
Esper Reference
Version 6.1.0

by EsperTech Inc. [http://www.espertech.com]

Copyright 2006 - 2017 by EsperTech Inc.

http://www.espertech.com
http://www.espertech.com

iii

Preface ... xxiii

1. Getting Started .. 1

1.1. Introduction to CEP and event series analysis .. 1

1.2. Steps ... 1

1.2.1. Step One: Setting up Classpath .. 1

1.2.2. Step Two: Obtain Engine Instance .. 2

1.2.3. Step Three: Provide Information on Input Events .. 2

1.2.4. Step Four: Create EPL Statements and Attach Callbacks 3

1.2.5. Step Five: Send Events .. 4

1.3. Required 3rd Party Libraries .. 5

2. Event Representations .. 7

2.1. Event Underlying Java Objects .. 7

2.2. Event Properties ... 8

2.2.1. Escape Characters ... 9

2.2.2. Expression as Key or Index Value ... 10

2.3. Dynamic Event Properties ... 11

2.4. Fragment and Fragment Type ... 13

2.5. Comparing Event Representations ... 13

2.5.1. Incoming Events .. 14

2.5.2. Outgoing Events .. 14

2.5.3. Schema ... 15

2.5.4. Side-By-Side .. 16

2.6. Support for Generic Tuples ... 17

2.7. Additional Event Representations ... 18

2.8. Updating, Merging and Versioning Events .. 19

2.9. Coarse-Grained Events ... 19

2.10. Event Objects Instantiated and Populated by Insert Into 20

3. Processing Model .. 23

3.1. Introduction ... 23

3.2. Insert Stream .. 24

3.3. Insert and Remove Stream .. 25

3.4. Filters and Where-clauses ... 27

3.5. Time Windows .. 28

3.5.1. Time Window ... 28

3.5.2. Time Batch .. 30

3.6. Batch Windows ... 31

3.7. Aggregation and Grouping ... 32

3.7.1. Insert and Remove Stream ... 32

3.7.2. Output for Aggregation and Group-By .. 32

3.8. Event Visibility and Current Time ... 35

3.9. Indexes .. 35

3.9.1. Index Kinds .. 35

3.9.2. Filter Indexes ... 35

3.9.3. Event Indexes .. 39

Esper Reference

iv

4. Context and Context Partitions ... 41

4.1. Introduction ... 41

4.2. Context Declaration ... 43

4.2.1. Context-Provided Properties ... 43

4.2.2. Keyed Segmented Context ... 43

4.2.3. Hash Segmented Context ... 48

4.2.4. Category Segmented Context ... 51

4.2.5. Non-Overlapping Context .. 53

4.2.6. Overlapping Context ... 55

4.2.7. Context Conditions ... 59

4.3. Context Nesting .. 62

4.3.1. Nested Context Sample Walk-Through .. 63

4.3.2. Built-In Nested Context Properties ... 65

4.4. Partitioning Without Context Declaration ... 66

4.5. Output When Context Partition Ends .. 66

4.6. Context and Named Window ... 68

4.7. Context and Tables ... 70

4.8. Context and Variables ... 71

4.9. Operations on Specific Context Partitions ... 71

5. EPL Reference: Clauses .. 73

5.1. EPL Introduction ... 73

5.2. EPL Syntax .. 74

5.2.1. Specifying Time Periods ... 75

5.2.2. Using Comments .. 76

5.2.3. Reserved Keywords ... 76

5.2.4. Escaping Strings .. 77

5.2.5. Data Types .. 78

5.2.6. Using Constants and Enum Types .. 80

5.2.7. Annotation ... 81

5.2.8. Expression Alias .. 88

5.2.9. Expression Declaration ... 89

5.2.10. Script Declaration ... 91

5.2.11. Referring to a Context .. 91

5.3. Choosing Event Properties And Events: the Select Clause 92

5.3.1. Choosing all event properties: select * ... 92

5.3.2. Choosing specific event properties .. 93

5.3.3. Expressions ... 94

5.3.4. Renaming event properties ... 94

5.3.5. Choosing event properties and events in a join .. 94

5.3.6. Choosing event properties and events from a pattern 96

5.3.7. Selecting insert and remove stream events .. 97

5.3.8. Qualifying property names and stream names .. 97

5.3.9. Select Distinct .. 98

5.3.10. Transposing an Expression Result to a Stream 99

v

5.3.11. Selecting EventBean instead of Underlying Event 99

5.4. Specifying Event Streams: the From Clause ... 100

5.4.1. Filter-based Event Streams ... 100

5.4.2. Pattern-based Event Streams .. 104

5.4.3. Specifying Views .. 105

5.4.4. Multiple Data Window Views ... 106

5.4.5. Using the Stream Name ... 108

5.5. Specifying Search Conditions: the Where Clause .. 109

5.6. Aggregates and grouping: the Group-by Clause and the Having Clause 110

5.6.1. Using aggregate functions ... 110

5.6.2. Organizing statement results into groups: the Group-by clause 112

5.6.3. Using Group-By with Rollup, Cube and Grouping Sets 115

5.6.4. Specifying grouping for each aggregation function 119

5.6.5. Specifying a filter expression for each aggregation function 120

5.6.6. Selecting groups of events: the Having clause .. 121

5.6.7. How the stream filter, Where, Group By and Having clauses interact 122

5.6.8. Comparing Keyed Segmented Context, the Group By clause and the

std:groupwin view .. 123

5.7. Stabilizing and Controlling Output: the Output Clause .. 124

5.7.1. Output Clause Options ... 124

5.7.2. Aggregation, Group By, Having and Output clause interaction 130

5.7.3. Runtime Considerations .. 131

5.8. Sorting Output: the Order By Clause .. 135

5.9. Limiting Row Count: the Limit Clause ... 136

5.10. Merging Streams and Continuous Insertion: the Insert Into Clause 137

5.10.1. Transposing a Property To a Stream ... 139

5.10.2. Merging Streams By Event Type ... 139

5.10.3. Merging Disparate Types of Events: Variant Streams 140

5.10.4. Decorated Events ... 141

5.10.5. Event as a Property .. 142

5.10.6. Instantiating and Populating an Underlying Event Object 142

5.10.7. Transposing an Expression Result ... 142

5.10.8. Select-Clause Expression And Inserted-Into Column Event Type 143

5.10.9. Insert Into for Event Types without Properties 144

5.11. Subqueries .. 144

5.11.1. The 'exists' Keyword ... 148

5.11.2. The 'in' and 'not in' Keywords .. 148

5.11.3. The 'any' and 'some' Keywords ... 149

5.11.4. The 'all' Keyword .. 149

5.11.5. Subquery With Group By Clause ... 150

5.11.6. Multi-Column Selection ... 150

5.11.7. Multi-Row Selection .. 151

5.11.8. Hints Related to Subqueries .. 152

5.12. Joining Event Streams ... 154

Esper Reference

vi

5.12.1. Introducing Joins .. 154

5.12.2. Inner (Default) Joins ... 156

5.12.3. Outer, Left and Right Joins ... 157

5.12.4. Unidirectional Joins ... 159

5.12.5. Unidirectional Full Outer Joins ... 160

5.12.6. Hints Related to Joins ... 161

5.13. Accessing Relational Data via SQL .. 162

5.13.1. Joining SQL Query Results ... 163

5.13.2. SQL Query and the EPL Where Clause ... 164

5.13.3. Outer Joins With SQL Queries .. 166

5.13.4. Using Patterns to Request (Poll) Data .. 166

5.13.5. Polling SQL Queries via Iterator .. 166

5.13.6. JDBC Implementation Overview .. 167

5.13.7. Oracle Drivers and No-Metadata Workaround 167

5.13.8. SQL Input Parameter and Column Output Conversion 168

5.13.9. SQL Row POJO Conversion ... 168

5.14. Accessing Non-Relational Data via Method, Script or UDF Invocation 169

5.14.1. Joining Method, Script or UDF Invocation Results 169

5.14.2. Polling Invocation Results via Iterator ... 171

5.14.3. Providing the Method .. 171

5.14.4. Using a Map Return Type ... 173

5.14.5. Using a Object Array Return Type ... 175

5.14.6. Using an EventBean Return Type .. 176

5.14.7. Providing the Script .. 177

5.14.8. Providing the UDF .. 177

5.15. Declaring an Event Type: Create Schema .. 177

5.15.1. Declare an Event Type by Providing Names and Types 178

5.15.2. Declare an Event Type by Providing a Class Name 181

5.15.3. Declare a Variant Stream .. 182

5.16. Splitting and Duplicating Streams ... 182

5.16.1. Generating Marker Events for Contained Events 185

5.17. Variables and Constants .. 186

5.17.1. Creating Variables: the Create Variable clause 186

5.17.2. Setting Variable Values: the On Set clause .. 189

5.17.3. Using Variables .. 190

5.17.4. Object-Type Variables ... 191

5.17.5. Class and Event-Type Variables .. 191

5.18. Declaring Global Expressions, Aliases And Scripts: Create Expression 192

5.18.1. Global Expression Aliases ... 193

5.18.2. Global Expression Declarations ... 194

5.18.3. Global Scripts ... 195

5.19. Contained-Event Selection ... 195

5.19.1. Select-Clause in a Contained-Event Selection 198

5.19.2. Where Clause in a Contained-Event Selection 201

vii

5.19.3. Contained-Event Selection and Joins ... 201

5.19.4. Sentence and Word Example .. 203

5.19.5. More Examples .. 204

5.19.6. Contained Expression Returning an Array of Property Values 205

5.19.7. Contained Expression Returning an Array of EventBean 205

5.19.8. Generating Marker Events such as a Begin and End Event 206

5.19.9. Contained-Event Limitations .. 207

5.20. Updating an Insert Stream: the Update IStream Clause 207

5.20.1. Immutability and Updates .. 209

5.21. Controlling Event Delivery : The For Clause .. 210

6. EPL Reference: Named Windows And Tables ... 213

6.1. Overview .. 213

6.1.1. Named Window Overview ... 213

6.1.2. Table Overview .. 213

6.1.3. Comparing Named Windows And Tables ... 214

6.2. Named Window Usage .. 215

6.2.1. Creating Named Windows: the Create Window clause 215

6.2.2. Inserting Into Named Windows .. 219

6.2.3. Selecting From Named Windows ... 221

6.3. Table Usage ... 223

6.3.1. Creating Tables: The Create Table clause ... 223

6.3.2. Aggregating Into Table Rows: The Into Table clause 226

6.3.3. Table Column Keyed-Access Expressions ... 229

6.3.4. Inserting Into Tables ... 231

6.3.5. Selecting From Tables .. 232

6.4. Triggered Select: the On Select clause ... 234

6.4.1. Notes on On-Select With Named Windows .. 236

6.4.2. Notes on On-Select With Tables ... 236

6.4.3. On-Select Compared To Join .. 236

6.5. Triggered Select+Delete: the On Select Delete clause 237

6.6. Updating Data: the On Update clause .. 237

6.6.1. Notes on On-Update With Named Windows ... 241

6.6.2. Notes on On-Update With Tables .. 241

6.7. Deleting Data: the On Delete clause .. 241

6.7.1. Using Patterns in the On Delete Clause ... 243

6.7.2. Notes on On-Delete With Named Windows .. 243

6.7.3. Notes on On-Update With Tables .. 244

6.8. Triggered Upsert using the On-Merge Clause ... 244

6.8.1. Notes on On-Merge With Named Windows .. 248

6.8.2. Notes on On-Merge With Tables ... 248

6.9. Explicitly Indexing Named Windows and Tables .. 249

6.10. Using Fire-And-Forget Queries with Named Windows and Tables 252

6.10.1. Inserting Data ... 252

6.10.2. Updating Data .. 253

Esper Reference

viii

6.10.3. Deleting Data ... 254

6.11. Versioning and Revision Event Type Use with Named Windows 254

6.12. Events As Property ... 256

7. EPL Reference: Patterns .. 259

7.1. Event Pattern Overview ... 259

7.2. How to use Patterns ... 260

7.2.1. Pattern Syntax ... 260

7.2.2. Patterns in EPL .. 261

7.2.3. Subscribing to Pattern Events ... 261

7.2.4. Pulling Data from Patterns .. 262

7.2.5. Pattern Error Reporting ... 263

7.2.6. Suppressing Same-Event Matches .. 263

7.2.7. Discarding Partially Completed Patterns ... 264

7.3. Operator Precedence .. 265

7.4. Filter Expressions In Patterns .. 266

7.4.1. Filter Expressions and Filter Indexes ... 268

7.4.2. Controlling Event Consumption ... 269

7.4.3. Use With Named Windows and Tables .. 270

7.5. Pattern Operators ... 271

7.5.1. Every ... 271

7.5.2. Every-Distinct ... 276

7.5.3. Repeat ... 278

7.5.4. Repeat-Until ... 279

7.5.5. And ... 283

7.5.6. Or .. 284

7.5.7. Not .. 284

7.5.8. Followed-by .. 286

7.5.9. Pattern Guards ... 288

7.6. Pattern Atoms ... 292

7.6.1. Filter Atoms ... 292

7.6.2. Observer Atoms Overview .. 292

7.6.3. Interval (timer:interval) .. 292

7.6.4. Crontab (timer:at) ... 293

7.6.5. Schedule (timer:schedule) ... 296

8. EPL Reference: Match Recognize .. 303

8.1. Overview .. 303

8.2. Comparison of Match Recognize and EPL Patterns ... 303

8.3. Syntax .. 304

8.3.1. Syntax Example ... 305

8.4. Pattern and Pattern Operators ... 307

8.4.1. Operator Precedence .. 307

8.4.2. Concatenation .. 307

8.4.3. Alternation .. 308

8.4.4. Quantifiers Overview .. 309

ix

8.4.5. Permutations .. 309

8.4.6. Variables Can be Singleton or Group .. 310

8.4.7. Eliminating Duplicate Matches ... 311

8.4.8. Greedy Or Reluctant .. 312

8.4.9. Quantifier - One Or More (+ and +?) ... 313

8.4.10. Quantifier - Zero Or More (* and *?) .. 313

8.4.11. Quantifier - Zero Or One (? and ??) .. 314

8.4.12. Repetition - Exactly N Matches .. 315

8.4.13. Repetition - N Or More Matches .. 316

8.4.14. Repetition - Between N and M Matches ... 316

8.4.15. Repetition - Between Zero and M Matches ... 317

8.4.16. Repetition Equivalence .. 318

8.5. Define Clause ... 318

8.5.1. The Prev Operator ... 319

8.6. Measure Clause .. 320

8.7. Datawindow-Bound ... 320

8.8. Interval ... 321

8.9. Interval-Or-Terminated ... 322

8.10. Use with Different Event Types .. 323

8.11. Limiting Engine-wide State Count ... 324

8.12. Limitations .. 325

9. EPL Reference: Operators ... 327

9.1. Arithmetic Operators ... 327

9.2. Logical And Comparison Operators .. 327

9.2.1. Null-Value Comparison Operators ... 327

9.3. Concatenation Operators ... 328

9.4. Binary Operators ... 328

9.5. Array Definition Operator ... 329

9.6. Dot Operator ... 330

9.6.1. Duck Typing ... 331

9.7. The 'in' Keyword ... 331

9.7.1. 'in' for Range Selection ... 332

9.8. The 'between' Keyword ... 333

9.9. The 'like' Keyword ... 334

9.10. The 'regexp' Keyword .. 335

9.11. The 'any' and 'some' Keywords .. 336

9.12. The 'all' Keyword ... 337

9.13. The 'new' Keyword .. 337

9.13.1. Using 'new' To Populate A Data Structure .. 338

9.13.2. Using 'new' To Instantiate An Object .. 339

10. EPL Reference: Functions ... 341

10.1. Single-row Function Reference .. 341

10.1.1. The Case Control Flow Function ... 343

10.1.2. The Cast Function .. 344

Esper Reference

x

10.1.3. The Coalesce Function ... 346

10.1.4. The Current_Evaluation_Context Function .. 346

10.1.5. The Current_Timestamp Function .. 346

10.1.6. The Exists Function .. 346

10.1.7. The Grouping Function ... 347

10.1.8. The Grouping_Id Function ... 347

10.1.9. The Instance-Of Function .. 348

10.1.10. The Istream Function .. 349

10.1.11. The Min and Max Functions .. 350

10.1.12. The Previous Function .. 350

10.1.13. The Previous-Tail Function .. 353

10.1.14. The Previous-Window Function ... 354

10.1.15. The Previous-Count Function .. 356

10.1.16. The Prior Function .. 357

10.1.17. The Type-Of Function ... 357

10.2. Aggregation Functions ... 359

10.2.1. SQL-Standard Functions ... 359

10.2.2. Event Aggregation Functions ... 362

10.2.3. Approximation Aggregation Functions .. 369

10.2.4. Additional Aggregation Functions ... 372

10.3. User-Defined Functions ... 376

10.4. Select-Clause transpose Function .. 379

10.4.1. Transpose with Insert-Into ... 380

11. EPL Reference: Enumeration Methods .. 383

11.1. Overview .. 383

11.2. Example Events .. 387

11.3. How to Use .. 389

11.3.1. Syntax ... 389

11.3.2. Introductory Examples .. 389

11.3.3. Input, Output and Limitations ... 390

11.4. Inputs ... 391

11.4.1. Subquery Results ... 391

11.4.2. Named Window .. 393

11.4.3. Table ... 394

11.4.4. Event Property ... 394

11.4.5. Event Aggregation Function .. 395

11.4.6. prev, prevwindow and prevtail Single-Row Functions as Input 396

11.4.7. Single-Row Function, User-Defined Function and Enum Types 397

11.4.8. Declared Expression ... 398

11.4.9. Variables .. 399

11.4.10. Substitution Parameters .. 399

11.4.11. Match-Recognize Group Variable ... 399

11.4.12. Pattern Repeat and Repeat-Until Operators .. 400

11.5. Example ... 400

xi

11.6. Reference ... 401

11.6.1. Aggregate .. 401

11.6.2. AllOf .. 402

11.6.3. AnyOf .. 402

11.6.4. Average ... 403

11.6.5. CountOf ... 403

11.6.6. DistinctOf ... 404

11.6.7. Except ... 405

11.6.8. FirstOf .. 405

11.6.9. GroupBy .. 406

11.6.10. Intersect ... 407

11.6.11. LastOf .. 407

11.6.12. LeastFrequent .. 408

11.6.13. Max ... 408

11.6.14. MaxBy .. 409

11.6.15. Min .. 409

11.6.16. MinBy .. 410

11.6.17. MostFrequent ... 411

11.6.18. OrderBy and OrderByDesc .. 411

11.6.19. Reverse ... 412

11.6.20. SelectFrom ... 412

11.6.21. SequenceEqual .. 413

11.6.22. SumOf ... 413

11.6.23. Take .. 414

11.6.24. TakeLast .. 414

11.6.25. TakeWhile .. 415

11.6.26. TakeWhileLast .. 416

11.6.27. ToMap ... 416

11.6.28. Union ... 417

11.6.29. Where .. 417

12. EPL Reference: Date-Time Methods ... 419

12.1. Overview .. 419

12.2. How to Use .. 423

12.2.1. Syntax ... 423

12.3. Calendar and Formatting Reference ... 424

12.3.1. Between ... 424

12.3.2. Format ... 425

12.3.3. Get (By Field) .. 426

12.3.4. Get (By Name) ... 426

12.3.5. Minus ... 427

12.3.6. Plus ... 427

12.3.7. RoundCeiling .. 427

12.3.8. RoundFloor .. 428

12.3.9. RoundHalf .. 428

Esper Reference

xii

12.3.10. Set (By Field) ... 429

12.3.11. WithDate .. 429

12.3.12. WithMax ... 429

12.3.13. WithMin .. 430

12.3.14. WithTime .. 430

12.3.15. ToCalendar .. 430

12.3.16. ToDate ... 431

12.3.17. ToMillisec ... 431

12.4. Interval Algebra Reference .. 431

12.4.1. Examples ... 431

12.4.2. Interval Algebra Parameters .. 432

12.4.3. Performance ... 432

12.4.4. Limitations .. 433

12.4.5. After .. 433

12.4.6. Before .. 434

12.4.7. Coincides ... 435

12.4.8. During .. 436

12.4.9. Finishes ... 437

12.4.10. Finished By .. 438

12.4.11. Includes ... 438

12.4.12. Meets ... 440

12.4.13. Met By ... 440

12.4.14. Overlaps .. 441

12.4.15. Overlapped By .. 442

12.4.16. Starts ... 443

12.4.17. Started By .. 444

13. EPL Reference: Spatial Methods and Indexes ... 445

13.1. Overview .. 445

13.2. Spatial Methods .. 445

13.2.1. Point-Inside-Rectangle .. 445

13.2.2. Rectangle-Intersects-Rectangle ... 446

13.3. Spatial Index - Quadtree .. 447

13.3.1. Overview .. 447

13.3.2. Declaring a Point-Region Quadtree Index ... 448

13.3.3. Using a Point-Region Quadtree as a Filter Index 448

13.3.4. Using a Point-Region Quadtree as an Event Index 449

13.3.5. Declaring a MX-CIF Quadtree Index .. 451

13.3.6. Using a MX-CIF Quadtree as a Filter Index .. 452

13.3.7. Using a MX-CIF Quadtree as an Event Index 453

13.4. Spatial Types, Functions and Methods from External Libraries 454

14. EPL Reference: Views .. 457

14.1. A Note on View Name and Parameters .. 460

14.2. A Note on Batch Windows ... 462

14.3. Data Window Views .. 463

xiii

14.3.1. Length window (length or win:length) ... 463

14.3.2. Length batch window (length_batch or win:length_batch) 464

14.3.3. Time window (time or win:time) ... 464

14.3.4. Externally-timed window (ext_timed or win:ext_timed) 464

14.3.5. Time batch window (time_batch or win:time_batch) 465

14.3.6. Externally-timed batch window (ext_timed_batch or win:ext_timed_batch)

.. 467

14.3.7. Time-Length combination batch window (time_length_batch or

win:time_length_batch) ... 468

14.3.8. Time-Accumulating window (time_accum or win:time_accum) 469

14.3.9. Keep-All window (keepall or win:keepall) .. 470

14.3.10. First Length (firstlength or win:firstlength) ... 470

14.3.11. First Time (firsttime or win:firsttime) ... 471

14.3.12. Expiry Expression (expr or win:expr) .. 471

14.3.13. Expiry Expression Batch (expr_batch or win:expr_batch) 474

14.4. Standard view set ... 476

14.4.1. Unique (unique or std:unique) ... 476

14.4.2. Grouped Data Window (groupwin or std:groupwin) 477

14.4.3. Size (size) or std:size) .. 480

14.4.4. Last Event (std:lastevent) .. 481

14.4.5. First Event (firstevent or std:firstevent) ... 482

14.4.6. First Unique (firstunique or std:firstunique) .. 482

14.5. Statistics views .. 483

14.5.1. Univariate statistics (uni or stat:uni) ... 483

14.5.2. Regression (linest or stat:linest) ... 484

14.5.3. Correlation (correl or stat:correl) .. 485

14.5.4. Weighted average (weighted_avg or stat:weighted_avg) 486

14.6. Extension View Set ... 488

14.6.1. Sorted Window View (sort or ext:sort) .. 488

14.6.2. Ranked Window View (rank or ext:rank) ... 488

14.6.3. Time-Order View (time_order or ext:time_order) 489

14.6.4. Time-To-Live View (timetolive or ext:timetolive) 491

15. EPL Reference: Data Flow ... 493

15.1. Introduction ... 493

15.2. Usage ... 493

15.2.1. Overview .. 493

15.2.2. Syntax ... 495

15.3. Built-in Operators .. 500

15.3.1. BeaconSource .. 500

15.3.2. EPStatementSource .. 502

15.3.3. EventBusSink ... 503

15.3.4. EventBusSource ... 504

15.3.5. Filter .. 505

15.3.6. LogSink .. 506

Esper Reference

xiv

15.3.7. Select .. 506

15.4. API ... 508

15.4.1. Declaring a Data Flow .. 508

15.4.2. Instantiating a Data Flow .. 509

15.4.3. Executing a Data Flow .. 510

15.4.4. Instantiation Options ... 511

15.4.5. Start Captive .. 511

15.4.6. Data Flow Punctuation with Markers .. 512

15.4.7. Exception Handling ... 513

15.5. Examples .. 513

15.6. Operator Implementation ... 514

15.6.1. Sample Operator Acting as Source .. 515

15.6.2. Sample Tokenizer Operator ... 516

15.6.3. Sample Aggregator Operator ... 517

16. API Reference .. 519

16.1. API Overview .. 519

16.2. The Service Provider Interface ... 519

16.3. The Administrative Interface ... 521

16.3.1. Creating Statements ... 521

16.3.2. Receiving Statement Results ... 522

16.3.3. Setting a Subscriber Object ... 523

16.3.4. Adding Listeners ... 529

16.3.5. Using Iterators .. 530

16.3.6. Managing Statements ... 532

16.3.7. Atomic Statement Management ... 532

16.3.8. Runtime Configuration .. 533

16.4. The Runtime Interface ... 534

16.4.1. Event Sender ... 535

16.4.2. Receiving Unmatched Events .. 536

16.5. On-Demand Fire-And-Forget Query Execution .. 536

16.5.1. On-Demand Query Single Execution .. 537

16.5.2. On-Demand Query Prepared Unparameterized Execution 538

16.5.3. On-Demand Query Prepared Parameterized Execution 538

16.6. Event and Event Type ... 539

16.6.1. Event Type Metadata .. 539

16.6.2. Event Object .. 540

16.6.3. Query Example .. 541

16.6.4. Pattern Example ... 542

16.7. Engine Threading and Concurrency ... 544

16.7.1. Advanced Threading ... 546

16.7.2. Processing Order .. 548

16.8. Controlling Time-Keeping ... 549

16.8.1. Controlling Time Using Time Span Events .. 552

16.8.2. Time Resolution and Time Unit ... 553

xv

16.8.3. Internal Timer Based on JVM System Time .. 554

16.8.4. Additional Time-Related APIs .. 554

16.9. Service Isolation .. 554

16.9.1. Overview .. 554

16.9.2. Example: Suspending a Statement .. 556

16.9.3. Example: Catching up a Statement from Historical Data 557

16.9.4. Isolation for Insert-Into .. 558

16.9.5. Isolation for Named Windows and Tables ... 558

16.9.6. Runtime Considerations .. 559

16.10. Exception Handling .. 559

16.11. Condition Handling .. 560

16.12. Statement Object Model .. 560

16.12.1. Building an Object Model .. 561

16.12.2. Building Expressions ... 562

16.12.3. Building a Pattern Statement ... 563

16.12.4. Building a Select Statement .. 564

16.12.5. Building a Create-Variable and On-Set Statement 564

16.12.6. Building Create-Window, On-Delete and On-Select Statements 565

16.13. Prepared Statement and Substitution Parameters .. 566

16.14. Engine and Statement Metrics Reporting .. 568

16.14.1. Engine Metrics .. 569

16.14.2. Statement Metrics ... 570

16.15. Event Rendering to XML and JSON ... 570

16.15.1. JSON Event Rendering Conventions and Options 571

16.15.2. XML Event Rendering Conventions and Options 572

16.16. Plug-in Loader ... 572

16.17. Interrogating EPL Annotations .. 573

16.18. Context Partition Selection ... 574

16.18.1. Selectors .. 576

16.19. Context Partition Administration .. 576

16.20. Test and Assertion Support .. 577

16.20.1. EPAssertionUtil Summary ... 577

16.20.2. SupportUpdateListener Summary ... 578

16.20.3. Usage Example .. 578

16.21. OSGi, Class Loader, Class-For-Name .. 579

17. Configuration ... 581

17.1. Programmatic Configuration ... 581

17.2. Configuration via XML File ... 581

17.3. Passing Services or Transient Objects ... 582

17.3.1. Service Example .. 583

17.3.2. Class-For-Name ... 583

17.3.3. Class Loader .. 584

17.3.4. Class Loader CGLib FastClass .. 584

17.4. Configuration Items ... 585

Esper Reference

xvi

17.4.1. Events represented by Java Classes ... 585

17.4.2. Events represented by java.util.Map ... 590

17.4.3. Events represented by Object[] (Object-array) 592

17.4.4. Events represented by Avro GenericData.Record 594

17.4.5. Events represented by org.w3c.dom.Node ... 595

17.4.6. Events represented by Plug-in Event Representations 600

17.4.7. Class and package imports ... 601

17.4.8. Annotation class and package imports ... 602

17.4.9. Cache Settings for From-Clause Method Invocations 602

17.4.10. Variables .. 603

17.4.11. Relational Database Access .. 603

17.4.12. Engine Settings related to Concurrency and Threading 610

17.4.13. Engine Settings related to Event Metadata ... 615

17.4.14. Engine Settings related to View Resources .. 618

17.4.15. Engine Settings related to Logging .. 620

17.4.16. Engine Settings related to Variables ... 622

17.4.17. Engine Settings related to Patterns .. 623

17.4.18. Engine Settings related to Match-Recognize 624

17.4.19. Engine Settings related to Scripts .. 624

17.4.20. Engine Settings related to Stream Selection 625

17.4.21. Engine Settings related to Time Source ... 626

17.4.22. Engine Settings related to JMX Metrics .. 627

17.4.23. Engine Settings related to Metrics Reporting 627

17.4.24. Engine Settings related to Language and Locale 629

17.4.25. Engine Settings related to Expression Evaluation 630

17.4.26. Engine Settings related to Execution of Statements 633

17.4.27. Engine Settings related to Exception Handling 638

17.4.28. Engine Settings related to Condition Handling 638

17.4.29. Revision Event Type ... 639

17.4.30. Variant Stream ... 641

17.5. Type Names ... 642

17.6. Runtime Configuration ... 642

17.7. Logging Configuration .. 642

17.7.1. Log4j Logging Configuration .. 643

18. Development Lifecycle ... 645

18.1. Authoring .. 645

18.2. Testing ... 645

18.3. Debugging .. 645

18.3.1. @Audit Annotation .. 646

18.4. Packaging and Deploying Overview ... 647

18.5. EPL Modules .. 648

18.6. The Deployment Administrative Interface .. 649

18.6.1. Reading Module Content ... 650

18.6.2. Ordering Multiple Modules ... 650

xvii

18.6.3. Deploying and Un-deploying .. 651

18.6.4. Listing Deployments .. 651

18.6.5. State Transitioning a Module ... 651

18.6.6. Best Practices .. 652

18.7. J2EE Packaging and Deployment .. 652

18.7.1. J2EE Deployment Considerations .. 653

18.7.2. Servlet Context Listener .. 653

18.8. Monitoring and JMX .. 655

19. Integration and Extension .. 657

19.1. Overview .. 657

19.2. Virtual Data Window .. 658

19.2.1. How to Use .. 659

19.2.2. Implementing the Factory .. 661

19.2.3. Implementing the Virtual Data Window ... 663

19.2.4. Implementing the Lookup .. 664

19.3. Single-Row Function ... 665

19.3.1. Implementing a Single-Row Function ... 666

19.3.2. Configuring the Single-Row Function Name .. 666

19.3.3. Value Cache .. 667

19.3.4. Single-Row Functions in Filter Predicate Expressions 667

19.3.5. Single-Row Functions Taking Events as Parameters 668

19.3.6. Single-Row Functions Returning Events ... 669

19.3.7. Receiving a Context Object ... 670

19.3.8. Exception Handling ... 670

19.4. Derived-value and Data Window View .. 670

19.4.1. Implementing a View Factory .. 671

19.4.2. Implementing a View .. 673

19.4.3. View Contract ... 673

19.4.4. Configuring View Namespace and Name ... 674

19.4.5. Requirement for Data Window Views ... 675

19.4.6. Requirement for Derived-Value Views .. 675

19.4.7. Requirement for Grouped Views .. 675

19.5. Aggregation Function ... 676

19.5.1. Aggregation Single-Function Development ... 677

19.5.2. Aggregation Multi-Function Development ... 683

19.6. Pattern Guard ... 691

19.6.1. Implementing a Guard Factory .. 691

19.6.2. Implementing a Guard Class ... 692

19.6.3. Configuring Guard Namespace and Name ... 693

19.7. Pattern Observer ... 694

19.7.1. Implementing an Observer Factory .. 694

19.7.2. Implementing an Observer Class ... 696

19.7.3. Configuring Observer Namespace and Name 697

19.8. Event Type And Event Object .. 697

Esper Reference

xviii

19.8.1. How It Works ... 698

19.8.2. Steps ... 698

19.8.3. URI-based Resolution ... 699

19.8.4. Example ... 699

20. Script Support .. 707

20.1. Overview .. 707

20.2. Syntax .. 707

20.3. Examples .. 708

20.4. Built-In EPL Script Attributes .. 709

20.5. Performance Notes ... 710

20.6. Additional Notes .. 710

21. Examples, Tutorials, Case Studies ... 711

21.1. Examples Overview ... 711

21.2. Running the Examples .. 713

21.3. AutoID RFID Reader ... 714

21.4. Runtime Configuration ... 714

21.5. JMS Server Shell and Client .. 714

21.5.1. Overview .. 714

21.5.2. JMS Messages as Events ... 715

21.5.3. JMX for Remote Dynamic Statement Management 716

21.6. Market Data Feed Monitor ... 716

21.6.1. Input Events ... 716

21.6.2. Computing Rates Per Feed ... 716

21.6.3. Detecting a Fall-off ... 717

21.6.4. Event generator .. 717

21.7. OHLC Plug-in View ... 717

21.8. Transaction 3-Event Challenge .. 718

21.8.1. The Events .. 718

21.8.2. Combined event ... 718

21.8.3. Real time summary data ... 719

21.8.4. Find problems .. 719

21.8.5. Event generator .. 719

21.9. Self-Service Terminal .. 720

21.9.1. Events ... 720

21.9.2. Detecting Customer Check-in Issues ... 720

21.9.3. Absence of Status Events ... 721

21.9.4. Activity Summary Data .. 721

21.9.5. Sample Application for J2EE Application Server 721

21.10. Assets Moving Across Zones - An RFID Example .. 723

21.11. StockTicker ... 724

21.12. MatchMaker .. 724

21.13. Named Window Query ... 725

21.14. Sample Virtual Data Window .. 725

21.15. Sample Cycle Detection ... 725

xix

21.16. Quality of Service .. 725

21.17. Trivia Geeks Club .. 726

22. Performance ... 727

22.1. Performance Results ... 727

22.2. Performance Tips .. 727

22.2.1. Understand how to tune your Java virtual machine 727

22.2.2. Input and Output Bottlenecks .. 728

22.2.3. Theading .. 728

22.2.4. Select the underlying event rather than individual fields 733

22.2.5. Prefer stream-level filtering over where-clause filtering 733

22.2.6. Reduce the use of arithmetic in expressions ... 735

22.2.7. Remove Unneccessary Constructs .. 735

22.2.8. End Pattern Sub-Expressions .. 736

22.2.9. Consider using EventPropertyGetter for fast access to event properties ... 737

22.2.10. Consider casting the underlying event .. 738

22.2.11. Turn off logging and audit ... 738

22.2.12. Tune or disable delivery order guarantees .. 738

22.2.13. Use a Subscriber Object to Receive Events .. 739

22.2.14. Consider Data Flows ... 739

22.2.15. High-Arrival-Rate Streams and Single Statements 739

22.2.16. Subqueries versus Joins And Where-clause And Data Windows 741

22.2.17. Patterns and Pattern Sub-Expression Instances 742

22.2.18. Pattern Sub-Expression Instance Versus Data Window Use 744

22.2.19. The Keep-All Data Window ... 744

22.2.20. Statement Design for Reduced Memory Consumption - Diagnosing

OutOfMemoryError ... 744

22.2.21. Performance, JVM, OS and hardware .. 745

22.2.22. Consider using Hints ... 746

22.2.23. Optimizing Stream Filter Expressions ... 747

22.2.24. Statement and Engine Metric Reporting ... 747

22.2.25. Expression Evaluation Order and Early Exit .. 747

22.2.26. Large Number of Threads ... 748

22.2.27. Filter Evaluation Tuning ... 748

22.2.28. Context Partition Related Information ... 748

22.2.29. Prefer Constant Variables over Non-Constant Variables 748

22.2.30. Prefer Object-array Events .. 749

22.2.31. Composite or Compound Keys .. 749

22.2.32. Notes on Query Planning .. 750

22.2.33. Query Planning Expression Analysis Hints .. 751

22.2.34. Query Planning Index Hints ... 753

22.2.35. Measuring Throughput .. 754

22.2.36. Do not create the same or similar EPL Statement X times 754

22.2.37. Comparing Single-Threaded and Multi-Threaded Performance 757

Esper Reference

xx

22.2.38. Incremental Versus Recomputed Aggregation for Named Window

Events ... 757

22.2.39. When Does Memory Get Released .. 759

22.2.40. Measure throughput of non-matches as well as matches 759

22.3. Using the performance kit .. 760

22.3.1. How to use the performance kit ... 760

22.3.2. How we use the performance kit ... 763

23. References ... 765

23.1. Reference List ... 765

A. Output Reference and Samples ... 767

A.1. Introduction and Sample Data ... 767

A.2. Output for Un-aggregated and Un-grouped Queries .. 769

A.2.1. No Output Rate Limiting ... 769

A.2.2. Output Rate Limiting - Default ... 770

A.2.3. Output Rate Limiting - Last ... 772

A.2.4. Output Rate Limiting - First ... 773

A.2.5. Output Rate Limiting - Snapshot ... 774

A.3. Output for Fully-aggregated and Un-grouped Queries 776

A.3.1. No Output Rate Limiting ... 776

A.3.2. Output Rate Limiting - Default ... 778

A.3.3. Output Rate Limiting - Last ... 779

A.3.4. Output Rate Limiting - First ... 780

A.3.5. Output Rate Limiting - Snapshot ... 781

A.4. Output for Aggregated and Un-grouped Queries ... 783

A.4.1. No Output Rate Limiting ... 783

A.4.2. Output Rate Limiting - Default ... 784

A.4.3. Output Rate Limiting - Last ... 785

A.4.4. Output Rate Limiting - First ... 787

A.4.5. Output Rate Limiting - Snapshot ... 788

A.5. Output for Fully-aggregated and Grouped Queries .. 790

A.5.1. No Output Rate Limiting ... 790

A.5.2. Output Rate Limiting - Default ... 791

A.5.3. Output Rate Limiting - All ... 793

A.5.4. Output Rate Limiting - Last ... 794

A.5.5. Output Rate Limiting - First ... 796

A.5.6. Output Rate Limiting - Snapshot ... 797

A.6. Output for Aggregated and Grouped Queries .. 798

A.6.1. No Output Rate Limiting ... 799

A.6.2. Output Rate Limiting - Default ... 800

A.6.3. Output Rate Limiting - All ... 801

A.6.4. Output Rate Limiting - Last ... 803

A.6.5. Output Rate Limiting - First ... 804

A.6.6. Output Rate Limiting - Snapshot ... 806

A.7. Output for Fully-Aggregated, Grouped Queries With Rollup 808

xxi

A.7.1. No Output Rate Limiting ... 808

A.7.2. Output Rate Limiting - Default ... 809

A.7.3. Output Rate Limiting - All ... 811

A.7.4. Output Rate Limiting - Last ... 813

A.7.5. Output Rate Limiting - First ... 814

A.7.6. Output Rate Limiting - Snapshot ... 816

B. Reserved Keywords ... 819

C. Event Representation: Plain-Old Java Object Events ... 825

C.1. Overview .. 825

C.2. Java Object Event Properties .. 825

C.3. Property Names ... 827

C.4. Parameterized Types .. 827

C.5. Setter Methods for Indexed and Mapped Properties .. 828

C.6. Known Limitations .. 829

D. Event Representation: java.util.Map Events ... 831

D.1. Overview .. 831

D.2. Map Properties ... 832

D.3. Map Supertypes ... 833

D.4. Advanced Map Property Types ... 834

D.4.1. Nested Properties .. 834

D.4.2. One-to-Many Relationships ... 835

E. Event Representation: Object-array (Object[]) Events ... 837

E.1. Overview .. 837

E.2. Object-Array Properties ... 838

E.3. Object-Array Supertype ... 839

E.4. Advanced Object-Array Property Types .. 840

E.4.1. Nested Properties .. 840

E.4.2. One-to-Many Relationships ... 841

F. Event Representation: Avro Events (org.apache.avro.generic.GenericData.Record) 843

F.1. Overview .. 843

F.2. Avro Event Type ... 844

F.3. Avro Schema Name Requirement .. 845

F.4. Avro Field Schema to Property Type Mapping .. 845

F.5. Primitive Data Type and Class to Avro Schema Mapping 846

F.6. Customizing Avro Schema Assignment .. 850

F.7. Customizing Class-to-Avro Schema ... 851

F.8. Customizing Object-to-Avro Field Value Assignment ... 851

F.9. API Examples ... 852

F.10. Limitations .. 853

G. Event Representation: org.w3c.dom.Node XML Events ... 855

G.1. Overview .. 855

G.2. Schema-Provided XML Events .. 856

G.2.1. Getting Started .. 857

G.2.2. Property Expressions and Namespaces .. 858

Esper Reference

xxii

G.2.3. Property Expression to XPath Rewrite ... 858

G.2.4. Array Properties .. 859

G.2.5. Dynamic Properties .. 859

G.2.6. Transposing Properties .. 860

G.2.7. Event Sender .. 861

G.2.8. Limitations ... 861

G.3. No-Schema-Provided XML Events ... 861

G.4. Explicitly-Configured Properties ... 862

G.4.1. Simple Explicit Property ... 862

G.4.2. Explicit Property Casting and Parsing ... 862

G.4.3. Node and Nodeset Explicit Property .. 863

H. NEsper .NET -Specific Information ... 865

H.1. .NET General Information ... 865

H.2. .NET and Annotations ... 865

H.3. .NET and Locks and Concurrency ... 865

H.4. .NET and Threading ... 865

H.5. .NET NEsper Configuration ... 866

H.6. .NET Event Underlying Objects ... 866

H.7. .NET Object Events .. 866

H.8. .NET IDictionary Events .. 867

H.9. .NET XML Events ... 867

H.10. .NET Event Objects Instantiated and Populated by Insert Into 867

H.11. .NET Processing Model Introduction .. 868

H.12. .NET EPL Syntax - Data Types ... 868

H.13. .NET Accessing Relational Data via SQL ... 868

H.14. .NET API - Receiving Statement Results .. 868

H.15. .NET API - Adding Listeners ... 868

H.16. .NET API - Engine Threading and Concurrency .. 868

H.17. .NET Configurations - Relational Database Access ... 868

H.18. .NET Configurations - Logging Configuration .. 869

Index ... 871

xxiii

Preface

Analyzing and reacting to information in real-time oftentimes requires the development of

custom applications. Typically these applications must obtain the data to analyze, filter data,

derive information and then indicate this information through some form of presentation or

communication. Data may arrive with high frequency requiring high throughput processing. And

applications may need to be flexible and react to changes in requirements while the data is

processed. Esper is an event stream processor that aims to enable a short development cycle

from inception to production for these types of applications.

This document is a resource for software developers who develop event driven applications. It also

contains information that is useful for business analysts and system architects who are evaluating

Esper.

It is assumed that the reader is familiar with the Java programming language.

For NEsper .NET the reader is is familiar with the C# programming language. For NEsper .NET,

please also review Appendix H, NEsper .NET -Specific Information.

This document is relevant in all phases of your software development project: from design to

deployment and support.

If you are new to Esper, please follow these steps:

1. Read the tutorials, case studies and solution patterns available on the Esper public web site

at http://www.espertech.com/esper

2. Read Chapter 1, Getting Started if you are new to CEP and ESP (complex event processing,

event stream processing)

3. Read Chapter 2, Event Representations that explains the different ways of representing events

to Esper

4. Read Chapter 3, Processing Model to gain insight into EPL continuous query results

5. Read Section 5.1, “EPL Introduction” for an introduction to event stream processing via EPL

6. Read Section 7.1, “Event Pattern Overview” for an overview over event patterns

7. Read Section 8.1, “Overview” for an overview over event patterns using the match recognize

syntax.

8. Then glance over the examples Section 21.1, “Examples Overview”

9. Finally to test drive Esper performance, read Chapter 22, Performance

xxiv

Chapter 1.

1

Chapter 1. Getting Started

1.1. Introduction to CEP and event series analysis

The Esper engine has been developed to address the requirements of applications that analyze

and react to events. Some typical examples of applications are:

• Business process management and automation (process monitoring, BAM, reporting

exceptions)

• Finance (algorithmic trading, fraud detection, risk management)

• Network and application monitoring (intrusion detection, SLA monitoring)

• Sensor network applications (RFID reading, scheduling and control of fabrication lines, air

traffic)

What these applications have in common is the requirement to process events (or messages) in

real-time or near real-time. This is sometimes referred to as complex event processing (CEP) and

event series analysis. Key considerations for these types of applications are throughput, latency

and the complexity of the logic required.

• High throughput - applications that process large volumes of messages (between 1,000 to 100k

messages per second)

• Low latency - applications that react in real-time to conditions that occur (from a few milliseconds

to a few seconds)

• Complex computations - applications that detect patterns among events (event correlation),

filter events, aggregate time or length windows of events, join event series, trigger based on

absence of events etc.

The Esper engine was designed to make it easier to build and extend CEP applications.

More information on CEP can be found at FAQ [http://espertech.com/esper/

faq_esper.php#whatiscep].

1.2. Steps

1.2.1. Step One: Setting up Classpath

Please add Esper and dependent jar files to the classpath:

• Esper core jar file esper-version.jar

• ANTLR parser jar file antlr-runtime-4.5.3.jar

• CGLIB code generator jar file cglib-nodep-3.2.4.jar

http://espertech.com/esper/faq_esper.php#whatiscep
http://espertech.com/esper/faq_esper.php#whatiscep
http://espertech.com/esper/faq_esper.php#whatiscep

Chapter 1. Getting Started

2

• SLF4J logging library slf4j-api-1.7.21.jar

Optionally, for logging using Log4j, please add slf4j-log4j12-1.7.21.jar and

log4j-1.2.17.jar to the classpath.

Optionally, for using Apache Avro with Esper, please add esper-avro-version.jar to the

classpath.

1.2.2. Step Two: Obtain Engine Instance

Your application can obtain an engine instance by calling the getDefaultPovider static method

of the EPServiceProviderManager class:

EPServiceProvider engine = EPServiceProviderManager.getDefaultProvider();

This example does not provide a Configuration configuration object and thus the engine

instance returned is configured with defaults. The default engine URI, which is simply the name

assigned to the engine, is "default".

More information about EPServiceProviderManager can be found at Section 16.2, “The Service

Provider Interface” and the JavaDoc.

More information about engine configuration can be found at Chapter 17, Configuration and the

JavaDoc.

1.2.3. Step Three: Provide Information on Input Events

Your application can register an event type to instruct the engine what the input events look

like. When creating EPL statements the engine checks the available event type information to

determine that the statement is valid.

This example assumes that there is a Java class PersonEvent and each instance of the

PersonEvent class is an event. Note that it is not necessary to create classes for each event type,

as explained below. Here is the class:

package com.mycompany.myapp;

public class PersonEvent {

 private String name;

 private int age;

 public PersonEvent(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public String getName() {

Step Four: Create EPL Statements and Attach Callbacks

3

 return name;

 }

 public int getAge() {

 return age;

 }

}

Your application can call the addEventType method that is part of the runtime configuration

interface to tell the engine about the PersonEvent class:

engine.getEPAdministrator().getConfiguration().addEventType(PersonEvent.class);

Upon calling the addEventType method and passing the PersonEvent class the engine

inspects the class using reflection and determines the event properties. Because the class has

two JavaBean-standard getter-methods the engine determines that a PersonEvent has two

properties: the name property of type string and the age property of type int.

Now that the PersonEvent event type is known to the engine, your application can create EPL

statements that have PersonEvent in the from-clause and EPL can refer to event property names.

Instead of PersonEvent being a Java class, it could also be an Apache Avro schema or an

XML schema or a Map or array of names and properties. The different event representations are

discussed at Section 2.5, “Comparing Event Representations”.

Your application can instead pre-configure event types using the Configuration object, see

Section 17.4, “Configuration Items”.

Your application can, instead of calling an API, add event types using EPL with create schema,

see Section 5.15, “Declaring an Event Type: Create Schema”.

