Forget Query Execution”.

For data manipulation (insert, update, delete) queries, the on-demand query API returns the
inserted, updated or deleted rows when the query executes against a named window.

6.10.1. Inserting Data

Your application can insert rows into a table or named window using on-demand (fire-and-
forget, non-continuous) queries as described in Section 16.5, “On-Demand Fire-And-Forget Query
Execution”.

The engine allows the standard SQL syntax and val ues keyword and also supports using sel ect
to provide values.

The syntax using the val ues keyword is:

insert into wi ndow or_table nane [(property_names)]
val ues (val ue_expressi ons)

The syntax using sel ect is as follows:

insert into wi ndow or_table_nane [(property_names)]
sel ect val ue_expressi ons

The window_or_table_name is the name of the table or named window to insert rows into.

After the named window or table name you can optionally provide a comma-separated list of
property names.

When providing property names, the order of value expressions in the values list or select clause
must match the order of property names specified. Column names provided in the select-clause,
if specified, are ignored.

When not providing property names and when specifying the val ues keyword, the order of values
must match the order of properties declared for the named window or table. When not providing
property names and when specifying the select-clause, expressions must name the properties to
be inserted into by assigning a column name using the as keyword.

The example code snippet inserts a new order row into the Or der sW ndow named window:

252

Updating Data

String query =
"insert into OrdersWndow(orderld, symbol, price) values ('001', 'GE', 100)";
epServi ce. get EPRunt i ne() . execut eQuery(query);

Instead of the val ues keyword you may specify a select-clause as this example shows:

String query =
"insert into OrdersWndow orderld, synbol, price) select '001', 'GE', 100";
epServi ce. get EPRunti me() . execut eQuery(query);

The following EPL inserts the same values as above but specifies property names as part of the
select-clause expressions:

insert into OrdersW ndow
select '001' as orderld, 'CGE' as synbol, 100 as price

The next EPL inserts the same values as above and does not specify property names thereby
populating the first 3 properties of the type of the named window:

insert into OrdersW ndow val ues ('001', 'GE', 100)

6.10.2. Updating Data

Your application can update table and named window rows using on-demand (fire-and-forget,
non-continuous) queries as described in Section 16.5, “On-Demand Fire-And-Forget Query
Execution”.

The syntax for the updat e clause is as follows:

updat e wi ndow_or _t abl e_nanme [as stream nane]
set nmutation_expression [, nutation_expression [,...]]
[where criteria_expression]

The window_or_table_name is the name of the table or named window to remove rows from. The
as keyword is also available to assign a name to the table or named window.

After the set keyword follows a comma-separated list of mutation expressions. For fire-and-
forget queries the following restriction applies: Subqueries, aggregation functions and the pr ev or
pri or function may not be used in expressions. Mutation expressions are detailed in Section 6.6,
“Updating Data: the On Update clause”.

The optional wher e clause contains a criteria_expression that identifies rows to be updated.

253

Chapter 6. EPL Reference: Nam...

The example code snippet updates those rows of the named window that have a negative value
for volume:

String query = "update O der sNanedW ndow set volume = 0 where volume = 0";
epServi ce. get EPRunt i ne() . execut eQuery(query);

To instruct the engine to use the initial property value before update, prefix the property name
with the literal i ni ti al .

6.10.3. Deleting Data

Your application can delete rows from a named window or table using on-demand (fire-and-
forget, non-continuous) queries as described in Section 16.5, “On-Demand Fire-And-Forget Query
Execution”.

The syntax for the del et e clause is as follows:

del ete from wi ndow or_tabl e nane [as stream nane]
[where criteria_expression]

The window_or_table_name is the name of the named window or table to delete rows from. The
as keyword is also available to assign a name to the named window or table.

The optional wher e clause contains a criteria_expression that identifies rows to be removed from
the named window or table.

The example code snippet deletes from a named window all rows that have a negative value for
volume:

String query = "delete from O der sNamedW ndow where vol une <= 0";
epServi ce. get EPRunt i ne() . execut eQuery(query);

6.11. Versioning and Revision Event Type Use with
Named Windows

As outlined in Section 2.8, “Updating, Merging and Versioning Events”, revision event types
process updates or new versions of events held by a named window.

A revision event type is simply one or more existing pre-configured event types whose events are
related, as configured by static configuration, by event properties that provide same key values.
The purpose of key values is to indicate that arriving events are related: An event amends, updates
or adds properties to an earlier event that shares the same key values. No additional EPL is
needed when using revision event types for merging event data.

254

Versioning and Revision Event Type Use with Named Windows

Revision event types can be useful in these situations:

1. Some of your events carry only partial information that is related to a prior event and must be
merged together.

2. Events arrive that add additional properties or change existing properties of prior events.

3. Events may carry properties that have null values or properties that do no exist (for example
events backed by Map or XML), and for such properties the earlier value must be used instead.

To better illustrate, consider a revision event type that represents events for creation and updates
to user profiles. Let's assume the user profile creation events carry the user id and a full profile. The
profile update events indicate only the user id and the individual properties that actually changed.
The user id property shall serve as a key value relating profile creation events and update events.

A revision event type must be configured to instruct the engine which event types participate and
what their key properties are. Configuration is described in Section 17.4.29, “Revision Event Type”
and is not shown here.

Assume that an event type User Prof i | eRevi si ons has been configured to hold profile events,
i.e. creation and update events related by user id. This statement creates a named window to hold
the last 1 hour of current profiles per user id:

create w ndow User Profil eW ndow#ti ne(1l hour) select * from UserProfil eRevisions

insert into UserProfil eWndow select * from UserProfil eCreation

insert into UserProfil eWndow select * from UserProfil eUpdate

In revision event types, the term base event is used to describe events that are subject to update.
Events that update, amend or add additional properties to base events are termed delta events. In
the example, base events are profile creation events and delta events are profile update events.

Base events are expected to arrive before delta events. In the case where a delta event arrives
and is not related by key value to a base event or a revision of the base event currently held by the
named window the engine ignores the delta event. Thus, considering the example, profile update
events for a user id that does not have an existing profile in the named window are not applied.

When a base or delta event arrives, the insert and remove stream output by the named window
are the current and the prior version of the event. Let's come back to the example. As creation
events arrive that are followed by update events or more creation events for the same user id, the
engine posts the current version of the profile as insert stream (new data) and the prior version
of the profile as remove stream (old data).

255

Chapter 6. EPL Reference: Nam...

Base events are also implicitly delta events. That is, if multiple base events of the same key
property values arrive, then each base event provides a new version. In the example, if multiple
profile creation events arrive for the same user id then new versions of the current profile for that
user id are output by the engine for each base event, as it does for delta events.

The expiry policy as specified by view definitions applies to each distinct key value, or multiple
distinct key values for composite keys. An expiry policy re-evaluates when new versions arrive. In
the example, user profile events expire from the time window when no creation or update event
for a given user id has been received for 1 hour.

Tip

It usually does not make sense to configure a revision event type without delta
event types. Use the unique data window (st d: uni que) or unique data window
in intersection with other data windows instead (i.e. st d: uni que(fi el d) #ti me(1
hour)).

Several strategies are available for merging or overlaying events as the configuration chapter
describes in greater detail.

Any of the Map, XML and JavaBean event representations as well as plug-in event representations
may participate in a revision event type. For example, profile creation events could be JavaBean
events, while profile update events could be j ava. uti | . Map events.

Delta events may also add properties to the revision event type. For example, one could add
a new event type with security information to the revision event type and such security-related
properties become available on the resulting revision event type.

The following restrictions apply to revision event types:

* Nested properties are only supported for the JavaBean event representation. Nested properties
are not individually versioned; they are instead versioned by the containing property.

» Dynamic, indexed and mapped properties are only supported for nested properties and not as
properties of the revision event type itself.

6.12. Events As Property

Columns in a named window and table may also hold an event or multiple events. More information
ontheinsert into clause providing event columns is in Section 5.10.5, “Event as a Property”.

A sample declaration for a named window and a table is:

create schenm | nnerData (val ue string)

256

Events As Property

create tabl e ContainerTable (innerdata |nnerData)

create w ndow Cont ai ner Wndow#t i me(30) as (innerdataArray InnerDatal[]) // array
of events

The second sample creates a named window that specifies two columns: A column that holds
an OrderEvent, and a column by name pri ceTot al . A matching i nsert i nt o statement is also
part of the sample:

create w ndow OrdersW ndow#tine(30) as select this, price as priceTotal from
O der Event

insert into OrdersWndow sel ect order, price * unit as priceTotal
from Servi ceOr der Event as order

Note that the t hi s proprerty must exist on the event and must return the event class itself
(JavaBean events only). The property type of the additional pri ceTot al column is the property
type of the existing pri ce property.

257

258

Chapter 7.

Chapter 7. EPL Reference: Patterns

7.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition.
Patterns can also be time-based.

Pattern expressions consist of pattern atoms and pattern operators:

1. Pattern atoms are the basic building blocks of patterns. Atoms are filter expressions, observers
for time-based events and plug-in custom observers that observe external events not under
the control of the engine.

2. Pattern operators control expression lifecycle and combine atoms logically or temporally.

The below table outlines the different pattern atoms available:

Table 7.1. Pattern Atoms

Pattern Atom Example

Filter expressions specify an event t

look for. St ockTi ck(synbol =" ABC , price > 100)

Time-based event observers specify tim

intervals or time schedules. tiner:interval (10 seconds)

timer:at(*, 16, *, *, *)

timer:schedule(....)

Custom plug-in observers can ad
pattern language syntax for observini
application-specific events.

myappl i cati on: myobserver("http://
sonmeResour ce")

There are 4 types of pattern operators:

1. Operators that control pattern sub-expression repetition: every, every-di sti nct, [nuni and
unti |

2. Logical operators: and, or, not

3. Temporal operators that operate on event order: - > (followed-by)

4. Guards are where-conditions that control the lifecycle of subexpressions. Examples are
timer:w thin,timer:wthinmax and whi | e-expression. Custom plug-in guards may also be
used.