1.2.4. Step Four: Create EPL Statements and Attach Callbacks

The sample EPL for this getting-started section simply selects the name and the age of each

arriving person event:

select name, age from PersonEvent

Your application can create an EPL statement using the createEPL method that is part of the

administrative interface.

The API calls are:

String epl = "select name, age from PersonEvent";

Chapter 1. Getting Started

4

EPStatement statement = engine.getEPAdministrator().createEPL(epl);

Upon creating the statement, the engine verifies that PersonEvent exists since it is listed in

the from-clause. The engine also verifies that the name and age properties are available for the

PersonEvent since they are listed in the select-clause.

After successful verification, the engine internally adds an entry to an internally-maintained filter

index tree structure that ensures that when a PersonEvent comes in it will be processed by the

statement.

Your application can attach a callback to the EPStatement to receive statement results.

The following callback simply prints name and age:

statement.addListener((newData, oldData) -> {

 String name = (String) newData[0].get("name");

 int age = (int) newData[0].get("age");

 System.out.println("String.format(Name: %s, Age: %d", name, age));

});

More information about creating EPL statements is at Section 16.3.1, “Creating Statements” and

Section 18.6, “The Deployment Administrative Interface” and the JavaDoc.

Your application can provide different kinds of callbacks, see Section 16.3.2, “Receiving Statement

Results”.

1.2.5. Step Five: Send Events

Your application can send events into the engine using the sendEvent method that is part of the

runtime interface:

engine.getEPRuntime().sendEvent(new PersonEvent("Peter", 10));

The output you should see is:

Name: Peter, Age: 10

Upon sending the PersonEvent event object to the engine, the engine consults the internally-

maintainced shared filter index tree structure to determine if any EPL statement is interested

in PersonEvent events. The EPL statement that was created as part of this example has

PersonEvent in the from-clause, thus the engine delegates processing of such events to the

statement. The EPL statement obtains the name and age properties by calling the getName and

getAge methods.

Required 3rd Party Libraries

5

For different event representations and sendEvent methods please see Section 2.5, “Comparing

Event Representations”.

Specialized event senders are explained in Section 16.4.1, “Event Sender”.

For reference, here is the complete code without event class:

EPServiceProvider engine = EPServiceProviderManager.getDefaultProvider();

engine.getEPAdministrator().getConfiguration().addEventType(PersonEvent.class);

String epl = "select name, age from PersonEvent";

EPStatement statement = engine.getEPAdministrator().createEPL(epl);

statement.addListener((newData, oldData) -> {

 String name = (String) newData[0].get("name");

 int age = (int) newData[0].get("age");

 System.out.println(String.format("Name: %s, Age: %d", name, age));

});

engine.getEPRuntime().sendEvent(new PersonEvent("Peter", 10));

1.3. Required 3rd Party Libraries

Esper requires the following 3rd-party libraries at runtime:

• ANTLR is the parser generator used for parsing and parse tree walking of the pattern and EPL

syntax. Credit goes to Terence Parr at http://www.antlr.org. The ANTLR license is a BSD license

and is provided in the lib directory. The antlr-runtime runtime library is required for runtime.

• CGLIB is the code generation library for fast method calls, licensed under Apache 2.0 license

as provided in the lib directory.

• SLF4J is a logging API that can work together with LOG4J and other logging APIs. While SLF4J

is required, the LOG4J log component is not required and can be replaced with other loggers.

SLF4J is licensed under Apache 2.0 license as provided in the lib directory.

Esper requires the following 3rd-party libraries for running the test suite:

• JUnit is a great unit testing framework. Its license has also been placed in the lib directory. The

library is required for build-time only.

• MySQL connector library is used for testing SQL integration and is required for running the

automated test suite.

6

Chapter 2.

7

Chapter 2. Event Representations
This section outlines the different means to model and represent events.

Esper uses the term event type to describe the type information available for an event

representation.

Your application may configure predefined event types at startup time or dynamically add event

types at runtime via API or EPL syntax. See Section 17.4, “Configuration Items” for startup-time

configuration and Section 16.3.8, “Runtime Configuration” for the runtime configuration API.

The EPL create schema syntax allows declaring an event type at runtime using EPL, see

Section 5.15, “Declaring an Event Type: Create Schema”.

In Section 16.6, “Event and Event Type” we explain how an event type becomes visible in EPL

statements and output events delivered by the engine.

2.1. Event Underlying Java Objects

An event is an immutable record of a past occurrence of an action or state change. Event

properties capture the state information for an event.

In Esper, an event can be represented by any of the following underlying Java objects

(NEsper .NET, see Section H.6, “.NET Event Underlying Objects”):

Table 2.1. Event Underlying Java Objects

Java Class Description

java.lang.Object Any Java POJO (plain-old java object) with getter

methods following JavaBean conventions; Legacy

Java classes not following JavaBean conventions can

also serve as events .

java.util.Map Map events are implementations of the

java.util.Map interface where each map entry is a

propery value.

Object[] (array of object) Object-array events are arrays of objects (type

Object[]) where each array element is a property

value.

org.apache.avro.generic.GenericData.RecordApache Avro events are GenericData.Record

objects (Avro is a data serialization system with JSON

and schema support)

org.w3c.dom.Node XML document object model (DOM).

org.apache.axiom.om.OMDocument

or OMElement

XML - Streaming API for XML (StAX) - Apache Axiom

(provided by EsperIO package).

Application classes Plug-in event representation via the extension API.

Chapter 2. Event Representations

8

Esper provides multiple choices for representing an event. There is no absolute need for you to

create new Java classes to represent an event.

Event representations have the following in common:

• All event representations support nested, indexed and mapped properties (aka. property

expression), as explained in more detail below. There is no limitation to the nesting level.

• All event representations provide event type metadata. This includes type metadata for nested

properties.

• All event representations allow transposing the event itself and parts of all of its property graph

into new events. The term transposing refers to selecting the event itself or event properties that

are themselves nestable property graphs, and then querying the event's properties or nested

property graphs in further statements. The Apache Axiom event representation is an exception

and does not currently allow transposing event properties but does allow transposing the event

itself.

• The Java object, Map, Object-array and Avro representations allow supertypes.

The API behavior for all event representations is the same, with minor exceptions noted.

The benefits of multiple event representations are:

• For applications that already have events in one of the supported representations, there is no

need to transform events before processing for both input and output.

• Event representations are exchangeable, reducing or eliminating the need to change

statements when the event representation changes, i.e. the EPL does not depend on whether

events are Objects, Map(s), Object-array(s), Avro record(s) or XML document(s).

• Event representations are interoperable, allowing all event representations to interoperate in

same or different statements.

• The choice makes its possible to consciously trade-off performance, ease-of-use, the ability to

evolve and effort needed to import or externalize events and use existing event type metadata.

2.2. Event Properties

Event properties capture the state information for an event. Event properties can be simple,

indexed, mapped and nested event properties.

The table below outlines the different types of properties and their syntax in an event expression:

Table 2.2. Types of Event Properties

Type Description Syntax Example

Simple A property that has a single value

that may be retrieved.
name sensorId

Indexed An indexed property stores an

ordered collection of objects (all

of the same type) that can be

individually accessed by an integer-

name[index] temperature[0]

Escape Characters

9

Type Description Syntax Example

valued, non-negative index (or

subscript).

Mapped A mapped property stores a keyed

collection of objects (all of the same

type).

name('key') isTurnedOn('light')

Nested A nested property is a property that

lives within another property of an

event.

name.nestedname sensor.value

Combinations are also possible. For example, a valid combination could be

person.address('home').street[0].

You may use any expression as a mapped property key or indexed property index by putting the

expression within parenthesis after the mapped or index property name. Please find examples

below.

2.2.1. Escape Characters

If your application uses java.util.Map, Object[] (object-array) or XML to represent events, then

event property names may themselves contain the dot ('.') character. The backslash ('\') character

can be used to escape dot characters in property names, allowing a property name to contain

dot characters.

For example, the EPL as shown below expects a property by name part1.part2 to exist on event

type MyEvent:

select part1\.part2 from MyEvent

Sometimes your event properties may overlap with EPL language keywords or contain spaces or

other special characters. In this case you may use the backwards apostrophe ` (aka. back tick)

character to escape the property name.

The next example assumes a Quote event that has a property by name order, while order is

also a reserved keyword:

select `order`, price as `price.for.goods` from Quote

When escaping mapped or indexed properties, make sure the back tick character appears outside

of the map key or index.

The next EPL selects event properties that have names that contain spaces (e.g. candidate

book), have the tick special character (e.g. children's books), are an indexed property (e.g.

Chapter 2. Event Representations

10

children's books[0]) and a mapped property that has a reserved keyword as part of the

property name (e.g. book select('isbn')):

select `candidate book` , `children's books`[0], `book select`('isbn') from

 MyEventType

Note

Avro does not support the dot-character in field names.

2.2.2. Expression as Key or Index Value

The key or index expression must be placed in parenthesis. When using an expression as key for

a mapped property, the expression must return a String-typed value. When using an expression

as index for an indexed property, the expression must return an int-typed value.

This example below uses Java classes to illustrate;The same principles apply to all event

representations.

Assume a class declares these properties (getters not shown for brevity):

public class MyEventType {

 String myMapKey;

 int myIndexValue;

 int myInnerIndexValue;

 Map<String, InnerType> innerTypesMap; // mapped property

 InnerType[] innerTypesArray; // indexed property

}

public class InnerType {

 String name;

 int[] ids;

}

A sample EPL statement demonstrating expressions as map keys or indexes is:

select innerTypesMap('somekey'), // returns map value for 'somekey'

 innerTypesMap(myMapKey), // returns map value for myMapKey value (an

 expression)

 innerTypesArray[1], // returns array value at index 1

 innerTypesArray(myIndexValue) // returns array value at index myIndexValue

 (an expression)

Dynamic Event Properties

11

 from MyEventType

The dot-operator can be used to access methods on the value objects returned by the mapped or

indexed properties. By using the dot-operator the syntax follows the chained method invocation

described at Section 9.6, “Dot Operator”.

A sample EPL statement demonstrating the dot-operator as well as expressions as map keys or

indexes is:

 select innerTypesMap('somekey').ids[1],

 innerTypesMap(myMapKey).getIds(myIndexValue),

 innerTypesArray[1].ids[2],

 innerTypesArray(myIndexValue).getIds(myInnerIndexValue)

 from MyEventType

Please note the following limitations:

• The square brackets-syntax for indexed properties does now allow expressions and requires

a constant index value.

• When using the dot-operator with mapped or indexed properties that have expressions as map

keys or indexes you must follow the chained method invocation syntax.

2.3. Dynamic Event Properties

Dynamic (unchecked) properties are event properties that need not be known at statement

compilation time. Such properties are resolved during runtime: they provide duck typing

functionality.

The idea behind dynamic properties is that for a given underlying event representation we don't

always know all properties in advance. An underlying event may have additional properties that

are not known at statement compilation time, that we want to query on. The concept is especially

useful for events that represent rich, object-oriented domain models.

The syntax of dynamic properties consists of the property name and a question mark. Indexed,

mapped and nested properties can also be dynamic properties:

Table 2.3. Types of Event Properties

Type Syntax

Dynamic Simple
name?

Dynamic Indexed
name[index]?

Dynamic Mapped
name('key')?

Chapter 2. Event Representations

12

Type Syntax

Dynamic Nested
name?.nestedPropertyName

Dynamic properties always return the java.lang.Object type. Also, dynamic properties return a

null value if the dynamic property does not exist on events processed at runtime.

As an example, consider an OrderEvent event that provides an "item" property. The "item" property

is of type Object and holds a reference to an instance of either a Service or Product.

Assume that both Service and Product classes provide a property named "price". Via a dynamic

property we can specify a query that obtains the price property from either object (Service or

Product):

select item.price? from OrderEvent

As a second example, assume that the Service class contains a "serviceName" property that

the Product class does not possess. The following query returns the value of the "serviceName"

property for Service objects. It returns a null-value for Product objects that do not have the

"serviceName" property:

select item.serviceName? from OrderEvent

Consider the case where OrderEvent has multiple implementation classes, some of which have

a "timestamp" property. The next query returns the timestamp property of those implementations

of the OrderEvent interface that feature the property:

select timestamp? from OrderEvent

The query as above returns a single column named "timestamp?" of type Object.

When dynamic properties are nested, then all properties under the dynamic property are also

considered dynamic properties. In the below example the query asks for the "direction" property

of the object returned by the "detail" dynamic property:

select detail?.direction from OrderEvent

Above is equivalent to:

select detail?.direction? from OrderEvent

Fragment and Fragment Type

13

The functions that are often useful in conjunction with dynamic properties are:

• The cast function casts the value of a dynamic property (or the value of an expression) to a

given type.

• The exists function checks whether a dynamic property exists. It returns true if the event has

a property of that name, or false if the property does not exist on that event.

• The instanceof function checks whether the value of a dynamic property (or the value of an

expression) is of any of the given types.

• The typeof function returns the string type name of a dynamic property.

Dynamic event properties work with all event representations outlined next: Java objects, Map-

based, Object-array-based and XML DOM-based events.

2.4. Fragment and Fragment Type

Sometimes an event can have properties that are itself events. Esper uses the term fragment and

fragment type for such event pieces. The best example is a pattern that matches two or more

events and the output event contains the matching events as fragments. In other words, output

events can be a composite event that consists of further events, the fragments.

Fragments have the same metadata available as their enclosing composite events. The metadata

for enclosing composite events contains information about which properties are fragments, or

have a property value that can be represented as a fragment and therefore as an event itself.

Fragments and type metadata can allow your application to navigate composite events without

the need for using the Java reflection API and reducing the coupling to the underlying event

representation. The API is further described in Section 16.6, “Event and Event Type”.

2.5. Comparing Event Representations

More information on event representations can be found in the appendix. The links are:

Table 2.4. Comparing Event Representations

Event Representation More Information and Examples

Java Object (POJO/Bean or other) Appendix C, Event Representation: Plain-Old

Java Object Events

Map Appendix D, Event Representation:

java.util.Map Events

Object-array Appendix E, Event Representation: Object-

array (Object[]) Events

Avro Appendix F, Event Representation: Avro

Events

(org.apache.avro.generic.GenericData.Record)

Chapter 2. Event Representations

14

Event Representation More Information and Examples

XML Document Appendix G, Event Representation:

org.w3c.dom.Node XML Events

2.5.1. Incoming Events

For sending incoming events into the engine for processing, your application uses one of the send-

event methods on the EPRuntime interface:

Table 2.5. EPRuntime Send-event Methods

Event Representation Method for Processing Events

Java Object (POJO/Bean or other)
sendEvent(Object event)

Map
sendEvent(Map map, String

 mapEventTypeName)

Object-array
sendEvent(Object[] objectarray, String

 objectArrayEventTypeName)

Avro
sendEvent(Object

 avroGenericDataDotRecord, String

 avroEventTypeName)

XML Document
sendEvent(org.w3c.dom.Node node)

Please find an example in the respective appendix.

2.5.2. Outgoing Events

The StatementUpdateListener interface receives EPL statement output. The output events can

be either of the representations

Table 2.6. Annotation for Receiving Events

Event Representation Annotation

Java Object (POJO/Bean or other)
N/A

Map
@EventRepresentation(map)

Schema

15

Event Representation Annotation

Object-array
@EventRepresentation(objectarray)

Avro
@EventRepresentation(avro)

XML Document
N/A

Please find an example in the respective appendix.

2.5.3. Schema

The create-schema clause can be used to define an event type and its event representation.

Table 2.7. Create-Schema

Event Representation Annotation

Java Object (POJO/Bean or other)
create schema name as class_name

Map
create map schema name as (...)

Object-array
create objectarray schema name as (...)

Avro
create avro schema name as (...)

XML Document
N/A

Your EPL statements can use create schema and insert into to define an event type and to

produce events of the type.

In the following example the first statement declares a schema and the second statement inserts

events according to the schema:

create map schema ParkingEvent as (carId string, driverName string)

insert into ParkingEvent select carId, 'jim' as driverName from CarArrivalEvent

Chapter 2. Event Representations

16

Please find additional examples in Section 5.15, “Declaring an Event Type: Create Schema”.

2.5.4. Side-By-Side

Each of the event representations of Java object, Map, Object-array, Avro and XML document

has advantages and disadvantages that are summarized in the table below:

Table 2.8. Comparing Event Representations

Java Object

(POJO/Bean

or other)

Map Object-array Avro XML

Document

Performance Good Good Very Good Very Good Not

comparable

and

depending on

use of XPath

Memory Use Small Medium Small Small Depends on

DOM and

XPath

implementation

used, can be

large

Call Method

on Event

Yes Yes, if

contains

Object(s)

Yes, if

contains

Object(s)

No No

Nested,

Indexed,

Mapped and

Dynamic

Properties

Yes Yes Yes Yes Yes

Course-

grained event

syntax

Yes Yes Yes Yes Yes

Insert-into

that

Representation

Yes Yes Yes Yes No

Runtime Type

Change

Reload class,

yes

Yes Yes Yes Yes

Create-

schema

Syntax

Yes Yes Yes Yes No, runtime

and static

configuration

Support for Generic Tuples

17

Java Object

(POJO/Bean

or other)

Map Object-array Avro XML

Document

Object is Self-

Descriptive

Yes Yes No Yes Yes

Supertypes Multiple Multiple Single Single No

2.6. Support for Generic Tuples

Esper does not require a fixed tuple structure and fully supports generic tuples, i.e. there does

not need to be a fixed set of attributes or event properties and event properties can be added

and queried at runtime.

The facilities for support of generic tuples are:

• Dynamic properties allow to query properties that are not defined, see Section 2.3, “Dynamic

Event Properties”.

• The cast function for operations that require strongly-typed data, see Section 10.1.2, “The Cast

Function”.

• Type inheritance for adding properties to supertypes, see Section 5.15, “Declaring an Event

Type: Create Schema”

• The Map event representation, as it allows any map key to become an event property, see

Appendix D, Event Representation: java.util.Map Events

• The Avro event representation, as it allows any Avro field to become

an event property, see Appendix F, Event Representation: Avro Events

(org.apache.avro.generic.GenericData.Record)

• The POJO event representation, as getter-methods and fields can be dynamically discovered

to become an event property, see Appendix C, Event Representation: Plain-Old Java Object

Events

• The XML event representation, as the DOM can have any attribute or nested element and there

does not need to be a schema, see Appendix G, Event Representation: org.w3c.dom.Node

XML Events

• Event types can be updated at runtime using the API

There is no need to explicitly create an event type for each tuple type. It is not necessary to create

classes for tuple types at all. Events can be arbitrary objects.

The engine validates EPL at statement creation time therefore there is an advantage if type

information is available: the engine can verify your EPL statement against the known properties

and types, preventing you as the EPL designer from making mistakes in EPL design. The engine

Chapter 2. Event Representations

18

does not verify dynamic properties, which may return null at runtime. If type information is not

available then properties are assumed to return java.lang.Object-typed values.

For example, let's say we need a generic tuple and we have Map events:

create schema GenericTuple()

Create statements that use dynamic properties, as the next EPL shows, which casts the timestamp

value to a long-type value and outputs the hour-minute-second string:

select cast(timestamp?, long).format('hh mm ss') from GenericTuple

Send events like this:

Map<String, Object> genericEvent = new HashMap<>();

genericEvent.put("timestamp", new Date().getTime());

genericEvent.put("some_other_property", "hello");

epService.getEPRuntime().sendEvent(genericEvent, "GenericTuple");

2.7. Additional Event Representations

Part of the extension and plug-in features of Esper is an event representation API. This set of

classes allow an application to create new event types and event instances based on information

available elsewhere, statically or dynamically at runtime when EPL statements are created. Please

see Section 19.8, “Event Type And Event Object” for details.

Creating a plug-in event representation can be useful when your application has existing Java

classes that carry event metadata and event property values and your application does not want

to (or cannot) extract or transform such event metadata and event data into one of the built-in

event representations (POJO Java objects, Map, Object-array or XML DOM).

Further use of a plug-in event representation is to provide a faster or short-cut access path to

event data. For example, access to event data stored in a XML format through the Streaming

API for XML (StAX) is known to be very efficient. A plug-in event representation can also provide

network lookup and dynamic resolution of event type and dynamic sourcing of event instances.

Currently, EsperIO provides the following additional event representations:

• Apache Axiom: Streaming API for XML (StAX) implementation

Please see the EsperIO documentation for details on the above.

The chapter on Section 19.8, “Event Type And Event Object” explains how to create your own

custom event representation.

Updating, Merging and Versioning Events

19

2.8. Updating, Merging and Versioning Events

To summarize, an event is an immutable record of a past occurrence of an action or state change,

and event properties contain useful information about an event.

The length of time an event is of interest to the event processing engine (retention time) depends

on your EPL statements, and especially the data window, pattern and output rate limiting clauses

of your statements.

During the retention time of an event more information about the event may become available,

such as additional properties or changes to existing properties. Esper provides three concepts for

handling updates to events.

The first means to handle updating events is the update istream clause as further described in

Section 5.20, “Updating an Insert Stream: the Update IStream Clause”. It is useful when you need

to update events as they enter a stream, before events are evaluated by any particular consuming

statement to that stream.

The second means to update events is the on-merge and on-update clauses, for use with tables

and named windows only, as further described in Section 6.8, “Triggered Upsert using the On-

Merge Clause” and Section 6.6, “Updating Data: the On Update clause”. On-merge is similar to the

SQL merge clause and provides what is known as an "Upsert" operation: Update existing events

or if no existing event(s) are found then insert a new event, all in one atomic operation provided

by a single EPL statement. On-update can be used to update individual properties of rows held

in a table or named window.

The third means to handle updating events is the revision event types, for use with named windows

only, as further described in Section 6.11, “Versioning and Revision Event Type Use with Named

Windows”. With revision event types one can declare, via configuration only, multiple different

event types and then have the engine present a merged event type that contains a superset of

properties of all merged types, and have the engine merge events as they arrive without additional

EPL statements.

Note that patterns do not reflect changes to past events. For the temporal nature of patterns, any

changes to events that were observed in the past do not reflect upon current pattern state.

2.9. Coarse-Grained Events

Your application events may consist of fairly comprehensive, coarse-grained structures or

documents. For example in business-to-business integration scenarios, XML documents or other

event objects can be rich deeply-nested graphs of event properties.

To extract information from a coarse-grained event or to perform bulk operations on the rows

of the property graph in an event, Esper provides a convenient syntax: When specifying a filter

expression in a pattern or in a select clause, it may contain a contained-event selection syntax,

as further described in Section 5.19, “Contained-Event Selection”.

Chapter 2. Event Representations

20

2.10. Event Objects Instantiated and Populated by Insert

Into

For NEsper .NET also see Section H.10, “.NET Event Objects Instantiated and Populated by

Insert Into”.

The insert into clause can populate instantiate new instances of Java object events,

java.util.Map events and Object[] (object array) events directly from the results of select

clause expressions and populate such instances. Simply use the event type name as the stream

name in the insert into clause as described in Section 5.10, “Merging Streams and Continuous

Insertion: the Insert Into Clause”.

If instead you have an existing instance of a Java object returned by an expression, such as a

single-row function or static method invocation for example, you can transpose that expression

result object to a stream. This is described further in Section 5.10.7, “Transposing an Expression

Result” and Section 10.4, “Select-Clause transpose Function”.

The column names specified in the select and insert into clause must match available writable

properties in the event object to be populated (the target event type). The expression result types

of any expressions in the select clause must also be compatible with the property types of the

target event type.

If populating a POJO-based event type and the class provides a matching constructor, the

expression result types of expressions in the select clause must be compatible with the

constructor parameters in the order listed by the constructor. The insert into clause column

names are not relevant in this case.

Consider the following example statement:

insert into com.mycompany.NewEmployeeEvent

select fname as firstName, lname as lastName from HRSystemEvent

The above example specifies the fully-qualified class name of NewEmployeeEvent. The engine

instantianes NewEmployeeEvent for each result row and populates the firstName and lastName

properties of each instance from the result of select clause expressions. The HRSystemEvent in

the example is assumed to have lname and fname properties, and either setter-methods and a

default constructor, or a matching constructor.

Note how the example uses the as-keyword to assign column names that match the property

names of the NewEmployeeEvent target event. If the property names of the source and target

events are the same, the as-keyword is not required.

The next example is an alternate form and specifies property names within the insert into

clause instead. The example also assumes that NewEmployeeEvent has been defined or imported

via configuration since it does not specify the event class package name:

Event Objects Instantiated and Populated by Insert Into

21

insert into NewEmployeeEvent(firstName, lastName)

select fname, lname from HRSystemEvent

Finally, this example populates HRSystemEvent events. The example populates the value of a

type property where the event has the value 'NEW' and populates a new event object with the

value 'HIRED', copying the fname and lname property values to the new event object:

insert into HRSystemEvent

select fname, lname, 'HIRED' as type from HRSystemEvent(type='NEW')

The matching of the select or insert into-clause column names to target event type's property

names is case-sensitive. It is allowed to only populate a subset of all available columns in the

target event type. Wildcard (*) is also allowed and copies all fields of the events or multiple events

in a join.

For Java object events, your event class must provide setter-methods according to JavaBean

conventions or, alternatively, a matching constructor. If the event class provides setter methods

the class should also provide a default constructor taking no parameters. If the event class

provides a matching constructor there is no need for setter-methods. If your event class does not

have a default constructor and setter methods, or a matching constructor, your application may

configure a factory method via ConfigurationEventTypeLegacy. If your event class does not

have a default constructor and there is no factory method provided, the engine uses in connection

with the Oracle JVM the sun.reflect.ReflectionFactory, noting that in this case member

variables do not get initialized to assigned defaults.

The engine follows Java standards in terms of widening, performing widening automatically in

cases where widening type conversion is allowed without loss of precision, for both boxed and

primitive types and including BigInteger and BigDecimal.

When inserting array-typed properties into a Java, Map-type or Object-array underlying event the

event definition should declare the target property as an array.

Please note the following limitations:

• Event types that utilize XML org.w3c.dom.Node underlying event objects cannot be target of

an insert into clause.

22

Chapter 3.

23

Chapter 3. Processing Model

3.1. Introduction

For NEsper .NET also see Section H.11, “.NET Processing Model Introduction”.

The Esper processing model is continuous: Update listeners and/or subscribers to statements

receive updated data as soon as the engine processes events for that statement, according to the

statement's choice of event streams, views, filters and output rates.

As outlined in Chapter 16, API Reference the interface for listeners is

com.espertech.esper.client.UpdateListener. Implementations must provide a single

update method that the engine invokes when results become available:

A second, strongly-typed and native, highly-performant method of result delivery is provided: A

subscriber object is a direct binding of query results to a Java object. The object, a POJO, receives

statement results via method invocation. The subscriber class need not implement an interface

or extend a superclass. Please see Section 16.3.3, “Setting a Subscriber Object”.

The engine provides statement results to update listeners by placing results in

com.espertech.esper.client.EventBean instances. A typical listener implementation queries

the EventBean instances via getter methods to obtain the statement-generated results.

The get method on the EventBean interface can be used to retrieve result columns by name. The

property name supplied to the get method can also be used to query nested, indexed or array

properties of object graphs as discussed in more detail in Chapter 2, Event Representations and

Section 16.6, “Event and Event Type”

The getUnderlying method on the EventBean interface allows update listeners to obtain the

underlying event object. For wildcard selects, the underlying event is the event object that was

sent into the engine via the sendEvent method. For joins and select clauses with expressions,

the underlying object implements java.util.Map.

Chapter 3. Processing Model

24

Tip

The engine calls application-provided update listeners and subscribers for output.

These commonly encapsulate the actions to take when there is output. This design

decouples EPL statements from actions and places actions outside of EPL. It

allows actions to change independently from statements: A statement does not

need to be updated when its associated action(s) change.

While action-taking, in respect to the code or script taking the action, is not a part

of the EPL language, here are a few noteworthy points. Through the use of EPL

annotations one can attach information to EPL that can be used by applications

to flexibly determine actions. The convenient StatementAwareUpdateListener

interface is a listener that receives the statement itself and subscribers can

accept EPStatement as a parameter. The insert into-clause can be used

to send results into a further stream and input and output adapters or data

flows can exist to process output events from that stream. Also the data flow

EPStatementSource operator can be used to hook up actions declaratively. The

EPStatementStateListener can inform your application of new statements

coming online.

3.2. Insert Stream

In this section we look at the output of a very simple EPL statement. The statement selects an

event stream without using a data window and without applying any filtering, as follows:

select * from Withdrawal

This statement selects all Withdrawal events. Every time the engine processes an event of type

Withdrawal or any sub-type of Withdrawal, it invokes all update listeners, handing the new event

to each of the statement's listeners.

The term insert stream denotes the new events arriving, and entering a data window or

aggregation. The insert stream in this example is the stream of arriving Withdrawal events, and

is posted to listeners as new events.

The diagram below shows a series of Withdrawal events 1 to 6 arriving over time. The number in

parenthesis is the withdrawal amount, an event property that is used in the examples that discuss

filtering.

Insert and Remove Stream

25

Figure 3.1. Output example for a simple statement

The example statement above results in only new events and no old events posted by the engine

to the statement's listeners.

3.3. Insert and Remove Stream

A length window instructs the engine to only keep the last N events for a stream. The next

statement applies a length window onto the Withdrawal event stream. The statement serves to

illustrate the concept of data window and events entering and leaving a data window:

select * from Withdrawal#length(5)

The size of this statement's length window is five events. The engine enters all arriving Withdrawal

events into the length window. When the length window is full, the oldest Withdrawal event is

pushed out the window. The engine indicates to listeners all events entering the window as new

events, and all events leaving the window as old events.

While the term insert stream denotes new events arriving, the term remove stream denotes events

leaving a data window, or changing aggregation values. In this example, the remove stream is

the stream of Withdrawal events that leave the length window, and such events are posted to

listeners as old events.

Chapter 3. Processing Model

26

The next diagram illustrates how the length window contents change as events arrive and shows

the events posted to an update listener.

Figure 3.2. Output example for a length window

As before, all arriving events are posted as new events to listeners. In addition, when event W1

leaves the length window on arrival of event W6, it is posted as an old event to listeners.

Similar to a length window, a time window also keeps the most recent events up to a given time

period. A time window of 5 seconds, for example, keeps the last 5 seconds of events. As seconds

pass, the time window actively pushes the oldest events out of the window resulting in one or

more old events posted to update listeners.

Note
Note: By default the engine only delivers the insert stream to listeners and

observers. EPL supports optional istream, irstream and rstream keywords on

select-clauses and on insert-into clauses to control which stream to deliver, see

Section 5.3.7, “Selecting insert and remove stream events”. There is also a related,

engine-wide configuration setting described in Section 17.4.20, “Engine Settings

related to Stream Selection”.

Filters and Where-clauses

27

3.4. Filters and Where-clauses

Filters to event streams allow filtering events out of a given stream before events enter a data

window (if there are data windows defined in your query). The statement below shows a filter that

selects Withdrawal events with an amount value of 200 or more.

select * from Withdrawal(amount>=200)#length(5)

With the filter, any Withdrawal events that have an amount of less then 200 do not enter the length

window and are therefore not passed to update listeners. Filters are discussed in more detail in

Section 5.4.1, “Filter-based Event Streams” and Section 7.4, “Filter Expressions In Patterns”.

Figure 3.3. Output example for a statement with an event stream filter

The where-clause and having-clause in statements eliminate potential result rows at a later stage

in processing, after events have been processed into a statement's data window or other views.

The next statement applies a where-clause to Withdrawal events. Where-clauses are discussed

in more detail in Section 5.5, “Specifying Search Conditions: the Where Clause”.

select * from Withdrawal#length(5) where amount >= 200

Chapter 3. Processing Model

28

The where-clause applies to both new events and old events. As the diagram below shows,

arriving events enter the window however only events that pass the where-clause are handed to

update listeners. Also, as events leave the data window, only those events that pass the conditions

in the where-clause are posted to listeners as old events.

Figure 3.4. Output example for a statement with where-clause

3.5. Time Windows

In this section we explain the output model of statements employing a time window view and a

time batch view.

3.5.1. Time Window

A time window is a moving window extending to the specified time interval into the past based on

the system time. Time windows enable us to limit the number of events considered by a query,

as do length windows.

As a practical example, consider the need to determine all accounts where the average withdrawal

amount per account for the last 4 seconds of withdrawals is greater then 1000. The statement to

solve this problem is shown below.

select account, avg(amount)

from Withdrawal#time(4 sec)

Time Window

29

group by account

having amount > 1000

The next diagram serves to illustrate the functioning of a time window. For the diagram, we assume

a query that simply selects the event itself and does not group or filter events.

select * from Withdrawal#time(4 sec)

The diagram starts at a given time t and displays the contents of the time window at t + 4 and

t + 5 seconds and so on.

Figure 3.5. Output example for a statement with a time window

The activity as illustrated by the diagram:

1. At time t + 4 seconds an event W1 arrives and enters the time window. The engine reports

the new event to update listeners.

2. At time t + 5 seconds an event W2 arrives and enters the time window. The engine reports

the new event to update listeners.

3. At time t + 6.5 seconds an event W3 arrives and enters the time window. The engine reports

the new event to update listeners.

Chapter 3. Processing Model

30

4. At time t + 8 seconds event W1 leaves the time window. The engine reports the event as an

old event to update listeners.

3.5.2. Time Batch

The time batch view buffers events and releases them every specified time interval in one update.

Time windows control the evaluation of events, as does the length batch window.

The next diagram serves to illustrate the functioning of a time batch view. For the diagram, we

assume a simple query as below:

select * from Withdrawal#time_batch(4 sec)

The diagram starts at a given time t and displays the contents of the time window at t + 4 and

t + 5 seconds and so on.

Figure 3.6. Output example for a statement with a time batch view

The activity as illustrated by the diagram:

1. At time t + 1 seconds an event W1 arrives and enters the batch. No call to inform update

listeners occurs.

Batch Windows

31

2. At time t + 3 seconds an event W2 arrives and enters the batch. No call to inform update

listeners occurs.

3. At time t + 4 seconds the engine processes the batched events and a starts a new batch.

The engine reports events W1 and W2 to update listeners.

4. At time t + 6.5 seconds an event W3 arrives and enters the batch. No call to inform update

listeners occurs.

5. At time t + 8 seconds the engine processes the batched events and a starts a new batch.

The engine reports the event W3 as new data to update listeners. The engine reports the events

W1 and W2 as old data (prior batch) to update listeners.

3.6. Batch Windows

The built-in data windows that act on batches of events are the win:time_batch and the

win:length_batch views, among others. The win:time_batch data window collects events

arriving during a given time interval and posts collected events as a batch to listeners at the end

of the time interval. The win:length_batch data window collects a given number of events and

posts collected events as a batch to listeners when the given number of events has collected.

For more detailed information on batch windows please see Section 14.2, “A Note on Batch

Windows”.

Related to batch data windows is output rate limiting. While batch data windows retain events the

output clause offered by output rate limiting can control or stabilize the rate at which events are

output, see Section 5.7, “Stabilizing and Controlling Output: the Output Clause”.

Let's look at how a time batch window may be used:

select account, amount from Withdrawal#time_batch(1 sec)

The above statement collects events arriving during a one-second interval, at the end of which

the engine posts the collected events as new events (insert stream) to each listener. The engine

posts the events collected during the prior batch as old events (remove stream). The engine starts

posting events to listeners one second after it receives the first event and thereon.

For statements containing aggregation functions and/or a group by clause, the engine posts

consolidated aggregation results for an event batch. For example, consider the following

statement:

select sum(amount) as mysum from Withdrawal#time_batch(1 sec)

Note that output rate limiting also generates batches of events following the output model as

discussed here.

Chapter 3. Processing Model

32

3.7. Aggregation and Grouping

3.7.1. Insert and Remove Stream

Statements that aggregate events via aggregation functions also post remove stream events as

aggregated values change.

Consider the following statement that alerts when 2 Withdrawal events have been received:

select count(*) as mycount from Withdrawal having count(*) = 2

When the engine encounters the second withdrawal event, the engine posts a new event to update

listeners. The value of the "mycount" property on that new event is 2. Additionally, when the engine

encounters the third Withdrawal event, it posts an old event to update listeners containing the

prior value of the count, if specifing the rstream keyword in the select clause to select the remove

stream. The value of the "mycount" property on that old event is also 2.

Note the statement above does not specify a data window and thereby counts all arriving events

since statement start. The statement above retains no events and its memory allocation is only

the aggregation state, i.e. a single long value to represent count(*).

The istream or rstream keyword can be used to eliminate either new events or old events posted

to listeners. The next statement uses the istream keyword causing the engine to call the listener

only once when the second Withdrawal event is received:

select istream count(*) as mycount from Withdrawal having count(*) = 2

3.7.2. Output for Aggregation and Group-By

Following SQL (Standard Query Language) standards for queries against relational databases,

the presence or absence of aggregation functions and the presence or absence of the group by

clause and group_by named parameters for aggregation functions dictates the number of rows

posted by the engine to listeners. The next sections outline the output model for batched events

under aggregation and grouping. The examples also apply to data windows that don't batch events

and post results continously as events arrive or leave data windows. The examples also apply to

patterns providing events when a complete pattern matches.

In summary, as in SQL, if your query only selects aggregation values, the engine provides one row

of aggregated values. It provides that row every time the aggregation is updated (insert stream),

which is when events arrive or a batch of events gets processed, and when the events leave a data

window or a new batch of events arrives. The remove stream then consists of prior aggregation

values.

Output for Aggregation and Group-By

33

Also as in SQL, if your query selects non-aggregated values along with aggregation values in

the select clause, the engine provides a row per event. The insert stream then consists of the

aggregation values at the time the event arrives, while the remove stream is the aggregation value

at the time the event leaves a data window, if any is defined in your query.

EPL allows each aggregation function to specify its own grouping criteria. Please find further

information in Section 5.6.4, “Specifying grouping for each aggregation function”.

The documentation provides output examples for query types in Appendix A, Output Reference

and Samples, and the next sections outlines each query type.

3.7.2.1. Un-aggregated and Un-grouped

An example statement for the un-aggregated and un-grouped case is as follows:

select * from Withdrawal#time_batch(1 sec)

At the end of a time interval, the engine posts to listeners one row for each event arriving during

the time interval.

The appendix provides a complete example including input and output events over time at

Section A.2, “Output for Un-aggregated and Un-grouped Queries”.

3.7.2.2. Fully Aggregated and Un-grouped

If your statement only selects aggregation values and does not group, your statement may look

as the example below:

select sum(amount)

from Withdrawal#time_batch(1 sec)

At the end of a time interval, the engine posts to listeners a single row indicating the aggregation

result. The aggregation result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at

Section A.3, “Output for Fully-aggregated and Un-grouped Queries”.

If any aggregation functions specify the group_by parameter and a dimension, for example

sum(amount, group_by:account), the query executes as an aggregated and grouped query

instead.

3.7.2.3. Aggregated and Un-Grouped

If your statement selects non-aggregated properties and aggregation values, and does not group,

your statement may be similar to this statement:

Chapter 3. Processing Model

34

select account, sum(amount)

from Withdrawal#time_batch(1 sec)

At the end of a time interval, the engine posts to listeners one row per event. The aggregation

result aggregates all events collected during the time interval.

The appendix provides a complete example including input and output events over time at

Section A.4, “Output for Aggregated and Un-grouped Queries”.

3.7.2.4. Fully Aggregated and Grouped

If your statement selects aggregation values and all non-aggregated properties in the select

clause are listed in the group by clause, then your statement may look similar to this example:

select account, sum(amount)

from Withdrawal#time_batch(1 sec)

group by account

At the end of a time interval, the engine posts to listeners one row per unique account number.

The aggregation result aggregates per unique account.

The appendix provides a complete example including input and output events over time at

Section A.5, “Output for Fully-aggregated and Grouped Queries”.

If any aggregation functions specify the group_by parameter and a dimension other than group

by dimension(s), for example sum(amount, group_by:accountCategory), the query executes

as an aggregated and grouped query instead.

3.7.2.5. Aggregated and Grouped

If your statement selects non-aggregated properties and aggregation values, and groups only

some properties using the group by clause, your statement may look as below:

select account, accountName, sum(amount)

from Withdrawal#time_batch(1 sec)

group by account

At the end of a time interval, the engine posts to listeners one row per event. The aggregation

result aggregates per unique account.

The appendix provides a complete example including input and output events over time at

Section A.6, “Output for Aggregated and Grouped Queries”.

Event Visibility and Current Time

35

3.8. Event Visibility and Current Time

An event sent by your application or generated by statements is visible to all other statements in the

same engine instance. Similarly, current time (the time horizon) moves forward for all statements

in the same engine instance. Please see the Chapter 16, API Reference chapter for how to send

events and how time moves forward through system time or via simulated time, and the possible

threading models.

Within an Esper engine instance you can additionally control event visibility and current time on a

statement level, under the term isolated service as described in Section 16.9, “Service Isolation”.

An isolated service provides a dedicated execution environment for one or more statements.

Events sent to an isolated service are visible only within that isolated service. In the isolated

service you can move time forward at the pace and resolution desired without impacting other

statements that reside in the engine runtime or other isolated services. You can move statements

between the engine and an isolated service.

3.9. Indexes

3.9.1. Index Kinds

Esper, depending on the EPL statements, builds and maintains two kinds of indexes: filter indexes

and event indexes.

Esper builds and maintains indexes for efficiency so as to achieve good performance.

The following table compares the two kinds of indexes:

Table 3.1. Kinds of Indexes

Filter Indexes Event Indexes

Improve the speed of Matching incoming events

to currently-active filters that

should process the event

Lookup of rows

Similar to A structured registry of

callbacks; or content-based

routing

Database index

Index stores values Of Values provided by

expressions

Values for certain column(s)

Index points to Currently-active filters Rows

Comparable to A sieve or a switchboard An index in a book

3.9.2. Filter Indexes

Filter indexes organize filters so that they can be searched efficiently. Filter indexes link back to

the statement that the filter(s) come from.

Chapter 3. Processing Model

36

We use the term filter or filter criteria to mean the selection predicate, such as symbol=“google”

and price > 200 and volume > 111000. Statements provide filter criteria in the from-clause,

and/or in EPL patterns and/or in context declarations. Please see Section 5.4.1, “Filter-based

Event Streams”, Section 7.4, “Filter Expressions In Patterns” and Section 4.2.7.1, “Filter Context

Condition”.

When the engine receives an event, it consults the filter indexes to determine which statements,

if any, must process the event.

The purpose of filter indexes is to enable:

• Efficient matching of events to only those statements that need them.

• Efficient discarding of events that are not needed by any statement.

• Efficient evaluation with best case approximately O(1) to O(log n) i.e. in the best case executes

in approximately the same time regardless of the size of the input data set which is the number

of active filters.

Filter index building is a result of the engine analyzing the filter criteria in the from-clause and also

in EPL patterns. It is done automatically by the engine.

Esper builds and maintains separate sets of filter indexes per event type, when such event type

occurs in the from-clause or pattern. Filter indexes are sharable within the same event type filter.

Thus various from-clauses and patterns that refer for the same event type can contribute to the

same set of filter indexes.

Esper builds filter indexes in a nested fashion: Filter indexes may contain further filter indexes,

forming a tree-like structure, a filter index tree. The nesting of indexes is beyond the introductory

discussion provided here.

3.9.2.1. Filter Index Multi-Statement Example

The from-clause in a statement and, in special cases, also the where-clause provide filter criteria

that the engine analyzes and for which it builds filter indexes.

For example, assume the WithdrawalEvent has an accountId field. One could create three EPL

statements like so:

@name('A') select * from WithdrawalEvent(accountId = 1)

@name('B') select * from WithdrawalEvent(accountId = 1)

@name('C') select * from WithdrawalEvent(accountId = 2)

Filter Indexes

37

In this example, both statement A and statement B register interest in WithdrawalEvent events

that have an accountId value of 1. Statement C registers interest in WithdrawalEvent events

that have an accountId value of 2.

The below table is a sample filter index for the three statements:

Table 3.2. Sample Filter Index Multi-Statement Example

Value of accountId Filter

1 Statement A, Statement B

2 Statement C

When a Withdrawal event arrives, the engine extracts the accountId and performs a lookup into

above table. If there are no matching rows in the table, for example when the accountId is 3, the

engine knows that there is no further processing for the event.

3.9.2.2. Filter Index Pattern Example

As part of a pattern you may specify event types and filter criteria. The engine analyzes patterns

and determines filter criteria for filter index building.

Consider the following example pattern that fires for each WithdrawalEvent that is followed by

another WithdrawalEvent for the same accountId value:

@name('P') select * from pattern [every w1=WithdrawalEvent ->

 w2=WithdrawalEvent(accountId = w.accountId)]

Upon creating the above statement, the engine starts looking for WithdrawalEvent events. At

this time there is only one active filter:

• A filter looking for WithdrawalEvent events regardless of account id.

Assume a WithdrawalEvent Wa for account 1 arrives. The engine then activates a filter looking

for another WithdrawalEvent for account 1. At this time there are 2 active filters:

• A filter looking for WithdrawalEvent events regardless of account id.

• A filter looking for WithdrawalEvent(accountId=1) associated to w1=Wa.

Assume another WithdrawalEvent Wb for account 1 arrives. The engine then activates a filter

looking for another WithdrawalEvent for account 1. At this time there are 3 active filters:

• A filter looking for WithdrawalEvent events regardless of account id.

• A filter looking for WithdrawalEvent(accountId=1) associated to w1=Wa.

Chapter 3. Processing Model

38

• A filter looking for WithdrawalEvent(accountId=1) associated to w2=Wb.

Assume another WithdrawalEvent Wc for account 2 arrives. The engine then activates a filter

looking for another WithdrawalEvent for account 2. At this time there are 4 active filters:

• A filter looking for WithdrawalEvent events regardless of account id.

• A filter looking for WithdrawalEvent(accountId=1) associated to w1=Wa.

• A filter looking for WithdrawalEvent(accountId=1) associated to w1=Wb.

• A filter looking for WithdrawalEvent(accountId=2) associated to w1=Wc.

The below table is a sample filter index for the pattern after the Wa, Wband Wc events arrived:

Table 3.3. Sample Filter Index Pattern Example

Value of accountId Filter

1 Statement P Pattern w1=Wa, Statement P

Pattern w1=Wb

2 Statement P Pattern w1=Wc

When a Withdrawal event arrives, the engine extracts the accountId and performs a lookup into

above table. If a matching row is found, the engine can hand off the event to the relevant pattern

subexpressions.

3.9.2.3. Filter Index Context Example

This example is similar to the previous example of multiple statements, but instead it declares a

context and associates a single statement to the context.

For example, assume the LoginEvent has an accountId field. One could declare a context

initiated by a LoginEvent for a user:

@name('A') create context UserSession initiated by LoginEvent as loginEvent

By associating the statement to the context we can tell the engine to analze per LoginEvent, for

example:

@name('B') context UserSession select count(*) from WithdrawalEvent(accountId =

 context.loginEvent.accountId)

Upon creating the above two statements, the engine starts looking for LoginEvent events. At this

time there is only one active filter:

Event Indexes

39

• A filter looking for LoginEvent events (any account id).

Assume a LoginEvent La for account 1 arrives. The engine then activates a context partition of

statement B and therefore the filter looking for WithdrawalEvent for account 1. At this time there

are 2 active filters:

• A filter looking for LoginEvent events (any account id).

• A filter looking for WithdrawalEvent(accountId=1) associated to loginEvent=La.

Assume a LoginEvent Lb for account 1 arrives. The engine then activates a context partition of

statement B and therefore the filter looking for WithdrawalEvent for account 1. At this time there

are 3 active filters:

• A filter looking for LoginEvent events (any account id).

• A filter looking for WithdrawalEvent(accountId=1) associated to loginEvent=La.

• A filter looking for WithdrawalEvent(accountId=1) associated to loginEvent=Lb.

Assume a LoginEvent Lc for account 2 arrives. The engine then activates a context partition of

statement B and therefore the filter looking for WithdrawalEvent for account 2. At this time there

are 4 active filters:

• A filter looking for LoginEvent events (any account id).

• A filter looking for WithdrawalEvent(accountId=1) associated to loginEvent=La.

• A filter looking for WithdrawalEvent(accountId=1) associated to loginEvent=Lb.

• A filter looking for WithdrawalEvent(accountId=2) associated to loginEvent=Lc.