259

Chapter 7. EPL Reference: Pat...

Pattern expressions can be nested arbitrarily deep by including the nested expression(s) in ()
round parenthesis.

Underlying the pattern matching is a state machine that transitions between states based on
arriving events and based on time advancing. A single event or advancing time may cause a
reaction in multiple parts of your active pattern state. Patterns are stateful as the engine maintains
pattern state.

7.2. How to use Patterns

7.2.1. Pattern Syntax

This is an example pattern expression that matches on every Servi ceMeasur enent events
in which the value of the I atency event property is over 20 seconds, and on every
Servi ceMeasur enent event in which the success property is false. Either one or the other
condition must be true for this pattern to match.

every spi ke=Servi ceMeasur enent (| at ency>20000)
or every error=Servi ceMeasurenment (success=f al se)

In the example above, the pattern expression or operator indicates that the pattern should fire
when either of the filter expressions fire. The every operator indicates to fire for every matching
event and not just the first matching event. The left hand of the or operator filters for events with
a high latency value. The right hand of the or operator filters for events with error status. Filter
expressions are explained in Section 7.4, “Filter Expressions In Patterns”.

The example above assigned the tags spi ke and error to the events in the pattern. The tags
are important since the engine only places tagged events into the output event(s) that a pattern
generates, and that the engine supplies to listeners of the pattern statement. The tags can further
be selected in the select-clause of an EPL statement as discussed in Section 5.4.2, “Pattern-
based Event Streams”.

Patterns can also contain comments within the pattern as outlined in Section 5.2.2, “Using
Comments”.

Pattern statements are created via the EPAdnmi ni strator interface. The EPAdmi ni strat or
interface allows to create pattern statements in two ways: Pattern statements that want to make
use of the EPL sel ect clause or any other EPL constructs use the cr eat eEPL method to create
a statement that specifies one or more pattern expressions. EPL statements that use patterns
are described in more detail in Section 5.4.2, “Pattern-based Event Streams”. Use the syntax as
shown in below example.

EPAdmi ni st rat or admi n =
EPSer vi cePr ovi der Manager . get Def aul t Provi der () . get EPAdmi ni strator () ;

260

Patterns in EPL

String event Nanme = Servi ceMeasurenent. cl ass. get Name() ;

EPSt at ement nyTrigger = admi n.createEPL("select * frompattern [" +
"every spike=" + eventNane + "(|atency>20000) or every error=" + eventNane
+ "(success=false)]");

Pattern statements that do not need to make use of the EPL sel ect clause or any other EPL
constructs can use the cr eat ePat t er n method, as in below example.

EPSt at enent nyTri gger = adm n. createPattern(
"every spike=" + eventNane + "(|atency>20000) or every error=" + eventNane
+ "(success=false)");

7.2.2. Patterns in EPL

A pattern may appear anywhere in the from clause of an EPL statement including joins and
subqueries. Patterns may therefore be used in combination with the wher e clause, group by
clause, havi ng clause as well as output rate limiting and i nsert i nto.

In addition, a data window view can be declared onto a pattern. A data window declared onto a
pattern only serves to retain pattern matches. A data window declared onto a pattern does not
limit, cancel, remove or delete intermediate pattern matches of the pattern when pattern matches
leave the data window.

This example statement demonstrates the idea by selecting a total price per customer over pairs of
events (ServiceOrder followed by a ProductOrder event for the same customer id within 1 minute),
occurring in the last 2 hours, in which the sum of price is greater than 100, and using a where
clause to filter on name:

sel ect a.custld, sunm{a.price + b.price)
frompattern [every a=Servi ceOrder ->
b=Pr oduct Order (custld = a.custld) where tiner:within(1l mn)]#tine(2 hour)
where a.nanme in ('Repair', b.nane)
group by a.custld
havi ng sum(a.price + b.price) > 100

7.2.3. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The
listener interface is the com espert ech. esper. cli ent. Updat eLi st ener interface.

The example below shows an anonymous implementation of the
com espertech. esper. client. UpdateLi st ener interface. We add the anonymous listener

261

Chapter 7. EPL Reference: Pat...

implementation to the nmyPat t er n statement created earlier. The listener code simply extracts the
underlying event class.

nmyPat t er n. addLi st ener (new Updat eLi st ener () {
public void update(EventBean[] newkvents, EventBean[] ol dEvents) ({
Servi ceMeasur ement spi ke = (Servi ceMeasur enent) newEvent s[0] . get ("spi ke");
Servi ceMeasurenent error = (Servi ceMeasurenent) newEvents[O0].get("error");
/'l either spike or error can be null, dependi ng on which occurred
// add nore |ogic here

}
1),

Listeners receive an array of Event Bean instances in the newEvent s parameter. There is one
Event Bean instance passed to the listener for each combination of events that matches the pattern
expression. At least one Event Bean instance is always passed to the listener.

The properties of each Event Bean instance contain the underlyi