The below table is a sample filter index for the three statement context partitions:

Table 3.4. Sample Filter Index Context Example

Value of accountId Filter

1 Statement B Context Partition #0 loginEvent=La, Statement B

Context Partition #1 loginEvent=Lb

2 Statement B Context Partition #2 loginEvent=Lc

When a Withdrawal event arrives, the engine extracts the accountId and performs a lookup into

above table. It can then hand of the event directly to the relevant statement context partitions, or

ignore the event if no rows are found for a given account id.

3.9.3. Event Indexes

Event indexes organize certain columns so that they can be searched efficiently. Event indexes

link back to the row that the column(s) come from.

Chapter 3. Processing Model

40

As event indexes are similar to database indexes, for this discussion, we use the term column to

mean a column in a EPL table or named window and to also mean an event property or field. We

use the term row to mean a row in an EPL table or named window and to also mean an event.

When the engine performs statement processing it may use event indexes to find correlated rows

efficiently.

The purpose of event indexes is to enable:

• Efficient evaluation of subqueries.

• Efficient evaluation of joins.

• Efficient evaluation of on-action statements.

• Efficient evaluation of fire-and-forget queries.

Event index building is a result of the engine analyzing the where-clause correlation criteria for

joins (on-clause for outer joins), subqueries, on-action and fire-and-forget queries. It is done

automatically by the engine. You may utilize the create index clause to explicitly index named

windows and tables. You may utilize query planner hints to influence index building, use and

sharing.

Chapter 4.

41

Chapter 4. Context and Context

Partitions

4.1. Introduction

This section discusses the notion of context and its role in the Esper event processing language

(EPL).

When you look up the word context in a dictionary, you may find: Context is the set of

circumstances or facts that surround a particular event, situation, etc..

Context-dependent event processing occurs frequently: For example, consider a requirement that

monitors banking transactions. For different customers your analysis considers customer-specific

aggregations, patterns or data windows. In this example the context of detection is the customer.

For a given customer you may want to analyze the banking transactions of that customer by using

aggregations, data windows, patterns including other EPL constructs.

In a second example, consider traffic monitoring to detect speed violations. Assume the speed

limit must be enforced only between 9 am and 5 pm. The context of detection is of temporal nature.

A context takes a cloud of events and classifies them into one or more sets. These sets are called

context partitions. An event processing operation that is associated with a context operates on

each of these context partitions independently. (Credit: Taken from the book "Event Processing

in Action" by Opher Etzion and Peter Niblett.)

A context is a declaration of dimension and may thus result in one or more context partitions.

In the banking transaction example there the context dimension is the customer and a context

partition exists per customer. In the traffic monitoring example there is a single context partition

that exists only between 9 am and 5 pm and does not exist outside of that daily time period.

In an event processing glossary you may find the term event processing agent. An EPL statement

is an event processing agent. An alternative term for context partition is event processing agent

instance.

Tip

Think of context partitions as instances of a class, wherein the class is the EPL

statement.

Esper EPL allows you to declare contexts explicitly, offering the following benefits:

1. Context can apply to multiple statements thereby eliminating the need to duplicate context

dimensional information between statements.

Chapter 4. Context and Contex...

42

2. Context partitions can be temporally overlapping.

3. Context partitions provide a fine-grained lifecycle that is independent of the lifecycle of

statement lifecycle, making it easy to specify when an analysis should start and end.

4. Fine-grained lock granularity: The engine locks on the level of context partitions thereby

allowing very high concurrency, with a maximum (theoretical) degree of parallelism at 2^31-1

(2,147,483,647) parallel threads working to process a single EPL statement under a hash

segmented context.

5. EPL can become easier to read as common predicate expressions can be factored out into

a context.

6. You may specify a nested context that is composed from two or more contexts. In particular a

temporal context type is frequently used in combination with a segmentation-oriented context.

7. Using contexts your application can aggregate events over time periods (overlapping or non-

overlapping) without retaining any events in memory.

8. Using contexts your application can coordinate boundaries for multiple statements.

Esper EPL allows you to declare a context explicitly via the create context syntax introduced

below.

After you have declared a context, one or more EPL statements can refer to that context by

specifying context name. When an EPL statement refers to a context, all EPL-statement related

state such as aggregations, patterns or data windows etc. exists once per context partition.

If an EPL statement does not declare a context, it implicitly has a single context partition. The

single context partition lives as long as the EPL statement is started and ends when the EPL

statement is stopped.

You may have heard of the term session. A context partition is the same as a session.

You may have heard of the term session window to describe the duration between when a session

becomes alive to when a session gets destroyed. We use the term context partition lifecycle

instead.

The context declaration specifies how the engine manages context partitions (or sessions):

• For keyed segmented context there is a context partition (or session) per key or multiple keys,

see Section 4.2.2, “Keyed Segmented Context”.

• For hash segmented context there is a context partition (or session) per hash code of one or

more keys, see Section 4.2.3, “Hash Segmented Context”.

• For overlapping contexts there can be multiple overlapping context partitions (or sessions), see

Section 4.2.6, “Overlapping Context”.

• For non-overlapping contexts there is only zero or one single context partition (or session), see

Section 4.2.5, “Non-Overlapping Context”.

• For category segmented context there is a context partition (or session) per predefined category,

see Section 4.2.4, “Category Segmented Context”.

Context Declaration

43

For more information on locking and threading please see Section 16.7, “Engine Threading and

Concurrency”. For performance related information please refer to Chapter 22, Performance.

4.2. Context Declaration

The create context statement declares a context by specifying a context name and context

dimension information.

A context declaration by itself does not consume any resources or perform any logic until your

application starts at least one statement that refers to that context. Until then the context is inactive

and not in use.

When your application creates or starts the first statement that refers to the context, the engine

activates the context.

As soon as your application stops or destroys all statements that refer to the context, the context

becomes inactive again.

When your application stops or destroys a statement that refers to a context, the context partitions

associated to that statement also end (context partitions associated to other started statements

live on).

When your application stops or destroys the statement that declared the context and does not

also stop or destroy any statements that refer to the context, the context partitions associated to

each such statement do not end.

When your application destroys the statement that declared the context and destroys all

statements that refer to that context then the engine removes the context declaration entirely.

The create context statement posts no output events to listeners or subscribers and does not

return any rows when iterated.

4.2.1. Context-Provided Properties

Each of the context declarations makes available a set of built-in context properties as well as

initiating event or pattern properties, as applicable. You may select these context properties for

output or use them in any of the statement expressions.

Refer to built-in context properties as context.property_name, wherein property_name refers to

the name of the built-in context property.

Refer to initiating event or pattern match event properties as

context.stream_name.property_name, wherein stream_name refers to the name assigned to

the event or the tag name specified in a pattern and property_name refers to the name of the

initiating event or pattern match event property.

4.2.2. Keyed Segmented Context

This context assigns events to context partitions based on the values of one or more event

properties, using the value of these property(s) as a key that picks a unique context partition

Chapter 4. Context and Contex...

44

directly. Each event thus belongs to exactly one context partition or zero context partitions if the

event does not match the optional filter predicate expression(s). Each context partition handles

exactly one set of key values.

The syntax for creating a keyed segmented context is as follows:

create context context_name partition [by]

 event_property [and event_property [and ...]] from stream_def

 [, event_property [...] from stream_def]

 [, ...]

The context_name you assign to the context can be any identifier.

Following the context name is one or more lists of event properties and a stream definition for

each entry, separated by comma (,).

The event_property is the name(s) of the event properties that provide the value(s) to pick a unique

partition. Multiple event property names are separated by the and keyword.

The stream_def is a stream definition which consists of an event type name optionally followed by

parenthesis that contains filter expressions. If providing filter expressions, only events matching

the provided filter expressions for that event type are considered by context partitions. The name

of a named window or table is not allowed.

You may list multiple event properties for each stream definition. You may list multiple stream

definitions. Please refer to usage guidelines below when specifying multiple event properties and/

or multiple stream definitions.

The next statement creates a context SegmentedByCustomer that considers the value of the

custId property of the BankTxn event type to pick the context partition to assign events to:

create context SegmentedByCustomer partition by custId from BankTxn

The following statement refers to the context created as above to compute a total withdrawal

amount per account for each customer:

context SegmentedByCustomer

select custId, account, sum(amount) from BankTxn group by account

The following statement refers to the context created as above and detects a withdrawal of more

then 400 followed by a second withdrawal of more then 400 that occur within 10 minutes of the

first withdrawal, all for the same customer:

context SegmentedByCustomer

Keyed Segmented Context

45

select * from pattern [

 every a=BankTxn(amount > 400) -> b=BankTxn(amount > 400) where timer:within(10

 minutes)

]

The EPL statement that refers to a keyed segmented context must have at least one filter

expression, at any place within the EPL statement that looks for events of any of the event types

listed in the context declaration.

For example, the following is not valid:

// Neither LoginEvent nor LogoutEvent are listed in the context declaration

context SegmentedByCustomer

select * from pattern [every a=LoginEvent -> b=LogoutEvent where timer:within(10

 minutes)]

4.2.2.1. Multiple Stream Definitions

If the context declaration lists multiple streams, each event type must be unrelated: You may not

list the same event type twice and you may not list a sub- or super-type of any event type already

listed.

The following is not a valid declaration since the BankTxn event type is listed twice:

// Not valid

create context SegmentedByCustomer partition by custId from BankTxn, account

 from BankTxn

If the context declaration lists multiple streams, the number of event properties provided for each

event type must also be the same. The value type returned by event properties of each event

type must match within the respective position it is listed in, i.e. the first property listed for each

event type must have the same type, the second property listed for each event type must have

the same type, and so on.

The following is not a valid declaration since the customer id of BankTxn and login time of

LoginEvent is not the same type:

// Invalid: Type mismatch between properties

create context SegmentedByCustomer partition by custId from BankTxn, loginTime

 from LoginEvent

The next statement creates a context SegmentedByCustomer that also considers LoginEvent and

LogoutEvent:

Chapter 4. Context and Contex...

46

create context SegmentedByCustomer partition by

 custId from BankTxn, loginId from LoginEvent, loginId from LogoutEvent

As you may have noticed, the above example refers to loginId as the event property name for

LoginEvent and LogoutEvent events. The assumption is that the loginId event property of the

login and logout events has the same type and carries the same exact value as the custId of

bank transaction events, thereby allowing all events of the three event types to apply to the same

customer-specific context partition.

4.2.2.2. Filters

You may add a filter expression to each of the event types listed. The engine applies the filter

expression to the EPL statement that refers to the context and to the same event type.

The next statement creates a context SegmentedByCustomer that does not consider login events

that indicate that the login failed.

create context SegmentedByCustomer partition by

 custId from BankTxn, loginId from LoginEvent(failed=false)

4.2.2.3. Multiple Properties Per Event Type

You may assign events to context partitions based on the values of two or more event properties.

The engine thus uses the combination of values of these properties to pick a context partition.

An example context declaration follows:

create context ByCustomerAndAccount partition by custId and account from BankTxn

The next statement refers to the context and computes a total withdrawal amount, per account

and customer:

context ByCustomerAndAccount select custId, account, sum(amount) from BankTxn

As you can see, the above statement does not need to specify group by clause to aggregate per

customer and account, since events of each unique combination of customer id and account are

assigned to separate context partitions.

4.2.2.4. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a keyed

segmented context:

Keyed Segmented Context

47

Table 4.1. Keyed Segmented Context Properties

Name Description

name The string-type context name.

id The integer-type internal context id that the engine assigns to the context

partition.

key1 The event property value for the first key.

keyN The event property value for the Nth key.

Assume the keyed segmented context is declared as follows:

create context ByCustomerAndAccount partition by custId and account from BankTxn

You may, for example, select the context properties as follows:

context ByCustomerAndAccount

 select context.name, context.id, context.key1, context.key2 from BankTxn

4.2.2.5. Examples of Joins

This section discusses the impact of contexts on joins to provide further samples of use and

deepen the understanding of context partitions.

Consider a context declared as follows:

create context ByCust partition by custId from BankTxn

The following statement matches, within the same customer id, the current event with the last 30

minutes of events to determine those events that match amounts:

context ByCust

 select * from BankTxn as t1 unidirectional, BankTxn#time(30) t2

 where t1.amount = t2.amount

Note that the where-clause in the join above does not mention customer id. Since each BankTxn

applies to a specific context partition the join evaluates within that single context partition.

Consider the next statement that matches a security event with the last 30 minutes of transaction

events for each customer:

Chapter 4. Context and Contex...

48

context ByCust

 select * from SecurityEvent as t1 unidirectional, BankTxn#time(30) t2

 where t1.customerName = t2.customerName

When a security event comes in, it applies to all context partitions and not any specific context

partition, since the SecurityEvent event type is not part of the context declaration.

4.2.3. Hash Segmented Context

This context assigns events to context partitions based on result of a hash function and modulo

operation. Each event thus belongs to exactly one context partition or zero context partitions if the

event does not match the optional filter predicate expression(s). Each context partition handles

exactly one result of hash value modulo granularity.

The syntax for creating a hashed segmented context is as follows:

create context context_name coalesce [by]

 hash_func_name(hash_func_param) from stream_def

 [, hash_func_name(hash_func_param) from stream_def]

 [, ...]

 granularity granularity_value

 [preallocate]

The context_name you assign to the context can be any identifier.

Following the context name is one or more lists of hash function name and parameters pairs and

a stream definition for each entry, separated by comma (,).

The hash_func_name can either be consistent_hash_crc32 or hash_code or a plug-in single-

row function. The hash_func_param is a list of parameter expressions.

• If you specify consistent_hash_crc32 the engine computes a consistent hash code using the

CRC-32 algorithm.

• If you specify hash_code the engine uses the Java object hash code.

• If you specify the name of a plug-in single-row function your function must return an integer

value that is the hash code. You may use the wildcard (*) character among the parameters to

pass the underlying event to the single-row function.

The stream_def is a stream definition which consists of an event type name optionally followed by

parenthesis that contains filter expressions. If providing filter expressions, only events matching

the provided filter expressions for that event type are considered by context partitions. The name

of a named window or table is not allowed.

You may list multiple stream definitions. Please refer to usage guidelines below when specifying

multiple stream definitions.

Hash Segmented Context

49

The granularity is required and is an integer number that defines the maximum number of

context partitions. The engine computes hash code modulo granularity hash(params) mod

granularity to determine the context partition. When you specify the hash_code function the engine

uses the object hash code and the computation is params.hashCode() %granularity.

Since the engine locks on the level of context partition to protect state, the granularity defines

the maximum degree of parallelism. For example, a granularity of 1024 means that 1024 context

partitions handle events and thus a maximum 1024 threads can process each assigned statement

concurrently.

The optional preallocate keyword instructs the engine to allocate all context partitions at once

at the time a statement refers to the context. This is beneficial for performance as the engine

does not need to determine whether a context partition exists and dynamically allocate, but may

require more memory.

The next statement creates a context SegmentedByCustomerHash that considers the CRC-32

hash code of the custId property of the BankTxn event type to pick the context partition to assign

events to, with up to 16 different context partitions that are preallocated:

create context SegmentedByCustomerHash

 coalesce by consistent_hash_crc32(custId) from BankTxn granularity 16

 preallocate

The following statement refers to the context created as above to compute a total withdrawal

amount per account for each customer:

context SegmentedByCustomerHash

select custId, account, sum(amount) from BankTxn group by custId, account

Note that the statement above groups by custId: Since the events for different customer ids can

be assigned to the same context partition, it is necessary that the EPL statement also groups by

customer id.

The context declaration shown next assumes that the application provides a computeHash single-

row function that accepts BankTxn as a parameter, wherein the result of this function must be an

integer value that returns the context partition id for each event:

create context MyHashContext

 coalesce by computeHash(*) from BankTxn granularity 16 preallocate

The EPL statement that refers to a hash segmented context must have at least one filter

expression, at any place within the EPL statement that looks for events of any of the event types

listed in the context declaration.

Chapter 4. Context and Contex...

50

For example, the following is not valid:

// Neither LoginEvent nor LogoutEvent are listed in the context declaration

context SegmentedByCustomerHash

select * from pattern [every a=LoginEvent -> b=LogoutEvent where timer:within(10

 minutes)]

4.2.3.1. Multiple Stream Definitions

If the context declaration lists multiple streams, each event type must be unrelated: You may not

list the same event type twice and you may not list a sub- or super-type of any event type already

listed.

If the context declaration lists multiple streams, the hash code function should return the same

hash code for the related keys of all streams.

The next statement creates a context HashedByCustomer that also considers LoginEvent and

LogoutEvent:

create context HashedByCustomer as coalesce

 consistent_hash_crc32(custId) from BankTxn,

 consistent_hash_crc32(loginId) from LoginEvent,

 consistent_hash_crc32(loginId) from LogoutEvent

 granularity 32 preallocate

4.2.3.2. Filters

You may add a filter expression to each of the event types listed. The engine applies the filter

expression to the EPL statement that refers to the context and to the same event type.

The next statement creates a context HashedByCustomer that does not consider login events

that indicate that the login failed.

create context HashedByCustomer

 coalesce consistent_hash_crc32(loginId) from LoginEvent(failed = false)

 granularity 1024 preallocate

4.2.3.3. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a keyed

segmented context:

Category Segmented Context

51

Table 4.2. Hash Segmented Context Properties

Name Description

name The string-type context name.

id The integer-type internal context id that the engine assigns to the context

partition.

Assume the hashed segmented context is declared as follows:

create context ByCustomerHash coalesce consistent_hash_crc32(custId) from

 BankTxn granularity 1024

You may, for example, select the context properties as follows:

context ByCustomerHash

 select context.name, context.id from BankTxn

4.2.3.4. Performance Considerations

The hash_code function based on the Java object hash code is generally faster then the

CRC32 algorithm. The CRC32 algorithm, when used with a non-String parameter or with multiple

parameters, requires the engine to serialize all expression results to a byte array to compute the

CRC32 hash code.

We recommend keeping the granularity small (1k and under) when using preallocate.

When specifying a granularity greater then 65536 (64k) the engine switches to a Map-based

lookup of context partition state which can slow down statement processing.

4.2.4. Category Segmented Context

This context assigns events to context partitions based on the values of one or more event

properties, using a predicate expression(s) to define context partition membership. Each event

can thus belong to zero, one or many context partitions depending on the outcome of the predicate

expression(s).

The syntax for creating a category segmented context is as follows:

create context context_name

 group [by] group_expression as category_label

 [, group [by] group_expression as category_label]

 [, ...]

 from stream_def

Chapter 4. Context and Contex...

52

The context_name you assign to the context can be any identifier.

Following the context name is a list of groups separated by the group keyword. The list of group

is followed by the from keyword and a stream definition.

The group_expression is an expression that categorizes events. Each group expression must be

followed by the as keyword and a category label which can be any identifier.

Group expressions are predicate expression and must return a Boolean true or false when applied

to an event. For a given event, any number of the group expressions may return true thus

categories can be overlapping.

The stream_def is a stream definition which consists of an event type name optionally followed by

parenthesis that contains filter expressions. If providing filter expressions, only events matching

the provided filter expressions for that event type are considered by context partitions.

The next statement creates a context CategoryByTemp that consider the value of the temperature

property of the SensorEvent event type to pick context partitions to assign events to:

create context CategoryByTemp

 group temp < 65 as cold,

 group temp between 65 and 85 as normal,

 group temp > 85 as large

 from SensorEvent

The following statement simply counts, for each category, the number of events and outputs the

category label and count:

context CategoryByTemp select context.label, count(*) from SensorEvent

4.2.4.1. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a category

segmented context:

Table 4.3. Category Segmented Context Properties

Name Description

name The string-type context name.

id The integer-type internal context id that the engine assigns to the context

partition.

label The category label is the string identifier value after the as keyword that is

specified for each group.

Non-Overlapping Context

53

You may, for example, select the context properties as follows:

context CategoryByTemp

 select context.name, context.id, context.label from SensorEvent

4.2.5. Non-Overlapping Context

You may declare a non-overlapping context that exists once or that repeats in a regular fashion

as controlled by a start condition and an optional end condition. The number of context partitions

is always either one or zero: Context partitions do not overlap.

The syntax for creating a non-overlapping context is as follows:

create context context_name

 start (@now | start_condition)

 [end end_condition]

The context_name you assign to the context can be any identifier.

Following the context name is the start keyword, either @now or a start_condition. It follows the

optional end keyword and an end_condition.

Both the start condition and the end condition, if specified, can be an event filter, a pattern, a

crontab or a time period. The syntax of start and end conditions is described in Section 4.2.7,

“Context Conditions”.

Once the start condition occurs, the engine no longer observes the start condition and begins

observing the end condition, if an end condition was provided. Once the end condition occurs,

the engine observes the start condition again. If you specified @now instead of a start condition,

the engine begins observing the end condition instead. If there is no end condition the context

partition remains alive and does not end.

If you specified an event filter as the start condition, then the event also counts towards the

statement(s) that refer to that context. If you specified a pattern as the start condition, then the

events that may constitute the pattern match can also count towards the statement(s) that refer

to the context provided that @inclusive and event tags are both specified (see below).

At the time of context activation when your application creates a statement that utilizes the context,

the engine checks whether the start and end condition are crontab expressions. The engine

evaluates the start and end crontab expressions and determines whether the current time is a time

between start and end. If the current time is between start and end times, the engine allocates

the context partition and waits for observing the end time. Otherwise the engine waits to observe

the start time and does not allocate a context partition.

The built-in context properties that are available are the same as described in Section 4.2.6.2,

“Built-In Context Properties”.

Chapter 4. Context and Contex...

54

The next statement creates a context NineToFive that declares a daily time period that starts at

9 am and ends at 5 pm:

create context NineToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

The following statement outputs speed violations between 9 am and 5 pm, considering a speed

of 100 or greater as a violation:

context NineToFive select * from TrafficEvent(speed >= 100)

The example that follows demonstrates the use of an event filter as the start condition and a

pattern as the end condition.

The next statement creates a context PowerOutage that starts when the first PowerOutageEvent

event arrives and that ends 5 seconds after a subsequent PowerOnEvent arrives:

create context PowerOutage start PowerOutageEvent end pattern [PowerOnEvent -

> timer:interval(5)]

The following statement outputs the temperature during a power outage and for 5 seconds after

the power comes on:

context PowerOutage select * from TemperatureEvent

To output only the last value when a context partition ends (terminates, expires), please read on

to the description of output rate limiting.

The next statement creates a context Every15Minutes that starts immediately and lasts for 15

minutes, repeatedly allocating a new context partition at the end of 15 minute intervals:

create context Every15Minutes start @now end after 15 minutes

The next example declares an AlwaysOn context: It starts immediately and does not end unless

the application uses the API to terminate the context partition:

create context AlwaysOn start @now

Overlapping Context

55

Tip

A non-overlapping context with @now is always-on: A context partition is always

allocated at any given point in time. Only if @now is specified will a context partition

always exist at any point in time.

Note

If you specified an event filter or pattern as the end condition for a context partition,

and statements that refer to the context specify an event filter or pattern that

matches the same conditions, use @Priority to instruct the engine whether the

context management or the statement evaluation takes priority (see below for

configuring prioritized execution).

For example, if your context declaration looks like this:

create context MyCtx start MyStartEvent end MyEndEvent

And a statement managed by the context is this:

context MyCtx select count(*) as cnt from MyEndEvent output when

 terminated

By using @Priority(1) for create-context and @Priority(0) for the counting

statement the counting statement does not count the last MyEndEvent since context

partition management takes priority.

By using @Priority(0) for create-context and @Priority(1) for the counting

statement the counting statement will count the last MyEndEvent since the

statement evaluation takes priority.

4.2.6. Overlapping Context

This context initiates a new context partition when an initiating condition occurs, and terminates

one or more context partitions when the terminating condition occurs, if a terminating condition

was specified. Thus multiple overlapping context partitions can be active at any point and context

partitions can overlap.

The syntax for creating an overlapping context is as follows:

create context context_name

Chapter 4. Context and Contex...

56

 initiated [by] [distinct (distinct_value_expr [,...])] [@now

 and] initiating_condition

 [terminated [by] terminating_condition]

The context_name you assign to the context can be any identifier.

Following the context name is the initiated keyword. After the initiated keyword you can

optionally specify the distinct keyword and, within parenthesis, list one or more distinct value

expressions. After the initiated keyword you can also specify @now and as explained below.

After the initiated keyword you must specify the initiating condition. You may optionally use the

terminated keyword followed by the terminating condition. If no terminating condition is specified

each context partition remains alive and does not terminate.

Both the initiating condition and the terminating condition, if specified, can be an event filter, a

pattern, a crontab or a time period. The syntax of initiating and terminating conditions is described

in Section 4.2.7, “Context Conditions”.

If you specified @now and before the initiating condition then the engine initiates a new context

partition immediately. The @now is only allowed in conjunction with initiation conditions that specify

a pattern, crontab or time period and not with event filters.

If you specified an event filter for the initiating condition, then the event that initiates a new context

partition also counts towards the statement(s) that refer to that context. If you specified a pattern

to initiate a new context partition, then the events that may constitute the pattern match can also

count towards the statement(s) that refer to the context provided that @inclusive and event tags

are both specified (see below).

The next statement creates a context CtxTrainEnter that allocates a new context partition when

a train enters a station, and that terminates each context partition 5 minutes after the time the

context partition was allocated:

create context CtxTrainEnter

 initiated by TrainEnterEvent as te

 terminated after 5 minutes

The context declared above assigns the stream name te. Thereby the initiating event's properties

can be accessed, for example, by specifying context.te.trainId.

The following statement detects when a train enters a station as indicated by a TrainEnterEvent,

but does not leave the station within 5 minutes as would be indicated by a matching

TrainLeaveEvent:

context CtxTrainEnter

select t1 from pattern [

Overlapping Context

57

 t1=TrainEnterEvent -> timer:interval(5 min) and not TrainLeaveEvent(trainId

 = context.te.trainId)

]

Since the TrainEnterEvent that initiates a new context partition also counts towards the

statement, the first part of the pattern (the t1=TrainEnterEvent) is satisfied by that initiating

event.

The next statement creates a context CtxEachMinute that allocates a new context partition

immediately and every 1 minute, and that terminates each context partition 1 minute after the time

the context partition was allocated:

create context CtxEachMinute

 initiated @now and pattern [every timer:interval(1 minute)]

 terminated after 1 minutes

The statement above specifies @now to instruct the engine to allocate a new context partition

immediately as well as when the pattern fires. Without the @now the engine would only allocate a

new context partition when the pattern fires after 1 minute and every minute thereafter.

The following statement averages the temperature, starting anew every 1 minute and outputs the

aggregate value continuously:

context CtxEachMinute select avg(temp) from SensorEvent

To output only the last value when a context partition ends (terminates, expires), please read on

to the description of output rate limiting.

By providing no terminating condition, we can tell the engine to allocate context partitions that

never terminate, for example:

create context CtxTrainEnter initiated by TrainEnterEvent as te

Note

If you specified an event filter or pattern as the termination condition for a context

partition, and statements that refer to the context specify an event filter or pattern

that matches the same conditions, use @Priority to instruct the engine whether

the context management or the statement evaluation takes priority (see below for

configuring prioritized execution). See the note above for more information.

Chapter 4. Context and Contex...

58

4.2.6.1. Distinct Events for the Initiating Condition

If your initiating condition is a filter context condition, you may specify the distinct keyword

followed by one or more distinct-value expressions.

The following sample EPL specifies a context that initiates a context partition for distinct order id

values, remembering that order id until the time the context partition terminates:

create context OrderContext

 initiated by distinct(orderId) NewOrderEvent as newOrder

 terminated by CloseOrderEvent(closeOrderId = newOrder.orderId)

The engine allocates a new context partition only when a context partition does not already

exist for a given orderId value of NewOrderEvent. When the context partition terminates at

the time a CloseOrderEvent arrives, the engine forgets about the orderId, allowing the next

NewOrderEvent event for the same orderId to allocate a new context partition.

Please note the following limitations:

• The distinct keyword requires the initiating condition to be an event stream (and not a crontab

or pattern, for example) and a stream name must be assigned using the as keyword.

• Subqueries, aggregations and the special prev and prior functions are not allowed among the

distinct-value expressions.

4.2.6.2. Built-In Context Properties

The following context properties are available in your EPL statement when it refers to a context:

Table 4.4. Context Properties

Name Description

name The string-type context name.

startTime The start time of the context partition.

endTime The end time of the context partition. This field is only available in the case that

it can be computed from the crontab or time period expression that is provided.

You may, for example, select the context properties as follows:

context NineToFive

select context.name, context.startTime, context.endTime from TrafficEvent(speed

 >= 100)

Context Conditions

59

The following statement looks for the next train leave event for the same train id and selects a

few of the context properties:

context CtxTrainEnter

select *, context.te.trainId, context.id, context.name

from TrainLeaveEvent(trainId = context.te.trainId)

4.2.7. Context Conditions

Context start/initiating and end/terminating conditions are for use with overlapping and non-

overlapping contexts. Any combination of conditions may be specified.

4.2.7.1. Filter Context Condition

Use the syntax described here to define the stream that starts/initiates a context partition or that

ends/terminates a context partition.

The syntax is:

event_stream_name [(filter_criteria)] [as stream_name]

The event_stream_name is either the name of an event type or name of an event stream populated

by an insert into statement. The filter_criteria is optional and consists of a list of expressions

filtering the events of the event stream, within parenthesis after the event stream name.

Two examples are:

// A non-overlapping context that starts when MyStartEvent arrives and ends when

 MyEndEvent arrives

create context MyContext start MyStartEvent end MyEndEvent

// An overlapping context where each MyEvent with level greater zero

// initiates a new context partition that terminates after 10 seconds

create context MyContext initiated MyEvent(level > 0) terminated after 10 seconds

You may correlate the start/initiating and end/terminating streams by providing a stream name

following the as keyword, and by referring to that stream name in the filter criteria of the end

condition.

Two examples that correlate the start/initiating and end/terminating condition are:

// A non-overlapping context that starts when MyEvent arrives

// and ends when a matching MyEvent arrives (same id)

Chapter 4. Context and Contex...

60

create context MyContext

start MyEvent as myevent

end MyEvent(id=myevent.id)

// An overlapping context where each MyInitEvent initiates a new context

 partition

// that terminates when a matching MyTermEvent arrives

create context MyContext

initiated by MyInitEvent as e1

terminated by MyTermEvent(id=e1.id, level <> e1.level)

4.2.7.2. Pattern Context Condition

You can define a pattern that starts/initiates a context partition or that ends/terminates a context

partition.

The syntax is:

pattern [pattern_expression] [@inclusive]

The pattern_expression is a pattern at Chapter 7, EPL Reference: Patterns.

Specify @inclusive after the pattern to have those same events that constitute the pattern match

also count towards any statements that are associated to the context. You must also provide a

tag for each event in a pattern that should be included.

Examples are:

// A non-overlapping context that starts when either StartEventOne or

 StartEventTwo arrive

// and that ends after 5 seconds.

// Here neither StartEventOne or StartEventTwo count towards any statements

// that are referring to the context.

create context MyContext

 start pattern [StartEventOne or StartEventTwo]

 end after 5 seconds

// Same as above.

// Here both StartEventOne or StartEventTwo do count towards any statements

// that are referring to the context.

create context MyContext

 start pattern [a=StartEventOne or b=StartEventTwo] @inclusive

 end after 5 seconds

Context Conditions

61

// An overlapping context where each distinct MyInitEvent initiates a new context

// and each context partition terminates after 20 seconds

// We use @inclusive to say that the same MyInitEvent that fires the pattern

// also applies to statements that are associated to the context.

create context MyContext

 initiated by pattern [every-distinct(a.id, 20 sec) a=MyInitEvent]@inclusive

 terminated after 20 sec

// An overlapping context where each pattern match initiates a new context

// and all context partitions terminate when MyTermEvent arrives.

// The MyInitEvent and MyOtherEvent that trigger the pattern are themselves not

 included

// in any statements that are associated to the context.

create context MyContext

 initiated by pattern [every MyInitEvent -> MyOtherEvent where timer:within(5)]

 terminated by MyTermEvent

You may correlate the start and end streams by providing tags as part of the pattern, and by

referring to the tag name(s) in the filter criteria of the end condition.

An example that correlates the start and end condition is:

// A non-overlapping context that starts when either StartEventOne or

 StartEventTwo arrive

// and that ends when either a matching EndEventOne or EndEventTwo arrive

create context MyContext

 start pattern [a=StartEventOne or b=StartEventTwo]@inclusive

 end pattern [EndEventOne(id=a.id) or EndEventTwo(id=b.id)]

4.2.7.3. Crontab Context Condition

Crontab expression are described in Section 7.6.4, “Crontab (timer:at)”.

Examples are:

// A non-overlapping context started daily between 9 am to 5 pm

// and not started outside of these hours:

create context NineToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

// An overlapping context where crontab initiates a new context every 1 minute

// and each context partition terminates after 10 seconds:

Chapter 4. Context and Contex...

62

create context MyContext initiated (*, *, *, *, *) terminated after 10 seconds

4.2.7.4. Time Period Context Condition

You may specify a time period that the engine observes before the condition fires. Time period

expressions are described in Section 5.2.1, “Specifying Time Periods”.

The syntax is:

after time_period_expression

Examples are:

// A non-overlapping context started after 10 seconds

// that ends 1 minute after it starts and that again starts 10 seconds thereafter.

create context NonOverlap10SecFor1Min start after 10 seconds end after 1 minute

// An overlapping context that starts a new context partition every 5 seconds

// and each context partition lasts 1 minute

create context Overlap5SecFor1Min initiated after 5 seconds terminated after 1

 minute

4.3. Context Nesting

A nested context is a context that is composed from two or more contexts.

The syntax for creating a nested context is as follows:

create context context_name

 context nested_context_name [as] nested_context_definition ,

 context nested_context_name [as] nested_context_definition [, ...]

The context_name you assign to the context can be any identifier.

Following the context name is a comma-separated list of nested contexts. For each nested context

specify the context keyword followed a nested context name and the nested context declaration.

Any of the context declarations as outlined in Section 4.2, “Context Declaration” are allowed for

nested contexts. The order of nested context declarations matters as outlined below. The nested

context names have meaning only in respect to built-in properties and statements may not be

assigned to nested context names.

The next statement creates a nested context NineToFiveSegmented that, between 9 am and 5

pm, allocates a new context partition for each customer id:

Nested Context Sample Walk-Through

63

create context NineToFiveSegmented

 context NineToFive start (0, 9, *, *, *) end (0, 17, *, *, *),

 context SegmentedByCustomer partition by custId from BankTxn

The following statement refers to the nested context to compute a total withdrawal amount per

account for each customer but only between 9 am and 5 pm:

context NineToFiveSegmented

select custId, account, sum(amount) from BankTxn group by account

Esper implements nested contexts as a context tree: The context declared first controls the

lifecycle of the context(s) declared thereafter. Thereby, in the above example, outside of the

9am-to-5pm time the engine has no memory and consumes no resources in relationship to bank

transactions or customer ids.

When combining segmented contexts, the set of context partitions for the nested context

effectively is the Cartesian product of the partition sets of the nested segmented contexts.

When combining temporal contexts with other contexts, since temporal contexts may overlap and

may terminate, it is important to understand that temporal contexts control the lifecycle of sub-

contexts (contexts declared thereafter). The order of declaration of contexts in a nested context

can thereby change resource usage and output result.

The next statement creates a context that allocates context partition only when a train enters a

station and then for each hash of the tag id of a passenger as indicated by PassengerScanEvent

events, and terminates all context partitions after 5 minutes:

create context CtxNestedTrainEnter

 context InitCtx initiated by TrainEnterEvent as te terminated after 5 minutes,

 context HashCtx coalesce by consistent_hash_crc32(tagId) from

 PassengerScanEvent

 granularity 16 preallocate

In the example above the engine does not start tracking PassengerScanEvent events or hash

codes or allocate context partitions until a TrainEnterEvent arrives.

4.3.1. Nested Context Sample Walk-Through

This section declares a nested context with nested non-overlapping contexts and walks through

a specific scenario to help you better understand nested context lifecycles.

Assume event types AStart, AEnd, BStart, BEnd and C. The following EPL counts C-events that

occur within the span of AStart and AEnd and a span of BStart and BEnd, wherein the span of

AStart-to-AEnd must contain the span of BStart-to-BEnd:

Chapter 4. Context and Contex...

64

create context CtxSampleNestedContext

 context SpanA start AStart end AEnd,

 context SpanB start BStart end BEnd

context CtxSampleNestedContext select count(*) from C

Upon creating the EPL statements above, the engine starts looking for an AStart event only and

does not yet look for AEnd, BStart, BEnd or C events.

In the scenario that we analyze here, assume that an AStart event arrives next. This is, logically,

the beginning of the SpanA lifecycle (aka. session, interval):

• The engine stops looking for an AStart event.

• The engine starts looking for an AEnd event, since that would mean the end of the current SpanA

lifecycle.

• The engine starts looking for a BStart event, in order to detect the beginning of a SpanB lifecycle.

In the scenario, assume that a BStart event arrives. This is, logically, the beginning of the SpanB

lifecycle:

• The engine stops looking for further BStart events.

• The engine starts looking for a BEnd event, since that would mean the end of the current SpanB

lifecycle.

• The engine keeps looking for an AEnd event, since that would mean the end of the current

SpanA lifecycle.

• The engine starts looking for C events and now starts counting each C that arrives.

In the scenario, assume that a BEnd event arrives. This is, logically, the end of the SpanB lifecycle:

• The engine stops looking for a BEnd event.

• The engine stops looking for C events and stops counting each.

• The engine starts looking for a BStart event, since that would mean the beginning of another

SpanB lifecycle.

In the scenario, assume that an AEnd event arrives. This is, logically, the end of the SpanA lifecycle:

• The engine stops looking for an AEnd event.

• The engine stops looking for a BStart event.

Built-In Nested Context Properties

65

• The engine starts looking for an AStart event, since that would mean the beginning of another

SpanA lifecycle.

In the scenario describe above, after the AEnd arrives, the engine is back to the same state as the

engine had after the statements were created originally.

If your use case calls for a logical OR relationships, please consider a pattern for the start condition,

like for example so (not equivalent to above):

create context CtxSampleNestedContext

 start pattern[every a=AStart or every a=BStart] as mypattern

 end pattern[every AEnd or every BEnd]

4.3.2. Built-In Nested Context Properties

Context properties of all nested contexts are available for use. Specify

context.nested_context_name.property_name or if nested context declaration provided stream

names or tags for patterns then context.nested_context_name.stream_name.property_name.

For example, consider the CtxNestedTrainEnter context declared earlier. The following

statement selects a few of the context properties:

context CtxNestedTrainEnter

select context.InitCtx.te.trainId, context.HashCtx.id,

 tagId, count(*) from PassengerScanEvent group by tagId

In a second example, consider the NineToFiveSegmented context declared earlier. The following

statement selects a few of the context properties:

context NineToFiveSegmented

select context.NineToFive.startTime, context.SegmentedByCustomer.key1 from

 BankTxn

The following context properties are available in your EPL statement when it refers to a nested

context:

Table 4.5. Nested Context Properties

Name Description

name The string-type context name.

id The integer-type internal context id that the engine assigns to the context

partition.

Chapter 4. Context and Contex...

66

This example selects the nested context name and context partition id:

context NineToFiveSegmented select context.name, context.id from BankTxn

4.4. Partitioning Without Context Declaration

You do not need to declare a context to partition data windows, aggregation values or patterns

themselves individually. You may mix-and-match partitioning as needed.

The table below outlines other partitioning syntax supported by EPL:

Table 4.6. Partition in EPL without the use of Context Declaration

Partition

Type

Description Example

Grouped

Data

Window

Partitions at the level of data

window, only applies to appended

data window(s).

Syntax: std:groupby(...)

// Length window of 2 events per

 customer

select * from

 BankTxn#groupwin(custId)#length(2)

Grouped

Aggregation

Partitions at the level of

aggregation, only applies to any

aggregations.

Syntax: group by

select avg(price), window(*)

 from BankTxn group by custId

Pattern Partitions pattern subexpressions.

Syntax: every or every-distinct
select * from pattern [

 every a=BankTxn -> BankTxn(custId

 = a.custId)...]

Match-

Recognize

Partitions match-recognize

patterns.

Syntax: partition by

select * from match_recognize

 ... partition by custId

Join and

Subquery

Partitions join and subqueries.

Syntax: where ...
select * from ... where a.custId =

 b.custId

4.5. Output When Context Partition Ends

You may use output rate limiting to trigger output when a context partition ends, as further

described in Section 5.7, “Stabilizing and Controlling Output: the Output Clause”.

Output When Context Partition Ends

67

Consider the fixed temporal context: A new context partition gets allocated at the designated start

time and the current context partition ends at the designated end time. To trigger output when the

context partition ends and before it gets removed, read on.

The same is true for the initiated temporal context: That context starts a new context partition when

trigger events arrive or when a pattern matches. Each context partition expires (ends, terminates)

after the specified time period passed. To trigger output at the time the context partition expires,

read on.

You may use the when terminated syntax with output rate limiting to trigger output when a context

partition ends. The following example demonstrates the idea by declaring an initiated temporal

context.

The next statement creates a context CtxEachMinute that initiates a new context partition every

1 minute, and that expires each context partition after 5 minutes:

create context CtxEachMinute

initiated by pattern [every timer:interval(1 min)]

terminated after 5 minutes

The following statement computes an ongoing average temperature however only outputs the last

value of the average temperature after 5 minutes when a context partition ends:

context CtxEachMinute

select context.id, avg(temp) from SensorEvent output snapshot when terminated

The when terminated syntax can be combined with other output rates.

The next example outputs every 1 minute and also when the context partition ends:

context CtxEachMinute

select context.id, avg(temp) from SensorEvent output snapshot every 1 minute

 and when terminated

In the case that the end/terminating condition of the context partition is an event or pattern, the

context properties contain the information of the tagged events in the pattern or the single event

that ended/terminated the context partition.

For example, consider the following context wherein the engine initializes a new context partition

for each arriving MyStartEvent event and that terminates a context partition when a matching

MyEndEvent arrives:

create context CtxSample

Chapter 4. Context and Contex...

68

initiated by MyStartEvent as startevent

terminated by MyEndEvent(id = startevent.id) as endevent

The following statement outputs the id property of the initiating and terminating event and only

outputs when a context partition ends:

context CtxSample

select context.startevent.id, context.endevent.id, count(*) from MyEvent

output snapshot when terminated

You may in addition specify a termination expression that the engine evaluates when a context

partition terminates. Only when the terminaton expression evaluates to true does output occur.

The expression may refer to built-in properties as described in Section 5.7.1.1, “Controlling Output

Using an Expression”. The syntax is as follows:

...output when terminated and termination_expression

The next example statement outputs when a context partition ends but only if at least two events

are available for output:

context CtxEachMinute

select * from SensorEvent output when terminated and count_insert >= 2

The final example EPL outputs when a context partition ends and sets the variable myvar to a

new value:

context CtxEachMinute

select * from SensorEvent output when terminated then set myvar=3

4.6. Context and Named Window

Named windows are globally-visible data windows that may be referred to by multiple statements.

You may refer to named windows in statements that declare a context without any special

considerations, with the exception of on-action statements (latter must refer to the same context

associated with the named window).

You may also create a named window and declare a context for the named window. In this case

the engine in effect manages separate named windows, one for each context partition. Limitations

apply in this case that we discuss herein.

For example, consider the 9 am to 5 pm fixed temoral context as shown earlier:

Context and Named Window

69

create context NineToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

You may create a named window that only exists between 9 am and 5 pm:

context NineToFive create window SpeedingEvents1Hour#time(30 min) as TrafficEvent

You can insert into the named window:

insert into SpeedingEvents1Hour select * from TrafficEvent(speed > 100)

Any on-merge, on-select, on-update and on-delete statements must however declare the same

context.

The following is not a valid statement as it does not declare the same context that was used to

declare the named window:

// You must declare the same context for on-trigger statements

on TruncateEvent delete from SpeedingEvents1Hour

The following is valid:

context NineToFive on TruncateEvent delete from SpeedingEvents1Hour

For context declarations that require specifying event types, such as the hash segmented context

and keyed segmented context, please provide the named window underlying event type.

The following sample EPL statements define a type for the named window, declare a context and

associate the named window to the context:

create schema ScoreCycle (userId string, keyword string, productId string, score

 long)

create context HashByUserCtx as

 coalesce by consistent_hash_crc32(userId) from ScoreCycle granularity 64

Chapter 4. Context and Contex...

70

context HashByUserCtx create window ScoreCycleWindow#unique(productId, keyword)

 as ScoreCycle

4.7. Context and Tables

Tables are globally-visible data structures that hold rows organized by primary key(s) and that

may be referred to by multiple statements. You may refer to tables in statements that declare a

context without any special considerations, with the exception of on-action statements (latter must

refer to the same context associated with the table).

You may also create a table and declare a context for the table. In this case the engine in effect

manages separate tables, one for each context partition. Limitations apply in this case that we

discuss herein.

For example, consider the 9 am to 5 pm fixed temoral context as shown earlier:

create context NineToFive start (0, 9, *, *, *) end (0, 17, *, *, *)

You may create a table that only exists between 9 am and 5 pm:

context NineToFive create table AverageSpeedTable (

 carId string primary key,

 avgSpeed avg(double))

You can aggregate-into the table only if the aggregating statement declares the same context:

// declare the same context as for the table

context NineToFive into table AverageSpeedTable

select avg(speed) as avgSpeed

from TrafficEvent

group by carId

When you declare a context for a table, any select, on-merge, on-select, on-update and on-delete

statements as well as statements that subquery the table must declare the same context.

For example, this EPL truncates the AverageSpeedTable:

context NineToFive on TruncateEvent delete from AverageSpeedTable

Context and Variables

71

4.8. Context and Variables

A variable is a scalar, object or event value that is available for use in all statements. Variables

can be either global variables or context variables.

The value of a global variable is the same for all context partitions. The next example declares

a global threshold variable:

create variable integer var_global_threshold = 100

For context variables, there is a variable value per context partition. The next example declares

a context and a context variable:

create context ParkingLotContext initiated by CarArrivalEvent as cae terminated

 by CarDepartureEvent(lot = cae.lot)

context ParkingLotContext create variable integer var_parkinglot_threshold = 100

The variable var_parkinglot_threshold is a context variable. Each context partition can have

its own value for the variable.

For more information on variables, please refer to Section 5.17, “Variables and Constants”.

Context variables can only be used in statements that associated to the same context.

4.9. Operations on Specific Context Partitions

Selecting specific context partitions and interrogating context partitions is useful for:

1. Iterating a specific context partition or a specific set of context partitions. Iterating a statement

is described in Section 16.3.5, “Using Iterators”.

2. Executing an on-demand (fire-and-forget) query against specific context partition(s). On-

demand queries are described in Section 16.5, “On-Demand Fire-And-Forget Query

Execution”.

Esper provides APIs to identify, filter and select context partitions for statement iteration and on-

demand queries. The APIs are described in detail at Section 16.18, “Context Partition Selection”.

For statement iteration, your application can provide context selector objects to the iterate

and safeIterate methods on EPStatement. If your code does not provide context selectors the

iteration considers all context partitions. At the time of iteration, the engine obtains the current set

of context partitions and iterates each independently. If your statement has an order-by clause,

the order-by clause orders within the context partition and does not order across context partitions.

Chapter 4. Context and Contex...

72

For on-demand queries, your application can provide context selector objects to the

executeQuery method on EPRuntime and to the execute method on EPOnDemandPreparedQuery.

If your code does not provide context selectors the on-demand query considers all context

partitions. At the time of on-demand query execution, the engine obtains the current set of context

partitions and queries each independently. If the on-demand query has an order-by clause, the

order-by clause orders within the context partition and does not order across context partitions.

Chapter 5.

73

Chapter 5. EPL Reference: Clauses

5.1. EPL Introduction

The Event Processing Language (EPL) is a SQL-standard language with extensions, offering

SELECT, FROM, WHERE, GROUP BY, HAVING and ORDER BY clauses. Streams replace tables as the

source of data with events replacing rows as the basic unit of data. Since events are composed

of data, the SQL concepts of correlation through joins, filtering and aggregation through grouping

can be effectively leveraged.

The INSERT INTO clause is recast as a means of forwarding events to other streams for further

downstream processing. External data accessible through JDBC may be queried and joined with

the stream data. Additional clauses such as the PATTERN and OUTPUT clauses are also available

to provide the missing SQL language constructs specific to event processing.

The purpose of the UPDATE clause is to update event properties. Update takes place before an

event applies to any selecting statements or pattern statements.

EPL statements are used to derive and aggregate information from one or more streams of events,

and to join or merge event streams. This section outlines EPL syntax. It also outlines the built-in

views, which are the building blocks for deriving and aggregating information from event streams.

EPL statements contain definitions of one or more views. Similar to tables in a SQL statement,

views define the data available for querying and filtering. Some views represent windows over

a stream of events. Other views derive statistics from event properties, group events or handle

unique event property values. Views can be staggered onto each other to build a chain of views.

The Esper engine makes sure that views are reused among EPL statements for efficiency.

The built-in set of views is:

1. Data window views: length, length_batch, time, time_batch, time_length_batch,

time_accum, ext_timed, ext_timed_batch, sort, rank, time_order, timetolive, unique,

groupwin, lastevent, firstevent, firstunique, firstlength, firsttime.

2. Views that derive statistics: size, uni, linest, correl, weighted_avg.

EPL provides the concept of named window. Named windows are data windows that can be

inserted-into and deleted-from by one or more statements, and that can queried by one or more

statements. Named windows have a global character, being visible and shared across an engine

instance beyond a single statement. Use the CREATE WINDOW clause to create named windows.

Use the ON MERGE clause to atomically merge events into named window state, the INSERT INTO

clause to insert data into a named window, the ON DELETE clause to remove events from a named

window, the ON UPDATE clause to update events held by a named window and the ON SELECT

clause to perform a query triggered by a pattern or arriving event on a named window. Finally, the

name of the named window can occur in a statement's FROM clause to query a named window or

include the named window in a join or subquery.

Chapter 5. EPL Reference: Clauses

74

EPL provides the concept of table. Tables are globally-visible data structures that typically have

primary key columns and that can hold aggregation state. You can create tables using CREATE

TABLE. An overview of named windows and tables, and a comparison between them, can be found

at Section 6.1, “Overview”. The aforementioned ON SELECT/MERGE/UPDATE/INSERT/DELETE,

INSERT INTO as well as joins and subqueries can be used with tables as well.

EPL allows execution of on-demand (fire-and-forget, non-continuous, triggered by API) queries

against named windows and tables through the runtime API. The query engine automatically

indexes named window data for fast access by ON SELECT/MERGE/UPDATE/INSERT/DELETE

without the need to create an index explicitly, or can access explicit (secondary) table indexes for

operations on tables. For fast on-demand query execution via runtime API use the CREATE INDEX

syntax to create an explicit index for the named window or table in question.

Use CREATE SCHEMA to declare an event type.

Variables can come in handy to parameterize statements and change parameters on-the-fly and

in response to events. Variables can be used in an expression anywhere in a statement as well

as in the output clause for dynamic control of output rates.

Esper can be extended by plugging-in custom developed views and aggregation functions.

5.2. EPL Syntax

EPL queries are created and stored in the engine, and publish results to listeners as events are

received by the engine or timer events occur that match the criteria specified in the query. Events

can also be obtained from running EPL queries via the safeIterator and iterator methods

that provide a pull-data API.

The select clause in an EPL query specifies the event properties or events to retrieve. The from

clause in an EPL query specifies the event stream definitions and stream names to use. The where

clause in an EPL query specifies search conditions that specify which event or event combination

to search for. For example, the following statement returns the average price for IBM stock ticks

in the last 30 seconds.

select avg(price) from StockTick#time(30 sec) where symbol='IBM'

EPL queries follow the below syntax. EPL queries can be simple queries or more complex queries.

A simple select contains only a select clause and a single stream definition. Complex EPL

queries can be build that feature a more elaborate select list utilizing expressions, may join multiple

streams, may contain a where clause with search conditions and so on.

[annotations]

[expression_declarations]

[context context_name]

[into table table_name]

Specifying Time Periods

75

[insert into insert_into_def]

select select_list

from stream_def [as name] [, stream_def [as name]] [,...]

[where search_conditions]

[group by grouping_expression_list]

[having grouping_search_conditions]

[output output_specification]

[order by order_by_expression_list]

[limit num_rows]

5.2.1. Specifying Time Periods

Time-based windows as well as pattern observers and guards take a time period as a parameter.

Time periods follow the syntax below.

time-period : [year-part] [month-part] [week-part] [day-part] [hour-part]

 [minute-part] [seconds-part] [milliseconds-part] [microseconds-part]

year-part : (number|variable_name) ("years" | "year")

month-part : (number|variable_name) ("months" | "month")

week-part : (number|variable_name) ("weeks" | "week")

day-part : (number|variable_name) ("days" | "day")

hour-part : (number|variable_name) ("hours" | "hour")

minute-part : (number|variable_name) ("minutes" | "minute" | "min")

seconds-part : (number|variable_name) ("seconds" | "second" | "sec")

milliseconds-part : (number|variable_name) ("milliseconds" | "millisecond" |

 "msec")

microseconds-part : (number|variable_name) ("microseconds" | "microsecond" |

 "usec")

Some examples of time periods are:

10 seconds

10 minutes 30 seconds

20 sec 100 msec

1 day 2 hours 20 minutes 15 seconds 110 milliseconds 5 microseconds

0.5 minutes

1 year

1 year 1 month

Variable names and substitution parameters '?' for prepared statements are also allowed as part

of a time period expression.

Chapter 5. EPL Reference: Clauses

76

Note

When the time period has a month or year part, all values must be integer-type

values.

5.2.2. Using Comments

Comments can appear anywhere in the EPL or pattern statement text where whitespace is

allowed. Comments can be written in two ways: slash-slash (// ...) comments and slash-star

(/* ... */) comments.

Slash-slash comments extend to the end of the line:

// This comment extends to the end of the line.

// Two forward slashes with no whitespace between them begin such comments.

select * from MyEvent // this is a slash-slash comment

// All of this text together is a valid statement.

Slash-star comments can span multiple lines:

/* This comment is a "slash-star" comment that spans multiple lines.

 * It begins with the slash-star sequence with no space between the '/' and

 '*' characters.

 * By convention, subsequent lines can begin with a star and are aligned, but

 this is

 * not required.

 */

select * from MyEvent /* this also works */

Comments styles can also be mixed:

select field1, // first comment

 /* second comment*/ field2

 from MyEvent

5.2.3. Reserved Keywords

Certain words such as select, delete or set are reserved and may not be used as identifiers.

Please consult Appendix B, Reserved Keywords for the list of reserved keywords and permitted

keywords.

Escaping Strings

77

Names of built-in functions and certain auxiliary keywords are permitted as event property names

and in the rename syntax of the select clause. For example, count is acceptable.

Consider the example below, which assumes that 'last' is an event property of MyEvent:

// valid

select last, count(*) as count from MyEvent

This example shows an incorrect use of a reserved keyword:

// invalid

select insert from MyEvent

EPL offers an escape syntax for reserved keywords: Event properties as well as event or stream

names may be escaped via the backwards apostrophe ` (ASCII 96) character.

The next example queries an event type by name Order (a reserved keyword) that provides a

property by name insert (a reserved keyword):

// valid

select `insert` from `Order`

5.2.4. Escaping Strings

You may surround string values by either double-quotes (") or single-quotes ('). When your string

constant in an EPL statement itself contains double quotes or single quotes, you must escape

the quotes.

Double and single quotes may be escaped by the backslash (\) character or by unicode notation.

Unicode 0027 is a single quote (') and 0022 is a double quote (").

Escaping event property names is described in Section 2.2.1, “Escape Characters”.

The sample EPL below escapes the single quote in the string constant John's, and filters out

order events where the name value matches:

select * from OrderEvent(name='John\'s')

// ...equivalent to...

select * from OrderEvent(name='John\u0027s')

The next EPL escapes the string constant Quote "Hello":

Chapter 5. EPL Reference: Clauses

78

select * from OrderEvent(description like "Quote \"Hello\"")

// is equivalent to

select * from OrderEvent(description like "Quote \u0022Hello\u0022")

When building an escape string via the API, escape the backslash, as shown in below code

snippet:

epService.getEPAdministrator().createEPL("select * from OrderEvent(name='John\

\'s')");

// ... and for double quotes...

epService.getEPAdministrator().createEPL("select * from OrderEvent(

 description like \"Quote \\\"Hello\\\"\")");

5.2.5. Data Types

For NEsper .NET also see Section H.12, “.NET EPL Syntax - Data Types”.

EPL honors all Java built-in primitive and boxed types, including java.math.BigInteger and

java.math.BigDecimal.

EPL also follows Java standards in terms of widening, performing widening automatically in cases

where widening type conversion is allowed without loss of precision, for both boxed and primitive

types and including BigInteger and BigDecimal:

1. byte to short, int, long, float, double, BigInteger or BigDecimal

2. short to int, long, float, or double, BigInteger or BigDecimal

3. char to int, long, float, or double, BigInteger or BigDecimal

4. int to long, float, or double, BigInteger or BigDecimal

5. long to float or double, BigInteger or BigDecimal

6. float to double or BigDecimal

7. double to BigDecimal

In cases where loss of precision is possible because of narrowing requirements, EPL compilation

outputs a compilation error.

EPL supports casting via the cast function.

EPL returns double-type values for division regardless of operand type. EPL can also be

configured to follow Java rules for integer arithmetic instead as described in Section 17.4.25,

“Engine Settings related to Expression Evaluation”.

Division by zero returns positive or negative infinity. Division by zero can be configured to return

null instead.

5.2.5.1. Data Type of Constants

Data Types

79

An EPL constant is a number or a character string that indicates a fixed value. Constants can

be used as expressions in many EPL statements, including variable assignment and case-when

statements. They can also be used as parameter values for many built-in objects and clauses.

Constants are also called literals.

EPL supports the standard SQL constant notation as well as Java data type literals.

The following are types of EPL constants:

Table 5.1. Types of EPL constants

Type Description Examples

string A single character to an unlimited number of

characters. Valid delimiters are the single quote

(') or double quote (").

select 'volume' as field1,

 "sleep" as field2,

 "\u0041" as unicodeA

boolean A boolean value.
select true as field1,

 false as field2

integer An integer value (4 byte).
select 1 as field1,

 -1 as field2,

 1e2 as field3

long A long value (8 byte). Use the "L" or

"l" (lowercase L) suffix. select 1L as field1,

 1l as field2

double A double-precision 64-bit IEEE 754 floating

point. select 1.67 as field1,

 167e-2 as field2,

 1.67d as field3

float A single-precision 32-bit IEEE 754 floating point.

Use the "f" suffix. select 1.2f as field1,

 1.2F as field2

byte A 8-bit signed two's complement integer.
select 0x10 as field1

EPL does not have a single-byte character data type for its literals. Single character literals are

treated as string.

Internal byte representation and boundary values of constants follow the Java standard.

Chapter 5. EPL Reference: Clauses

80

5.2.5.2. BigInteger and BigDecimal

EPL automatically performs widening of numbers to BigInteger and BigDecimal as required,

and employs the respective equals, compareTo and arithmetic methods provided by BigInteger

and BigDecimal.

To explicitly create BigInteger and BigDecimal constants in EPL, please use the cast syntax :

cast(value, BigInteger).

Note that since BigDecimal.valueOf(1.0) is not the same as BigDecimal.valueOf(1) (in

terms of equality through equals), care should be taken towards the consistent use of scale.

When using aggregation functions for BigInteger and BigDecimal values, please note these

limitations:

1. The median, stddev and avedev aggregation functions operate on the double value of the

object and return a double value.

2. All other aggregation functions return BigDecimal or BigInteger values (except count).

For BigDecimal precision and rounding, please see Section 17.4.25.6, “Math Context”. For

division operations with BigDecimal number we recommend configuring a math context.

5.2.6. Using Constants and Enum Types

This chapter is about Java language constants and enum types and their use in EPL expressions.

Java language constants are public static final fields in Java that may participate in expressions

of all kinds, as this example shows:

select * from MyEvent where property = MyConstantClass.FIELD_VALUE

Event properties that are enumeration values can be compared by their enum type value:

select * from MyEvent where enumProp = EnumClass.ENUM_VALUE_1

Event properties can also be passed to enum type functions or compared to an enum type method

result:

select * from MyEvent where somevalue = EnumClass.ENUM_VALUE_1.getSomeValue()

 or EnumClass.ENUM_VALUE_2.analyze(someothervalue)

Enum types have a valueOf method that returns the enum type value:

Annotation

81

select * from MyEvent where enumProp = EnumClass.valueOf('ENUM_VALUE_1')

If your application does not import, through configuration, the package that contains the

enumeration class, then it must also specify the package name of the class. Enum types that are

inner classes must be qualified with $ following Java conventions.

For example, the Color enum type as an inner class to MyEvent in package org.myorg can be

referenced as shown:

select * from MyEvent(enumProp=org.myorg.MyEvent$Color.GREEN)#firstevent

Instance methods may also be invoked on event instances by specifying a stream name, as shown

below:

select myevent.computeSomething() as result from MyEvent as myevent

Chaining instance methods is supported as this example shows:

select myevent.getComputerFor('books', 'movies').calculate() as result

from MyEvent as myevent

5.2.7. Annotation

An annotation is an addition made to information in a statement. Esper provides certain built-in

annotations for defining statement name, adding a statement description or for tagging statements

such as for managing statements or directing statement output. Other than the built-in annotations,

applications can provide their own annotation classes that the EPL compiler can populate.

An annotation is part of the statement text and precedes the EPL select or pattern statement.

Annotations are therefore part of the EPL grammar. The syntax for annotations follows the host

language (Java, .NET) annotation syntax:

@annotation_name [(annotation_parameters)]

An annotation consists of the annotation name and optional annotation parameters. The

annotation_name is the simple class name or fully-qualified class name of the annotation class.

The optional annotation_parameters are a list of key-value pairs following the syntax:

@annotation_name (attribute_name = attribute_value, [name=value, ...])

Chapter 5. EPL Reference: Clauses

82

The attribute_name is an identifier that must match the attributes defined by the annotation class.

An attribute_value is a constant of any of the primitive types or string, an array, an enum type

value or another (nested) annotation. Null values are not allowed as annotation attribute values.

Enumeration values are supported in EPL statements and not support in statements created via

the createPattern method.

Use the getAnnotations method of EPStatement to obtain annotations provided via statement

text.

5.2.7.1. Application-Provided Annotations

Your application may provide its own annotation classes. The engine detects and populates

annotation instances for application annotation classes.

The name of application-provided annotations is case-sensitive.

To enable the engine to recognize application annotation classes, your annotation name must

include the package name (i.e. be fully-qualified) or your engine configuration must import the

annotation class or package via the configuration API.

For example, assume that your application defines an annotation in its application code as follows:

public @interface ProcessMonitor {

 String processName();

 boolean isLongRunning default false;

 int[] subProcessIds;

}

Shown next is an EPL statement text that utilizes the annotation class defined earlier:

@ProcessMonitor(processName='CreditApproval',

 isLongRunning=true, subProcessIds = {1, 2, 3})

select count(*) from ProcessEvent(processId in (1, 2, 3)#time(30)

Above example assumes the ProcessMonitor annotation class is imported via configuration XML

or API.

If ProcessMonitor should only be visible for use in annotations, use addAnnotationImport (or

the auto-import-annotations XML tag). If ProcessMonitor should be visible in all of EPL

including annotations, use addImport (or the auto-import XML tag).

Here is an example API call to import for annotation-only all classes in package

com.mycompany.app.myannotations:

Annotation

83

epService.getEPAdministrator().getConfiguration().addAnnotationImport("com.mycompany.app.myannotations.*");

The next example imports the ProcessMonitor class only and only for annotation use:

epService.getEPAdministrator().getConfiguration().addAnnotationImport("com.mycompany.myannotations.ProcessMonitor");

5.2.7.2. Annotations With Enumeration Values

For annotations that accept an enumeration value, the enumeration name does not need to be

specified and matching is not case-sensitive.

For example, assume the enum is:

public enum MyEnum {

 ENUM_VALUE_1,

 ENUM_VALUE_2;

}

Assume the annotation is:

public @interface MyAnnotationWithEnum {

 MyEnum myEnum();

}

The EPL statement can specify:

@MyAnnotationWithEnum(myEnum = enum_value_1) select * from MyEvent

5.2.7.3. Built-In Statement Annotations

The name of built-in annotations is not case-sensitive, allowing both @NAME or @name, for example.

The list of built-in EPL statement-level annotations is:

Table 5.2. Built-In EPL Statement Annotations

Name Purpose and Attributes Example

Name Provides a statement name. Attributes

are: @Name("MyStatementName")

Chapter 5. EPL Reference: Clauses

84

Name Purpose and Attributes Example

value : Statement name.

Description Provides a statement textual description.

Attributes are:

value : Statement description.

@Description("Place

 statement

description here.")

Tag For tagging a statement with additional

information. Attributes are:

name : Tag name.

value : Tag value.

@Tag(name="MyTagName",

 value="MyTagValue")

Priority Applicable when an event (or schedule)

matches filter criteria for multiple

statements: Defines the order of

statement processing (requires an

engine-level setting).

Attributes are:

value : priority value.

@Priority(10)

Drop Applicable when an event (or schedule)

matches filter criteria for multiple

statements, drops the event after

processing the statement (requires an

engine-level setting).

No attributes.

@Drop

Hint For providing one or more hints towards

how the engine should execute a

statement. Attributes are:

value : A comma-separated list of one or

more case-insensitive keywords.

@Hint('iterate_only')

Hook Use this annotation to register one or

more statement-specific hooks providing

a hook type for each individual hook, such

as for SQL parameter, column or row

conversion.

Attributes are the hook type and the hook

itself (usually a import or class name):

@Hook(type=HookType.SQLCOL,

 hook='MyDBTypeConvertor')

Annotation

85

Name Purpose and Attributes Example

Audit Causes the engine to output detailed

processing information for a statement.

optional value : A comma-separated list of

one or more case-insensitive keywords.

@Audit

EventRepresentationCauses the engine to use object-array or

Avro event representation, if possible, for

output and internal event types.

For Object-Array:

@EventRepresentation(objectarray)

For Avro:

@EventRepresentation(avro)

IterableUnbound For use when iterating statements with

unbound streams, instructs the engine to

retain the last event for iterating.

@IterableUnbound

The following example statement text specifies some of the built-in annotations in combination:

@Name("RevenuePerCustomer")

@Description("Outputs revenue per customer considering all events encountered

 so far.")

@Tag(name="grouping", value="customer")

select customerId, sum(revenue) from CustomerRevenueEvent

5.2.7.4. @Name

Use the @Name EPL annotation to specify a statement name within the EPL statement itself, as

an alternative to specifying the statement name via API.

If your application is also providing a statement name through the API, the statement name

provided through the API overrides the annotation-provided statement name.

Example:

@Name("SecurityFilter1") select * from SecurityFilter(ip="127.0.0.1")

5.2.7.5. @Description

Use the @Description EPL annotation to add a statement textual description.

Chapter 5. EPL Reference: Clauses

86

Example:

@Description('This statement filters localhost.') select * from

 SecurityFilter(ip="127.0.0.1")

5.2.7.6. @Tag

Use the @Tag EPL annotation to tag statements with name-value pairs, effectively adding a

property to the statement. The attributes name and value are of type string.

Example:

@Tag(name='ip_sensitive', value='Y')

@Tag(name='author', value='Jim')

select * from SecurityFilter(ip="127.0.0.1")

5.2.7.7. @Priority

This annotation only takes effect if the engine-level setting for prioritized execution is set

via configuration, as described in Section 17.4.26, “Engine Settings related to Execution of

Statements”.

Use the @Priority EPL annotation to tag statements with a priority value. The default priority value

is zero (0) for all statements. When an event (or single timer execution) requires processing the

event for multiple statements, processing begins with the highest priority statement and ends with

the lowest-priority statement.

Example:

@Priority(10) select * from SecurityFilter(ip="127.0.0.1")

5.2.7.8. @Drop

This annotation only takes effect if the engine-level setting for prioritized execution is set

via configuration, as described in Section 17.4.26, “Engine Settings related to Execution of

Statements”.

Use the @Drop EPL annotation to tag statements that preempt all other same or lower-priority

statements. When an event (or single timer execution) requires processing the event for multiple

statements, processing begins with the highest priority statement and ends with the first statement

marked with @Drop, which becomes the last statement to process that event.

Unless a different priority is specified, the statement with the @Drop EPL annotation executes at

priority 1. Thereby @Drop alone is an effective means to remove events from a stream.

Annotation

87

Example:

@Drop select * from SecurityFilter(ip="127.0.0.1")

5.2.7.9. @Hint

A hint can be used to provide tips for the engine to affect statement execution. Hints change

performance or memory-use of a statement but generally do not change its output.

The string value of a Hint annotation contains a keyword or a comma-separated list of multiple

keywords. Hint keywords are case-insensitive. A list of hints is available in Section 22.2.22,

“Consider using Hints”.

Example:

@Hint('disable_reclaim_group')

select ipaddress, count(*) from SecurityFilter#time(60 sec) group by ipaddress

5.2.7.10. @Hook

A hook is for attaching a callback to a statement.

The type value of a @Hook annotation defines the type of hook and the hook value is an imported

or fully-qualified class name providing the callback implementation.

5.2.7.11. @Audit

Causes the engine to output detailed information about the statements processing. Described in

more detail at Section 18.3.1, “@Audit Annotation”.

5.2.7.12. @EventRepresentation

Use the @EventRepresentation annotation with create schema and create window statements

to instruct the engine to use a specific event representation for the schema or named window.

Use the @EventRepresentation annotation with select statements to instruct the engine to use

a specific event representation for output events.

When no @EventRepresentation annotation is specified, the engine uses the default event

representation as configured, see Section 17.4.13.1, “Default Event Representation”.

Use @EventRepresentation(objectarray) to instruct the engine to use object-array events.

Use @EventRepresentation(avro) to instruct the engine to use Avro events.

Chapter 5. EPL Reference: Clauses

88

Use @EventRepresentation(map) to instruct the engine to use Map events.

5.2.7.13. @IterableUnbound

Causes the engine, for statements with unbound streams, to retain the last event for the purpose

of iterating using the iterator API. An engine-wide configuration is also available as described in

Section 17.4.14.2, “Iterator Behavior For Unbound Streams”.

5.2.8. Expression Alias

An expression alias simply assigns a name to an expression. The alias name can be used in other

expressions to refer to that expression, without the need to duplicate the expression.

The expression alias obtains its scope from where it is used. Parameters cannot be provided.

A second means to sharing expressions is the expression declaration as described next, which

allows passing parameters and is more tightly scoped.

An EPL statement can contain and refer to any number of expression aliases. For expressions

aliases that are visible across multiple EPL statements please consult Section 5.18.1, “Global

Expression Aliases” that explains the create expression clause.

The syntax for an expression alias is:

expression expression_name alias for { expression }

An expression alias consists of the expression name and an expression in curly braces. The

return type of the expression is determined by the engine and need not be specified. The scope

is automatic and determined by where the alias name is used therefore parameters cannot be

specified.

This example declares an expression alias twoPI that substitutes Math.PI * 2:

expression twoPI alias for { Math.PI * 2 }

select twoPI from SampleEvent

The next example specifies an alias countPeople and uses the alias in the select-clause and

the having-clause:

expression countPeople alias for { count(*) }

select countPeople from EnterRoomEvent#time(10 seconds) having countPeople > 10

When using the expression alias in an expression, empty parentheses can optionally be specified.

In the above example, countPeople() can be used instead and equivalently.

The following scope rules apply for expression aliases:

Expression Declaration

89

1. Expression aliases do not remove implicit limitations: For example, aggregation functions

cannot be used in a filter expression even if assigned an alias.

5.2.9. Expression Declaration

An EPL statement can contain expression declarations. Expressions that are common to multiple

places in the same EPL statement can be moved to a named expression declaration and reused

within the same statement without duplicating the expression itself.

For declaring expressions that are visible across multiple EPL statements i.e. globally visible

expressions please consult Section 5.18.2, “Global Expression Declarations” that explains the

create expression clause.

The engine may cache declared expression result values and reuse cache values, see

Section 17.4.26.8, “Declared Expression Value Cache Size”.

An expression declaration follows the lambda-style expression syntax. This syntax was chosen

as it typically allows for a shorter and more concise expression body that can be easier to read

then most procedural code.

The syntax for an expression declaration is:

expression expression_name { expression_body }

An expression declaration consists of the expression name and an expression body. The

expression_name is any identifier. The expression_body contains optional parameters and the

expression. The parameter types and the return type of the expression is determined by the engine

and do not need to be specified.

Parameters to a declared expression can be a stream name, pattern tag name or wildcard (*).

Use wildcard to pass the event itself to the expression. In a join or subquery, or more generally

in an expression where multiple streams or pattern tags are available, the EPL must specify the

stream name or pattern tag name and cannot use wildcard.

In the expression body the => lambda operator reads as "goes to" (-> may be used and is

equivalent). The left side of the lambda operator specifies the input parameters (if any) and the

right side holds the expression. The lambda expression x => x * x is read "x goes to x times x".

In the expression body, if your expression takes no parameters, you may simply specify the

expression and do not need the => lambda operator.

If your expression takes one parameters, specify the input parameter name followed by the

=> lambda operator and followed by the expression. The synopsis for use with a single input

parameter is:

expression_body: input_param_name => expression

Chapter 5. EPL Reference: Clauses

90

If your expression takes two or more parameters, specify the input parameter names in

parenthesis followed by the => lambda operator followed by the expression. The synopsis for use

with a multiple input parameter is:

expression_body: (input_param [,input_param [,...]]) => expression

The following example declares an expression that returns two times PI (ratio of the circumference

of a circle to its diameter) and demonstrates its use in a select-clause:

expression twoPI { Math.PI * 2} select twoPI() from SampleEvent

The parentheses are optional when the expression accepts no parameters. The below is

equivalent to the previous example:

expression twoPI { Math.PI * 2} select twoPI from SampleEvent

The next example declares an expression that accepts one parameter: a MarketData event. The

expression computes a new "mid" price based on the buy and sell price:

expression midPrice { x => (x.buy + x.sell) / 2 }

select midPrice(md) from MarketDataEvent as md

The variable name can be left off if event property names resolve without ambiguity.

This example EPL removes the variable name x:

expression midPrice { x => (buy + sell) / 2 }

select midPrice(md) from MarketDataEvent as md

The next example EPL specifies wildcard instead:

expression midPrice { x => (buy + sell) / 2 }

select midPrice(*) from MarketDataEvent

A further example that demonstrates two parameters is listed next. The example joins two streams

and uses the price value from MarketDataEvent and the sentiment value of NewsEvent to compute

a weighted sentiment:

expression weightedSentiment { (x, y) => x.price * y.sentiment }

Script Declaration

91

select weightedSentiment(md, news)

from MarketDataEvent#lastevent as md, NewsEvent#lastevent news

Any expression can be used in the expression body including aggregations, variables, subqueries

or further declared or alias expressions. Sub-queries, when used without in or exists, must be

placed within parenthesis.

An example subquery within an expression declaration is shown next:

expression newsSubq { md ->

 (select sentiment from NewsEvent#unique(symbol) where symbol = md.symbol)

}

select newsSubq(mdstream)

from MarketDataEvent mdstream

When using expression declarations please note these limitations:

1. Parameters to a declared expression can only be a stream name, pattern tag name or wildcard

(*).

2. Expression declarations do not remove implicit limitations: For example, aggregation functions

cannot be used in a filter expression even if using an expression declaration.

The following scope rules apply for declared expressions:

1. The scope of the expression body of a declared expression only includes the parameters

explicitly listed. Consider using an expression alias instead.

5.2.10. Script Declaration

Esper allows the use of scripting languages within EPL. Any scripting language that supports JSR

223 and also the MVEL scripting language can be specified in EPL.

Please see Chapter 20, Script Support for more information.

5.2.11. Referring to a Context

You may refer to a context in the EPL text by specifying the context keyword followed by a context

name. Context are described in more detail at Chapter 4, Context and Context Partitions

The effect of referring to a context is that your statement operates according to the context

dimensional information as declared for the context.

The synopsis is:

Chapter 5. EPL Reference: Clauses

92

... context context_name ...

You may refer to a context in all statements except for the following types of statements:

1. create schema for declaring event types.

2. create variable for declaring a variable.

3. create index for creating an index on a named window or table.

4. update istream for updating insert stream events.

5.3. Choosing Event Properties And Events: the Select

Clause

The select clause is required in all EPL statements. The select clause can be used to select all

properties via the wildcard *, or to specify a list of event properties and expressions. The select

clause defines the event type (event property names and types) of the resulting events published

by the statement, or pulled from the statement via the iterator methods.

The select clause also offers optional istream, irstream and rstream keywords to control

whether input stream, remove stream or input and remove stream events are posted to

UpdateListener instances and observers to a statement. By default, the engine provides only the

insert stream to listener and observers. See Section 17.4.20, “Engine Settings related to Stream

Selection” on how to change the default.

The syntax for the select clause is summarized below.

select [istream | irstream | rstream] [distinct] * | expression_list ...

The istream keyword is the default, and indicates that the engine only delivers insert stream

events to listeners and observers. The irstream keyword indicates that the engine delivers both

insert and remove stream. Finally, the rstream keyword tells the engine to deliver only the remove

stream.

The distinct keyword outputs only unique rows depending on the column list you have specified

after it. It must occur after the select and after the optional stream keywords, as described in

more detail below.

5.3.1. Choosing all event properties: select *

The syntax for selecting all event properties in a stream is:

select * from stream_def

Choosing specific event properties

93

The following statement selects StockTick events for the last 30 seconds of IBM stock ticks.

select * from StockTick(symbol='IBM')#time(30 sec)

You may well be asking: Why does the statement specify a time window here? First, the statement

is meant to demonstrate the use of * wildcard. When the engine pushes statement results to your

listener and as the statement does not select remove stream events via rstream keyword, the

listener receives only new events and the time window could be left off. By adding the time window

the pull API (iterator API or JDBC driver) returns the last 30 seconds of events.

The * wildcard and expressions can also be combined in a select clause. The combination

selects all event properties and in addition the computed values as specified by any additional

expressions that are part of the select clause. Here is an example that selects all properties

of stock tick events plus a computed product of price and volume that the statement names

'pricevolume':

select *, price * volume as pricevolume from StockTick

When using wildcard (*), Esper does not actually read or copy your event properties out of your

event or events, neither does it copy the event object. It simply wraps your native type in an

EventBean interface. Your application has access to the underlying event object through the

getUnderlying method and has access to the property values through the get method.

In a join statement, using the select * syntax selects one event property per stream to hold the

event for that stream. The property name is the stream name in the from clause.

5.3.2. Choosing specific event properties

To choose the particular event properties to return:

select event_property [, event_property] [, ...] from stream_def

The following statement simply selects the symbol and price properties of stock ticks, and the total

volume for stock tick events in a 60-second time window.

select symbol, price, sum(volume) from StockTick(symbol='IBM')#time(60 sec)

The following statement declares a further view onto the event stream of stock ticks: the univariate

statistics view (stat:uni). The statement selects the properties that this view derives from the

stream, for the last 100 events of IBM stock ticks in the length window.

select datapoints, total, average, variance, stddev, stddevpa

Chapter 5. EPL Reference: Clauses

94

from StockTick(symbol='IBM')#length(100)#uni(volume)

5.3.3. Expressions

The select clause can contain one or more expressions.

select expression [, expression] [, ...] from stream_def

The following statement selects the volume multiplied by price for a time batch of the last 30

seconds of stock tick events.

select volume * price from StockTick#time_batch(30 sec)

5.3.4. Renaming event properties

Event properties and expressions can be renamed using below syntax.

select [event_property | expression] [as] identifier [, ...]

The following statement selects volume multiplied by price and specifies the name volPrice for

the resulting column.

select volume * price as volPrice from StockTick

Identifiers cannot contain the "." (dot) character, i.e. "vol.price" is not a valid identifier for the

rename syntax.

The as keyword is optional. The following EPL is therefore equivalent to above:

select volume * price volPrice from StockTick

5.3.5. Choosing event properties and events in a join

If your statement is joining multiple streams, your may specify property names that are unique

among the joined streams, or use wildcard (*) as explained earlier.

In case the property name in your select or other clauses is not unique considering all joined

streams, you will need to use the name of the stream as a prefix to the property.

This example is a join between the two streams StockTick and News, respectively named as 'tick'

and 'news'. The example selects from the StockTick event the symbol value using the 'tick' stream

name as a prefix:

Choosing event properties and events in a join

95

select tick.symbol from StockTick#time(10) as tick, News#time(10) as news

where news.symbol = tick.symbol

Use the wildcard (*) selector in a join to generate a property for each stream, with the property

value being the event itself. The output events of the statement below have two properties: the

'tick' property holds the StockTick event and the 'news' property holds the News event:

select * from StockTick#time(10) as tick, News#time(10) as news

The following syntax can also be used to specify what stream's properties to select:

select stream_name.* [as name] from ...

The selection of tick.* selects the StockTick stream events only:

select tick.* from StockTick#time(10) as tick, News#time(10) as news

where tick.symbol = news.symbol

The next example uses the as keyword to name each stream's joined events. This instructs the

engine to create a property for each named event:

select tick.* as stocktick, news.* as news

from StockTick#time(10) as tick, News#time(10) as news

where stock.symbol = news.symbol

The output events of the above example have two properties 'stocktick' and 'news' that are the

StockTick and News events.

The stream name itself, as further described in Section 5.4.5, “Using the Stream Name”, may be

used within expressions or alone.

This example passes events to a user-defined function named compute and also shows insert-

into to populate an event stream of combined events:

insert into TickNewStream select tick, news, MyLib.compute(news, tick) as result

from StockTick#time(10) as tick, News#time(10) as news

where tick.symbol = news.symbol

// second statement that uses the TickNewStream stream

Chapter 5. EPL Reference: Clauses

96

select tick.price, news.text, result from TickNewStream

In summary, the stream_name.* streamname wildcard syntax can be used to select a stream

as the underlying event or as a property, but cannot appear within an expression. While the

stream_name syntax (without wildcard) always selects a property (and not as an underlying

event), and can occur anywhere within an expression.

5.3.6. Choosing event properties and events from a pattern

If your statement employs pattern expressions, then your pattern expression tags events with a

tag name. Each tag name becomes available for use as a property in the select clause and all

other clauses.

For example, here is a very simple pattern that matches on every StockTick event received within

30 seconds after start of the statement. The sample selects the symbol and price properties of

the matching events:

select tick.symbol as symbol, tick.price as price

from pattern[every tick=StockTick where timer:within(10 sec)]

The use of the wildcard selector, as shown in the next statement, creates a property for each

tagged event in the output. The next statement outputs events that hold a single 'tick' property

whose value is the event itself:

select * from pattern[every tick=StockTick where timer:within(10 sec)]

You may also select the matching event itself using the tick.* syntax. The engine outputs the

StockTick event itself to listeners:

select tick.* from pattern[every tick=StockTick where timer:within(10 sec)]

A tag name as specified in a pattern is a valid expression itself. This example uses the insert

into clause to make available the events matched by a pattern to further statements:

// make a new stream of ticks and news available

insert into StockTickAndNews

select tick, news from pattern [every tick=StockTick ->

 news=News(symbol=tick.symbol)]

// second statement to select from the stream of ticks and news

Selecting insert and remove stream events

97

select tick.symbol, tick.price, news.text from StockTickAndNews

5.3.7. Selecting insert and remove stream events

The optional istream, irstream and rstream keywords in the select clause control the event

streams posted to listeners and observers to a statement.

If neither keyword is specified, and in the default engine configuration, the engine posts only insert

stream events via the newEvents parameter to the update method of UpdateListener instances

listening to the statement. The engine does not post remove stream events, by default.

The insert stream consists of the events entering the respective window(s) or stream(s) or

aggregations, while the remove stream consists of the events leaving the respective window(s) or

the changed aggregation result. See Chapter 3, Processing Model for more information on insert

and remove streams.

The engine posts remove stream events to the oldEvents parameter of the update method only

if the irstream keyword occurs in the select clause. This behavior can be changed via engine-

wide configuration as described in Section 17.4.20, “Engine Settings related to Stream Selection”.

By specifying the istream keyword you can instruct the engine to only post insert stream events

via the newEvents parameter to the update method on listeners. The engine will then not post

any remove stream events, and the oldEvents parameter is always a null value.

By specifying the irstream keyword you can instruct the engine to post both insert stream and

remove stream events.

By specifying the rstream keyword you can instruct the engine to only post remove stream events

via the newEvents parameter to the update method on listeners. The engine will then not post

any insert stream events, and the oldEvents parameter is also always a null value.

The following statement selects only the events that are leaving the 30 second time window.

select rstream * from StockTick#time(30 sec)

The istream and rstream keywords in the select clause are matched by same-name keywords

available in the insert into clause. While the keywords in the select clause control the event

stream posted to listeners to the statement, the same keywords in the insert into clause specify

the event stream that the engine makes available to other statements.

5.3.8. Qualifying property names and stream names

Property or column names can optionally be qualified by a stream name and the provider URI.

The syntax is:

[[provider_URI.]stream_name.]property_name

Chapter 5. EPL Reference: Clauses

98

The provider_URI is the URI supplied to the EPServiceProviderManager class, or the string

default for the default provider.

This example assumes the provider is the default provider:

select MyEvent.myProperty from MyEvent

// ... equivalent to ...

select default.MyEvent.myProperty from MyEvent

Stream names can also be qualified by the provider URI. The syntax is:

[provider_URI.]stream_name

The next example assumes a provider URI by name of Processor:

select Processor.MyEvent.myProperty from Processor.MyEvent

5.3.9. Select Distinct

The optional distinct keyword removes duplicate output events from output. The keyword must

occur after the select keyword and after the optional irstream keyword.

The distinct keyword in your select instructs the engine to consolidate, at time of output, the

output event(s) and remove output events with identical property values. Duplicate removal only

takes place when two or more events are output together at any one time, therefore distinct

is typically used with a batch data window, output rate limiting, on-demand queries, on-select or

iterator pull API.

If two or more output event objects have same property values for all properties of the event, the

distinct removes all but one duplicated event before outputting events to listeners. Indexed,

nested and mapped properties are considered in the comparison, if present in the output event.

The next example outputs sensor ids of temperature sensor events, but only every 10 seconds

and only unique sensor id values during the 10 seconds:

select distinct sensorId from TemperatureSensorEvent output every 10 seconds

Use distinct with wildcard (*) to remove duplicate output events considering all properties of

an event.

This example statement outputs all distinct events either when 100 events arrive or when 10

seconds passed, whichever occurs first:

Transposing an Expression Result to a Stream

99

select distinct * from TemperatureSensorEvent#time_length_batch(10, 100)

When selecting nested, indexed, mapped or dynamic properties in a select clause with

distinct, it is relevant to know that the comparison uses hash code and the Java equals

semantics.

5.3.10. Transposing an Expression Result to a Stream

For transposing an instance of a Java object returned by an expression to a stream use the

transpose function as described in Section 10.4, “Select-Clause transpose Function”.

5.3.11. Selecting EventBean instead of Underlying Event

By default, for certain select-clause expressions that output events or a collection of events, the

engine outputs the underlying event objects. With outputs we refer to the data passed to listeners,

subscribers and inserted-into into another stream via insert-into.

The select-clause expressions for which underlying event objects are output by default are:

• Event Aggregation Functions (including extension API)

• The previous family of single-row functions

• Subselects that select events

• Declared expressions and enumeration methods that operate on any of the above

To have the engine output EventBean instance(s) instead, add @eventbean to the relevant

expressions of the select-clause.

The sample EPL shown below outputs current data window contents as EventBean instances into

the stream OutStream, thereby statements consuming the stream may operate on such instances:

insert into OutStream

select prevwindow(s0) @eventbean as win

from MyEvent#length(2) as s0

The next EPL consumes the stream and selects the last event:

select win.lastOf() from OutStream

It is not necessary to use @eventbean if an event type by the same name (OutStream in the

example) is already declared and a property exist on the type by the same name (win in this

Chapter 5. EPL Reference: Clauses

100

example) and the type of the property is the event type (MyEvent in the example) returned by the

expression. This is further described in Section 5.10.8, “Select-Clause Expression And Inserted-

Into Column Event Type”.

5.4. Specifying Event Streams: the From Clause

The from clause is required in all EPL statements. It specifies one or more event streams, named

windows or tables. Each event stream, named window or table can optionally be given a name

by means of the as keyword.

from stream_def [as name] [unidirectional] [retain-union | retain-

intersection]

 [, stream_def [as stream_name]] [, ...]

The event stream definition stream_def as shown in the syntax above can consists of either a

filter-based event stream definition or a pattern-based event stream definition.

For joins and outer joins, specify two or more event streams. Joins and the unidirectional

keyword are described in more detail in Section 5.12, “Joining Event Streams”. Joins are handy

when multiple streams or patterns can trigger output and outer joins can be used to union and

connect streams via or.

Esper supports joins against relational databases for access to historical or reference data as

explained in Section 5.13, “Accessing Relational Data via SQL”. Esper can also join results

returned by an arbitrary invocation, as discussed in Section 5.14, “Accessing Non-Relational Data

via Method, Script or UDF Invocation”.

The stream_name is an optional identifier assigned to the stream. The stream name can itself

occur in any expression and provides access to the event itself from the named stream. Also, a

stream name may be combined with a method name to invoke instance methods on events of

that stream.

For all streams with the exception of historical sources your query may employ data window views

as outlined below. The retain-intersection (the default) and retain-union keywords build a

union or intersection of two or more data windows as described in Section 5.4.4, “Multiple Data

Window Views”.

5.4.1. Filter-based Event Streams

The stream_def syntax for a filter-based event stream is as below:

event_stream_name [(filter_criteria)] [contained_selection] [#view_spec]

 [#view_spec] [...]

The event_stream_name is either the name of an event type or name of an event stream populated

by an insert into statement or the name of a named window or table.

Filter-based Event Streams

101

The filter_criteria is optional and consists of a list of expressions filtering the events of the event

stream, within parenthesis after the event stream name. Filter criteria cannot be specified for

tables.

The contained_selection is optional and is for use with coarse-grained events that have properties

that are themselves one or more events, see Section 5.19, “Contained-Event Selection” for the

synopsis and examples. Contained-event cannot be specified for tables.

The view_spec are optional view specifications, which are combinable definitions for retaining

events and for deriving information from events. Views cannot be specified for tables. Instead of

the # hash character the . dot character can also be used, however the dot character requires

the view namespace.

The following EPL statement shows event type, filter criteria and views combined in one statement.

It selects all event properties for the last 100 events of IBM stock ticks for volume. In the

example, the event type is the fully qualified Java class name org.esper.example.StockTick.

The expression filters for events where the property symbol has a value of "IBM". The optional

view specifications for deriving data from the StockTick events are a length window and a view

for computing statistics on volume. The name for the event stream is "volumeStats".

select * from

 org.esper.example.StockTick(symbol='IBM')#length(100)#uni(volume) as

 volumeStats

The above is equivalent to:

select * from

 org.esper.example.StockTick(symbol='IBM').win:length(100).stat:uni(volume) as

 volumeStats

Esper filters out events in an event stream as defined by filter criteria before it sends events to

subsequent views. Thus, compared to search conditions in a where clause, filter criteria remove

unneeded events early. In the above example, events with a symbol other than IBM do not enter

the time window.

5.4.1.1. Specifying an Event Type

The simplest form of filter is a filter for events of a given type without any conditions on the event

property values. This filter matches any event of that type regardless of the event's properties.

The example below is such a filter.

select * from com.mypackage.myevents.RfidEvent

Chapter 5. EPL Reference: Clauses

102

Instead of the fully-qualified Java class name any other event name can be mapped via

Configuration to a Java class, making the resulting statement more readable:

select * from RfidEvent

Interfaces and superclasses are also supported as event types. In the below example

IRfidReadable is an interface class.

select * from org.myorg.rfid.IRfidReadable

5.4.1.2. Specifying Filter Criteria

The filtering criteria to filter for events with certain event property values are placed within

parenthesis after the event type name:

select * from RfidEvent(category="Perishable")

All expressions can be used in filters, including static methods that return a boolean value:

select * from com.mycompany.RfidEvent(MyRFIDLib.isInRange(x, y) or (x < 0 and

 y < 0))

Filter expressions can be separated via a single comma ','. The comma represents a logical AND

between filter expressions:

select * from RfidEvent(zone=1, category=10)

...is equivalent to...

select * from RfidEvent(zone=1 and category=10)

The following operators are highly optimized through indexing and are the preferred means of

filtering in high-volume event streams and especially in the presence of a larger number of filters

or statements:

• equals =

• not equals !=

• comparison operators < , > , >=, <=

• ranges

• use the between keyword for a closed range where both endpoints are included

Filter-based Event Streams

103

• use the in keyword and round () or square brackets [] to control how endpoints are included

• for inverted ranges use the not keyword and the between or in keywords

• list-of-values checks using the in keyword or the not in keywords followed by a comma-

separated list of values

• single-row functions that have been registered and are invoked via function name (see user-

defined functions) and that either return a boolean value or that have their return value compared

to a constant

• the and and or logical operators

At compile time as well as at run time, the engine scans new filter expressions for sub-expressions

that can be indexed. Indexing filter values to match event properties of incoming events enables

the engine to match incoming events faster, especially if your application creates a large number

of statements or requires many similar filters. The above list of operators represents the set of

operators that the engine can best convert into indexes. The use of comma or logical and in filter

expressions does not impact optimizations by the engine.

5.4.1.3. Filtering Ranges

Ranges come in the following 4 varieties. The use of round () or square [] bracket dictates

whether an endpoint is included or excluded. The low point and the high-point of the range are

separated by the colon : character.

• Open ranges that contain neither endpoint (low:high)

• Closed ranges that contain both endpoints [low:high]. The equivalent 'between' keyword also

defines a closed range.

• Half-open ranges that contain the low endpoint but not the high endpoint [low:high)

• Half-closed ranges that contain the high endpoint but not the low endpoint (low:high]

The next statement shows a filter specifying a range for x and y values of RFID events. The range

includes both endpoints therefore uses [] hard brackets.

mypackage.RfidEvent(x in [100:200], y in [0:100])

The between keyword is equivalent for closed ranges. The same filter using the between keyword

is:

mypackage.RfidEvent(x between 100 and 200, y between 0 and 50)

The not keyword can be used to determine if a value falls outside a given range:

mypackage.RfidEvent(x not in [0:100])

Chapter 5. EPL Reference: Clauses

104

The equivalent statement using the between keyword is:

mypackage.RfidEvent(x not between 0 and 100)

5.4.1.4. Filtering Sets of Values

The in keyword for filter criteria determines if a given value matches any value in a list of values.

In this example we are interested in RFID events where the category matches any of the given

values:

mypackage.RfidEvent(category in ('Perishable', 'Container'))

By using the not in keywords we can filter events with a property value that does not match

any of the values in a list of values:

mypackage.RfidEvent(category not in ('Household', 'Electrical'))

5.4.1.5. Filter Limitations

The following restrictions apply to filter criteria:

• Range and comparison operators require the event property to be of a numeric or string type.

• Aggregation functions are not allowed within filter expressions.

• The prev previous event function and the prior prior event function cannot be used in filter

expressions.

5.4.2. Pattern-based Event Streams

Event pattern expressions can also be used to specify one or more event streams in an EPL

statement. For pattern-based event streams, the event stream definition stream_def consists of

the keyword pattern and a pattern expression in brackets []. The syntax for an event stream

definition using a pattern expression is below. As in filter-based event streams, an optional list of

views that derive data from the stream can be supplied.

pattern [pattern_expression] [.view_spec] [.view_spec] [...]

The next statement specifies an event stream that consists of both stock tick events and trade

events. The example tags stock tick events with the name "tick" and trade events with the name

"trade".

Specifying Views

105

select * from pattern [every tick=StockTickEvent or every trade=TradeEvent]

This statement generates an event every time the engine receives either one of the event types.

The generated events resemble a map with "tick" and "trade" keys. For stock tick events, the "tick"

key value is the underlying stock tick event, and the "trade" key value is a null value. For trade

events, the "trade" key value is the underlying trade event, and the "tick" key value is a null value.

Lets further refine this statement adding a view the gives us the last 30 seconds of either stock

tick or trade events. Lets also select prices and a price total.

select tick.price as tickPrice, trade.price as tradePrice,

 sum(tick.price) + sum(trade.price) as total

 from pattern [every tick=StockTickEvent or every trade=TradeEvent]#time(30 sec)

Note that in the statement above tickPrice and tradePrice can each be null values depending

on the event processed. Therefore, an aggregation function such as sum(tick.price +

trade.price)) would always return null values as either of the two price properties are always

a null value for any event matching the pattern. Use the coalesce function to handle null values,

for example: sum(coalesce(tick.price, 0) + coalesce(trade.price, 0)).

5.4.3. Specifying Views

Views are used to specify an expiry policy for events (data window views) and also to derive data.

Views can be staggered onto each other. See the section Chapter 14, EPL Reference: Views

on the views available that also outlines the different types of views: Data Window views and

Derived-Value views.

Views can optionally take one or more parameters. These parameters are expressions themselves

that may consist of any combination of variables, arithmetic, user-defined function or substitution

parameters for prepared statements, for example.

The example statement below outputs a count per expressway for car location events (contains

information about the location of a car on a highway) of the last 60 seconds:

select expressway, count(*) from CarLocEvent#time(60)

group by expressway

The next example serves to show staggering of views. It uses the std:groupwin view to create

a separate length window per car id:

select cardId, expressway, direction, segment, count(*)

from CarLocEvent#groupwin(carId)#length(4)

Chapter 5. EPL Reference: Clauses

106

group by carId, expressway, direction, segment

The first view std:groupwin(carId) groups car location events by car id. The second view

win:length(4) keeps a length window of the 4 last events, with one separate length window for

each car id. The example reports the number of events per car id and per expressway, direction

and segment considering the last 4 events for each car id only.

Note that the group by syntax is generally preferable over std:groupwin for grouping information

as it is SQL-compliant, easier to read and does not create a separate data window per group. The

std:groupwin in above example creates a separate data window (length window in the example)

per group, demonstrating staggering views.

When views are staggered onto each other as a chain of views, then the insert and remove stream

received by each view is the insert and remove stream made available by the view (or stream)

earlier in the chain.

The special keep-all view keeps all events: It does not provide a remove stream, i.e. events are not

removed from the keep-all view unless by means of the on-delete syntax or by revision events.

5.4.4. Multiple Data Window Views

Data window views provide an expiry policy that indicates when to remove events from the data

window, with the exception of the keep-all data window which has no expiry policy and the

std:groupwin grouped-window view for allocating a new data window per group.

EPL allows the freedom to use multiple data window views onto a stream and thus combine expiry

policies. Combining data windows into an intersection (the default) or a union can achieve a useful

strategy for retaining events and expiring events that are no longer of interest. Named windows,

tables and the on-delete syntax provide an additional degree of freedom.

In order to combine two or more data window views there is no keyword required. The retain-

intersection keyword is the default and the retain-union keyword may instead be provided for a

stream.

The concept of union and intersection come from Set mathematics. In the language of Set

mathematics, two sets A and B can be "added" together: The intersection of A and B is the set of

all things which are members of both A and B, i.e. the members two sets have "in common". The

union of A and B is the set of all things which are members of either A or B.

Use the retain-intersection (the default) keyword to retain an intersection of all events as defined

by two or more data windows. All events removed from any of the intersected data windows are

entered into the remove stream. This is the default behavior if neither retain keyword is specified.

Use the retain-union keyword to retain a union of all events as defined by two or more data

windows. Only events removed from all data windows are entered into the remove stream.

The next example statement totals the price of OrderEvent events in a union of the last 30 seconds

and unique by product name:

Multiple Data Window Views

107

select sum(price) from OrderEvent#time(30 sec)#unique(productName) retain-union

In the above statement, all OrderEvent events that are either less then 30 seconds old or that are

the last event for the product name are considered.

Here is an example statement totals the price of OrderEvent events in an intersection of the last

30 seconds and unique by product name:

select sum(price) from OrderEvent#time(30 sec)#unique(productName) retain-

intersection

In the above statement, only those OrderEvent events that are both less then 30 seconds old and

are the last event for the product name are considered. The number of events that the engine

retains is the number of unique events per product name in the last 30 seconds (and not the

number of events in the last 30 seconds).

For an intersection the engine retains the minimal number of events representing that intersection.

Thus when combining a time window of 30 seconds and a last-event window, for example, the

number of events retained at any time is zero or one event (and not 30 seconds of events).

When combining a batch window into an intersection with another data window the combined

data window gains batching semantics: Only when the batch criteria is fulfilled does the engine

provide the batch of intersecting insert stream events. Multiple batch data windows may not be

combined into an intersection.

In below table we provide additional examples for data window intersections:

Table 5.3. Intersection Data Window Examples

Example Description

win:time(30)#firstunique(keys) Retains 30 seconds of events unique per keys

value (first event per value).

win:firstlength(3)#firstunique(keys) Retains the first 3 events that are also unique

per keys value.

win:time_batch(N seconds)#unique(keys) Posts a batch every N seconds that contains

the last of each unique event per keys value.

win:time_batch(N

seconds)#firstunique(keys)

Posts a batch every N seconds that contains

the first of each unique event per keys value.

win:length_batch(N)#unique(keys) Posts a batch of unique events (last event per

value) when N unique events per keys value

are encountered.

Chapter 5. EPL Reference: Clauses

108

Example Description

win:length_batch(N)#firstunique(keys) Posts a batch of unique events (first event per

value) when N unique events per keys value

are encountered.

For advanced users and for backward compatibility, it is possible to configure Esper to

allow multiple data window views without either of the retain keywords, as described in

Section 17.4.14.3, “Configuring Multi-Expiry Policy Defaults”.

5.4.5. Using the Stream Name

Your from clause may assign a name to each stream. This assigned stream name can serve any

of the following purposes.

First, the stream name can be used to disambiguate property names. The

stream_name.property_name syntax uniquely identifies which property to select if property

names overlap between streams. Here is an example:

select prod.productId, ord.productId from ProductEvent as prod, OrderEvent as ord

Second, the stream name can be used with a wildcard (*) character to select events in a join, or

assign new names to the streams in a join:

// Select ProductEvent only

select prod.* from ProductEvent as prod, OrderEvent

// Assign column names 'product' and 'order' to each event

select prod.* as product, ord.* as order from ProductEvent as prod, OrderEvent

 as ord

Further, the stream name by itself can occur in any expression: The engine passes the event itself

to that expression. For example, the engine passes the ProductEvent and the OrderEvent to the

user-defined function 'checkOrder':

select prod.productId, MyFunc.checkOrder(prod, ord)

from ProductEvent as prod, OrderEvent as ord

Last, you may invoke an instance method on each event of a stream, and pass parameters to the

instance method as well. Instance method calls are allowed anywhere in an expression.

Specifying Search Conditions: the Where Clause

109

The next statement demonstrates this capability by invoking a method 'computeTotal' on

OrderEvent events and a method 'getMultiplier' on ProductEvent events:

select ord.computeTotal(prod.getMultiplier()) from ProductEvent as prod,

 OrderEvent as ord

Instance methods may also be chained: Your EPL may invoke a method on the result returned

by a method invocation.

Assume that your product event exposes a method getZone which returns a zone object. Assume

that the Zone class declares a method checkZone. This example statement invokes a method

chain:

select prod.getZone().checkZone("zone 1") from ProductEvent as prod

5.5. Specifying Search Conditions: the Where Clause

The where clause is an optional clause in EPL statements. Via the where clause event streams

can be joined and correlated.

Tip

For filtering events in order to remove unwanted events, use filters as part of the

from clause as described in Section 5.4.1, “Filter-based Event Streams” or for

patterns in Section 7.4, “Filter Expressions In Patterns”.

Place expressions that remove unwanted events into parenthesis right after the

event type, like ... from OrderEvent(fraud.severity = 5 and amount >

500) There is related information at Section 3.4, “Filters and Where-clauses”

and Section 22.2.5, “Prefer stream-level filtering over where-clause filtering”.

Any expression can be placed in the where clause. Typically you would use comparison operators

=, < , > , >=, <=, !=, <>, is null, is not null and logical combinations via and and

or for joining, correlating or comparing events. The where clause introduces join conditions as

outlined in Section 5.12, “Joining Event Streams”.

Some examples are listed below.

...where settlement.orderId = order.orderId

Chapter 5. EPL Reference: Clauses

110

...where exists (select orderId from Settlement#time(1 min) where

 settlement.orderId = order.orderId)

The following two EPL statements are equivalent since both queries filter events by the amount

property value and both queries do not specify a data window.

// preferable: specify filter criteria with the "eventtype(...filters...)"

 notation

@name('first') select * from Withdrawal(amount > 200)

// equivalent only when there is no data window

@name('second') select * from Withdrawal where amount > 200

You can control whether the engine rewrites the second query to the form of the first query. If

you specify @Hint('disable_whereexpr_moveto_filter') you can instruct the engine to not move the

where-clause expression into the filter.

5.6. Aggregates and grouping: the Group-by Clause

and the Having Clause

5.6.1. Using aggregate functions

The aggregate functions are further documented in Section 10.2, “Aggregation Functions”. You

can use aggregate functions to calculate and summarize data from event properties.

For example, to find out the total price for all stock tick events in the last 30 seconds, type:

select sum(price) from StockTickEvent#time(30 sec)

Aggregation functions do not require the use of data windows. The examples herein specify data

windows for the purpose of example. An alternative means to instruct the engine when to start

and stop aggregating and on what level to aggregate is via context declarations.

For example, to find out the total price for all stock tick events since statement start, type:

select sum(price) from StockTickEvent

Here is the syntax for aggregate functions:

Using aggregate functions

111

aggregate_function([all | distinct] expression [,expression [,...]]

 [, group_by:local_group_by] [, filter:filter_expression])

You can apply aggregate functions to all events in an event stream window or other view, or to

one or more groups of events. From each set of events to which an aggregate function is applied,

Esper generates a single value.

Expression is usually an event property name. However it can also be a constant, function, or any

combination of event property names, constants, and functions connected by arithmetic operators.

You can provide a grouping dimension for each aggregation function by providing the optional

group_by parameter as part of aggregation function parameters. Please refer to Section 5.6.4,

“Specifying grouping for each aggregation function”.

You can provide a filter expression for each aggregation function by providing the optional filter

parameter as part of aggregation function parameters. Please refer to Section 5.6.5, “Specifying

a filter expression for each aggregation function”.

For example, to find out the average price for all stock tick events in the last 30 seconds if the

price was doubled:

select avg(price * 2) from StockTickEvent#time(30 seconds)

You can use the optional keyword distinct with all aggregate functions to eliminate duplicate

values before the aggregate function is applied. The optional keyword all which performs the

operation on all events is the default.

You can use aggregation functions in a select clause and in a having clause. You cannot use

aggregate functions in a where clause, but you can use the where clause to restrict the events to

which the aggregate is applied. The next query computes the average and sum of the price of stock

tick events for the symbol IBM only, for the last 10 stock tick events regardless of their symbol.

select 'IBM stats' as title, avg(price) as avgPrice, sum(price) as sumPrice

from StockTickEvent#length(10)

where symbol='IBM'

In the above example the length window of 10 elements is not affected by the where clause, i.e.

all events enter and leave the length window regardless of their symbol. If we only care about the

last 10 IBM events, we need to add filter criteria as below.

select 'IBM stats' as title, avg(price) as avgPrice, sum(price) as sumPrice

from StockTickEvent(symbol='IBM')#length(10)

where symbol='IBM'

Chapter 5. EPL Reference: Clauses

112

You can use aggregate functions with any type of event property or expression, with the following

exceptions:

1. You can use sum, avg, median, stddev, avedev with numeric event properties only

Esper ignores any null values returned by the event property or expression on which the aggregate

function is operating, except for the count(*) function, which counts null values as well. All

aggregate functions return null if the data set contains no events, or if all events in the data set

contain only null values for the aggregated expression.

5.6.2. Organizing statement results into groups: the Group-by

clause

The group by clause is optional in all EPL statements. The group by clause divides the output

of an EPL statement into groups. You can group by one or more event property names, or by

the result of computed expressions. When used with aggregate functions, group by retrieves the

calculations in each subgroup. You can use group by without aggregate functions, but generally

that can produce confusing results.

For example, the below statement returns the total price per symbol for all stock tick events in

the last 30 seconds:

select symbol, sum(price) from StockTickEvent#time(30 sec) group by symbol

The syntax of the group by clause is:

group by aggregate_free_expression [, aggregate_free_expression] [, ...]

Esper places the following restrictions on expressions in the group by clause:

1. Expressions in the group by cannot contain aggregate functions.

2. When grouping an unbound stream, i.e. no data window is specified onto the stream providing

groups, or when using output rate limiting with the ALL keyword, you should ensure your group-

by expression does not return an unlimited number of values. If, for example, your group-by

expression is a fine-grained timestamp, group state that accumulates for an unlimited number

of groups potentially reduces available memory significantly. Use a @Hint as described below

to instruct the engine when to discard group state.

You can list more then one expression in the group by clause to nest groups. Once the sets are

established with group by the aggregation functions are applied. This statement posts the median

volume for all stock tick events in the last 30 seconds per symbol and tick data feed. Esper posts

one event for each group to statement listeners:

select symbol, tickDataFeed, median(volume)

Organizing statement results into groups: the Group-by clause

113

from StockTickEvent#time(30 sec)

group by symbol, tickDataFeed

In the statement above the event properties in the select list (symbol, tickDataFeed) are also

listed in the group by clause. The statement thus follows the SQL standard which prescribes that

non-aggregated event properties in the select list must match the group by columns.

Esper also supports statements in which one or more event properties in the select list are not

listed in the group by clause. The statement below demonstrates this case. It calculates the

standard deviation since statement start over stock ticks aggregating by symbol and posting for

each event the symbol, tickDataFeed and the standard deviation on price.

select symbol, tickDataFeed, stddev(price) from StockTickEvent group by symbol

The above example still aggregates the price event property based on the symbol, but produces

one event per incoming event, not one event per group.

Additionally, Esper supports statements in which one or more event properties in the group by

clause are not listed in the select list. This is an example that calculates the mean deviation per

symbol and tickDataFeed and posts one event per group with symbol and mean deviation of

price in the generated events. Since tickDataFeed is not in the posted results, this can potentially

be confusing.

select symbol, avedev(price)

from StockTickEvent#time(30 sec)

group by symbol, tickDataFeed

Expressions are also allowed in the group by list:

select symbol * price, count(*) from StockTickEvent#time(30 sec) group by symbol

 * price

If the group by expression resulted in a null value, the null value becomes its own group.

All null values are aggregated into the same group. If you are using the count(expression)

aggregate function which does not count null values, the count returns zero if only null values

are encountered.

You can use a where clause in a statement with group by. Events that do not satisfy the conditions

in the where clause are eliminated before any grouping is done. For example, the statement below

posts the number of stock ticks in the last 30 seconds with a volume larger then 100, posting one

event per group (symbol).

Chapter 5. EPL Reference: Clauses

114

select symbol, count(*) from StockTickEvent#time(30 sec) where volume > 100 group

 by symbol

5.6.2.1. Hints Pertaining to Group-By

The Esper engine reclaims aggregation state agressively when it determines that a group has no

data points, based on the data in the data windows. When your application data creates a large

number of groups with a small or zero number of data points then performance may suffer as state

is reclaimed and created anew. Esper provides the @Hint('disable_reclaim_group') hint that

you can specify as part of an EPL statement text to avoid group reclaim.

When aggregating values over an unbound stream (i.e. no data window is specified onto the

stream) and when your group-by expression returns an unlimited number of values, for example

when a timestamp expression is used, then please note the next hint.

A sample statement that aggregates stock tick events by timestamp, assuming the event type

offers a property by name timestamp that, reflects time in high resolution, for example arrival or

system time:

// Note the below statement could lead to an out-of-memory problem:

select symbol, sum(price) from StockTickEvent group by timestamp

As the engine has no means of detecting when aggregation state (sums per symbol) can be

discarded, you may use the following hints to control aggregation state lifetime.

The @Hint("reclaim_group_aged=age_in_seconds") hint instructs the engine to discard

aggregation state that has not been updated for age_in_seconds seconds.

The optional @Hint("reclaim_group_freq=sweep_frequency_in_seconds") can be used in

addition to control the frequency at which the engine sweeps aggregation state to determine

aggregation state age and remove state that is older then age_in_seconds seconds. If the hint is

not specified, the frequency defaults to the same value as age_in_seconds.

The updated sample statement with both hints:

// Instruct engine to remove state older then 10 seconds and sweep every 5 seconds

@Hint('reclaim_group_aged=10,reclaim_group_freq=5')

select symbol, sum(price) from StockTickEvent group by timestamp

Variables may also be used to provide values for age_in_seconds and

sweep_frequency_in_seconds.

Using Group-By with Rollup, Cube and Grouping Sets

115

This example statement uses a variable named varAge to control how long aggregation state

remains in memory, and the engine defaults the sweep frequency to the same value as the variable

provides:

@Hint('reclaim_group_aged=varAge')

select symbol, sum(price) from StockTickEvent group by timestamp

5.6.3. Using Group-By with Rollup, Cube and Grouping Sets

EPL supports the SQL-standard rollup, cube and grouping sets keywords. These keywords

are available only in the group-by clause and instruct the engine to compute higher-level (or

super-aggregate) aggregation values, i.e. to perform multiple levels of analysis (groupings) at the

same time.

EPL also supports the SQL-standard grouping and grouping_id functions. These functions can

be used in the select-clause, having-clause or order by-clause to obtain information about the

current row's grouping level in expressions. Please see Section 10.1.7, “The Grouping Function”.

Detailed examples and information in respect to output rate limiting can be found in Section A.7,

“Output for Fully-Aggregated, Grouped Queries With Rollup”.

Use the rollup keyword in the group-by lists of expressions to compute the equivalent of an

OLAP dimension or hierarchy.

For example, the following statement outputs for each incoming event three rows. The first row

contains the total volume per symbol and feed, the second row contains the total volume per

symbol and the third row contains the total volume overall. This example aggregates across all

events for each aggregation level (3 groupings) since it declares no data window:

select symbol, tickDataFeed, sum(volume) from StockTickEvent

group by rollup(symbol, tickDataFeed)

The value of tickDataFeed is null for the output row that contains the total per symbol and the

output row that contains the total volume overall. The value of both symbol and tickDataFeed is

null for the output row that contains the overall total.

Use the cube keyword in the group-by lists of expressions to compute a cross-tabulation.

The following statement outputs for each incoming event four rows. The first row contains the total

volume per symbol and feed, the second row contains the total volume per symbol, the third row

contains the total volume per feed and the forth row contains the total volume overall (4 groupings):

select symbol, tickDataFeed, sum(volume) from StockTickEvent

group by cube(symbol, tickDataFeed)

Chapter 5. EPL Reference: Clauses

116

The grouping sets keywords allows you to specify only the groupings you want. It can thus be

used to generate the same groupings that simple group-by expressions, rollup or cube would

produce.

In this example each incoming event causes the engine to compute two output rows: The first

row contains the total volume per symbol and the second row contains the total volume per feed

(2 groupings):

select symbol, tickDataFeed, sum(volume) from StockTickEvent

group by grouping sets(symbol, feed)

Your group-by expression can list grouping expressions and use rollup, cube and grouping

sets keywords in addition or in combination.

This statement outputs the total per combination of symbol and feed and the total per symbol (2

groupings):

select symbol, tickDataFeed, sum(volume) from StockTickEvent

group by symbol, rollup(tickDataFeed)

You can specify combinations of expressions by using parenthesis.

The next statement is equivalent and also outputs the total per symbol and feed and the total per

symbol (2 groupings, note the parenthesis):

select symbol, tickDataFeed, sum(volume) from StockTickEvent

group by grouping sets ((symbol, tickDataFeed), symbol)

Use empty parenthesis to aggregate across all dimensions.

This statement outputs the total per symbol, the total per feed and the total overall (3 groupings):

select symbol, tickDataFeed, sum(volume) from StockTickEvent

group by grouping sets (symbol, tickDataFeed, ())

The order of any output events for both insert and remove stream data is well-defined and exactly

as indicated before. For example, specifying grouping sets ((), symbol, tickDataFeed)

outputs a total overall, a total by symbol and a total by feed in that order. If the statement has an

order-by-clause then the ordering criteria of the order-by-clause take precedence.

You can use rollup and cube within grouping sets.

Using Group-By with Rollup, Cube and Grouping Sets

117

This statement outputs the total per symbol and feed, the total per symbol, the total overall and

the total by feed (4 groupings):

select symbol, tickDataFeed, sum(volume) from StockTickEvent

group by grouping sets (rollup(symbol, tickDataFeed), tickDataFeed)

Note

In order to use any of the rollup, cube and grouping sets keywords the

statement must be fully-aggregated. All non-aggregated properties in the select-

clause, having-clause or order-by-clause must also be listed in the group by

clause.

5.6.3.1. Grouping Dimension Examples

This section provides additional examples of group-by-clauses and groupings or dimensions.

The examples use event properties a, b, c, d, e to keep the examples easy to read. Empty

parenthesis () stand for aggregation overall (across all dimensions).

If a statement provides no order-by clause, its order of output events is exactly as indicated

below. Otherwise order-by takes precedence and within the same ordering criteria the order of

output events is as indicated below.

Table 5.4.

Group-By Clause Grouping

group by a, b, c a, b, c

group by rollup(a, b, c) a, b, c

a, b

a

()

group by a, rollup(b, c) a, b, c

a, b

a

group by rollup(a, b), rollup(c,

 d)

a,b,c,d

a,b,c

a,b

a,c,d

Chapter 5. EPL Reference: Clauses

118

Group-By Clause Grouping

a,c

a

c,d

c

()

group by cube(a, b, c) a, b, c

a, b

a, c

a

b, c

b

c

()

group by cube(a, b, c, d) a,b,c,d

a,b,c

a,b,d

a,b

a,c,d

a,c

a,d

a

b,c,d

b,c

b,d

b

c,d

c

d

()

group by grouping sets(a, b, c) a

b

c

group by grouping sets((a, b),

 rollup(c, d))

a,b

c,d

c

()

The following table outlines sample equivalent group-by-clauses.

Specifying grouping for each aggregation function

119

Table 5.5. Equivalent Group-By-Clause Expressions

Expression Equivalent

group by a, b group by grouping

sets((a, b))

group by rollup(a,

b)

group by grouping

sets((a, b), a, ())

group by cube(a, b) group by grouping

sets((a, b), a, b, ())

group by a, b,

rollup(c, d)

group by grouping

sets((a, b, c, d), (a,

b, c), (a, b))

group by rollup((a,

b), c)

group by grouping

sets((a, b, c), (a, b),

())

group by grouping

sets((a))

group by grouping

sets(a)

5.6.3.2. Rollup Usage Notes

The prev and prior functions returns the previous event's property values and since they are

not aggregation functions return the same value for each grouping. Declared or alias expressions

and correlated subqueries also receive the same value for each grouping.

Context partitions operate on a higher level then rollups, i.e. rollups are never across context

partitions.

5.6.4. Specifying grouping for each aggregation function

EPL allows each aggregation function to specify its own grouping criteria. This is useful for

aggregating across multiple dimensions.

The syntax for the group_by parameter for use with aggregation functions is:

group_by: ([expression [,expression [,...]]])

The group_by identifier can occur at any place within the aggregation function parameters. It

follows a colon and within parenthesis an optional list of grouping expressions. The parenthesis

are not required when providing a single expression. For grouping on the top level (overall

aggregation) please use () empty parenthesis.

The presence of group_by aggregation function parameters, the grouping expressions as well

as the group-by clause determine the number of output rows for queries as further described in

Section 3.7.2, “Output for Aggregation and Group-By”.

Chapter 5. EPL Reference: Clauses

120

For un-grouped queries (without a group by clause), if any aggregation function specifies a

group_by other than the () overall group, the query executes as aggregated and un-grouped.

For example, the next statement is an aggregated (but not fully aggregated) and ungrouped query

and outputs various totals for each arriving event:

select sum(price, group_by:()) as totalPriceOverall,

 sum(price, group_by:account) as totalPricePerAccount,

 sum(price, group_by:(account, feed)) as totalPricePerAccountAndFeed

from Orders

For grouped queries (with a group by clause), if all aggregation functions specifiy either

no group_by or group_by criteria that subsume the criteria in the group by clause, the

query executes as a fully-aggregated and grouped query. Otherwise the query executes as an

aggregated and grouped query.

The next example is fully-aggregated and grouped and it computes, for the last one minute of

orders, the ratio of orders per account compared to all orders:

select count(*)/count(*, group_by:()) as ratio

from Orders#time(1 min) group by account

The next example is an aggregated (and not fully-aggregated) and grouped query that in addition

outputs a count per order category:

select count(*) as cnt, count(*, group_by:()) as cntOverall, count(*, group_by:

(category)) as cntPerCategory

from Orders#time(1 min) group by account

Please note the following restrictions:

1. Expressions in the group_by cannot contain aggregate functions.

2. Hints pertaining to group-by are not available when a statement specifies aggregation functions

with group_by.

3. The group_by aggregation function parameters are not available in subqueries, match-

recognize, statements that aggregate into tables using into table or in combination with

rollup and grouping sets.

5.6.5. Specifying a filter expression for each aggregation

function

EPL allows each aggregation function to specify its own filter expression. This is useful for

conditionally aggregating.

Selecting groups of events: the Having clause

121

The syntax for the filter parameter for use with aggregation functions is:

filter:expression

The filter identifier can occur at any place within the aggregation function parameters. It follows

a colon and the filter expression. The filter expression must return a boolean-type value.

If a filter expression is present, the engine evaluates the filter expression to determine whether

to update the aggregation.

For example, the next statement returns the total price of small orders (price less 100), the total

price of large orders (price >= 100), as well as the events themselves of each category, considering

the last 10 seconds of orders:

select

 sum(price, filter: price < 100) as smallOrderTotal,

 sum(price, filter: price >= 100) as largeOrderTotal,

 window(*, filter: price < 100) as smallOrderEvents,

 window(*, filter: price >= 100) as largeOrderEvents

 from Orders#time(10)

Note

Filter expression that are parameters to aggregation functions must return

reproducible results: When the expression is evaluated against the same input

values it should return the same result. Aggregation functions and subqueries are

not allowed therein.

5.6.6. Selecting groups of events: the Having clause

Use the having clause to pass or reject events defined by the group-by clause. The having

clause sets conditions for the group by clause in the same way where sets conditions for the

select clause, except where cannot include aggregate functions, while having often does.

This statement is an example of a having clause with an aggregate function. It posts the total

price per symbol for the last 30 seconds of stock tick events for only those symbols in which the

total price exceeds 1000. The having clause eliminates all symbols where the total price is equal

or less then 1000.

select symbol, sum(price)

from StockTickEvent#time(30 sec)

group by symbol

having sum(price) > 1000

Chapter 5. EPL Reference: Clauses

122

To include more then one condition in the having clause combine the conditions with and, or or

not. This is shown in the statement below which selects only groups with a total price greater then

1000 and an average volume less then 500.

select symbol, sum(price), avg(volume)

from StockTickEvent#time(30 sec)

group by symbol

having sum(price) > 1000 and avg(volume) < 500

A statement with the having clause should also have a group by clause. If you omit group-by,

all the events not excluded by the where clause return as a single group. In that case having acts

like a where except that having can have aggregate functions.

The having clause can also be used without group by clause as the below example shows. The

example below posts events where the price is less then the current running average price of all

stock tick events in the last 30 seconds.

select symbol, price, avg(price)

from StockTickEvent#time(30 sec)

having price < avg(price)

5.6.7. How the stream filter, Where, Group By and Having

clauses interact

When you include filters, the where condition, the group by clause and the having condition in

an EPL statement the sequence in which each clause affects events determines the final result:

1. The event stream's filter condition, if present, dictates which events enter a window (if one is

used). The filter discards any events not meeting filter criteria.

2. The where clause excludes events that do not meet its search condition.

3. Aggregate functions in the select list calculate summary values for each group.

4. The having clause excludes events from the final results that do not meet its search condition.

The following query illustrates the use of filter, where, group by and having clauses in one

statement with a select clause containing an aggregate function.

select tickDataFeed, stddev(price)

from StockTickEvent(symbol='IBM')#length(10)

where volume > 1000

group by tickDataFeed

having stddev(price) > 0.8

Comparing Keyed Segmented Context, the Group By clause and the std:groupwin view

123

Esper filters events using the filter criteria for the event stream StockTickEvent. In the example

above only events with symbol IBM enter the length window over the last 10 events, all other

events are simply discarded. The where clause removes any events posted by the length

window (events entering the window and event leaving the window) that do not match the

condition of volume greater then 1000. Remaining events are applied to the stddev standard

deviation aggregate function for each tick data feed as specified in the group by clause. Each

tickDataFeed value generates one event. Esper applies the having clause and only lets events

pass for tickDataFeed groups with a standard deviation of price greater then 0.8.

5.6.8. Comparing Keyed Segmented Context, the Group By

clause and the std:groupwin view

The keyed segmented context create context ... partition by and the group by clause as well as

the built-in std:groupwin view are similar in their ability to group events but very different in their

semantics. This section explains the key differences in their behavior and use.

The keyed segmented context as declared with create context ... partition by and context

select ... creates a new context partition per key value(s). The engine maintains separate

data window views as well as separate aggregations per context partition; thereby the keyed

segmented context applies to both. See Section 4.2.2, “Keyed Segmented Context” for additional

examples.

The group by clause works together with aggregation functions in your statement to produce an

aggregation result per group. In greater detail, this means that when a new event arrives, the

engine applies the expressions in the group by clause to determine a grouping key. If the engine

has not encountered that grouping key before (a new group), the engine creates a set of new

aggregation results for that grouping key and performs the aggregation changing that new set of

aggregation results. If the grouping key points to an existing set of prior aggregation results (an

existing group), the engine performs the aggregation changing the prior set of aggregation results

for that group.

The std:groupwin view is a built-in view that groups events into data windows. The view is

described in greater detail in Section 14.4.2, “Grouped Data Window (groupwin or std:groupwin)”.

Its primary use is to create a separate data window per group, or more generally to create separate

instances of all its sub-views for each grouping key encountered.

The table below summarizes the point:

Table 5.6. Grouping Options

Option Description

Keyed Segmented Context Separate context partition per key value.

Affects all of data windows, aggregations, patterns, etc. (except

variables which are global).

Grouped Data Window

(std:groupwin)

Separate data window per key value.

Chapter 5. EPL Reference: Clauses

124

Option Description

Affects only the data window that is declared next to it.

Group By Clause (group by) Separate aggregation values per key value.

Affects only aggregation values.

Please review the performance section for advice related to performance or memory-use.

The next example shows queries that produce equivalent results. The query using the group by

clause is generally preferable as is easier to read. The second form introduces the stat:uni view

which computes univariate statistics for a given property:

select symbol, avg(price) from StockTickEvent group by symbol

// ... is equivalent to ...

select symbol, average from StockTickEvent#groupwin(symbol)#uni(price)

The next example shows two queries that are NOT equivalent as the length window is ungrouped

in the first query, and grouped in the second query:

select symbol, sum(price) from StockTickEvent#length(10) group by symbol

// ... NOT equivalent to ...

select symbol, sum(price) from StockTickEvent#groupwin(symbol)#length(10)

The key difference between the two statements is that in the first statement the length window is

ungrouped and applies to all events regardless of group. While in the second query each group

gets its own instance of a length window. For example, in the second query events arriving for

symbol "ABC" get a length window of 10 events, and events arriving for symbol "DEF" get their

own length window of 10 events.

5.7. Stabilizing and Controlling Output: the Output

Clause

5.7.1. Output Clause Options

The output clause is optional in Esper and is used to control or stabilize the rate at which events

are output and to suppress output events. The EPL language provides for several different ways

to control output rate.

Here is the syntax for the output clause that specifies a rate in time interval or number of events:

output [after suppression_def]

 [[all | first | last | snapshot] every output_rate [seconds | events]]

[and when terminated]

Output Clause Options

125

An alternate syntax specifies the time period between output as outlined in Section 5.2.1,

“Specifying Time Periods” :

output [after suppression_def]

 [[all | first | last | snapshot] every time_period]

[and when terminated]

A crontab-like schedule can also be specified. The schedule parameters follow the pattern

observer parameters and are further described in Section 7.6.4, “Crontab (timer:at)” :

output [after suppression_def]

 [[all | first | last | snapshot] at

 (minutes, hours, days of month, months, days of week [, seconds])]

[and when terminated]

For use with contexts, in order to trigger output only when a context partition terminates, specify

when terminated as further described in Section 4.5, “Output When Context Partition Ends”:

output [after suppression_def]

 [[all | first | last | snapshot] when terminated

 [and termination_expression]

 [then set variable_name = assign_expression [, variable_name =

 assign_expression [,...]]]

]

Last, output can be controlled by an expression that may contain variables, user-defined functions

and information about the number of collected events. Output that is controlled by an expression

is discussed in detail below.

The after keyword and suppression_def can appear alone or together with further output

conditions and suppresses output events.

For example, the following statement outputs, every 60 seconds, the total price for all orders in

the 30-minute time window:

select sum(price) from OrderEvent#time(30 min) output snapshot every 60 seconds

The all keyword is the default and specifies that all events in a batch should be output, each

incoming row in the batch producing an output row. Note that for statements that group via the

group by clause, the all keyword provides special behavior as below.

The first keyword specifies that only the first event in an output batch is to be output. Using

the first keyword instructs the engine to output the first matching event as soon as it arrives,

and then ignores matching events for the time interval or number of events specified. After the

time interval elapsed, or the number of matching events has been reached, the next first matching

Chapter 5. EPL Reference: Clauses

126

event is output again and the following interval the engine again ignores matching events. For

statements that group via the group by clause, the first keywords provides special behavior

as below.

The last keyword specifies to only output the last event at the end of the given time interval or

after the given number of matching events have been accumulated. Again, for statements that

group via the group by clause the last keyword provides special behavior as below.

The snapshot keyword is often used with unbound streams and/or aggregation to output

current aggregation results. While the other keywords control how a batch of events between

output intervals is being considered, the snapshot keyword outputs current state of a statement

independent of the last batch. Its output is comparable to the iterator method provided by

a statement. More information on output snapshot can be found in Section 5.7.1.3, “Output

Snapshot”.

The output_rate is the frequency at which the engine outputs events. It can be specified in terms

of time or number of events. The value can be a number to denote a fixed output rate, or the

name of a variable whose value is the output rate. By means of a variable the output rate can be

controlled externally and changed dynamically at runtime.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert

and remove stream output for the various output clause keywords.

For use with contexts you may append the keywords and when terminated to trigger output at

the rate defined and in addition trigger output when the context partition terminates. Please see

Section 4.5, “Output When Context Partition Ends” for details.

The time interval can also be specified in terms of minutes; the following statement is identical

to the first one.

select * from StockTickEvent output every 1.5 minutes

A second way that output can be stabilized is by batching events until a certain number of events

have been collected:

select * from StockTickEvent output every 5 events

Additionally, event output can be further modified by the optional last keyword, which causes

output of only the last event to arrive into an output batch.

select * from StockTickEvent output last every 5 events

Output Clause Options

127

Using the first keyword you can be notified at the start of the interval. The allows to watch for

situations such as a rate falling below a threshold and only be informed every now and again after

the specified output interval, but be informed the moment it first happens.

select * from TickRate where rate<100 output first every 60 seconds

A sample statement using the Unix "crontab"-command schedule is shown next. See

Section 7.6.4, “Crontab (timer:at)” for details on schedule syntax. Here, output occurs every 15

minutes from 8am to 5:45pm (hours 8 to 17 at 0, 15, 30 and 45 minutes past the hour):

select symbol, sum(price) from StockTickEvent group by symbol output at

 (*/15, 8:17, *, *, *)

5.7.1.1. Controlling Output Using an Expression

Output can also be controlled by an expression that may check variable values, use user-defined

functions and query built-in properties that provide additional information. The synopsis is as

follows:

output [after suppression_def]

 [[all | first | last | snapshot] when trigger_expression

 [then set variable_name = assign_expression [, variable_name

 = assign_expression [,...]]]

 [and when terminated

 [and termination_expression]

 [then set variable_name = assign_expression [, variable_name =

 assign_expression [,...]]]

]

The when keyword must be followed by a trigger expression returning a boolean value of true

or false, indicating whether to output. Use the optional then keyword to change variable values

after the trigger expression evaluates to true. An assignment expression assigns a new value to

variable(s).

For use with contexts you may append the keywords and when terminated to also trigger

output when the context partition terminates. Please see Section 4.5, “Output When Context

Partition Ends” for details. You may optionally specify a termination expression. If that expression

is provided the engine evaluates the expression when the context partition terminates: The

evaluation result of true means output occurs when the context partition terminates, false means

no output occurs when the context partition terminates. You may specify then set followed by a

list of assignments to assign variables. Assignments are executed on context partition termination

regardless of the termination expression, if present.

Chapter 5. EPL Reference: Clauses

128

Lets consider an example. The next statement assumes that your application has defined a

variable by name OutputTriggerVar of boolean type. The statement outputs rows only when the

OutputTriggerVar variable has a boolean value of true:

select sum(price) from StockTickEvent output when OutputTriggerVar = true

The engine evaluates the trigger expression when streams and data views post one or more

insert or remove stream events after considering the where clause, if present. It also evaluates

the trigger expression when any of the variables used in the trigger expression, if any, changes

value. Thus output occurs as follows:

1. When there are insert or remove stream events and the when trigger expression evaluates to

true, the engine outputs the resulting rows.

2. When any of the variables in the when trigger expression changes value, the engine evaluates

the expression and outputs results. Result output occurs within the minimum time interval of

timer resolution.

By adding a then part to the EPL, we can reset any variables after the trigger expression evaluated

to true:

select sum(price) from StockTickEvent

 output when OutputTriggerVar = true

 then set OutputTriggerVar = false

Expressions in the when and then may, for example, use variables, user defined functions or any

of the built-in named properties that are described in the below list.

The following built-in properties are available for use:

Table 5.7. Built-In Properties for Use with Output When

Built-In Property Name Description

last_output_timestamp Timestamp when the last output occurred for the statement; Initially

set to time of statement creation

count_insert Number of insert stream events

count_insert_total Number of insert stream events in total (not reset when output

occurs).

count_remove Number of remove stream events

count_remove_total Number of remove stream events in total (not reset when output

occurs).

The values provided by count_insert and count_remove are non-continues: The number

returned for these properties may 'jump' up rather then count up by 1. The counts reset to zero

upon output.

Output Clause Options

129

The following restrictions apply to expressions used in the output rate clause:

• Event property names cannot be used in the output clause.

• Aggregation functions cannot be used in the output clause.

• The prev previous event function and the prior prior event function cannot be used in the

output clause.

5.7.1.2. Suppressing Output With After

The after keyword and its time period or number of events parameters is optional and can occur

after the output keyword, either alone or with output conditions as listed above.

The synopsis of after is as follows:

output after time_period | number events [...]

When using after either alone or together with further output conditions, the engine discards all

output events until the time period passed as measured from the start of the statement, or until

the number of output events are reached. The discarded events are not output and do not count

towards any further output conditions if any are specified.

For example, the following statement outputs every minute the total price for all orders in the 30-

minute time window but only after 30 minutes have passed:

select sum(price) from OrderEvent#time(30 min) output after 30 min snapshot

 every 1 min

An example in which after occur alone is below, in a statement that outputs total price for all

orders in the last minute but only after 1 minute passed, each time an event arrives or leaves

the data window:

select sum(price) from OrderEvent#time(1 min) output after 1 min

To demonstrate after when used with an event count, this statement find pairs of orders with the

same id but suppresses output for the first 5 pairs:

select * from pattern[every o=OrderEvent->p=OrderEvent(id=o.id)] output after

 5 events

5.7.1.3. Output Snapshot

Chapter 5. EPL Reference: Clauses

130

For fully aggregated and un-grouped statements, output snapshot outputs a single row with

current aggregation value(s).

For aggregated ungrouped and grouped statements, as well as for unaggregated statements,

output snapshot considers events held by the data window and outputs a row for each event. If

the statement specifies no data window or a join results in no rows, the output is no rows.

For fully aggregated and grouped statements that select from a single stream (or pattern, non-

joining) and that do not specify a data window, the engine outputs current aggregation results

for all groups. For fully aggregated and grouped statements with a join and/or data windows the

output consists of aggregation values according to events held in the data window (single stream)

or that are join results (join).

When the from-clause lists only tables, use output snapshot to output table contents.

5.7.2. Aggregation, Group By, Having and Output clause

interaction

Remove stream events can also be useful in conjunction with aggregation and the output

clause: When the engine posts remove stream events for fully-aggregated queries, it presents the

aggregation state before the expiring event leaves the data window. Your application can thus

easily obtain a delta between the new aggregation value and the prior aggregation value.

The engine evaluates the having-clause at the granularity of the data posted by views. That is, if

you utilize a time window and output every 10 events, the having clause applies to each individual

event or events entering and leaving the time window (and not once per batch of 10 events).

The output clause interacts in two ways with the group by and having clauses. First, in the

output every n events case, the number n refers to the number of events arriving into the

group by clause. That is, if the group by clause outputs only 1 event per group, or if the arriving

events don't satisfy the having clause, then the actual number of events output by the statement

could be fewer than n.

Second, the last, all and first keywords have special meanings when used in a statement

with aggregate functions and the group by clause:

• When no keyword is specified, the engine produces an output row for each row in the batch

or when using group-by then an output per group only for those groups present in the batch,

following Section 3.7.2, “Output for Aggregation and Group-By”.

• The all keyword (the default) specifies that the most recent data for all groups seen so far

should be output, whether or not these groups' aggregate values have just been updated

• The last keyword specifies that only groups whose aggregate values have been updated with

the most recent batch of events should be output.

• The first keyword specifies that only groups whose aggregate values have been updated

with the most recent batch of events should be output following the defined frequency, keeping

frequency state for each group.

Runtime Considerations

131

• The snapshot keyword does not consider the recent batch and has special behavior as

discussed in Section 5.7.1.3, “Output Snapshot”.

Please consult the Appendix A, Output Reference and Samples for detailed information on insert

and remove stream output for aggregation and group-by.

By adding an output rate limiting clause to a statement that contains a group by clause we can

control output of groups to obtain one row for each group, generating an event per group at the

given output frequency.

The next statement outputs total price per symbol cumulatively (no data window was used here).

As it specifies the all keyword, the statement outputs the current value for all groups seen so far,

regardless of whether the group was updated in the last interval. Output occurs after an interval

of 5 seconds passed and at the end of each subsequent interval:

select symbol, sum(price) from StockTickEvent group by symbol output all every

 5 seconds

The below statement outputs total price per symbol considering events in the last 3 minutes.

When events leave the 3-minute data window output also occurs as new aggregation values are

computed. The last keyword instructs the engine to output only those groups that had changes.

Output occurs after an interval of 10 seconds passed and at the end of each subsequent interval:

select symbol, sum(price) from StockTickEvent#time(3 min)

group by symbol output last every 10 seconds

This statement also outputs total price per symbol considering events in the last 3 minutes. The

first keyword instructs the engine to output as soon as there is a new value for a group. After

output for a given group the engine suppresses output for the same group for 10 seconds and

does not suppress output for other groups. Output occurs again for that group after the interval

when the group has new value(s):

select symbol, sum(price) from StockTickEvent#time(3 min)

group by symbol output first every 10 seconds

5.7.3. Runtime Considerations

Output rate limiting provides output events to your application in regular intervals. Between

intervals, the engine may use a buffer to hold data until the output condition is reached, as

described below. If your application has high-volume streams, you may need to be mindful of the

memory needs for buffers especially if the output condition triggers infrequently.

The output clause with the snapshot keyword does not require a buffer for any type of query.

Chapter 5. EPL Reference: Clauses

132

The output clause with the first keyword does not require a buffer for any type of query.

We use the term change set to describe all insert and remove stream events that occur since the

last triggering of the output condition. The change set is one type of buffer as mentioned above.

You can override the default behavior for some types of queries by specifying a hint.

Please see Section 3.7.2, “Output for Aggregation and Group-By” for information on the types of

queries discussed below.

5.7.3.1. For Un-aggregated and Un-grouped Queries

5.7.3.1.1. Output Last

For queries that define output last the engine retains only the first remove stream event and

the last insert stream event, both matching the having-clause, if present, to compute insert and

remove stream output when the output condition triggers.

5.7.3.1.2. Output All

The engine by default retains the change set and computes output from the change set at the time

the output condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

• Upon arrival of any row the engine applies the having-clause and retains only matching events,

or retains all events if there is no having-clause.

• Upon triggering of the output condition the engine computes the insert and remove stream

output events according to the select-clause for output.

5.7.3.2. For Fully Aggregated and Un-grouped Queries

5.7.3.2.1. Output Last

By default, the engine retains the change set and computes output from the change set at the

time the output condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

• Upon arrival of the first row since the last triggering of the output condition the engine

computes the remove stream output event according to the select-clause for later output (when

applicable).

• Upon triggering of the output condition the engine computes the insert stream output event

according to the select-clause for output.

Runtime Considerations

133

5.7.3.2.2. Output All

The engine retains the change set and computes output from the change set at the time the output

condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

• Upon arrival of rows the engine applies the having-clause and computes the insert and remove

stream output event according to the select-clause for later output (when applicable).

• Upon triggering of the output condition the engine outputs the insert and remove stream output

events.

5.7.3.3. For Aggregated and Un-Grouped Queries

5.7.3.3.1. Output Last

By default, the engine retains the change set and computes output from the change set at the

time the output condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

• Upon arrival of the first row since the last triggering of the output condition the engine computes

the insert and remove stream output event according to the having-clause (if present) and the

select-clause for later output (when applicable), retaining only the last computed insert and

remove stream output event.

• Upon triggering of the output condition the engine outputs the precomputed last insert stream

and remove stream output event.

5.7.3.3.2. Output All

The engine retains the change set and computes output from the change set at the time the output

condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

• Upon arrival of rows the engine computes the insert and remove stream output events according

to the having-clause (if present) and the select-clause for later output, retaining only the

computed insert and remove stream output events.

• Upon triggering of the output condition the engine outputs the retained output events.

5.7.3.4. For Fully Aggregated and Grouped Queries (Includes Rollup)

5.7.3.4.1. Output Last

By default, the engine retains the change set and computes output from the change set at the

time the output condition triggers, after which it discards the change set.

Chapter 5. EPL Reference: Clauses

134

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

• Upon arrival of the first row for a given group since the last triggering of the output condition the

engine computes the remove stream output event for that group according to the select-clause

for later output (when applicable), and also retains a single insert stream event per group.

• Upon triggering of the output condition the engine uses the retained insert stream events per

group to compute output events according to the select-clause.

5.7.3.4.2. Output All

The engine retains the change set and computes output from the change set at the time the output

condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

• The engine retains, for each group, a row to represent the group.

• Upon arrival of rows the engine computes the remove stream output events according to the

having-clause (if present) and the select-clause for later output.

• Upon triggering of the output condition the engine computes the insert stream output events

according to the having-clause (if present) and the select-clause for output, for each group.

5.7.3.5. For Aggregated and Grouped Queries

5.7.3.5.1. Output Last

By default, the engine retains the change set and computes output from the change set at the

time the output condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

• Upon arrival of the first row for a given group since the last triggering of the output condition

the engine computes the insert and remove stream output event for that group according to the

select-clause for later output (when applicable), and retains a last insert and remove stream

event per group.

• Upon triggering of the output condition the engine outputs the retained insert and remove stream

output events per group.

5.7.3.5.2. Output All

The engine retains the change set and computes output from the change set at the time the output

condition triggers, after which it discards the change set.

You can instruct the engine to not retain the change set by specifying the

@Hint('enable_outputlimit_opt') hint only for queries that do not have an order by-clause:

Sorting Output: the Order By Clause

135

• The engine retains, for each group, a row to represent the group.

• Upon arrival of rows the engine computes the insert and remove stream output events according

to the having-clause (if present) and the select-clause for later output.

• Upon triggering of the output condition the engine computes insert stream output events

according to the having-clause (if present) and the select-clause for output for each group

that does not have output events yet, and outputs all events.

5.8. Sorting Output: the Order By Clause

The order by clause is optional. It is used for ordering output events by their properties, or by

expressions involving those properties. .

For example, the following statement outputs batches of 5 or more stock tick events that are sorted

first by price ascending and then by volume ascending:

select symbol from StockTickEvent#time(60 sec)

output every 5 events

order by price, volume

Here is the syntax for the order by clause:

order by expression [asc | desc] [, expression [asc | desc]] [, ...]

If the order by clause is absent then the engine still makes certain guarantees about the ordering

of output:

• If the statement is not a join, does not group via group by clause and does not declare grouped

data windows via std:groupwin view, the order in which events are delivered to listeners and

through the iterator pull API is the order of event arrival.

• If the statement is a join or outer join, or groups, then the order in which events are delivered

to listeners and through the iterator pull API is not well-defined. Use the order by clause if

your application requires events to be delivered in a well-defined order.

Esper places the following restrictions on the expressions in the order by clause:

1. All aggregate functions that appear in the order by clause must also appear in the select

expression.

Otherwise, any kind of expression that can appear in the select clause, as well as any name

defined in the select clause, is also valid in the order by clause.

By default all sort operations on string values are performed via the compare method and are

thus not locale dependent. To account for differences in language or locale, see Section 17.4.24,

“Engine Settings related to Language and Locale” to change this setting.

Chapter 5. EPL Reference: Clauses

136

5.9. Limiting Row Count: the Limit Clause

The limit clause is typically used together with the order by and output clause to limit your

query results to those that fall within a specified range. You can use it to receive the first given

number of result rows, or to receive a range of result rows.

There are two syntaxes for the limit clause, each can be parameterized by integer constants or

by variable names. The first syntax is shown below:

limit row_count [offset offset_count]

The required row_count parameter specifies the number of rows to output. The row_count can be

an integer constant and can also be the name of the integer-type variable to evaluate at runtime.

The optional offset_count parameter specifies the number of rows that should be skipped (offset)

at the beginning of the result set. A variable can also be used for this parameter.

The next sample EPL query outputs the top 10 counts per property 'uri' every 1 minute.

select uri, count(*) from WebEvent

group by uri

output snapshot every 1 minute

order by count(*) desc

limit 10

The next statement demonstrates the use of the offset keyword. It outputs ranks 3 to 10 per

property 'uri' every 1 minute:

select uri, count(*) from WebEvent

group by uri

output snapshot every 1 minute

order by count(*) desc

limit 8 offset 2

The second syntax for the limit clause is for SQL standard compatibility and specifies the offset

first, followed by the row count:

limit offset_count[, row_count]

The following are equivalent:

limit 8 offset 2

// ...equivalent to

Merging Streams and Continuous Insertion: the Insert Into Clause

137

limit 2, 8

A negative value for row_count returns an unlimited number or rows, and a zero value returns

no rows. If variables are used, then the current variable value at the time of output dictates the

row count and offset. A variable returning a null value for row_count also returns an unlimited

number or rows.

A negative value for offset is not allowed. If your variable returns a negative or null value for offset

then the value is assumed to be zero (i.e. no offset).

The iterator pull API also honors the limit clause, if present.

5.10. Merging Streams and Continuous Insertion: the

Insert Into Clause

The insert into clause is optional in Esper. The clause can be specified to make the results

of a statement available as an event stream for use in further statements, or to insert events into

a named window or table. The clause can also be used to merge multiple event streams to form

a single stream of events.

The syntax for the insert into clause is as follows:

insert [istream | irstream | rstream] into event_stream_name

 [([property_name [, property_name]])]

The istream (default) and rstream keywords are optional. If no keyword or the istream keyword

is specified, the engine supplies the insert stream events generated by the statement. The insert

stream consists of the events entering the respective window(s) or stream(s). If the rstream

keyword is specified, the engine supplies the remove stream events generated by the statement.

The remove stream consists of the events leaving the respective window(s).

If your application specifies irstream, the engine inserts into the new stream both the insert and

remove stream. This is often useful in connection with the istream built-in function that returns an

inserted/removed boolean indicator for each event, see Section 10.1.10, “The Istream Function”.

The event_stream_name is an identifier that names the event stream (and also implicitly names

the types of events in the stream) generated by the engine. It may also specify a named window

name or a table name. The identifier can be used in further statements to filter and process events

of that event stream, unless inserting into a table. The insert into clause can consist of just an

event stream name, or an event stream name and one or more property names.

The engine also allows listeners to be attached to a statement that contain an insert into clause.

Listeners receive all events posted to the event stream.

To merge event streams, simply use the same event_stream_name identifier in all EPL statements

that merge their result event streams. Make sure to use the same number and names of event

properties and event property types match up.

Chapter 5. EPL Reference: Clauses

138

Esper places the following restrictions on the insert into clause:

1. The number of elements in the select clause must match the number of elements in the insert

into clause if the clause specifies a list of event property names

2. If the event stream name has already been defined by a prior statement or configuration, and

the event property names and/or event types do not match, an exception is thrown at statement

creation time.

The following sample inserts into an event stream by name CombinedEvent:

insert into CombinedEvent

select A.customerId as custId, A.timestamp - B.timestamp as latency

 from EventA#time(30 min) A, EventB#time(30 min) B

 where A.txnId = B.txnId

Each event in the CombinedEvent event stream has two event properties named "custId" and

"latency". The events generated by the above statement can be used in further statements, such

as shown in the next statement:

select custId, sum(latency)

 from CombinedEvent#time(30 min)

 group by custId

The example statement below shows the alternative form of the insert into clause that explicitly

defines the property names to use.

insert into CombinedEvent (custId, latency)

select A.customerId, A.timestamp - B.timestamp

...

The rstream keyword can be useful to indicate to the engine to generate only remove stream

events. This can be useful if we want to trigger actions when events leave a window rather

then when events enter a window. The statement below generates CombinedEvent events when

EventA and EventB leave the window after 30 minutes.

insert rstream into CombinedEvent

select A.customerId as custId, A.timestamp - B.timestamp as latency

 from EventA#time(30 min) A, EventB#time(30 min) B

 where A.txnId = B.txnId

Transposing a Property To a Stream

139

The insert into clause can be used in connection with patterns to provide pattern results to

further statements for analysis:

insert into ReUpEvent

select linkUp.ip as ip

from pattern [every linkDown=LinkDownEvent ->

 linkUp=LinkUpEvent(ip=linkDown.ip)]

5.10.1. Transposing a Property To a Stream

Sometimes your events may carry properties that are themselves event objects. Therefore EPL

offers a special syntax to insert the value of a property itself as an event into a stream:

insert into stream_name select property_name.* from ...

This feature is only supported for JavaBean events and for Map and Object-array (Object[]) event

types that associate an event type name with the property type. It is not supported for XML events.

Nested property names are also not supported.

In this example, the class Summary with properties bid and ask that are of type Quote is:

public class Summary {

 private Quote bid;

 private Quote ask;

 ...

The statement to populate a stream of Quote events is thus:

insert into MyBidStream select bid.* from Summary

5.10.2. Merging Streams By Event Type

The insert into clause allows to merge multiple event streams into a event single stream.

The clause names an event stream to insert into by specifing an event_stream_name. The first

statement that inserts into the named stream defines the stream's event types. Further statements

that insert into the same event stream must match the type of events inserted into the stream as

declared by the first statement.

One approach to merging event streams specifies individual colum names either in the select

clause or in the insert into clause of the statement. This approach has been shown in earlier

examples.

Chapter 5. EPL Reference: Clauses

140

Another approach to merging event streams specifies the wildcard (*) in the select clause (or the

stream wildcard) to select the underlying event. The events in the event stream must then have

the same event type as generated by the from clause.

Assume a statement creates an event stream named MergedStream by selecting OrderEvent

events:

insert into MergedStream select * from OrderEvent

A statement can use the stream wildcard selector to select only OrderEvent events in a join:

insert into MergedStream select ord.* from ItemScanEvent, OrderEvent as ord

And a statement may also use an application-supplied user-defined function to convert events to

OrderEvent instances:

insert into MergedStream select MyLib.convert(item) from ItemScanEvent as item

Esper specifically recognizes a conversion function as follows: A conversion function must be

the only selected column, and it must return either a Java object or java.util.Map or Object[]

(object array). Your EPL should not use the as keyword to assign a column name.

5.10.3. Merging Disparate Types of Events: Variant Streams

A variant stream is a predefined stream into which events of multiple disparate event types can

be inserted.

A variant stream name may appear anywhere in a pattern or from clause. In a pattern, a filter

against a variant stream matches any events of any of the event types inserted into the variant

stream. In a from clause including for named windows, views declared onto a variant stream may

hold events of any of the event types inserted into the variant stream.

A variant stream is thus useful in problems that require different types of event to be treated the

same.

Variant streams can be declared by means of create variant schema or can be predefined via

runtime or initialization-time configuration as described in Section 17.4.30, “Variant Stream”. Your

application may declare or predefine variant streams to carry events of a limited set of event types,

or you may choose the variant stream to carry any and all types of events. This choice affects

what event properties are available for consuming statements or patterns of the variant stream.

Assume that an application predefined a variant stream named OrderStream to carry only

ServiceOrder and ProductOrder events. An insert into clause inserts events into the variant

stream:

Decorated Events

141

insert into OrderStream select * from ServiceOrder

insert into OrderStream select * from ProductOrder

Here is a sample statement that consumes the variant stream and outputs a total price per

customer id for the last 30 seconds of ServiceOrder and ProductOrder events:

select customerId, sum(price) from OrderStream#time(30 sec) group by customerId

If your application predefines the variant stream to hold specific type of events, as the sample

above did, then all event properties that are common to all specified types are visible on the variant

stream, including nested, indexed and mapped properties. For access to properties that are only

available on one of the types, the dynamic property syntax must be used. In the example above,

the customerId and price were properties common to both ServiceOrder and ProductOrder

events.

For example, here is a consuming statement that selects a service duraction property that only

ServiceOrder events have, and that must therefore be casted to double and null values removed

in order to aggregate:

select customerId, sum(coalesce(cast(serviceDuraction?, double), 0))

from OrderStream#time(30 sec) group by customerId

If your application predefines a variant stream to hold any type of events (the any type variance),

then all event properties of the variant stream are effectively dynamic properties.

For example, an application may define an OutgoingEvents variant stream to hold any type of

event. The next statement is a sample consumer of the OutgoingEvents variant stream that looks

for the destination property and fires for each event in which the property exists with a value

of 'email':

select * from OutgoingEvents(destination = 'email')

5.10.4. Decorated Events

Your select clause may use the '*' wildcard together with further expressions to populate a stream

of events. A sample statement is:

Chapter 5. EPL Reference: Clauses

142

insert into OrderStream select *, price*units as linePrice from PurchaseOrder

When using wildcard and selecting additional expression results, the engine produces what is

called decorating events for the resulting stream. Decorating events add additional property values

to an underlying event.

In the above example the resulting OrderStream consists of underlying PurchaseOrder events

decorated by a linePrice property that is a result of the price*units expression.

In order to use insert into to insert into an existing stream of decorated events, your underlying

event type must match, and all additional decorating property names and types of the select

clause must also match.

5.10.5. Event as a Property

Your select clause may use the stream name to populate a stream of events in which each event

has properties that are itself an event. A sample statement is:

insert into CompositeStream select order, service, order.price+service.price as

 totalPrice

from PurchaseOrder#lastevent as order, ServiceEvent#lastevent as service

When using the stream name (or tag in patterns) in the select-clause, the engine produces

composite events: One or more of the properties of the composite event are events themselves.

In the above example the resulting CompositeStream consists of 3 columns: the PurchaseOrder

event, the ServiceEvent event and the totalPrice property that is a result of the order.price

+service.price expression.

In order to use insert into to insert into an existing stream of events in which properties are

themselves events, each event column's event type must match, and all additional property names

and types of the select clause must also match.

5.10.6. Instantiating and Populating an Underlying Event Object

Your insert into clause may also directly instantiate and populate application underlying event

objects or Map or Object[] event objects. This is described in greater detail in Section 2.10, “Event

Objects Instantiated and Populated by Insert Into”.

If instead you have an expression that returns an event object, please read on to the next section.

5.10.7. Transposing an Expression Result

You can transpose an object returned as an expression result into a stream using the transpose

function as described further in Section 10.4, “Select-Clause transpose Function”.

Select-Clause Expression And Inserted-Into Column Event Type

143

5.10.8. Select-Clause Expression And Inserted-Into Column

Event Type

When you declare the inserted-into event type in advance to the statement that inserts, the engine

compares the inserted-into event type information to the return type of expressions in the select-

clause. The comparison uses the column alias assigned to each select-clause expression using

the as keyword.

When the inserted-into column type is an event type and when using a subquery or the new

operator, the engine compares column names assigned to subquery columns or new operator

columns.

For example, assume a PurchaseOrder event type that has a property called items that consists

of Item rows:

create schema Item(name string, price double)

create schema PurchaseOrder(orderId string, items Item[])

Declare a statement that inserts into the PurchaseOrder stream:

insert into PurchaseOrder

select '001' as orderId, new {name='i1', price=10} as items

from TriggerEvent

The alias assigned to the first and second expression in the select-clause, namely orderId and

items, both match the event property names of the Purchase Order event type. The column

names provided to the new operator also both match the event property names of the Item event

type.

When the event type declares the column as a single value (and not an array) and when the

select-clause expression produces a multiple rows, the engine only populate the first row.

Consider a PurchaseOrder event type that has a property called item that consists of a single

Item event:

create schema PurchaseOrder(orderId string, items Item)

The sample subquery below populates only the very first event, discarding remaining subquery

result events, since the items property above is declared as holding a single Item-typed event

only (versus Item[] to hold multiple Item-typed events).

Chapter 5. EPL Reference: Clauses

144

insert into PurchaseOrder select

(select 'i1' as name, 10 as price from HistoryEvent#length(2)) as items

from TriggerEvent

Consider using a subquery with filter, or one of the enumeration methods to select a specific

subquery result row.

5.10.9. Insert Into for Event Types without Properties

When using insert-into and the type information for the inserted-into stream exists and the type

has no properties, specify a select-clause that selects a single column of value null and that

provides no column name.

For example, the next EPL declares a TriggerStream type that has no event properties:

create schema TriggerStream ()

To populate events of type TriggerStream, let the select-clause simply select null, like this:

insert into TriggerStream select null from ...

This example uses a pattern to populate a TrggerStream event every 10 seconds:

insert into TriggerStream select null from pattern[every timer:interval(10 sec)]

5.11. Subqueries

A subquery is a select within another statement. Esper supports subqueries in the select clause,

where clause, having clause and in stream and pattern filter expressions. Subqueries provide an

alternative way to perform operations that would otherwise require complex joins. Subqueries can

also make statements more readable then complex joins.

Esper supports both simple subqueries as well as correlated subqueries. In a simple subquery,

the inner query is not correlated to the outer query. Here is an example simple subquery within

a select clause:

select assetId, (select zone from ZoneClosed#lastevent) as lastClosed from

 RFIDEvent

Subqueries

145

If the inner query is dependent on the outer query, we will have a correlated subquery. An example

of a correlated subquery is shown below. Notice the where clause in the inner query, where the

condition involves a stream from the outer query:

select * from RfidEvent as RFID where 'Dock 1' =

 (select name from Zones#unique(zoneId) where zoneId = RFID.zoneId)

The example above shows a subquery in the where clause. The statement selects RFID events

in which the zone name matches a string constant based on zone id. The statement uses the

view std:unique to guarantee that only the last event per zone id is held from processing by

the subquery.

The next example is a correlated subquery within a select clause. In this statement the select

clause retrieves the zone name by means of a subquery against the Zones set of events correlated

by zone id:

select zoneId, (select name from Zones#unique(zoneId)

 where zoneId = RFID.zoneId) as name from RFIDEvent

Note that when a simple or correlated subquery returns multiple rows, the engine returns a null

value as the subquery result. To limit the number of events returned by a subquery consider using

one of the views std:lastevent, std:unique and std:groupwin or aggregation functions or the

multi-row and multi-column selects as described below.

The select clause of a subquery also allows wildcard selects, which return as an event property

the underlying event object of the event type as defined in the from clause. An example:

select (select * from MarketData#lastevent) as md

 from pattern [every timer:interval(10 sec)]

The output events to the statement above contain the underlying MarketData event in a property

named "md". The statement populates the last MarketData event into a property named "md"

every 10 seconds following the pattern definition, or populates a null value if no MarketData

event has been encountered so far.

Aggregation functions may be used in the select clause of the subselect as this example outlines:

select * from MarketData

where price > (select max(price) from MarketData(symbol='GOOG')#lastevent)

Chapter 5. EPL Reference: Clauses

146

As the sub-select expression is evaluated first (by default), the query above actually never fires

for the GOOG symbol, only for other symbols that have a price higher then the current maximum

for GOOG. As a sidenote, the insert into clause can also be handy to compute aggregation

results for use in multiple subqueries.

When using aggregation functions in a correlated subselect the engine computes the aggregation

based on data window (if provided), named window or table contents matching the where-clause.

The following example compares the quantity value provided by the current order event against

the total quantity of all order events in the last 1 hour for the same client.

select * from OrderEvent oe

where qty >

 (select sum(qty) from OrderEvent#time(1 hour) pd

 where pd.client = oe.client)

Filter expressions in a pattern or stream may also employ subqueries. Subqueries can be

uncorrelated or can be correlated to properties of the stream or to properties of tagged events in

a pattern. Subqueries may reference named windows and tables as well.

The following example filters BarData events that have a close price less then the last moving

average (field movAgv) as provided by stream SMA20Stream (an uncorrelated subquery):

select * from BarData(ticker='MSFT', closePrice <

 (select movAgv from SMA20Stream(ticker='MSFT')#lastevent))

A few generic examples follow to demonstrate the point. The examples use short event and

property names so they are easy to read. Assume A and B are streams and DNamedWindow is a

named window, and ETable is a table and properties a_id, b_id, d_id, e_id, a_val, b_val,

d_val, e_val respectively:

// Sample correlated subquery as part of stream filter criteria

select * from A(a_val in

 (select b_val from B#unique(b_val) as b where a.a_id = b.b_id)) as a

// Sample correlated subquery against a named window

select * from A(a_val in

 (select d_val from DNamedWindow as d where a.a_id = d.d_id)) as a

// Sample correlated subquery in the filter criteria as part of a pattern,

 querying a named window

Subqueries

147

select * from pattern [

 a=A -> b=B(bvalue =

 (select d_val from DNamedWindow as d where d.d_id = b.b_id and d.d_id =

 a.a_id))

]

// Sample correlated subquery against a table

select * from A(a_val in

 (select e_val from ETable as e where a.a_id = e.e_id)) as a

Subquery state starts to accumulate as soon as a statement starts (and not only when a pattern-

subexpression activates).

The following restrictions apply to subqueries:

1. Subqueries can only consist of a select clause, a from clause, a where clause, a group by

clause and a having clause. Joins, outer-joins and output rate limiting are not permitted within

subqueries.

2. If using aggregation functions in a subquery, note these limitations:

a. None of the properties of the correlated stream(s) can be used within aggregation functions.

b. The properties of the subselect stream must all be within aggregation functions.

3. With the exception of subqueries against named windows and tables and subqueries that are

both uncorrelated and fully-aggregated, the subquery stream definition must define a data

window to limit subquery results, for the purpose of identifying the events held for subquery

execution.

4. The having-clause, if present, requires that properties of the selected stream are aggregated

and does not allow un-aggregated properties of the selected stream. You may use the first

aggregation function to obtain properties of the selected stream instead.

The order of evaluation of subqueries relative to the containing statement is guaranteed: If the

containing statement and its subqueries are reacting to the same type of event, the subquery will

receive the event first before the containing statement's clauses are evaluated. This behavior can

be changed via configuration. The order of evaluation of subqueries is not guaranteed between

subqueries.

Performance of your statement containing one or more subqueries principally depends on two

parameters. First, if your subquery correlates one or more columns in the subquery stream with

the enclosing statement's streams, the engine automatically builds the appropriate indexes for fast

row retrieval based on the key values correlated (joined). The second parameter is the number of

rows found in the subquery stream and the complexity of the filter criteria (where clause), as each

row in the subquery stream must evaluate against the where clause filter.

Chapter 5. EPL Reference: Clauses

148

5.11.1. The 'exists' Keyword

The exists condition is considered "to be met" if the subquery returns at least one row. The not

exists condition is considered true if the subquery returns no rows.

The synopsis for the exists keyword is as follows:

exists (subquery)

Let's take a look at a simple example. The following is an EPL statement that uses the exists

condition:

select assetId from RFIDEvent as RFID

 where exists (select * from Asset#unique(assetId) where assetId = RFID.assetId)

This select statement will return all RFID events where there is at least one event in Assets unique

by asset id with the same asset id.

5.11.2. The 'in' and 'not in' Keywords

The in subquery condition is true if the value of an expression matches one or more of the values

returned by the subquery. Consequently, the not in condition is true if the value of an expression

matches none of the values returned by the subquery.

The synopsis for the in keyword is as follows:

expression in (subquery)

The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the in subquery condition:

select assetId from RFIDEvent

 where zone in (select zone from ZoneUpdate(status = 'closed')#time(10 min))

The above statement demonstrated the in subquery to select RFID events for which the zone

status is in a closed state.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at

least one right-hand row yields null, the result of the in construct will be null, not false (or true for

not-in). This is in accordance with SQL's normal rules for Boolean combinations of null values.

The 'any' and 'some' Keywords

149

5.11.3. The 'any' and 'some' Keywords

The any subquery condition is true if the expression returns true for one or more of the values

returned by the subquery.

The synopsis for the any keyword is as follows:

expression operator any (subquery)

expression operator some (subquery)

The left-hand expression is evaluated and compared to each row of the subquery result using

the given operator, which must yield a Boolean result. The result of any is "true" if any true result

is obtained. The result is "false" if no true result is found (including the special case where the

subquery returns no rows).

The operator can be any of the following values: =, !=, <>, <, <=, >, >=.

The some keyword is a synonym for any. The in construct is equivalent to = any.

The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the any subquery condition:

select * from ProductOrder as ord

 where quantity < any

 (select minimumQuantity from MinimumQuantity#keepall)

The above query compares ProductOrder event's quantity value with all rows from the

MinimumQuantity stream of events and returns only those ProductOrder events that have a

quantity that is less then any of the minimum quantity values of the MinimumQuantity events.

Note that if there are no successes and at least one right-hand row yields null for the operator's

result, the result of the any construct will be null, not false. This is in accordance with SQL's normal

rules for Boolean combinations of null values.

5.11.4. The 'all' Keyword

The all subquery condition is true if the expression returns true for all of the values returned by

the subquery.

The synopsis for the all keyword is as follows:

expression operator all (subquery)

The left-hand expression is evaluated and compared to each row of the subquery result using

the given operator, which must yield a Boolean result. The result of all is "true" if all rows yield

true (including the special case where the subquery returns no rows). The result is "false" if any

Chapter 5. EPL Reference: Clauses

150

false result is found. The result is null if the comparison does not return false for any row, and

it returns null for at least one row.

The operator can be any of the following values: =, !=, <>, <, <=, >, >=.

The not in construct is equivalent to != all.

The right-hand side subquery must return exactly one column.

The next statement demonstrates the use of the all subquery condition:

select * from ProductOrder as ord

 where quantity < all

 (select minimumQuantity from MinimumQuantity#keepall)

The above query compares ProductOrder event's quantity value with all rows from the

MinimumQuantity stream of events and returns only those ProductOrder events that have a

quantity that is less then all of the minimum quantity values of the MinimumQuantity events.

5.11.5. Subquery With Group By Clause

The optional group by clause in subqueries works the same way as the group-by clause outside

of subqueries, except that it impacts only those aggregations within the subquery.

The following restrictions apply:

1. Expressions in the group-by clause cannot contain aggregate functions, subqueries or the prev

and prior functions.

2. Subqueries only support the fully-aggregated case when using group-by: All non-aggregated

properties in the select clause must be listed in the group by clause.

3. The group-by expressions cannot be correlated. All properties in the group by must be provided

by the subselect stream.

5.11.6. Multi-Column Selection

Your subquery may select multiple columns in the select clause including multiple aggregated

values from a data window or named window or table.

The following example is a correlated subquery that selects wildcard and in addition selects the

bid and offer properties of the last MarketData event for the same symbol as the arriving

OrderEvent:

select *,

 (select bid, offer from MarketData#unique(symbol) as md

 where md.symbol = oe.symbol) as bidoffer

from OrderEvent oe

Multi-Row Selection

151

Output events for the above query contain all properties of the original OrderEvent event. In

addition each output event contains a bidoffer nested property that itself contains the bid

and offer properties. You may retrieve the bid and offer from output events directly via the

bidoffer.bid property name syntax for nested properties.

The next example is similar to the above query but instead selects aggregations and selects

from a named window by name OrderNamedWindow (creation not shown here). For each arriving

OrderEvent it selects the total quantity and count of all order events for the same client, as

currently held by the named window:

select *,

 (select sum(qty) as sumPrice, count(*) as countRows

 from OrderNamedWindow as onw

 where onw.client = oe.client) as pastOrderTotals

from OrderEvent as oe

The next EPL statement computes a prorated quantity considering the maximum and minimum

quantity for the last 1 minute of order events:

expression subq {

 (select max(quantity) as maxq, min(quantity) as minq from OrderEvent#time(1

 min))

}

select (quantity - minq) / (subq().maxq - subq().minq) as prorated

from OrderEvent

Output events for the above query contain all properties of the original OrderEvent event. In

addition each output event contains a pastOrderTotals nested property that itself contains the

sumPrice and countRows properties.

5.11.7. Multi-Row Selection

While a subquery cannot change the cardinality of the selected stream, a subquery can return

multiple values from the selected data window or named window or table. This section shows

examples of the window aggregation function as well as the use of enumeration methods with

subselects.

Consider using an inner join, outer join or unidirectional join instead to achieve a 1-to-many

cardinality in the number of output events.

The next example is an uncorrelated subquery that selects all current ZoneEvent events

considering the last ZoneEvent per zone for each arriving RFIDEvent.

select assetId,

Chapter 5. EPL Reference: Clauses

152

 (select window(z.*) as winzones from ZoneEvent#unique(zone) as z) as zones

 from RFIDEvent

Output events for the above query contain two properties: the assetId property and the zones

property. The latter property is a nested property that contains the winzones property. You may

retrieve the zones from output events directly via the zones.winzones property name syntax for

nested properties.

In this example for a correlated subquery against a named window we assume that the

OrderNamedWindow has been created and contains order events. The query returns for each

MarketData event the list of order ids for orders with the same symbol:

select price,

 (select window(orderId) as winorders

 from OrderNamedWindow onw

 where onw.symbol = md.symbol) as orderIds

 from MarketData md

Output events for the above query contain two properties: the price property and the orderIds

property. The latter property is a nested property that contains the winorders property of type

array.

Another option to reduce selected rows to a single value is through the use of enumeration

methods.

select price,

 (select * from OrderNamedWindow onw

 where onw.symbol = md.symbol).selectFrom(v => v) as ordersSymbol

 from MarketData md

Output events for the above query also contain a Collection of underlying events in the

ordersSymbol property.

5.11.8. Hints Related to Subqueries

The following hints are available to tune performance and memory use of subqueries.

Use the @Hint('set_noindex') hint for a statement that utilizes one or more subqueries. It

instructs the engine to always perform a full scan. The engine does not build an implicit index or

use an explicitly-created index when this hint is provided. Use of the hint may result in reduced

memory use but poor statement performance.

The following hints are available to tune performance and memory use of subqueries that select

from named windows (does not apply to tables).

Hints Related to Subqueries

153

Named windows are globally-visible data windows. As such an application may create explicit

indexes as discussed in Section 6.9, “Explicitly Indexing Named Windows and Tables”. The engine

may also elect to create implicit indexes (no create-index EPL required) for index-based lookup

of rows when executing on-select, on-merge, on-update and on-delete statements and for

statements that subquery a named window.

By default and without specifying a hint, each statement that subqueries a named window also

maintains its own index for looking up events held by the named window. The engine maintains

the index by consuming the named window insert and remove stream. When the statement is

destroyed it releases that index.

Specify the @Hint('enable_window_subquery_indexshare') hint to enable subquery index

sharing for named windows. When using this hint, indexes for subqueries are maintained by the

named window itself (and not each statement context partition), are shared between one or more

statements and may also utilize explicit indexes. Specify the hint once as part of the create

window statement.

This sample EPL statement creates a named window with subquery index sharing enabled:

@Hint('enable_window_subquery_indexshare')

create window OrdersNamedWindow#keepall as OrderMapEventType

When subquery index sharing is enabled, performance may increase as named window stream

consumption is no longer needed for correlated subqueries. You may also expect reduced memory

use especially if a large number of EPL statements perform similar subqueries against a named

window. Subquery index sharing may require additional short-lived object creation and may slightly

increase lock held time for named windows.

The following statement performs a correlated subquery against the named window above. When

a settlement event arrives it select the order detail for the same order id as provided by the

settlement event:

select

 (select * from OrdersNamedWindow as onw

 where onw.orderId = se.orderId) as orderDetail

 from SettlementEvent as se

With subquery index sharing enabled the engine maintains an index of order events by order id for

the named window, and shares that index between additional statements until the time all utilizing

statements are destroyed.

You may disable subquery index sharing for a specific statement by specifying the

@Hint('disable_window_subquery_indexshare') hint, as this example shows, causing the

statement to maintain its own index:

Chapter 5. EPL Reference: Clauses

154

@Hint('disable_window_subquery_indexshare')

select

 (select * from OrdersNamedWindow as onw

 where onw.orderId = se.orderId) as orderDetail

 from SettlementEvent as se

5.12. Joining Event Streams

5.12.1. Introducing Joins

Two or more event streams can be part of the from-clause and thus both (all) streams determine

the resulting events. This section summarizes the important concepts. The sections that follow

present more detail on each topic.

The default join is an inner join which produces output events only when there is at least one

match in all streams.

Consider the sample statement shown next:

select * from TickEvent#lastevent, NewsEvent#lastevent

The above statement outputs the last TickEvent and the last NewsEvent in one output event when

either a TickEvent or a NewsEvent arrives. If no TickEvent was received before a NewsEvent

arrives, no output occurs. Similarly when no NewsEvent was received before a TickEvent arrives,

no output occurs.

The where-clause lists the join conditions that Esper uses to relate events in the two or more

streams.

The next example statement retains the last TickEvent and last NewsEvent per symbol, and joins

the two streams based on their symbol value:

select * from TickEvent#unique(symbol) as t, NewsEvent#unique(symbol) as n

where t.symbol = n.symbol

As before, when a TickEvent arrives for a symbol that has no matching NewsEvent then there

is no output event.

An outer join does not require each event in either stream to have a matching event. The full outer

join is useful when output is desired when no match is found. The different outer join types (full,

left, right) are explained in more detail below.

This example statement is an outer-join and also returns the last TickEvent and last NewsEvent

per symbol:

Introducing Joins

155

select * from TickEvent#unique(symbol) as t

full outer join NewsEvent#unique(symbol) as n on t.symbol = n.symbol

In the sample statement above, when a TickEvent arrives for a symbol that has no matching

NewsEvent, or when a NewsEvent arrives for a symbol that has no matching TickEvent, the

statement still produces an output event with a null column value for the missing event.

Note that each of the sample queries above defines a data window. The sample queries above

use the last-event data window (std:lastevent) or the unique data window (std:unique). A data

window serves to indicate the subset of events to join from each stream and may be required

depending on the join.

In above queries, when either a TickEvent arrives or when a NewsEvent arrives then the query

evaluates and there is output. The same holds true if additional streams are added to the from-

clause: Each of the streams in the from-clause trigger the join to evaluate.

The unidirectional keyword instructs the engine to evaluate the join only when an event arrives

from the single stream that was marked with the unidirectional keyword. In this case no data

window should be specified for the stream marked as unidirectional since the keyword implies

that the current event of that stream triggers the join.

Here is the sample statement above with unidirectional keyword, so that output occurs only

when a TickEvent arrives and not when a NewsEvent arrives:

select * from TickEvent as t unidirectional, NewsEvent#unique(symbol) as n

where t.symbol = n.symbol

It is oftentimes the case that an aggregation (count, sum, average) only needs to be calculated

in the context of an arriving event or timer. Consider using the unidirectional keyword when

aggregating over joined streams.

An EPL pattern is a normal citizen also providing a stream of data consisting of pattern matches. A

time pattern, for example, can be useful to evaluate a join and produce output upon each interval.

This sample statement includes a pattern that fires every 5 seconds and thus triggers the join to

evaluate and produce output, computing an aggregated total quantity per symbol every 5 seconds:

select symbol, sum(qty) from pattern[every timer:interval(5 sec)]

 unidirectional,

 TickEvent#unique(symbol) t, NewsEvent#unique(symbol) as n

where t.symbol = n.symbol group by symbol

Named windows as well as reference and historical data such as stored in your relational

database, and data returned by a method/script/UDF invocation, can also be included in joins as

Chapter 5. EPL Reference: Clauses

156

discussed in Section 5.13, “Accessing Relational Data via SQL” and Section 5.14, “Accessing

Non-Relational Data via Method, Script or UDF Invocation”.

Related to joins are subqueries: A subquery is a select within another statement, see

Section 5.11, “Subqueries”

The engine performs extensive query analysis and planning, building internal indexes and

strategies as required to allow fast evaluation of many types of queries.

5.12.2. Inner (Default) Joins

Each point in time that an event arrives to one of the event streams, the two event streams are

joined and output events are produced according to the where clause when matching events are

found for all joined streams.

This example joins 2 event streams. The first event stream consists of fraud warning events for

which we keep the last 30 minutes. The second stream is withdrawal events for which we consider

the last 30 seconds. The streams are joined on account number.

select fraud.accountNumber as accntNum, fraud.warning as warn, withdraw.amount

 as amount,

 max(fraud.timestamp, withdraw.timestamp) as timestamp, 'withdrawlFraud'

 as desc

 from com.espertech.esper.example.atm.FraudWarningEvent#time(30 min) as fraud,

 com.espertech.esper.example.atm.WithdrawalEvent#time(30 sec) as withdraw

 where fraud.accountNumber = withdraw.accountNumber

Joins can also include one or more pattern statements as the next example shows:

select * from FraudWarningEvent#time(30 min) as fraud,

 pattern [every w=WithdrawalEvent -> PINChangeEvent(acct=w.acct)]#lastevent

 as withdraw

 where fraud.accountNumber = withdraw.w.accountNumber

The statement above joins the last 30 minutes of fraud warnings with a pattern. The pattern

consists of every withdrawal event that is followed by a PIN change event for the same account

number. It joins the two event streams on account number. The last-event view instucts the join

to only consider the last pattern match.

In a join and outer join, your statement must declare a data window view or other view onto each

stream. Streams that are marked as unidirectional and named windows and tables as well as

database or methods in a join are an exception and do not require a view to be specified. If you

are joining an event to itself via contained-event selection, views also do not need to be specified.

The reason that a data window must be declared is that a data window specifies which events are

considered for the join (i.e. last event, last 10 events, all events, last 1 second of events etc.).

Outer, Left and Right Joins

157

The next example joins all FraudWarningEvent events that arrived since the statement was

started, with the last 20 seconds of PINChangeEvent events:

select * from FraudWarningEvent#keepall as fraud, PINChangeEvent#time(20 sec)

 as pin

 where fraud.accountNumber = pin.accountNumber

The above example employed the special keep-all view that retains all events.

5.12.3. Outer, Left and Right Joins

Esper supports left outer joins, right outer joins, full outer joins and inner joins in any combination

between an unlimited number of event streams. Outer and inner joins can also join reference and

historical data as explained in Section 5.13, “Accessing Relational Data via SQL”, as well as join

data returned by a method, script or UDF invocation as outlined in Section 5.14, “Accessing Non-

Relational Data via Method, Script or UDF Invocation”.

The keywords left, right, full and inner control the type of the join between two streams.

The optional on clause specifies one or more properties that join each stream. The synopsis is

as follows:

...from stream_def [as name]

 ((left|right|full outer) | inner) join stream_def

 [on property = property [and property = property ...]]

 [((left|right|full outer) | inner) join stream_def [on ...]]...

If the outer join is a left outer join, there will be at least one output event for each event of the

stream on the left-hand side of the clause. For example, in the left outer join shown below we will

get output for each event in the stream RfidEvent, even if the event does not match any event

in the event stream OrderList.

select * from RfidEvent#time(30 sec) as rfid

 left outer join

 OrderList#length(10000) as orderlist

 on rfid.itemId = orderList.itemId

Similarly, if the join is a Right Outer Join, then there will be at least one output event for each

event of the stream on the right-hand side of the clause. For example, in the right outer join shown

below we will get output for each event in the stream OrderList, even if the event does not match

any event in the event stream RfidEvent.

select * from RfidEvent#time(30 sec) as rfid

 right outer join

Chapter 5. EPL Reference: Clauses

158

 OrderList#length(10000) as orderlist

 on rfid.itemId = orderList.itemId

For all types of outer joins, if the join condition is not met, the select list is computed with the event

properties of the arrived event while all other event properties are considered to be null.

The next type of outer join is a full outer join. In a full outer join, each point in time that an event

arrives to one of the event streams, one or more output events are produced. In the example below,

when either an RfidEvent or an OrderList event arrive, one or more output event is produced. The

next example shows a full outer join that joins on multiple properties:

select * from RfidEvent#time(30 sec) as rfid

 full outer join

 OrderList#length(10000) as orderlist

 on rfid.itemId = orderList.itemId and rfid.assetId = orderList.assetId

The last type of join is an inner join. In an inner join, the engine produces at least one output event

for each event of the stream on the left-hand side that matches at least one event on the right

hand side considering the join properties. For example, in the inner join shown below we will get

output for each event in the RfidEvent stream that matches one or more events in the OrderList

data window:

select * from RfidEvent#time(30 sec) as rfid

 inner join

 OrderList#length(10000) as orderlist

 on rfid.itemId = orderList.itemId and rfid.assetId = orderList.assetId

Patterns as streams in a join follow this rule: If no data window view is declared for the pattern

then the pattern stream retains the last match. Thus a pattern must have matched at least once for

the last row to become available in a join. Multiple rows from a pattern stream may be retained by

declaring a data window view onto a pattern using the pattern [...].view_specification syntax.

This example outer joins multiple streams. Here the RfidEvent stream is outer joined to both

ProductName and LocationDescription via left outer join:

select * from RfidEvent#time(30 sec) as rfid

 left outer join ProductName#keepall as refprod

 on rfid.productId = refprod.prodId

 left outer join LocationDescription#keepall as refdesc

 on rfid.location = refdesc.locId

Unidirectional Joins

159

If the optional on clause is specified, it may only employ the = equals operator and property names.

Any other operators must be placed in the where-clause. The stream names that appear in the

on clause may refer to any stream in the from-clause.

Your EPL may also provide no on clause. This is useful when the streams that are joined do not

provide any properties to join on, for example when joining with a time-based pattern.

The next example employs a unidirectional left outer join such that the engine, every 10 seconds,

outputs a count of the number of RfidEvent events in the 60-second time window.

select count(*) from

 pattern[every timer:interval(1)] unidirectional

 left outer join

 RfidEvent#time(60 sec)

5.12.4. Unidirectional Joins

In a join or outer join your statement lists multiple event streams, views and/or patterns in the from

clause. As events arrive into the engine, each of the streams (views, patterns) provides insert and

remove stream events. The engine evaluates each insert and remove stream event provided by

each stream, and joins or outer joins each event against data window contents of each stream,

and thus generates insert and remove stream join results.

The direction of the join execution depends on which stream or streams are currently providing an

insert or remove stream event for executing the join. A join is thus multidirectional, or bidirectional

when only two streams are joined. A join can be made unidirectional if your application does not

want new results when events arrive on a given stream or streams.

The unidirectional keyword can be used in the from clause to identify streams that provide the

events to execute the join. If the keyword is present for a stream, all other streams in the from

clause become passive streams. When events arrive or leave a data window of a passive stream

then the join does not generate join results.

For example, consider a use case that requires us to join stock tick events (TickEvent) and

news events (NewsEvent). The unidirectional keyword allows to generate results only when

TickEvent events arrive, and not when NewsEvent arrive or leave the 10-second time window:

select * from TickEvent unidirectional, NewsEvent#time(10 sec)

where tick.symbol = news.symbol

Aggregation functions in a unidirectional join aggregate within the context of each

unidirectional event evaluation and are not cumulative. Thereby aggregation functions when used

with unidirectional may evaluate faster as they do not need to consider a remove stream (data

removed from data windows or named windows).

Chapter 5. EPL Reference: Clauses

160

The count function in the next query returns, for each TickEvent, the number of matching

NewEvent events:

select count(*) from TickEvent unidirectional, NewsEvent#time(10 sec)

where tick.symbol = news.symbol

The following restrictions apply to unidirectional joins:

1. The unidirectional keyword can only be specified for a single stream in the from clause,

unless all streams are in a full outer join and all streams declare unidirectional.

2. Receiving data from a unidirectional join via the pull API (iterator method) is not allowed.

This is because the engine holds no state for the single stream that provides the events to

execute the join.

3. The stream that declares the unidirectional keyword cannot declare a data window view or

other view for that stream, since remove stream events are not processed for the single stream.

5.12.5. Unidirectional Full Outer Joins

In a full outer join all streams can be marked as unidirectional. This is useful for declaring

multiple triggering events and for performing a union or merge of streams.

When marking more than one stream as unidirectional, all streams must be unidirectional and

inner, left and right joins are not allowed. This is because unidirectional streams have an undefined

depth and cannot be looked-up against.

For example, consider a use case where output should occur when either a tick event or a news

event arrives:

select * from TickEvent as te unidirectional,

 full outer join

 NewsEvent as ne unidirectional

Place filter criteria for a given stream into parenthesis, for example:

select * from TickEvent(symbol='IBM') unidirectional,

 full outer join

 TradeEvent(symbol='IBM') unidirectional

 full outer join

 SettlementEvent(symbol='IBM') unidirectional

 where coalesce(TickEvent.price,TradeEvent.price) > 100 // place common critera

 into a where-clause that may use coalesce

Hints Related to Joins

161

5.12.6. Hints Related to Joins

When joining 3 or more streams (including any relational or non-relational sources as below) it

can sometimes help to provide the query planner instructions how to best execute the join. The

engine compiles a query plan for the EPL statement at statement creation time. You can output

the query plan to logging (see configuration).

An outer join that specifies only inner keywords for all streams is equivalent to an default (inner)

join. The following two statements are equivalent:

select * from TickEvent#lastevent,

 NewsEvent#lastevent where tick.symbol = news.symbol

Equivalent to:

select * from TickEvent#lastevent

 inner join NewsEvent#lastevent on tick.symbol = news.symbol

For all types of joins, the query planner determines a query graph: The term is used here for all

the information regarding what properties or expressions are used to join the streams. The query

graph thus includes the where-clause expressions as well as outer-join on-clauses if this statement

is an outer join. The query planner also computes a dependency graph which includes information

about all historical data streams (relational and non-relational as below) and their input needs.

For default (inner) joins the query planner first attempts to find a path of execution as a nested

iteration. For each stream the query planner selects the best order of streams available for the

nested iteration considering the query graph and dependency graph. If the full depth of the join

is achievable via nested iteration for all streams without full table scan then the query planner

uses that nested iteration plan. If not, then the query planner re-plans considering a merge join

(Cartesian) approach instead.

Specify the @Hint('prefer_merge_join') to instruct the query planner to prefer a merge join plan

instead of a nested iteration plan. Specify the @Hint('force_nested_iter') to instruct the query

planner to always use a nested iteration plan.

For example, consider the below statement. Depending on the number of matching rows in

OrderBookOne and OrderBookTwo (named windows in this example, and assumed to be defined

elsewhere) the performance of the join may be better using the merge join plan.

@Hint('prefer_merge_join')

select * from TickEvent#lastevent t,

 OrderBookOne ob1, OrderBookOne ob2

where ob1.symbol = t.symbol and ob2.symbol = t.symbol

Chapter 5. EPL Reference: Clauses

162

and ob1.price between t.buy and t.sell and ob2.price between t.buy and t.sell

For outer joins the query planner considers nested iteration and merge join (Cartesian) equally

and above hints don't apply.

5.13. Accessing Relational Data via SQL

For NEsper .NET also see Section H.13, “.NET Accessing Relational Data via SQL”.

This chapter outlines how reference data and historical data that are stored in a relational database

can be queried via SQL within EPL statements.

Esper can access via join and outer join as well as via iterator (poll) API all types of event streams

to stored data. In order for such data sources to become accessible to Esper, some configuration is

required. The Section 17.4.11, “Relational Database Access” explains the required configuration

for database access in greater detail, and includes information on configuring a query result cache.

Esper does not parse or otherwise inspect your SQL query. Therefore your SQL can make use of

any database-specific SQL language extensions or features that your database provides.

If you have enabled query result caching in your Esper database configuration, Esper retains SQL

query results in cache following the configured cache eviction policy.

Also if you have enabled query result caching in your Esper database configuration and provide

EPL where clause and/or on clause (outer join) expressions, then Esper builds indexes on the

SQL query results to enable fast lookup. This is especially useful if your queries return a large

number of rows. For building the proper indexes, Esper inspects the expression found in your EPL

query where clause, if present. For outer joins, Esper also inspects your EPL query on clause.

Esper analyzes the EPL on clause and where clause expressions, if present, looking for property

comparison with or without logical AND-relationships between properties. When a SQL query

returns rows for caching, Esper builds and caches the appropriate index and lookup strategies

for fast row matching against indexes.

Joins or outer joins in which only SQL statements or method, script and UDF invocations are

listed in the from clause and no other event streams are termed passive joins. A passive join

does not produce an insert or remove stream and therefore does not invoke statement listeners

with results. A passive join can be iterated on (polled) using a statement's safeIterator and

iterator methods.

There are no restrictions to the number of SQL statements or types of streams joined. The

following restrictions currently apply:

• Sub-views on an SQL query are not allowed; That is, one cannot create a time or length window

on an SQL query. However one can use the insert into syntax to make join results available

to a further statement.

Joining SQL Query Results

163

• Your database software must support JDBC prepared statements that provide statement meta

data at compilation time. Most major databases provide this function. A workaround is available

for databases that do not provide this function.

• JDBC drivers must support the getMetadata feature. A workaround is available as below for

JDBC drivers that don't support getting metadata.

The next sections assume basic knowledge of SQL (Structured Query Language).

5.13.1. Joining SQL Query Results

To join an event stream against stored data, specify the sql keyword followed by the name of

the database and a parameterized SQL query. The syntax to use in the from clause of an EPL

statement is:

sql:database_name [" parameterized_sql_query "]

The engine uses the database_name identifier to obtain configuration information in order to

establish a database connection, as well as settings that control connection creation and removal.

Please see Section 17.4.11, “Relational Database Access” to configure an engine for database

access.

Following the database name is the SQL query to execute. The SQL query can contain one or

more substitution parameters. The SQL query string is placed in single brackets [and]. The SQL

query can be placed in either single quotes (') or double quotes ("). The SQL query grammer is

passed to your database software unchanged, allowing you to write any SQL query syntax that

your database understands, including stored procedure calls.

Substitution parameters in the SQL query string take the form ${expression}. The engine resolves

expression at statement execution time to the actual expression result by evaluating the events

in the joined event stream or current variable values, if any event property references or variables

occur in the expression. An expression may not contain EPL substitution parameters.

The engine determines the type of the SQL query output columns by means of the result set

metadata that your database software returns for the statement. The actual query results are

obtained via the getObject on java.sql.ResultSet.

The sample EPL statement below joins an event stream consisting of CustomerCallEvent events

with the results of an SQL query against the database named MyCustomerDB and table Customer:

select custId, cust_name from CustomerCallEvent,

 sql:MyCustomerDB [' select cust_name from Customer where cust_id = ${custId} ']

The example above assumes that CustomerCallEvent supplies an event property named

custId. The SQL query selects the customer name from the Customer table. The where

clause in the SQL matches the Customer table column cust_id with the value of custId

Chapter 5. EPL Reference: Clauses

164

in each CustomerCallEvent event. The engine executes the SQL query for each new

CustomerCallEvent encountered.

If the SQL query returns no rows for a given customer id, the engine generates no output event.

Else the engine generates one output event for each row returned by the SQL query. An outer

join as described in the next section can be used to control whether the engine should generate

output events even when the SQL query returns no rows.

The next example adds a time window of 30 seconds to the event stream CustomerCallEvent. It

also renames the selected properties to customerName and customerId to demonstrate how the

naming of columns in an SQL query can be used in the select clause in the EPL query. And the

example uses explicit stream names via the as keyword.

select customerId, customerName from

 CustomerCallEvent#time(30 sec) as cce,

 sql:MyCustomerDB ["select cust_id as customerId, cust_name as customerName

 from Customer

 where cust_id = ${cce.custId}"] as cq

Any window, such as the time window, generates insert stream (istream) events as events

enter the window, and remove stream (rstream) events as events leave the window. The engine

executes the given SQL query for each CustomerCallEvent in both the insert stream and the

remove stream. As a performance optimization, the istream or rstream keywords in the select

clause can be used to instruct the engine to only join insert stream or remove stream events,

reducing the number of SQL query executions.

Since any expression may be placed within the ${...} syntax, you may use variables or user-

defined functions as well.

The next example assumes that a variable by name varLowerLimit is defined and that a user-

defined function getLimit exists on the MyLib imported class that takes a LimitEvent as a

parameter:

select * from LimitEvent le,

 sql:MyCustomerDB [' select cust_name from Customer where

 amount > ${max(varLowerLimit, MyLib.getLimit(le))} ']

The example above takes the higher of the current variable value or the value returned by the user-

defined function to return only those customer names where the amount exceeds the computed

limit.

5.13.2. SQL Query and the EPL Where Clause

Consider using the EPL where clause to join the SQL query result to your event stream. Similar

to EPL joins and outer-joins that join event streams or patterns, the EPL where clause provides

SQL Query and the EPL Where Clause

165

join criteria between the SQL query results and the event stream (as a side note, an SQL where

clause is a filter of rows executed by your database on your database server before returning

SQL query results).

Esper analyzes the expression in the EPL where clause and outer-join on clause, if present, and

builds the appropriate indexes from that information at runtime, to ensure fast matching of event

stream events to SQL query results, even if your SQL query returns a large number of rows. Your

applications must ensure to configure a cache for your database using Esper configuration, as

such indexes are held with regular data in a cache. If you application does not enable caching of

SQL query results, the engine does not build indexes on cached data.

The sample EPL statement below joins an event stream consisting of OrderEvent events with the

results of an SQL query against the database named MyRefDB and table SymbolReference:

select symbol, symbolDesc from OrderEvent as orders,

 sql:MyRefDB ['select symbolDesc from SymbolReference'] as reference

 where reference.symbol = orders.symbol

Notice how the EPL where clause joins the OrderEvent stream to the SymbolReference table.

In this example, the SQL query itself does not have a SQL where clause and therefore returns

all rows from table SymbolReference.

If your application enables caching, the SQL query fires only at the arrival of the first OrderEvent

event. When the second OrderEvent arrives, the join execution uses the cached query result. If

the caching policy that you specified in the Esper database configuration evicts the SQL query

result from cache, then the engine fires the SQL query again to obtain a new result and places

the result in cache.

If SQL result caching is enabled and your EPL where clause, as show in the above example,

provides the properties to join, then the engine indexes the SQL query results in cache and retains

the index together with the query result in cache. Thus your application can benefit from high

performance index-based lookups as long as the SQL query results are found in cache.

The SQL result caches operate on the level of all result rows for a given parameter set. For

example, if your query returns 10 rows for a certain set of parameter values then the cache treats

all 10 rows as a single entry keyed by the parameter values, and the expiry policy applies to all

10 rows and not to each individual row.

It is also possible to join multiple autonomous database systems in a single query, for example:

select symbol, symbolDesc from OrderEvent as orders,

 sql:My_Oracle_DB ['select symbolDesc from SymbolReference'] as reference,

 sql:My_MySQL_DB ['select orderList from orderHistory'] as history

 where reference.symbol = orders.symbol

 and history.symbol = orders.symbol

Chapter 5. EPL Reference: Clauses

166

5.13.3. Outer Joins With SQL Queries

You can use outer joins to join data obtained from an SQL query and control when an event is

produced. Use a left outer join, such as in the next statement, if you need an output event for each

event regardless of whether or not the SQL query returns rows. If the SQL query returns no rows,

the join result populates null values into the selected properties.

select custId, custName from

 CustomerCallEvent as cce

 left outer join

 sql:MyCustomerDB ["select cust_id, cust_name as custName

 from Customer where cust_id = ${cce.custId}"] as cq

 on cce.custId = cq.cust_id

The statement above always generates at least one output event for each CustomerCallEvent,

containing all columns selected by the SQL query, even if the SQL query does not return any

rows. Note the on expression that is required for outer joins. The on acts as an additional filter

to rows returned by the SQL query.

5.13.4. Using Patterns to Request (Poll) Data

Pattern statements and SQL queries can also be applied together in useful ways. One such use

is to poll or request data from a database at regular intervals or following the schedule of the

crontab-like timer:at.

The next statement is an example that shows a pattern that fires every 5 seconds to query the

NewOrder table for new orders:

insert into NewOrders

select orderId, orderAmount from

 pattern [every timer:interval(5 sec)],

 sql:MyCustomerDB ['select orderId, orderAmount from NewOrders']

5.13.5. Polling SQL Queries via Iterator

Usually your SQL query will take part in a join and thus be triggered by an event or pattern

occurrence. Instead, your application may need to poll a SQL query and thus use Esper query

execution and caching facilities and obtain event data and metadata.

Your EPL statement can specify an SQL statement without a join. Such a stand-alone SQL

statement does not post new events, and may only be queried via the iterator poll API. Your

EPL and SQL statement may still use variables.

JDBC Implementation Overview

167

The next statement assumes that a price_var variable has been declared. It selects from the

relational database table named NewOrder all rows in which the price column is greater then the

current value of the price_var EPL variable:

select * from sql:MyCustomerDB ['select * from NewOrder where ${price_var} >

 price']

Use the iterator and safeIterator methods on EPStatement to obtain results. The statement

does not post events to listeners, it is strictly passive in that sense.

5.13.6. JDBC Implementation Overview

The engine translates SQL queries into JDBC java.sql.PreparedStatement statements by

replacing ${name} parameters with '?' placeholders. It obtains name and type of result columns

from the compiled PreparedStatement meta data when the EPL statement is created.

The engine supplies parameters to the compiled statement via the setObject method on

PreparedStatement. The engine uses the getObject method on the compiled statement

PreparedStatement to obtain column values.

5.13.7. Oracle Drivers and No-Metadata Workaround

Certain JDBC database drivers are known to not return metadata for precompiled prepared SQL

statements. This can be a problem as metadata is required by Esper. Esper obtains SQL result

set metadata to validate an EPL statement and to provide column types for output events. JDBC

drivers that do not provide metadata for precompiled SQL statements require a workaround. Such

drivers do generally provide metadata for executed SQL statements, however do not provide the

metadata for precompiled SQL statements.

Please consult the Chapter 17, Configuration for the configuration options available in relation to

metadata retrieval.

To obtain metadata for an SQL statement, Esper can alternatively fire a SQL statement which

returns the same column names and types as the actual SQL statement but without returning

any rows. This kind of SQL statement is referred to as a sample statement in below workaround

description. The engine can then use the sample SQL statement to retrieve metadata for the

column names and types returned by the actual SQL statement.

Applications can provide a sample SQL statement to retrieve metadata via the metadatasql

keyword:

sql:database_name ["parameterized_sql_query" metadatasql "sql_meta_query"]

The sql_meta_query must be an SQL statement that returns the same number of columns, the

same type of columns and the same column names as the parameterized_sql_query, and does

not return any rows.

Chapter 5. EPL Reference: Clauses

168

Alternatively, applications can choose not to provide an explicit sample SQL statement. If the EPL

statement does not use the metadatasql syntax, the engine applies lexical analysis to the SQL

statement. From the lexical analysis Esper generates a sample SQL statement adding a restrictive

clause "where 1=0" to the SQL statement.

Alternatively, you can add the following tag to the SQL statement: ${$ESPER-SAMPLE-WHERE}.

If the tag exists in the SQL statement, the engine does not perform lexical analysis and simply

replaces the tag with the SQL where clause "where 1=0". Therefore this workaround is applicable

to SQL statements that cannot be correctly lexically analyzed. The SQL text after the placeholder

is not part of the sample query. For example:

select mycol from sql:myDB [

 'select mycol from mytesttable ${$ESPER-SAMPLE-WHERE} where'], ...

If your parameterized_sql_query SQL query contains vendor-specific SQL syntax, generation of

the metadata query may fail to produce a valid SQL statement. If you experience an SQL error

while fetching metadata, use any of the above workarounds with the Oracle JDBC driver.

5.13.8. SQL Input Parameter and Column Output Conversion

As part of database access configuration you may optionally specify SQL type mappings. These

mappings apply to all queries against the same database identified by name.

If your application must perform SQL-query-specific or EPL-statement-specific mapping or

conversion between types, the facility to register a conversion callback exists as follows.

Use the @Hook instruction and HookType.SQLCOL as part of your EPL statement text

to register a statement SQL parameter or column conversion hook. Implement the

interface com.espertech.esper.client.hook.SQLColumnTypeConversion to perform the input

parameter or column value conversion.

A sample statement with annotation is shown:

@Hook(type=HookType.SQLCOL, hook='MyDBTypeConvertor')

select * from sql:MyDB ['select * from MyEventTable]

The engine expects MyDBTypeConvertor to resolve to a class (considering engine imports) and

instantiates one instance of MyDBTypeConvertor for each statement.

5.13.9. SQL Row POJO Conversion

Your application may also directly convert a SQL result row into a Java class which is an

opportunity for your application to interrogate and transform the SQL row result data freely before

packing the data into a Java class. Your application can additionally indicate to skip SQL result

rows.

Accessing Non-Relational Data via Method, Script or UDF Invocation

169

Use the @Hook instruction and HookType.SQLROW as part of your EPL statement text

to register a statement SQL output row conversion hook. Implement the interface

com.espertech.esper.client.hook.SQLOutputRowConversion to perform the output row

conversion.

A sample statement with annotation is shown:

@Hook(type=HookType.SQLROW, hook='MyDBRowConvertor')

select * from sql:MyDB ['select * from MyEventTable]

The engine expects MyDBRowConvertor to resolve to a class (considering engine imports) and

instantiates one MyDBRowConvertor instance for each statement.

5.14. Accessing Non-Relational Data via Method, Script

or UDF Invocation

Your application may need to join data that originates from a web service, a distributed cache, an

object-oriented database or simply data held in memory by your application. One way to join in

external data is by means of method, script or user-defined function invocation (or procedure call

or function) in the from clause of a statement.

The results of such a method, script or UDF invocation in the from clause plays the same role as

a relational database table in an inner and outer join in SQL.

Esper can join and outer join an unlimited number and all types of event streams to the data

returned by your invocation. In addition, Esper can be configured to cache the data returned by

your method, script or UDF invocations.

Joins or outer joins in which only SQL statements or method, script or UDF invocations are listed

in the from clause and no other event streams are termed passive joins. A passive join does

not produce an insert or remove stream and therefore does not invoke statement listeners with

results. A passive join can be iterated on (polled) using a statement's safeIterator and iterator

methods.

The following restrictions currently apply:

• Sub-views on invocations are not allowed; That is, one cannot create a time or length window

on an invocation. However one can use the insert into syntax to make join results available

to a further statement.

5.14.1. Joining Method, Script or UDF Invocation Results

The syntax for a method, script or UDF invocation in the from clause of an EPL statement is:

Chapter 5. EPL Reference: Clauses

170

method:

 [class_or_variable_name.]method_script_udf_name[(parameter_expressions)]

 [@type(eventtype_name)]

The method keyword denotes a method, script or UDF invocation. It is followed by an optional class

or variable name. The method_script_udf_name is the name of the method, script or user-defined

function. If you have parameters to your method, script or UDF invocation, these are placed in

parentheses after the method or script name. Any expression is allowed as a parameter, and

individual parameter expressions are separated by a comma. Expressions may also use event

properties of the joined stream.

In case the return type of the method is EventBean instances, you must provide the @type

annotation to name the event type of events returned. Otherwise @type is not allowed.

In the sample join statement shown next, the method lookupAsset provided by class (or variable)

MyLookupLib returns one or more rows based on the asset id (a property of the AssetMoveEvent)

that is passed to the method:

select * from AssetMoveEvent, method:MyLookupLib.lookupAsset(assetId)

The following statement demonstrates the use of the where clause to join events to the rows

returned by an invocation, which in this example does not take parameters:

select assetId, assetDesc from AssetMoveEvent as asset,

 method:MyLookupLib.getAssetDescriptions() as desc

where asset.assetid = desc.assetid

Your method, scipt or UDF invocation may return zero, one or many rows for each invocation. If

you have caching enabled through configuration, then Esper can avoid the invocation and instead

use cached results. Similar to SQL joins, Esper also indexes cached result rows such that join

operations based on the where clause or outer-join on clause can be very efficient, especially if

your invocation returns a large number of rows.

If the time taken by method, script or UDF invocations is critical to your application, you may

configure local caches as Section 17.4.9, “Cache Settings for From-Clause Method Invocations”

describes.

Esper analyzes the expression in the EPL where clause and outer-join on clause, if present, and

builds the appropriate indexes from that information at runtime, to ensure fast matching of event

stream events to invocation results, even if your invocation returns a large number of rows. Your

applications must ensure to configure a cache for your invocation using Esper configuration, as

such indexes are held with regular data in a cache. If you application does not enable caching of

invocation results, the engine does not build indexes on cached data.

Polling Invocation Results via Iterator

171

5.14.2. Polling Invocation Results via Iterator

Usually your invocation will take part in a join and thus be triggered by an event or pattern

occurrence. Instead, your application may need to poll an invocation and thus use Esper query

execution and caching facilities and obtain event data and metadata.

Your EPL statement can specify an invocation in the from clause without a join. Such a stand-

alone invocation does not post new events, and may only be queried via the iterator poll API.

Your EPL statement may still use variables.

The next statement assumes that a category_var variable has been declared. It polls the

getAssetDescriptions method passing the current value of the category_var EPL variable:

select * from method:MyLookupLib.getAssetDescriptions(category_var)]

Use the iterator and safeIterator methods on EPStatement to obtain results. The statement

does not post events to listeners, it is strictly passive in that sense.

5.14.3. Providing the Method

You application can provide a public static method or can provide an instance method of an

existing object. The method must accept the same number and type of parameters as listed in

the parameter expression list.

The examples herein mostly use public static methods. For a detail description of instance

methods please see Section 5.17.5, “Class and Event-Type Variables” and below example.

If your invocation returns either no row or only one row, then the return type of the method can

be a Java class, java.util.Map or Object[] (object-array). If your invocation can return more

then one row, then the return type of the method must be an array of Java class, array of Map,

Object[][] (object-array 2-dimensional) or Collection or Iterator (or subtypes thereof).

If you are using a Java class, an array of Java class or a Collection<Class> or an

Iterator<Class> as the return type, then the class must adhere to JavaBean conventions: it

must expose properties through getter methods.

If you are using java.util.Map or an array of Map or a Collection<Map> or an Iterator<Map>

as the return type, please note the following:

• Your application must provide a second method that returns event property metadata, as the

next section outlines.

• Each map instance returned by your method should have String-type keys and object values

(Map<String, Object>).

Chapter 5. EPL Reference: Clauses

172

If you are using Object[] (object-array) or Object[][] (object-array 2-dimensional) or

Collection<Object[]> or Iterator<Object[]> as the return type, please note the following:

• Your application must provide a second method that returns event property metadata, as the

next section outlines.

• Each object-array instance returned by your method should have the exact same array position

for values as the property metadata indicates and the array length must be the same as the

number of properties.

Your application method must return either of the following:

1. A null value or an empty array to indicate an empty result (no rows).

2. A Java object or Map or Object[] to indicate a zero (null) or one-row result.

3. Return multiple result rows by returning either:

• An array of Java objects.

• An array of Map instances.

• An array of Object[] instances.

• An array of EventBean[] instances (requires @type).

• A Collection of Java objects.

• A Collection of Map instances.

• A Collection of Object[] instances.

• An Collection of EventBean[] instances (requires @type).

• An Iterator of Java objects.

• An Iterator of Map instances.

• An Iterator of Object[] instances.

• An Iterator of EventBean[] instances (requires @type).

As an example, consider the method 'getAssetDescriptions' provided by class 'MyLookupLib' as

discussed earlier:

select assetId, assetDesc from AssetMoveEvent as asset,

 method:com.mypackage.MyLookupLib.getAssetDescriptions() as desc

 where asset.assetid = desc.assetid

Using a Map Return Type

173

The 'getAssetDescriptions' method may return multiple rows and is therefore declared to return

an array of the class 'AssetDesc'. The class AssetDesc is a POJO class (not shown here):

public class MyLookupLib {

 ...

 public static AssetDesc[] getAssetDescriptions() {

 ...

 return new AssetDesc[] {...};

 }

The example above specifies the full Java class name of the class 'MyLookupLib' class in the EPL

statement. The package name does not need to be part of the EPL if your application imports the

package using the auto-import configuration through the API or XML, as outlined in Section 17.4.7,

“Class and package imports”.

Alternatively the example above could return a Collection wherein the method declares

as public static Collection<AssetDesc> getAssetDescriptions() {...} or

an Iterator wherein the method declares as public static Iterator<AssetDesc>

getAssetDescriptions() {...}.

Method overloading is allowed as long as overloaded methods return the same result type.

5.14.3.1. Providing an Instance Method

If you application has an existing object instance such as a service or a dependency injected bean

then it must make the instance available as a variable. Please see Section 5.17.5, “Class and

Event-Type Variables” for more information.

For example, assuming you provided a stateChecker variable that points to an object instance

that provides a public getMatchingAssets instance method and that returns property assetIds,

you may use the state checker service in the from-clause as follows:

select assetIds from AssetMoveEvent,

 method:stateChecker.getMatchingAssets(assetDesc)

5.14.4. Using a Map Return Type

Your application may return java.util.Map or an array of Map from invocations. If doing so, your

application must provide metadata about each row: it must declare the property name and property

type of each Map entry of a row. This information allows the engine to perform type checking of

expressions used within the statement.

You declare the property names and types of each row by providing a method that returns property

metadata. The metadata method must follow these conventions:

Chapter 5. EPL Reference: Clauses

174

1. The method name providing the property metadata must have same method name appended

by the literal Metadata.

2. The method must have an empty parameter list and must be declared public and static.

3. The method providing the metadata must return a Map of String property name keys and

java.lang.Class property name types (Map<String, Class>).

In the following example, a class 'MyLookupLib' provides a method to return historical data based

on asset id and asset code:

select assetId, location, x_coord, y_coord from AssetMoveEvent as asset,

 method:com.mypackage.MyLookupLib.getAssetHistory(assetId, assetCode) as

 history

A sample implementation of the class 'MyLookupLib' is shown below.

public class MyLookupLib {

 ...

 // For each column in a row, provide the property name and type

 //

 public static Map<String, Class> getAssetHistoryMetadata() {

 Map<String, Class> propertyNames = new HashMap<String, Class>();

 propertyNames.put("location", String.class);

 propertyNames.put("x_coord", Integer.class);

 propertyNames.put("y_coord", Integer.class);

 return propertyNames;

 }

...

 // Lookup rows based on assetId and assetCode

 //

 public static Map<String, Object>[] getAssetHistory(String assetId, String

 assetCode) {

 Map rows = new Map[2]; // this sample returns 2 rows

 for (int i = 0; i < 2; i++) {

 rows[i] = new HashMap();

 rows[i].put("location", "somevalue");

 rows[i].put("x_coord", 100);

 // ... set more values for each row

 }

 return rows;

 }

In the example above, the 'getAssetHistoryMetadata' method provides the property metadata: the

names and types of properties in each row. The engine calls this method once per statement to

determine event typing information.

Using a Object Array Return Type

175

The 'getAssetHistory' method returns an array of Map objects that are two rows. The

implementation shown above is a simple example. The parameters to the method are the assetId

and assetCode properties of the AssetMoveEvent joined to the method. The engine calls this

method for each insert and remove stream event in AssetMoveEvent.

To indicate that no rows are found in a join, your application method may return either a null

value or an array of size zero.

Alternatively the example above could return a Collection wherein the method declares as

public static Collection<Map> getAssetHistory() {...} or an Iterator wherein the

method declares as public static Iterator<Map> getAssetHistory() {...}.

5.14.5. Using a Object Array Return Type

Your application may return Object[] (object-array) or an array of Object[] (object-array 2-

dimensional) from invocations. If doing so, your application must provide metadata about each

row: it must declare the property name and property type of each array entry of a row in the

exact same order as provided by value rows. This information allows the engine to perform type

checking of expressions used within the statement.

You declare the property names and types of each row by providing a method that returns property

metadata. The metadata method must follow these conventions:

1. The method name providing the property metadata must have same method name appended

by the literal Metadata.

2. The method must have an empty parameter list and must be declared public and static.

3. The method providing the metadata must return a LinkedHashMap of String property name

keys and java.lang.Class property name types (Map<String, Class>).

In the following example, a class 'MyLookupLib' provides a method to return historical data based

on asset id and asset code:

select assetId, location, x_coord, y_coord from AssetMoveEvent as asset,

 method:com.mypackage.MyLookupLib.getAssetHistory(assetId, assetCode) as

 history

A sample implementation of the class 'MyLookupLib' is shown below.

public class MyLookupLib {

 ...

 // For each column in a row, provide the property name and type

 //

 public static LinkedHashMap<String, Class> getAssetHistoryMetadata() {

Chapter 5. EPL Reference: Clauses

176

 LinkedHashMap<String, Class> propertyNames = new LinkedHashMap<String,

 Class>();

 propertyNames.put("location", String.class);

 propertyNames.put("x_coord", Integer.class);

 propertyNames.put("y_coord", Integer.class);

 return propertyNames;

 }

...

 // Lookup rows based on assetId and assetCode

 //

 public static Object[][] getAssetHistory(String assetId, String assetCode) {

 Object[][] rows = new Object[5][]; // this sample returns 5 rows

 for (int i = 0; i < 5; i++) {

 rows[i] = new Object[2]; // single row has 2 fields

 rows[i][0] = "somevalue";

 rows[i][1] = 100;

 // ... set more values for each row

 }

 return rows;

 }

In the example above, the 'getAssetHistoryMetadata' method provides the property metadata: the

names and types of properties in each row. The engine calls this method once per statement to

determine event typing information.

The 'getAssetHistory' method returns an Object[][] that represents five rows. The

implementation shown above is a simple example. The parameters to the method are the assetId

and assetCode properties of the AssetMoveEvent joined to the method. The engine calls this

method for each insert and remove stream event in AssetMoveEvent.

To indicate that no rows are found in a join, your application method may return either a null

value or an array of size zero.

Alternatively the example above could return a Collection wherein the method declares as

public static Collection<Object[]> getAssetHistory() {...} or an Iterator wherein

the method declares as public static Iterator<Object[]> getAssetHistory() {...}.

5.14.6. Using an EventBean Return Type

When the return type is EventBean[], Collection<EventBean> or Iterator<EventBean>, you

must specify the event type name using @type.

For example assuming the event type ItemEvent is declared as create schema ItemEvent(p0

string):

select * from MyEvent, method:MyLib.myFunc() @type(ItemEvent)

Providing the Script

177

public static EventBean[] myFunc(EPLMethodInvocationContext context) {

 EventBean[1] events = new EventBean[1];

 events[0] =

 context.getEventBeanService().adapterForMap(Collections.singletonMap("p0",

 "hello"), "ItemEvent");

 return events;

}

5.14.7. Providing the Script

Your script must declare the return type as EventBean[]. In the @type annotation you must

provide an event type name.

For example assuming the event type ItemEvent is declared as create schema ItemEvent(id

string):

select id from MyEvent, method:myItemProducerScript()

The example JavaScript script is:

create expression EventBean[] @type(ItemEvent) js:myItemProducerScript() [

myItemProducerScript()

function myItemProducerScript() {

 var EventBeanArray = Java.type(\"com.espertech.esper.client.EventBean[]\");

 var events = new EventBeanArray(1);

 events[0] =

 epl.getEventBeanService().adapterForMap(java.util.Collections.singletonMap(\"id

\", \"id1\"), \"ItemEvent\");

 return events;

}]

5.14.8. Providing the UDF

Your script must declare the return type of the UDF as EventBean[]. In the @type annotation you

must provide an event type name.

For example assuming you have registered a user-defined function myUserDefinedFunction:

select id from MyEvent, method:myUserDefinedFunction() @type(ItemEvent)

5.15. Declaring an Event Type: Create Schema

Chapter 5. EPL Reference: Clauses

178

EPL allows declaring an event type via the create schema clause and also by means of the static

or runtime configuration API addEventType functions. The term schema and event type has the

same meaning in EPL.

Your application can declare an event type by providing the property names and types or by

providing a class name. Your application may also declare a variant stream schema.

When using the create schema syntax to declare an event type, the engine automatically removes

the event type when there are no started statements referencing the event type, including the

statement that declared the event type. When using the configuration API, the event type stays

cached even if there are no statements that refer to the event type and until explicitly removed

via the runtime configuration API.

5.15.1. Declare an Event Type by Providing Names and Types

The synopsis of the create schema syntax providing property names and types is:

create [map | objectarray | avro] schema schema_name [as]

 (property_name property_type [,property_name property_type [,...])

 [inherits inherited_event_type[, inherited_event_type] [,...]]

 [starttimestamp timestamp_property_name]

 [endtimestamp timestamp_property_name]

 [copyfrom copy_type_name [, copy_type_name] [,...]]

The create keyword can be followed by map to instruct the engine to represent events of that type

by the Map event representation, or objectarray to denote an Object-array event type, or avro

to denote an Avro event type. If neither the map or objectarray or avro keywords are provided,

the engine-wide default event representation applies.

After create schema follows a schema_name. The schema name is the event type name.

The property_name is an identifier providing the event property name. The property_type is also

required for each property. Valid property types are listed in Section 5.17.1, “Creating Variables:

the Create Variable clause” and in addition include:

1. Any Java class name, fully-qualified or the simple class name if imports are configured.

2. Add left and right square brackets [] to any type to denote an array-type event property.

3. Use an event type name as a property type.

4. The null keyword for a null-typed property.

The optional inherits keywords is followed by a comma-separated list of event type names that

are the supertypes to the declared type.

The optional starttimestamp keyword is followed by a property name. Use this to tell the engine

that your event has a timestamp. The engine checks that the property name exists on the declared

type and returns a date-time value. Declare a timestamp property if you want your events to

Declare an Event Type by Providing Names and Types

179

implicitly carry a timestamp value for convenient use with interval algebra methods as a start

timestamp.

The optional endtimestamp keyword is followed by a property name. Use this together with

starttimestamp to tell the engine that your event has a duration. The engine checks that

the property name exists on the declared type and returns a date-time value. Declare an

endtimestamp property if you want your events to implicitly carry a duration value for convenient

use with interval algebra methods.

The optional copyfrom keyword is followed by a comma-separate list of event type names. For

each event type listed, the engine looks up that type and adds all event property definitions to the

newly-defined type, in addition to those listed explicitly (if any).

A few example event type declarations follow:

// Declare type SecurityEvent

create schema SecurityEvent as (ipAddress string, userId String, numAttempts int)

// Declare type AuthorizationEvent with the roles property being an array of

 String

// and the hostinfo property being a POJO object

create schema AuthorizationEvent(group String, roles String[], hostinfo

 com.mycompany.HostNameInfo)

// Declare type CompositeEvent in which the innerEvents property is an array

 of SecurityEvent

create schema CompositeEvent(group String, innerEvents SecurityEvent[])

// Declare type WebPageVisitEvent that inherits all properties from PageHitEvent

create schema WebPageVisitEvent(userId String) inherits PageHitEvent

// Declare a type with start and end timestamp (i.e. event with duration).

create schema RoboticArmMovement (robotId string, startts long, endts long)

 starttimestamp startts endtimestamp endts

// Create a type that has all properties of SecurityEvent plus a userName property

create schema ExtendedSecurityEvent (userName string) copyfrom SecurityEvent

// Create a type that has all properties of SecurityEvent

create schema SimilarSecurityEvent () copyfrom SecurityEvent

// Create a type that has all properties of SecurityEvent and WebPageVisitEvent

 plus a userName property

create schema WebSecurityEvent (userName string) copyfrom SecurityEvent,

 WebPageVisitEvent

To elaborate on the inherits keyword, consider the following two schema definitions:

Chapter 5. EPL Reference: Clauses

180

create schema Foo as (prop1 string)

create schema Bar() inherits Foo

Following above schema, Foo is a supertype or Bar and therefore any Bar event also fulfills Foo

and matches where Foo matches. An EPL statement such as select * from Foo returns any Foo

event as well as any event that is a subtype of Foo such as all Bar events. When your EPL queries

don't use any Foo events there is no cost, thus inherits is generally an effective way to share

properties between types. The start and end timestamp are also inherited from any supertype that

has the timestamp property names defined.

The optional copyfrom keyword is for defining a schema based on another schema. This keyword

causes the engine to copy property definitions: There is no inherits, extends, supertype or subtype

relationship between the types listed.

To define an event type Bar that has the same properties as Foo:

create schema Foo as (prop1 string)

create schema Bar() copyfrom Foo

To define an event type Bar that has the same properties as Foo and that adds its own property

prop2:

create schema Foo as (prop1 string)

create schema Bar(prop2 string) copyfrom Foo

If neither the map or objectarray or avro keywords are provided, and if the create-

schema statement provides the @EventRepresentation(objectarray) annotation the engine

expects object array events. If the statement provides the @EventRepresentation(avro)

annotation the engine expects Avro objects as events. If the statement provides the

@EventRepresentation(map) annotation the engine expects Map objects as events. If neither

annotation is provided, the engine uses the configured default event representation as discussed

in Section 17.4.13.1, “Default Event Representation”.

Declare an Event Type by Providing a Class Name

181

The following two EPL statements both instructs the engine to represent Foo events as object

arrays. When sending Foo events into the engine use the sendEvent(Object[] data, String

typeName) footprint.

create objectarray schema Foo as (prop1 string)

@EventRepresentation(objectarray) create schema Foo as (prop1 string)

The next two EPL statements both instructs the engine to represent Foo events as Maps. When

sending Foo events into the engine use the sendEvent(Map data, String typeName) footprint.

create map schema Foo as (prop1 string)

@EventRepresentation(map) create schema Foo as (prop1 string)

The following two EPL statements both instructs the engine to represent Foo events as Avro

GenericData.Record. When sending Foo events into the engine use the sendEventAvro(Object

genericDataDotRecord, String typeName) footprint.

create avro schema Foo as (prop1 string)

@EventRepresentation(avro) create schema Foo as (prop1 string)

5.15.2. Declare an Event Type by Providing a Class Name

When using Java classes as the underlying event representation your application may simply

provide the class name:

create schema schema_name [as] class_name

 [starttimestamp timestamp_property_name]

 [endtimestamp timestamp_property_name]

The class_name must be a fully-qualified class name (including the package name) if imports are

not configured. If you application configures imports then the simple class name suffices without

package name.

The optional starttimestamp and endtimestamp keywords have a meaning as defined earlier.

Chapter 5. EPL Reference: Clauses

182

The next example statements declare an event type based on a class:

// Shows the use of a fully-qualified class name to declare the LoginEvent

 event type

create schema LoginEvent as com.mycompany.LoginValue

// When the configuration includes imports, the declaration does not need a

 package name

create schema LogoutEvent as SignoffValue

5.15.3. Declare a Variant Stream

A variant stream is a predefined stream into which events of multiple disparate event types can

be inserted. Please see Section 5.10.3, “Merging Disparate Types of Events: Variant Streams”

for rules regarding property visibility and additional information.

The synopsis is:

create variant schema schema_name [as] eventtype_name|* [, eventtype_name|*]

 [,...]

Provide the variant keyword to declare a variant stream.

The '*' wildcard character declares a variant stream that accepts any type of event inserted into

the variant stream.

Provide eventtype_name if the variant stream should hold events of the given type only. When

using insert into to insert into the variant stream the engine checks to ensure the inserted event

type or its supertypes match the required event type.

A few examples are shown below:

// Create a variant stream that accepts only LoginEvent and LogoutEvent event

 types

create variant schema SecurityVariant as LoginEvent, LogoutEvent

// Create a variant stream that accepts any event type

create variant schema AnyEvent as *

5.16. Splitting and Duplicating Streams

EPL offers a convenient syntax to splitting, routing or duplicating events into multiple streams, and

for receiving unmatched events among a set of filter criteria.

Splitting and Duplicating Streams

183

For splitting a single event that acts as a container and expose child events as a property of itself

consider the contained-event syntax as described in Section 5.19, “Contained-Event Selection”.

For generating marker events for contained-events please see below.

You may define a triggering event or pattern in the on-part of the statement followed by multiple

insert into, select and where clauses.

The synopsis is:

[context context_name]

on event_type[(filter_criteria)] [as stream_name]

insert into insert_into_def select select_list [where condition]

[insert into insert_into_def select select_list [from contained-event-

selection] [where condition]]

[insert into insert_into_def select select_list [from contained-event-

selection] [where condition]]

[insert into...]

[output first | all]

The event_type is the name of the type of events that trigger the split stream. It is optionally

followed by filter_criteria which are filter expressions to apply to arriving events. The optional

as keyword can be used to assign a stream name. Patterns and named windows can also be

specified in the on clause.

Following the on-clause is one or more insert into clauses as described in Section 5.10, “Merging

Streams and Continuous Insertion: the Insert Into Clause” and select clauses as described in

Section 5.3, “Choosing Event Properties And Events: the Select Clause”.

The second and subsequent insert into and select clause pair can have a from clause for

contained-event-selection. This is useful when your trigger events themselves contain events that

must be processed individually and that may be delimited by marker events that you can define.

Each select clause may be followed by a where clause containing a condition. If the condition

is true for the event, the engine transforms the event according to the select clause and inserts

it into the corresponding stream.

At the end of the statement can be an optional output clause. By default the engine inserts into

the first stream for which the where clause condition matches if one was specified, starting from

the top. If you specify the output all keywords, then the engine inserts into each stream (not only

the first stream) for which the where clause condition matches or that do not have a where clause.

If, for a given event, none of the where clause conditions match, the statement listener receives the

unmatched event. The statement listener only receives unmatched events and does not receive

any transformed or inserted events. The iterator method to the statement returns no events.

You may specify an optional context name to the effect that the split-stream operates according

to the context dimensional information as declared for the context. See Chapter 4, Context and

Context Partitions for more information.

Chapter 5. EPL Reference: Clauses

184

In the below sample statement, the engine inserts each OrderEvent into the LargeOrders stream

if the order quantity is 100 or larger, or into the SmallOrders stream if the order quantity is smaller

then 100:

on OrderEvent

 insert into LargeOrders select * where orderQty >= 100

 insert into SmallOrders select *

The next example statement adds a new stream for medium-sized orders. The new stream

receives orders that have an order quantity between 20 and 100:

on OrderEvent

 insert into LargeOrders select orderId, customer where orderQty >= 100

 insert into MediumOrders select orderId, customer where orderQty between 20

 and 100

 insert into SmallOrders select orderId, customer where orderQty > 0

As you may have noticed in the above statement, orders that have an order quantity of zero don't

match any of the conditions. The engine does not insert such order events into any stream and

the listener to the statement receives these unmatched events.

By default the engine inserts into the first insert into stream without a where clause or for

which the where clause condition matches. To change the default behavior and insert into all

matching streams instead (including those without a where clause), the output all keywords

may be added to the statement.

The sample statement below shows the use of the output all keywords. The statement

populates both the LargeOrders stream with large orders as well as the VIPCustomerOrders

stream with orders for certain customers based on customer id:

on OrderEvent

 insert into LargeOrders select * where orderQty >= 100

 insert into VIPCustomerOrders select * where customerId in (1001, 1002)

 output all

Since the output all keywords are present, the above statement inserts each order event into

either both streams or only one stream or none of the streams, depending on order quantity and

customer id of the order event. The statement delivers order events not inserted into any of the

streams to the listeners and/or subscriber to the statement.

The following limitations apply to split-stream statements:

Generating Marker Events for Contained Events

185

1. Aggregation functions and the prev and prior operators are not available in conditions and

the select-clause.

5.16.1. Generating Marker Events for Contained Events

When a trigger event contains properties that are themselves events, or more generally when

your application needs to split the trigger event into multiple events, or to generate marker events

(begin, end etc.) or process contained events in a defined order, you may specify a from clause.

The from clause is only allowed for the second and subsequent insert into and select clause

pair. It specifies how the trigger event should get unpacked into individual events and is based on

the Section 5.19, “Contained-Event Selection”.

For example, assume there is an order event that contains order items:

create schema OrderItem(itemId string)

create schema OrderEvent(orderId string, items OrderItem[])

We can tell the engine that, for each order event, it should process in the following order:

1. Process a single OrderBeginEvent that holds just the order id.

2. Process all order items contained in an order event.

3. Process a single OrderEndEvent that holds just the order id.

The EPL is:

on OrderEvent

 insert into OrderBeginEvent select orderId

 insert into OrderItemEvent select * from [select orderId, * from items]

 insert into OrderEndEvent select orderId

 output all

When an OrderEvent comes in, the engine first processes an OrderBeginEvent. The engine

unpacks the order event and for each order item processes an OrderItemEvent containing the

respective item. The engine last processes an OrderEndEvent.

Such begin and end marker events are useful to initiate and terminate an analysis using context

declaration, for example. The next two EPL statements declare a context and perform a simple

count of order items per order:

create context OrderContext

Chapter 5. EPL Reference: Clauses

186

 initiated by OrderBeginEvent as obe

 terminated by OrderEndEvent(orderId = obe.orderId)

context OrderContext select count(*) as orderItemCount from OrderItemEvent output

 when terminated

5.17. Variables and Constants

A variable is a scalar, object, event or set of aggregation values that is available for use in all

statements including patterns. Variables can be used in an expression anywhere in a statement

as well as in the output clause for output rate limiting.

Variables must first be declared or configured before use, by defining each variable's type and

name. Variables can be created via the create variable syntax or declared by runtime or

static configuration. Variables can be assigned new values by using the on set syntax or via

the setVariableValue methods on EPRuntime. The EPRuntime also provides method to read

variable values.

A variable can be declared constant. A constant variable always has the initial value and cannot

be assigned a new value. A constant variable can be used like any other variable and can be used

wherever a constant is required. By declaring a variable constant you enable the Esper engine to

optimize and perform query planning knowing that the variable value cannot change.

When declaring a class-typed, event-typed or aggregation-typed variable you may read or set

individual properties within the same variable.

The engine guarantees consistency and atomicity of variable reads and writes on the level of

context partition (this is a soft guarantee, see below). Variables are optimized for fast read access

and are also multithread-safe.

When you associate a context to the variable then each context partition maintains its own variable

value. See Section 4.8, “Context and Variables” for more information.

Variables can also be removed, at runtime, by destroying all referencing statements including the

statement that created the variable, or by means of the runtime configuration API.

5.17.1. Creating Variables: the Create Variable clause

The create variable syntax creates a new variable by defining the variable type and name. In

alternative to the syntax, variables can also be declared in the runtime and engine configuration

options.

The synopsis for creating a variable is as follows:

create [constant] variable variable_type [[]] variable_name

 [= assignment_expression]

Creating Variables: the Create Variable clause

187

Specify the optional constant keyword when the variable is a constant whose associated value

cannot be altered. Your EPL design should prefer constant variables over non-constant variables.

The variable_type can be any of the following:

variable_type

 : string

 | char

 | character

 | bool

 | boolean

 | byte

 | short

 | int

 | integer

 | long

 | double

 | float

 | object

 | enum_class

 | class_name

 | event_type_name

Variable types can accept null values. The object type is for an untyped variable that can be

assigned any value. You can provide a class name (use imports) or a fully-qualified class name

to declare a variable of that Java class type including an enumeration class. You can also supply

the name of an event type to declare a variable that holds an event of that type.

Append [] to the variable type to declare an array variable. A limitation is that if your variable type

is an event type then array is not allowed (applies to variables only and not to named windows or

tables). For arrays of primitives, specify [primitive], for example int[primitive].

The variable_name is an identifier that names the variable. The variable name should not already

be in use by another variable.

The assignment_expression is optional. Without an assignment expression the initial value for

the variable is null. If present, it supplies the initial value for the variable.

The EPStatement object of the create variable statement provides access to variable values.

The pull API methods iterator and safeIterator return the current variable value. Listeners to

the create variable statement subscribe to changes in variable value: the engine posts new and

old value of the variable to all listeners when the variable value is updated by an on set statement.

The example below creates a variable that provides a threshold value. The name of the variable

is var_threshold and its type is long. The variable's initial value is null as no other value has

been assigned:

Chapter 5. EPL Reference: Clauses

188

create variable long var_threshold

This statement creates an integer-type variable named var_output_rate and initializes it to the

value ten (10):

create variable integer var_output_rate = 10

The next statement declares a constant string-type variable:

create constant variable string const_filter_symbol = 'GE'

In addition to creating a variable via the create variable syntax, the runtime and engine

configuration API also allows adding variables. The next code snippet illustrates the use of the

runtime configuration API to create a string-typed variable:

epService.getEPAdministrator().getConfiguration()

 .addVariable("myVar", String.class, "init value");

The following example declares a constant that is an array of string:

create constant variable string[] const_filters = {'GE', 'MSFT'}

The next example declares a constant that is an array of enumeration values. It assumes the

Color enumeration class was imported:

create constant variable Color[] const_colors = {Color.RED, Color.BLUE}

For an array of primitive-type bytes, specify the primitive keyword in square brackets, as the

next example shows:

create variable byte[primitive] mybytes = SomeClass.getBytes()

Use the new keyword to initialize object instances (the example assumes the package or class

was imported):

Setting Variable Values: the On Set clause

189

create constant variable AtomicInteger cnt = new AtomicInteger(1)

The engine removes the variable if the statement that created the variable is destroyed and all

statements that reference the variable are also destroyed. The getVariableNameUsedBy and the

removeVariable methods, both part of the runtime ConfigurationOperations API, provide use

information and can remove a variable. If the variable was added via configuration, it can only be

removed via the configuration API.

5.17.2. Setting Variable Values: the On Set clause

The on set statement assigns a new value to one or more variables when a triggering event

arrives or a triggering pattern occurs. Use the setVariableValue methods on EPRuntime to

assign variable values programmatically.

The synopsis for setting variable values is:

on event_type[(filter_criteria)] [as stream_name]

 set variable_name = expression [, variable_name = expression [,...]]

The event_type is the name of the type of events that trigger the variable assignments. It is

optionally followed by filter_criteria which are filter expressions to apply to arriving events. The

optional as keyword can be used to assign an stream name. Patterns and named windows can

also be specified in the on clause.

The comma-separated list of variable names and expressions set the value of one or more

variables. Subqueries may by part of expressions however aggregation functions and the prev or

prior function may not be used in expressions.

All new variable values are applied atomically: the changes to variable values by the on set

statement become visible to other statements all at the same time. No changes are visible to other

processing threads until the on set statement completed processing, and at that time all changes

become visible at once.

The EPStatement object provides access to variable values. The pull API methods iterator and

safeIterator return the current variable values for each of the variables set by the statement.

Listeners to the statement subscribe to changes in variable values: the engine posts new variable

values of all variables to any listeners.

In the following example, a variable by name var_output_rate has been declared previously.

When a NewOutputRateEvent event arrives, the variable is updated to a new value supplied by

the event property 'rate':

on NewOutputRateEvent set var_output_rate = rate

The next example shows two variables that are updated when a ThresholdUpdateEvent arrives:

Chapter 5. EPL Reference: Clauses

190

on ThresholdUpdateEvent as t

 set var_threshold_lower = t.lower,

 var_threshold_higher = t.higher

The sample statement shown next counts the number of pattern matches using a variable. The

pattern looks for OrderEvent events that are followed by CancelEvent events for the same order

id within 10 seconds of the OrderEvent:

on pattern[every a=OrderEvent -> (CancelEvent(orderId=a.orderId) where

 timer:within(10 sec))]

 set var_counter = var_counter + 1

5.17.3. Using Variables

A variable name can be used in any expression and can also occur in an output rate limiting

clause. This section presents examples and discusses performance, consistency and atomicity

attributes of variables.

The next statement assumes that a variable named 'var_threshold' was created to hold a total

price threshold value. The statement outputs an event when the total price for a symbol is greater

then the current threshold value:

select symbol, sum(price) from TickEvent

group by symbol

having sum(price) > var_threshold

In this example we use a variable to dynamically change the output rate on-the-fly. The variable

'var_output_rate' holds the current rate at which the statement posts a current count to listeners:

select count(*) from TickEvent output every var_output_rate seconds

Variables are optimized towards high read frequency and lower write frequency. Variable reads

do not incur locking overhead (99% of the time) while variable writes do incur locking overhead.

The engine softly guarantees consistency and atomicity of variables when your statement

executes in response to an event or timer invocation. Variables acquire a stable value

(implemented by versioning) when your statement starts executing in response to an event or

timer invocation, and variables do not change value during execution. When one or more variable

values are updated via on set statements, the changes to all updated variables become visible

to statements as one unit and only when the on set statement completes successfully.

Object-Type Variables

191

The atomicity and consistency guarantee is a soft guarantee. If any of your application statements,

in response to an event or timer invocation, execute for a time interval longer then 15 seconds

(default interval length), then the engine may use current variable values after 15 seconds passed,

rather then then-current variable values at the time the statement started executing in response

to an event or timer invocation.

The length of the time interval that variable values are held stable for the duration of execution of

a given statement is by default 15 seconds, but can be configured via engine default settings.

5.17.4. Object-Type Variables

A variable of type object (or java.lang.Object via the API) can be assigned any value including

null. When using an object-type variable in an expression, your statement may need to cast the

value to the desired type.

The following sample EPL creates a variable by name varobj of type object:

create variable object varobj

5.17.5. Class and Event-Type Variables

The create variable syntax and the API accept a fully-qualified class name or alternatively the

name of an event type. This is useful when you want a single variable to have multiple property

values to read or set.

The next statement assumes that the event type PageHitEvent is declared:

create variable PageHitEvent varPageHitZero

These example statements show two ways of assigning to the variable:

// You may assign the complete event

on PageHitEvent(ip='0.0.0.0') pagehit set varPageHitZero = pagehit

// Or assign individual properties of the event

on PageHitEvent(ip='0.0.0.0') pagehit set varPageHitZero.userId = pagehit.userId

Similarly statements may use properties of class or event-type variables as this example shows:

select * from FirewallEvent(userId=varPageHitZero.userId)

Chapter 5. EPL Reference: Clauses

192

Instance method can also be invoked:

create variable com.example.StateCheckerService stateChecker

select * from TestEvent as e where stateChecker.checkState(e)

A variable that represents a service for calling instance methods could be initialized by calling a

factory method. This example assumes the classes were added to imports:

create constant variable StateCheckerService stateChecker =

 StateCheckerServiceFactory.makeService()

Or the variable can be added via the config API; an example code snippet is next:

admin.getConfiguration().addVariable("stateChecker", StateCheckerService.class,

 StateCheckerServiceFactory.makeService(), true);

Application objects can also be passed via transient configuration information as described in

Section 17.3, “Passing Services or Transient Objects”.

Note
When using non-constant class or event-type variables and when your EPL intends

to set property values on the variable itself (i.e. set varPageHitZero.userId),

please note the following requirements. In order for the engine to assign property

values, the underlying event type must allow writing property values. If using

JavaBean event classes the class must have setter methods and a default

constructor. The underlying event type must also be copy-able i.e. implement

Serializable or configure a copy method (only for non-constant variables and

when setting property values).

5.18. Declaring Global Expressions, Aliases And

Scripts: Create Expression

Your application can declare an expression or script using the create expression clause. Such

expressions or scripts become available globally to any EPL statement.

The synopsis of the create expression syntax is:

Global Expression Aliases

193

create expression expression_or_script

Use the create expression keywords and append the expression or scripts.

At the time your application creates the create expression statement the expression or script

becomes globally visible.

At the time your application destroys the create expression statement the expression or script

are no longer visible. Existing statements that use the global expression or script are unaffected.

Expression aliases are the simplest means of sharing expressions and do not accept parameters.

Expression declarations limit the expression scope to the parameters that are passed.

The engine may cache declared expression result values and reuse cache values, see

Section 17.4.26.8, “Declared Expression Value Cache Size”.

5.18.1. Global Expression Aliases

The syntax and additional examples for declaring an expression is outlined in Section 5.2.8,

“Expression Alias”, which discusses expression aliases that are visible within the same EPL

statement i.e. visible locally only.

When using the create expression syntax to declare an expression the engine remembers the

expression alias and expression and allows the alias to be referenced in all other EPL statements.

The below EPL declares a globally visible expression alias for an expression that computes the

total of the mid-price which is the buy and sell price divided by two:

create expression totalMidPrice alias for { sum((buy + sell) / 2) }

The next EPL returns mid-price for events for which the mid-price per symbol stays below 10:

select symbol, midPrice from MarketDataEvent group by symbol having midPrice < 10

The expression name must be unique among all other expression aliases and expression

declarations.

Your application can provide an expression alias of the same name local to a given EPL statement

as well as globally using create expression. The locally-provided expression alias overrides

the global expression alias.

The engine validates global expression aliases at the time your application creates a statement

that references the alias. When a statement references a global alias, the engine uses the that

statement's local expression scope to validate the expression. Expression aliases can therefore

be dynamically typed and type information does not need to be the same for all statements that

reference the expression alias.

Chapter 5. EPL Reference: Clauses

194

5.18.2. Global Expression Declarations

The syntax and additional examples for declaring an expression is outlined in Section 5.2.9,

“Expression Declaration”, which discusses declaring expressions that are visible within the same

EPL statement i.e. visible locally only.

When using the create expression syntax to declare an expression the engine remembers the

expression and allows the expression to be referenced in all other EPL statements.

The below EPL declares a globally visible expression that computes a mid-price and that requires

a single parameter:

create expression midPrice { in => (buy + sell) / 2 }

The next EPL returns mid-price for each event:

select midPrice(md) from MarketDataEvent as md

The expression name must be unique for global expressions. It is not possible to declare the same

global expression twice with the same name.

Your application can declare an expression of the same name local to a given EPL statement as

well as globally using create expression. The locally-declared expression overrides the globally

declared expression.

The engine validates globally declared expressions at the time your application creates a

statement that references the global expression. When a statement references a global

expression, the engine uses that statement's type information to validate the global expressions.

Global expressions can therefore be dynamically typed and type information does not need to be

the same for all statements that reference the global expression.

This example shows a sequence of EPL, that can be created in the order shown, and that

demonstrates expression validation at time of referral:

create expression minPrice {(select min(price) from OrderWindow)}

create window OrderWindow#time(30) as OrderEvent

insert into OrderWindow select * from OrderEvent

Global Scripts

195

// Validates and incorporates the declared global expression

select minPrice() as minprice from MarketData

5.18.3. Global Scripts

The syntax and additional examples for declaring scripts is outlined in Chapter 20, Script Support,

which discusses declaring scripts that are visible within the same EPL statement i.e. visible locally

only.

When using the create expression syntax to declare a script the engine remembers the script

and allows the script to be referenced in all other EPL statements.

The below EPL declares a globally visible script in the JavaScript dialect that computes a mid-

price:

create expression midPrice(buy, sell) [(buy + sell) / 2]

The next EPL returns mid-price for each event:

select midPrice(buy, sell) from MarketDataEvent

The engine validates globally declared scripts at the time your application creates a statement

that references the global script. When a statement references a global script, the engine uses

that statement's type information to determine parameter types. Global scripts can therefore be

dynamically typed and type information does not need to be the same for all statements that

reference the global script.

The script name in combination with the number of parameters must be unique for global scripts.

It is not possible to declare the same global script twice with the same name and number of

parameters.

Your application can declare a script of the same name and number of parameters that is local to

a given EPL statement as well as globally using create expression. The locally-declared script

overrides the globally declared script.

5.19. Contained-Event Selection

Contained-event selection is for use when an event contains properties that are themselves

events, or more generally when your application needs to split an event into multiple events. One

example is when application events are coarse-grained structures and you need to perform bulk

operations on the rows of the property graph in an event.

Chapter 5. EPL Reference: Clauses

196

Use the contained-event selection syntax in a filter expression such as in a pattern, from clause,

subselect, on-select and on-delete. This section provides the synopsis and examples.

To review, in the from clause a contained_selection may appear after the event stream name and

filter criteria, and before any view specifications.

The synopsis for contained_selection is as follows:

[select select_expressions from]

 contained_expression [@type(eventtype_name)] [as alias_name]

 [where filter_expression]

The select clause and select_expressions are optional and may be used to select specific

properties of contained events.

The contained_expression is required and returns individual events. The expression can, for

example, be an event property name that returns an event fragment, i.e. a property that can itself

be represented as an event by the underlying event representation. The expression can also be

any other expression such as a single-row function or a script that returns either an array or a

java.util.Collection of events. Simple values such as integer or string are not fragments but

can be used as well as described below.

Provide the @type(name) annotation after the contained expression to name the event type of

events returned by the expression. The annotation is optional and not needed when the contained-

expression is an event property that returns a class or other event fragment.

The alias_name can be provided to assign a name to the expression result value rows.

The where clause and filter_expression is optional and may be used to filter out properties.

As an example event, consider a media order. A media order consists of order items as well as

product descriptions. A media order event can be represented as an object graph (POJO event

representation), or a structure of nested Maps (Map event representation) or a XML document

(XML DOM or Axiom event representation) or other custom plug-in event representation.

To illustrate, a sample media order event in XML event representation is shown below. Also, a

XML event type can optionally be strongly-typed with an explicit XML XSD schema that we don't

show here. Note that Map and POJO representation can be considered equivalent for the purpose

of this example.

Let us now assume that we have declared the event type MediaOrder as being represented by

the root node <mediaorder> of such XML snip:

<mediaorder>

 <orderId>PO200901</orderId>

 <items>

 <item>

 <itemId>100001</itemId>

Contained-Event Selection

197

 <productId>B001</productId>

 <amount>10</amount>

 <price>11.95</price>

 </item>

 </items>

 <books>

 <book>

 <bookId>B001</bookId>

 <author>Heinlein</author>

 <review>

 <reviewId>1</reviewId>

 <comment>best book ever</comment>

 </review>

 </book>

 <book>

 <bookId>B002</bookId>

 <author>Isaac Asimov</author>

 </book>

 </books>

</mediaorder>

The next query utilizes the contained-event selection syntax to return each book:

select * from MediaOrder[books.book]

The result of the above query is one event per book. Output events contain only the book properties

and not any of the mediaorder-level properties.

Note that, when using listeners, the engine delivers multiple results in one invocation of each

listener. Therefore listeners to the above statement can expect a single invocation passing all

book events within one media order event as an array.

To better illustrate the position of the contained-event selection syntax in a statement, consider

the next two queries:

select * from MediaOrder(orderId='PO200901')[books.book]

The above query the returns each book only for media orders with a given order id. This query

illustrates a contained-event selection and a view:

select count(*) from MediaOrder[books.book]#unique(bookId)

The sample above counts each book unique by book id.

Chapter 5. EPL Reference: Clauses

198

Contained-event selection can be staggered. When staggering multiple contained-event

selections the staggered contained-event selection is relative to its parent.

This example demonstrates staggering contained-event selections by selecting each review of

each book:

select * from MediaOrder[books.book][review]

Listeners to the query above receive a row for each review of each book. Output events contain

only the review properties and not the book or media order properties.

The following is not valid:

// not valid

select * from MediaOrder[books.book.review]

The book property in an indexed property (an array or collection) and thereby requires an index

in order to determine which book to use. The expression books.book[1].review is valid and

means all reviews of the second (index 1) book.

The contained-event selection syntax is part of the filter expression and may therefore occur in

patterns and anywhere a filter expression is valid.

A pattern example is below. The example assumes that a Cancel event type has been defined

that also has an orderId property:

select * from pattern [c=Cancel -> books=MediaOrder(orderId = c.orderId)

[books.book]]

When used in a pattern, a filter with a contained-event selection returns an array of events, similar

to the match-until clause in patterns. The above statement returns, in the books property, an array

of book events.

5.19.1. Select-Clause in a Contained-Event Selection

The optional select clause provides control over which fields are available in output events. The

expressions in the select-clause apply only to the properties available underneath the property in

the from clause, and the properties of the enclosing event.

When no select is specified, only the properties underneath the selected property are available

in output events.

In summary, the select clause may contain:

Select-Clause in a Contained-Event Selection

199

1. Any expressions, wherein properties are resolved relative to the property in the from clause.

2. Use the wildcard (*) to provide all properties that exist under the property in the from clause.

3. Use the alias_name.* syntax to provide all properties that exist under a property in the from

clause.

The next query's select clause selects each review for each book, and the order id as well as

the book id of each book:

select * from MediaOrder[select orderId, bookId from books.book][select * from

 review]

// ... equivalent to ...

select * from MediaOrder[select orderId, bookId from books.book][review]]

Listeners to the statement above receive an event for each review of each book. Each output event

has all properties of the review row, and in addition the bookId of each book and the orderId of

the order. Thus bookId and orderId are found in each result event, duplicated when there are

multiple reviews per book and order.

The above query uses wildcard (*) to select all properties from reviews. As has been discussed

as part of the select clause, the wildcard (*) and property_alias.* do not copy properties

for performance reasons. The wildcard syntax instead specifies the underlying type, and

additional properties are added onto that underlying type if required. Only one wildcard (*) and

property_alias.* (unless used with a column rename) may therefore occur in the select clause

list of expressions.

All the following queries produce an output event for each review of each book. The next sample

queries illustrate the options available to control the fields of output events.

The output events produced by the next query have all properties of each review and no other

properties available:

select * from MediaOrder[books.book][review]

The following query is not a valid query, since the order id and book id are not part of the contained-

event selection:

// Invalid select-clause: orderId and bookId not produced.

select orderId, bookId from MediaOrder[books.book][review]

This query is valid. Note that output events carry only the orderId and bookId properties and

no other data:

Chapter 5. EPL Reference: Clauses

200

select orderId, bookId from MediaOrder[books.book][select orderId, bookId from

 review]

//... equivalent to ...

select * from MediaOrder[select orderId, bookId from books.book][review]

This variation produces output events that have all properties of each book and only reviewId

and comment for each review:

select * from MediaOrder[select * from books.book][select reviewId, comment from

 review]

// ... equivalent to ...

select * from MediaOrder[books.book as book][select book.*, reviewId, comment

 from review]

The output events of the next EPL have all properties of the order and only bookId and reviewId

for each review:

select * from MediaOrder[books.book as book]

 [select mediaOrder.*, bookId, reviewId from review] as mediaOrder

This EPL produces output events with 3 columns: a column named mediaOrder that is the order

itself, a column named book for each book and a column named review that holds each review:

insert into ReviewStream select * from MediaOrder[books.book as book]

 [select mo.* as mediaOrder, book.* as book, review.* as review from review

 as review] as mo

// .. and a sample consumer of ReviewStream...

select mediaOrder.orderId, book.bookId, review.reviewId from ReviewStream

Please note these limitations:

1. Sub-selects, aggregation functions and the prev and prior operators are not available in

contained-event selection.

2. Expressions in the select and where clause of a contained-event selection can only reference

properties relative to the current event and property.

Where Clause in a Contained-Event Selection

201

5.19.2. Where Clause in a Contained-Event Selection

The optional where clause may be used to filter out properties at the same level that the where-

clause occurs.

The properties in the filter expression must be relative to the property in the from clause or the

enclosing event.

This query outputs all books with a given author:

select * from MediaOrder[books.book where author = 'Heinlein']

This query outputs each review of each book where a review comment contains the word 'good':

select * from MediaOrder[books.book][review where comment like 'good']

5.19.3. Contained-Event Selection and Joins

This section discusses contained-event selection in joins.

When joining within the same event it is not required that views are specified. Recall, in a join or

outer join there must be views specified that hold the data to be joined. For self-joins, no views

are required and the join executes against the data returned by the same event.

This query inner-joins items to books where book id matches the product id:

select book.bookId, item.itemId

from MediaOrder[books.book] as book,

 MediaOrder[items.item] as item

where productId = bookId

Query results for the above query when sending the media order event as shown earlier are:

book.bookId item.itemId

B001 100001

The next example query is a left outer join. It returns all books and their items, and for books

without item it returns the book and a null value:

select book.bookId, item.itemId

from MediaOrder[books.book] as book

Chapter 5. EPL Reference: Clauses

202

 left outer join

 MediaOrder[items.item] as item

 on productId = bookId

Query results for the above query when sending the media order event as shown earlier are:

book.bookId item.itemId

B001 100001

B002 null

A full outer join combines the results of both left and right outer joins. The joined table will contain

all records from both tables, and fill in null values for missing matches on either side.

This example query is a full outer join, returning all books as well as all items, and filling in null

values for book id or item id if no match is found:

select orderId, book.bookId,item.itemId

from MediaOrder[books.book] as book

 full outer join

 MediaOrder[select orderId, * from items.item] as item

 on productId = bookId

order by bookId, item.itemId asc

As in all other continuous queries, aggregation results are cumulative from the time the statement

was created.

The following query counts the cumulative number of items in which the product id matches a

book id:

select count(*)

from MediaOrder[books.book] as book,

 MediaOrder[items.item] as item

where productId = bookId

The unidirectional keyword in a join indicates to the query engine that aggregation state is not

cumulative. The next query counts the number of items in which the product id matches a book

id for each event:

select count(*)

from MediaOrder[books.book] as book unidirectional,

 MediaOrder[items.item] as item

where productId = bookId

Sentence and Word Example

203

5.19.4. Sentence and Word Example

The next example splits an event representing a sentence into multiple events in which each event

represents a word. It represents all events and the logic to split events into contained events as

Java code. The next chapter has additional examples that use Map-type events and put contained-

event logic into a separate expression or script.

The sentence event in this example is represented by a class declared as follows:

public class SentenceEvent {

 private final String sentence;

 public SentenceEvent(String sentence) {

 this.sentence = sentence;

 }

 public WordEvent[] getWords() {

 String[] split = sentence.split(" ");

 WordEvent[] words = new WordEvent[split.length];

 for (int i = 0; i < split.length; i++) {

 words[i] = new WordEvent(split[i]);

 }

 return words;

 }

}

The sentence event as above provides an event property words that returns each word event.

The declaration of word event is also a class:

public class WordEvent {

 private final String word;

 public WordEvent(String word) {

 this.word = word;

 }

 public String getWord() {

 return word;

 }

}

The EPL statement to populate a stream of words from a sentence event is:

Chapter 5. EPL Reference: Clauses

204

insert into WordStream select * from SentenceEvent[words]

Finally, the API call to send a sentence event to the engine is shown here:

epService.getEPRuntime().sendEvent(new SentenceEvent("Hello Word Contained

 Events"));

5.19.5. More Examples

The examples herein are not based on the POJO events of the prior example. They are meant to

demonstrate different types of contained-event expressions and the use of @type(type_name) to

identify the event type of the return values of the contained-event expression.

The example first defines a few sample event types:

create schema SentenceEvent(sentence String)

create schema WordEvent(word String)

create schema CharacterEvent(char String)

The following EPL assumes that your application defined a plug-in single-row function by name

splitSentence that returns an array of Map, producting output events that are WordEvent events:

insert into WordStream select * from

 SentenceEvent[splitSentence(sentence)@type(WordEvent)]

The example EPL shown next invokes a JavaScript function which returns some events of type

WordEvent:

expression Collection js:splitSentenceJS(sentence) [

importPackage(java.util);

var words = new ArrayList();

words.add(Collections.singletonMap('word', 'wordOne'));

words.add(Collections.singletonMap('word', 'wordTwo'));

words;

]

Contained Expression Returning an Array of Property Values

205

select * from SentenceEvent[splitSentenceJS(sentence)@type(WordEvent)]

In the next example the sentence event first gets split into words and then each word event gets

split into character events via an additional splitWord single-row function, producing events of

type CharacterEvent:

select * from SentenceEvent

 [splitSentence(sentence)@type(WordEvent)]

 [splitWord(word)@type(CharacterEvent)]

5.19.6. Contained Expression Returning an Array of Property

Values

Your contained_expression may return an array of property values such as an array of integer or

string values. In this case you must specify a @type(name) annotation and provide an event type

name that declares a single column with a type that matches the array component type.

create schema IdContainer(id int)

create schema MyEvent(ids int[])

select * from MyEvent[ids@type(IdContainer)]

This example declares a named window and uses on-delete:

create window MyWindow#keepall (id int)

on MyEvent[ids@type(IdContainer)] as my_ids

delete from MyWindow my_window

where my_ids.id = my_window.id

5.19.7. Contained Expression Returning an Array of EventBean

Your contained_expression may return an array of EventBean instances. This is handy when the

expression itself must decide the type of each event to return.

Chapter 5. EPL Reference: Clauses

206

For example:

create schema BaseEvent();

create schema AEvent(pa string) inherits BaseEvent;

create schema BEvent(pb string) inherits BaseEvent;

create schema ValueEvent(value string);

select * from ValueEvent[mySplitFunction(value) @type(BaseEvent)]

Then declare mySplitFunction returning an array of events, such as:

public static EventBean[] mySplitFunction(String value,

 EPLMethodInvocationContext context) {

 EventBean[] events = new EventBean[1];

 if (value.startsWith("A")) {

 events[0] =

 context.getEventBeanService().adapterForMap(Collections.singletonMap("pa",

 value), "AEvent");

 }

 else {

 events[0] =

 context.getEventBeanService().adapterForMap(Collections.singletonMap("pb",

 value), "BEvent");

 }

 return events;

}

5.19.8. Generating Marker Events such as a Begin and End

Event

The syntax for splitting and duplicating streams can be used to generate marker events. Please

see Section 5.16.1, “Generating Marker Events for Contained Events” for more information.

Contained-Event Limitations

207

5.19.9. Contained-Event Limitations

The following restrictions apply to contained-event selection:

• When selecting contained events from a named window in a join, the stream must be marked

as unidirectional.

• Selecting contained events from a named window in a correlated subquery is not allowed.

5.20. Updating an Insert Stream: the Update IStream

Clause

The update istream statement allows declarative modification of event properties of events

entering a stream. Update is a pre-processing step to each new event, modifying an event before

the event applies to any statements.

The synopsis of update istream is as follows:

update istream event_type [as stream_name]

 set property_name = set_expression [, property_name = set_expression]

 [,...]

 [where where_expression]

The event_type is the name of the type of events that the update applies to. The optional as

keyword can be used to assign a name to the event type for use with subqueries, for example.

Following the set keyword is a comma-separated list of property names and expressions that

provide the event properties to change and values to set.

The optional where clause and expression can be used to filter out events to which to apply

updates.

Listeners to an update statement receive the updated event in the insert stream (new data) and

the event prior to the update in the remove stream (old data). Note that if there are multiple update

statements that all apply to the same event then the engine will ensure that the output events

delivered to listeners or subscribers are consistent with the then-current updated properties of

the event (if necessary making event copies, as described below, in the case that listeners are

attached to update statements). Iterating over an update statement returns no events.

As an example, the below statement assumes an AlertEvent event type that has properties

named severity and reason:

update istream AlertEvent

 set severity = 'High'

 where severity = 'Medium' and reason like '%withdrawal limit%'

The statement above changes the value of the severity property to "High" for AlertEvent events

that have a medium severity and contain a specific reason text.

Chapter 5. EPL Reference: Clauses

208

Update statements apply the changes to event properties before other statements receive the

event(s) for processing, e.g. "select * from AlertEvent" receives the updated AlertEvent.

This is true regardless of the order in which your application creates statements.

When multiple update statements apply to the same event, the engine executes updates in the

order in which update statements are created. We recommend the @Priority EPL annotation to

define a deterministic order of processing updates, especially in the case where update statements

get created and destroyed dynamically or multiple update statements update the same fields. The

update statement with the highest @Priority value applies last.

The update clause can be used on streams populated via insert into, as this example utilizing

a pattern demonstrates:

insert into DoubleWithdrawalStream

select a.id, b.id, a.account as account, 0 as minimum

from pattern [a=Withdrawal -> b=Withdrawal(id = a.id)]

update istream DoubleWithdrawalStream set minimum = 1000 where account in (10002,

 10003)

When using update istream with named windows, any changes to event properties apply before

an event enters the named window. The update istream is not available for tables.

Consider the next example (shown here with statement names in @Name EPL annotation,

multiple EPL statements):

@Name("CreateWindow") create window MyWindow#time(30 sec) as AlertEvent

@Name("UpdateStream") update istream MyWindow set severity = 'Low' where reason

 = '%out of paper%'

@Name("InsertWindow") insert into MyWindow select * from AlertEvent

@Name("SelectWindow") select * from MyWindow

The UpdateStream statement specifies an update clause that applies to all events entering the

named window. Note that update does not apply to events already in the named window at the

time an application creates the UpdateStream statement, it only applies to new events entering

the named window (after an application created the update statement).

Therefore, in the above example listeners to the SelectWindow statement as well as the

CreateWindow statement receive the updated event, while listeners to the InsertWindow

statement receive the original AlertEvent event (and not the updated event).

Immutability and Updates

209

Subqueries can also be used in all expressions including the optional where clause.

This example demonstrates a correlated subquery in an assignment expression and also

demonstrates the optional as keyword. It assigns the phone property of an AlertEvent event

a new value based on the lookup within all unique PhoneEvent events (according to an empid

property) correlating the AlertEvent property reporter with the empid property of PhoneEvent:

update istream AlertEvent as ae

 set phone =

 (select phone from PhoneEvent#unique(empid) where empid = ae.reporter)

When updating indexed properties use the syntax propertyName[index] = value with the

index value being an integer number. When updating mapped properties use the syntax

propertyName(key) = value with the key being a string value.

When using update, please note these limitations:

1. Expressions may not use aggregation functions.

2. The prev and prior functions may not be used.

3. For underlying event representations that are Java objects, a event object class must implement

the java.io.Serializable interface as discussed below.

4. When using an XML underlying event type, event properties in the XML document

representation are not available for update.

5. Nested properties are not supported for update. Revision event types and variant streams may

also not be updated.

5.20.1. Immutability and Updates

When updating event objects the engine maintains consistency across statements. The engine

ensures that an update to an event does not impact the results of statements that look for or

retain the original un-updated event. As a result the engine may need to copy an event object to

maintain consistency.

In the case your application utilizes Java objects as the underlying event representation and an

update statement updates properties on an object, then in order to maintain consistency across

statements it is necessary for the engine to copy the object before changing properties (and thus

not change the original object).

For Java application objects, the copy operation is implemented by serialization. Your event object

must therefore implement the java.io.Serializable interface to become eligible for update. As

an alternative to serialization, you may instead configure a copy method as part of the event type

configuration via ConfigurationEventTypeLegacy.

Chapter 5. EPL Reference: Clauses

210

5.21. Controlling Event Delivery : The For Clause

The engine delivers all result events of a given statement to the statement's listeners and

subscriber (if any) in a single invocation of each listener and subscriber's update method passing

an array of result events. For example, a statement using a time-batch view may provide many

result events after a time period passes, a pattern may provide multiple matching events or in a

join the join cardinality could be multiple rows.

For statements that typically post multiple result events to listeners the for keyword controls the

number of invocations of the engine to listeners and subscribers and the subset of all result events

delivered by each invocation. This can be useful when your application listener or subscriber code

expects multiple invocations or expects that invocations only receive events that belong together

by some additional criteria.

The for keyword is a reserved keyword. It is followed by either the grouped_delivery keyword

for grouped delivery or the discrete_delivery keyword for discrete delivery. The for clause is

valid after any EPL select statement.

The synopsis for grouped delivery is as follows:

... for grouped_delivery (group_expression [, group_expression] [,...])

The group_expression expression list provides one or more expressions to apply to result events.

The engine invokes listeners and subscribers once for each distinct set of values returned by

group_expression expressions passing only the events for that group.

The synopsis for discrete delivery is as follows:

... for discrete_delivery

With discrete delivery the engine invokes listeners and subscribers once for each result event

passing a single result event in each invocation.

Consider the following example without for-clause. The time batch data view collects RFIDEvent

events for 10 seconds and posts an array of result events:

select * from RFIDEvent#time_batch(10 sec)

Let's consider an example event sequence as follows:

Table 5.8. Sample Sequence of Events for For Keyword

Event

RFIDEvent(id:1, zone:'A')

RFIDEvent(id:2, zone:'B')

Controlling Event Delivery : The For Clause

211

Event

RFIDEvent(id:3, zone:'A')

Without for-clause and after the 10-second time period passes, the engine delivers an array of

3 events in a single invocation to listeners and the subscriber.

The next example specifies the for-clause and grouped delivery by zone:

select * from RFIDEvent#time_batch(10 sec) for grouped_delivery (zone)

With grouped delivery and after the 10-second time period passes, the above statement delivers

result events in two invocations to listeners and the subscriber: The first invocation delivers an

array of two events that contains zone A events with id 1 and 3. The second invocation delivers

an array of 1 event that contains a zone B event with id 2.

The next example specifies the for-clause and discrete delivery:

select * from RFIDEvent#time_batch(10 sec) for discrete_delivery

With discrete delivery and after the 10-second time period passes, the above statement delivers

result events in three invocations to listeners and the subscriber: The first invocation delivers an

array of 1 event that contains the event with id 1, the second invocation delivers an array of 1

event that contains the event with id 2 and the third invocation delivers an array of 1 event that

contains the event with id 3.

Remove stream events are also delivered in multiple invocations, one for each group, if your

statement selects remove stream events explicitly via irstream or rstream keywords.

The insert into for inserting events into a stream is not affected by the for-clause.

The delivery order respects the natural sort order or the explicit sort order as provided by the

order by clause, if present.

The following are known limitations:

1. The engine validates group_expression expressions against the output event type, therefore

all properties specified in group_expression expressions must occur in the select clause.

212

Chapter 6.

213

Chapter 6. EPL Reference: Named

Windows And Tables

6.1. Overview

A named window is a globally-visible data window. A table is a globally-visible data structure

organized by primary key or keys.

Named windows and tables both offer a way to share state between statements and are stateful.

Named windows and tables have differing capabilities and semantics.

To query a named window or table, simply use the named window name or table name in the from

clause of your statement, including statements that contain subqueries, joins and outer-joins.

Certain clauses operate on either a named window or a table, namely the on-merge, on-update,

on-delete and on-select clauses. The fire-and-forget queries also operate on both named

windows and tables.

Both named windows and tables can have columns that hold events as column values, as further

described in Section 6.12, “Events As Property”.

6.1.1. Named Window Overview

A named window is a global data window that can take part in many statement queries, and that

can be inserted-into and deleted-from by multiple statements. A named window holds events of

the same type or supertype, unless used with a variant stream.

The create window clause declares a new named window. The named window starts up empty

unless populated from an existing named window at time of creation. Events must be inserted

into the named window using the insert into clause. Events can also be deleted from a named

window via the on delete clause.

Events enter the named window by means of insert into clause of a select statement. Events

leave a named window either because the expiry policy of the declared data window removes

events from the named window, or through statements that use the on delete clause to explicitly

delete from a named window.

A named window may also decorate an event to preserve original events as described in

Section 5.10.4, “Decorated Events” and Section 6.2.2.1, “Named Windows Holding Decorated

Events”.

To tune subquery performance when the subquery selects from a named window, consider the

hints discussed in Section 5.11.8, “Hints Related to Subqueries”.

6.1.2. Table Overview

Chapter 6. EPL Reference: Nam...

214

A table is a data structure that is globally visible and that holds state.

The columns of a table can store aggregation state, allowing for co-location of event data with

aggregation state. Other statements can directly create and update the shared aggregation state.

Statements can also query the aggregation state conveniently. Aggregation state can include

comprehensive state such as for example a large matrix of long-type values for use in a Count-

min sketch approximation. Common aggregation state can be updated by multiple statements.

Use the create table clause to declare a new table.

The atomicity guarantees under multi-threaded evaluation are as follows. For a given statement,

a table row or rows either exists or do not exist, consistently, for the duration of the evaluation of

an event or timer against a context partition of a statement. The same is true for updates in that

for a given context partition of a statement, each table row is either completely updated or not

updated at all for the duration of an evaluation. Stream-level filter expressions against tables are

not part of statement evaluation and the same atomicity applies to stream-level filter expressions.

6.1.3. Comparing Named Windows And Tables

As a general rule-of-thumb, if you need to share a data window between statements, the named

window is the right approach. If however rows are organized by primary key or hold aggregation

state, a table may be preferable. EPL statements allow the combined use of both.

6.1.3.1. Nature of Data

One important difference between named windows and tables is in the data that a row holds:

While named windows hold events, tables can hold additional derived state.

For example, a table column can hold rich derived state such as a distinct values set and rich

aggregation state such as the state of a Count-min sketch approximation aggregation (a large

matrix of long-type values).

// Declare a table to hold a Count-min sketch approximate count per feed

create table AppoximateCountPerWord (feed string, approx countMinSketch())

6.1.3.2. Data Organization

A second difference between named windows and tables is the organization of rows. For named

windows, the organization of rows follows the data window declaration. Tables, on the other hand,

can be organized by a primary key or by multiple primary keys that make up a compound key.

For example, if your declaration specifies a sliding time window to hold 10 seconds of stock tick

events then the rows are held in a sliding time window, i.e. a list or queue according to arrival order.

// Declare a named window to hold 10 seconds of stock tick events

create window TenSecOfTicksWindow#time(10 sec) as StockTickEvent

Named Window Usage

215

An iterator for a named window returns rows in the order as provided by the data window(s)

declared for the named window. An iterator for a table returns rows in an unpredictable order.

6.1.3.3. Insert and Remove Stream

Only named windows provide an insert and remove stream to other statements. Tables do not

provide an insert and remove stream.

For example, considering the TenSecOfTicksWindow named window declared above, the

following statement outputs the current count each time events enter or leave the named window.

select count(*) from TenSecOfTicksWindow

Also for example, considering the AppoximateCountPerWord table declared above, the following

EPL does not output any rows when table rows gets inserted, updated or deleted and only outputs

rows when the statement is iterated:

// does not continously output for table changes

select * from AppoximateCountPerWord

6.1.3.4. Immutability and Copy-On-Write

As named windows hold events and events are immutable, when an update statement updates

events held in a named window, the engine performs a logical copy operation (copy-on-write,

as configured for the type) of each updated event, and only modifies the newly created event,

preserving the immutable original event.

Data in tables are updated in-place. There is no copy operation for table rows.

6.1.3.5. Removal of Rows

For named windows, the data window declared for the named window instructs the engine to

expire and remove events from the named window. Events can also be removed via on-merge,

on-delete and fire-and-forget delete.

For tables, row can only be removed via on-merge, on-delete, on-select-and-delete and fire-

and-forget delete.

6.2. Named Window Usage

6.2.1. Creating Named Windows: the Create Window clause

The create window statement creates a named window by specifying a window name and one

or more data window views, as well as the type of event to hold in the named window.

Chapter 6. EPL Reference: Nam...

216

There are two syntaxes for creating a named window: The first syntax allows modeling a named

window after an existing event type or an existing named window. The second syntax is similar to

the SQL create-table syntax and provides a list of column names and column types.

A new named window starts up empty. It must be explicitly inserted into by one or more statements,

as discussed below. A named window can also be populated at time of creation from an existing

named window.

If your application stops or destroys the statement that creates the named window, any consuming

statements no longer receive insert or remove stream events. The named window can also not

be deleted from after it was stopped or destroyed.

The create window statement posts to listeners any events that are inserted into the named

window as new data. The statement posts all deleted events or events that expire out of the data

window to listeners as the remove stream (old data). The named window contents can also be

iterated on via the pull API to obtain the current contents of a named window.

6.2.1.1. Creation by Modeling after an Existing Type

The benefit of modeling a named window after an existing event type is that event properties can

be nested, indexed, mapped or other types that your event objects may provide as properties,

including the type of the underlying event itself. Also, using the wildcard (*) operator means your

EPL does not need to list each individual property explicitly.

The syntax for creating a named window by modeling the named window after an existing event

type, is as follows:

[context context_name]

 create window window_name.view_specifications

 [as] [select list_of_properties from] event_type_or_windowname

 [insert [where filter_expression]]

The window_name you assign to the named window can be any identifier. The name should not

already be in use as an event type or stream name or table name.

The view_specifications are one or more data window views that define the expiry policy for

removing events from the data window. Named windows must explicitly declare a data window

view. This is required to ensure that the policy for retaining events in the data window is well

defined. To keep all events, use the keep-all view: It indicates that the named window should

keep all events and only remove events from the named window that are deleted via the on

delete clause. The view specification can only list data window views, derived-value views are not

allowed since these don't represent an expiry policy. Data window views are listed in Chapter 14,

EPL Reference: Views. View parameterization and staggering are described in Section 5.4.3,

“Specifying Views”.

The select clause and list_of_properties are optional. If present, they specify the column names

and, implicitly by definition of the event type, the column types of events held by the named

Creating Named Windows: the Create Window clause

217

window. Expressions other than column names are not allowed in the select list of properties.

Wildcards (*) and wildcards with additional properties can also be used.

The event_type_or_windowname is required if using the model-after syntax. It provides the name

of the event type of events held in the data window, unless column names and types have been

explicitly selected via select. The name of an (existing) other named window is also allowed

here. Please find more details in Section 6.2.1.4, “Populating a Named Window from an Existing

Named Window”.

Finally, the insert clause and optional filter_expression are used if the new named window

is modelled after an existing named window, and the data of the new named window is to be

populated from the existing named window upon creation. The optional filter_expression can be

used to exclude events.

You may refer to a context by specifying the context keyword followed by a context name.

Contexts are described in more detail at Chapter 4, Context and Context Partitions. The effect of

referring to a context is that your named window operates according to the context dimensional

information as declared for the context. For usage and limitations please see the respective

chapter.

The next statement creates a named window OrdersNamedWindow for which the expiry policy is

simply to keep all events. Assume that the event type 'OrderMapEventType' has been configured.

The named window is to hold events of type 'OrderMapEventType':

create window OrdersNamedWindow#keepall as OrderMapEventType

The below sample statement demonstrates the select syntax. It defines a named window in

which each row has the three properties 'symbol', 'volume' and 'price'. This named window actively

removes events from the window that are older than 30 seconds.

create window OrdersTimeWindow#time(30 sec) as

 select symbol, volume, price from OrderEvent

In an alternate form, the as keyword can be used to rename columns, and constants may occur

in the select-clause as well:

create window OrdersTimeWindow#time(30 sec) as

 select symbol as sym, volume as vol, price, 1 as alertId from OrderEvent

6.2.1.2. Creation By Defining Columns Names and Types

The second syntax for creating a named window is by supplying column names and types:

Chapter 6. EPL Reference: Nam...

218

[context context_name]

create window window_name.view_specifications [as] (column_name column_type

 [,column_name column_type [,...])

The column_name is an identifier providing the event property name. The column_type is also

required for each column. Valid column types are listed in Section 5.17.1, “Creating Variables: the

Create Variable clause” and are the same as for variable types.

For attributes that are array-type append [] (left and right brackets).

The next statement creates a named window:

create window SecurityEvent#time(30 sec)

(ipAddress string, userId String, numAttempts int, properties String[])

Named window columns can hold events by declaring the column type as the event type name.

Array-type in combination with event-type is also supported.

The next two statements declare an event type and create a named window with a column of the

defined event type:

create schema SecurityData (name String, roles String[])

create window SecurityEvent#time(30 sec)

 (ipAddress string, userId String, secData SecurityData, historySecData

 SecurityData[])

Whether the named window uses a Map, Object-array or Avro event representation

for the rows can be specified as follows. If the create-window statement provides the

@EventRepresentation(objectarray) annotation the engine maintains named window rows as

object array. If the statement provides the @EventRepresentation(map) annotation the engine

maintains named window rows using Map objects. If neither annotation is provided, the engine

uses the configured default event representation as discussed in Section 17.4.13.1, “Default Event

Representation”.

The following EPL statement instructs the engine to represent FooWindow rows as object arrays:

@EventRepresentation(objectarray) create window FooWindow#time(5 sec) as (string

 prop1)

Inserting Into Named Windows

219

6.2.1.3. Dropping or Removing Named Windows

There is no syntax to drop or remove a named window.

The destroy method on the EPStatement that created the named window removes the named

window. However the implicit event type associated with the named window remains active since

further statements may continue to use that type. Therefore a named window of the same name

can only be created again if the type information matches the prior declaration for a named window.

6.2.1.4. Populating a Named Window from an Existing Named

Window

Your EPL statement may specify the name of an existing named window when creating a new

named window, and may use the insert keyword to indicate that the new named window is to

be populated from the events currently held by the existing named window.

For example, and assuming the named window OrdersNamedWindow already exists, this

statement creates a new named window ScratchOrders and populates all orders in

OrdersNamedWindow into the new named window:

create window ScratchOrders#keepall as OrdersNamedWindow insert

The where keyword is also available to perform filtering, for example:

create window ScratchBuyOrders#time(10) as OrdersNamedWindow insert where side

 = 'buy'

6.2.2. Inserting Into Named Windows

The insert into clause inserts events into named windows. Your application must ensure that

the column names and types match the declared column names and types of the named window

to be inserted into.

For inserting into a named window and for simultaneously checking if the inserted row already

exists in the named window or for atomic update-insert operation on a named window, consider

using on-merge as described in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-

merge is similar to the SQL merge clause and provides what is known as an "Upsert" operation:

Update existing events or if no existing event(s) are found then insert a new event, all in one

atomic operation provided by a single EPL statement.

In this example we first create a named window using some of the columns of an OrderEvent

event type:

Chapter 6. EPL Reference: Nam...

220

create window OrdersWindow#keepall as select symbol, volume, price from

 OrderEvent

The insert into the named window selects individual columns to be inserted:

insert into OrdersWindow(symbol, volume, price) select name, count, price from

 FXOrderEvent

An alternative form is shown next:

insert into OrdersWindow select name as symbol, vol as volume, price from

 FXOrderEvent

Following above statement, the engine enters every FXOrderEvent arriving into the engine into

the named window 'OrdersWindow'.

The following EPL statements create a named window for an event type backed by a Java class

and insert into the window any 'OrderEvent' where the symbol value is IBM:

create window OrdersWindow#time(30) as com.mycompany.OrderEvent

insert into OrdersWindow select * from com.mycompany.OrderEvent(symbol='IBM')

The last example adds one column named 'derivedPrice' to the 'OrderEvent' type by specifying a

wildcard, and uses a user-defined function to populate the column:

create window OrdersWindow#time(30) as select *, price as derivedPrice from

 OrderEvent

insert into OrdersWindow select *, MyFunc.func(price, percent) as derivedPrice

 from OrderEvent

Event representations based on Java base classes or interfaces, and subclasses or implementing

classes, are compatible as these statements show:

// create a named window for the base class

Selecting From Named Windows

221

create window OrdersWindow#unique(name) as select * from ProductBaseEvent

// The ServiceProductEvent class subclasses the ProductBaseEvent class

insert into OrdersWindow select * from ServiceProductEvent

// The MerchandiseProductEvent class subclasses the ProductBaseEvent class

insert into OrdersWindow select * from MerchandiseProductEvent

To avoid duplicate events inserted in a named window and atomically check if a row already

exists, use on-merge as outlined in Section 6.8, “Triggered Upsert using the On-Merge Clause”.

An example:

on ServiceProductEvent as spe merge OrdersWindow as win

where win.id = spe.id when not matched then insert select *

6.2.2.1. Named Windows Holding Decorated Events

Decorated events hold an underlying event and add additional properties to the underlying event,

as described further in Section 5.10.4, “Decorated Events”.

Here we create a named window that decorates OrderEvent events by adding an additional

property named priceTotal to each OrderEvent. A matching insert into statement is also part

of the sample:

create window OrdersWindow#time(30) as select *, price as priceTotal from

 OrderEvent

insert into OrdersWindow select *, price * unit as priceTotal from

 ServiceOrderEvent

The property type of the additional priceTotal column is the property type of the existing price

property of OrderEvent.

6.2.3. Selecting From Named Windows

A named window can be referred to by any statement in the from clause of the statement. Filter

criteria can also be specified. Additional views may be used onto named windows however such

views cannot include data window views.

Chapter 6. EPL Reference: Nam...

222

A statement selecting all events from a named window OrdersNamedWindow is shown next. The

named window must first be created via the create window clause before use.

select * from OrdersNamedWindow

The statement as above simply receives the unfiltered insert stream of the named window and

reports that stream to its listeners. The iterator method returns all events in the named window,

if any.

If your application desires to obtain the events removed from the named window, use the rstream

keyword as this statement shows:

select rstream * from OrdersNamedWindow

The next statement derives an average price per symbol for the events held by the named window:

select symbol, avg(price) from OrdersNamedWindow group by symbol

A statement that consumes from a named window, like the one above, receives the insert and

remove stream of the named window. The insert stream represents the events inserted into the

named window. The remove stream represents the events expired from the named window data

window and the events explicitly deleted via on-delete for on-demand (fire-and-forget) delete.

Your application may create a consuming statement such as above on an empty named window,

or your application may create the above statement on an already filled named window. The

engine provides correct results in either case: At the time of statement creation the Esper engine

internally initializes the consuming statement from the current named window, also taking your

declared filters into consideration. Thus, your statement deriving data from a named window does

not start empty if the named window already holds one or more events. A consuming statement

also sees the remove stream of an already populated named window, if any.

If you require a subset of the data in the named window, you can specify one or more filter

expressions onto the named window as shown here:

select symbol, avg(price) from OrdersNamedWindow(sector='energy') group by symbol

By adding a filter to the named window, the aggregation and grouping as well as any views that

may be declared onto to the named window receive a filtered insert and remove stream. The

above statement thus outputs, continuously, the average price per symbol for all orders in the

named window that belong to a certain sector.

Table Usage

223

A side note on variables in filters filtering events from named windows: The engine initializes

consuming statements at statement creation time and changes aggregation state continuously as

events arrive. If the filter criteria contain variables and variable values changes, then the engine

does not re-evaluate or re-build aggregation state. In such a case you may want to place variables

in the having clause which evaluates on already-built aggregation state.

The following example further declares a view into the named window. Such a view can be a plug-

in view or one of the built-in views, but cannot be a data window view (with the exception of the

std:groupwin grouped-window view which is allowed).

select * from OrdersNamedWindow(volume>0, price>0).mycompany:mypluginview()

Data window views cannot be used onto named windows since named windows post insert and

remove streams for the events entering and leaving the named window, thus the expiry policy and

batch behavior are well defined by the data window declared for the named window. For example,

the following is not allowed and fails at time of statement creation:

// not a valid statement

 select * from OrdersNamedWindow#time(30 sec)

6.3. Table Usage

6.3.1. Creating Tables: The Create Table clause

The create table statement creates a table.

A new table starts up empty. It must be explicitly aggregated-into using into table, or populated

by an on-merge statement, or populated by insert into.

The syntax for creating a table provides the table name, lists column names and types and

designates primary key columns:

[context context_name]

create table table_name [as] (column_name column_type [primary key]

 [,column_name column_type [primary key] [,...]])

The table_name you assign to the table can be any identifier. The name should not already be in

use as an event type or named window name.

You may refer to a context by specifying the context keyword followed by a context name.

Contexts are described in more detail at Chapter 4, Context and Context Partitions. The effect of

referring to a context is that your table operates according to the context dimensional information

as declared for the context. For usage and limitations please see the respective chapter.

The column_name is an identifier providing the column name.

Chapter 6. EPL Reference: Nam...

224

The column_type is required for each column. There are two categories of column types:

1. Non-aggregating column types: Valid column types are listed in Section 5.17.1, “Creating

Variables: the Create Variable clause” and are the same as for variable types. For attributes that

are array-type append [] (left and right brackets). Table columns can hold events by declaring

the column type as the event type name. Array-type in combination with event-type is also

supported.

2. Aggregation column types: These instruct the engine to retain aggregation state.

After each column type you may add the primary key keywords. This keyword designates the

column as a primary key. When multiple columns are designated as primary key columns the

combination of column values builds a compound primary key. The order in which the primary key

columns are listed is important.

The next statement creates a table to hold a numAttempts count aggregation state and a column

named active of type boolean, per ipAddress and userId:

create table SecuritySummaryTable (

 ipAddress string primary key,

 userId String primary key,

 numAttempts count(*),

 active boolean)

The example above specifies ipAddress and userId as primary keys. This instructs the engine

that the table holds a single row for each distinct combination of ipAddress and userId. The two

values make up the compound key and there is a single row per compound key value.

If you do not designate any columns of the table as a primary key column, the table holds only

one row (or no rows).

The create table statement does not provide output to its listeners. The table contents can be

iterated on via the pull API to obtain the current contents of a table.

6.3.1.1. Column Types for Aggregation Functions

All aggregation functions can be used as column types for tables. Please simply list the

aggregation function name as the column type and provide type information, when required.

See Section 10.2.1, “SQL-Standard Functions” for a list of the functions and required parameter

expressions for which you must provide type information.

Consider the next example that declares a table with columns for different aggregation functions

(not a comprehensive example of all possible aggregation functions):

create table MyStats (

 myKey string primary key,

 myAvedev avedev(int), // column holds a mean deviation of int-typed values

Creating Tables: The Create Table clause

225

 myAvg avg(double), // column holds an average of double-typed values

 myCount count(*), // column holds a count

 myMax max(int), // column holds a highest int-typed value

 myMedian median(float), // column holds the median of float-typed values

 myStddev stddev(java.math.BigDecimal), // column holds a standard deviation

 of BigDecimal values

 mySum sum(long), // column holds a sum of long values

 myFirstEver firstever(string), // column holds a first-ever value of type string

 myCountEver countever(*) // column holds the count-ever (regardless of data

 windows)

)

Additional keywords such as distinct can be used as well. If your aggregation will be associated

with a filter expression, you must add boolean to the parameters in the column type declaration.

For example, the next EPL declares a table with aggregation-type columns that hold an average

of filtered double-typed values and an average of distinct double-typed values:

create table MyStatsMore (

 myKey string primary key,

 myAvgFiltered avg(double, boolean), // column holds an average of double-

typed values

 // and filtered by a boolean expression to be provided

 myAvgDistinct avg(distinct double) // column holds an average of distinct

 double-typed values

)

6.3.1.2. Column Types for Event Aggregation Functions

The event aggregation functions can be used as column types for tables. For event aggregation

functions you must specify the event type using the @type(name) annotation.

The window event aggregation function requires the * wildcard. The first and last cannot be

used in a declaration, please use window instead and access as described in Section 6.3.3.2,

“Accessing Aggregation State With The Dot Operator”.

The sorted, maxbyever and minbyever event aggregation functions require the criteria

expression as a parameter. The criteria expression must only use properties of the provided event

type. The maxby and minby cannot be used in a declaration, please use sorted instead and

access as described in Section 6.3.3.2, “Accessing Aggregation State With The Dot Operator”.

In this example the table declares sample event aggregations (not a comprehensive example of

all possible aggregations):

create table MyEventAggregationTable (

 myKey string primary key,

Chapter 6. EPL Reference: Nam...

226

 myWindow window(*) @type(MyEvent), // column holds a window of MyEvent events

 mySorted sorted(mySortValue) @type(MyEvent), // column holds MyEvent events

 sorted by mySortValue

 myMaxByEver maxbyever(mySortValue) @type(MyEvent) // column holds the single

 MyEvent event that

 // provided the highest value of mySortValue ever

)

6.3.1.3. Column Types for Plug-In Custom Aggregation Functions

Any custom single-function and multi-function aggregation can be used as a table column type.

If the aggregation has multiple different return values and aggregations share common state, the

multi-function aggregation is the preferred API.

For example, the next EPL declares a table with a single column that holds the state of the

aggregation function myAggregation:

create table MyStatsCustom (myCustom myAggregation('some code', 100))

The above example passes the values some code and 100 to show how to pass constants to your

custom aggregation function at declaration time.

6.3.1.4. Dropping or Removing Tables

There is no syntax to drop or remove a table.

The destroy method on the EPStatement that created the table removes the table unless it is

used by another statement. If your application destroys the statement that creates the table and

also destroys all statements referring to the table, the engine removes the table. The table contents

can be iterated on, by iterating over the statement that creates the table, to obtain the current

contents of a table.

The stop method on the EPStatement that created the table has no effect.

6.3.2. Aggregating Into Table Rows: The Into Table clause

Use the into table keywords to instruct the engine to aggregate into table columns. A given

statement can only aggregate into a single table.

For example, consider a table that holds the count of intrusion events keyed by the combination

of from-address and to-address:

create table IntrusionCountTable (

 fromAddress string primary key,

 toAddress string primary key,

 countIntrusion10Sec count(*),

Aggregating Into Table Rows: The Into Table clause

227

 countIntrusion60Sec count(*)

)

The next sample statement updates the count considering the last 10 seconds of events:

into table IntrusionCountTable

select count(*) as countIntrusion10Sec

from IntrusionEvent#time(10)

group by fromAddress, toAddress

Multiple statements can aggregate into the same table columns or different table columns. The

co-aggregating ability allows you to co-locate aggregation state conveniently.

The sample shown below is very similar to the previous statement except that it updates the count

considering the last 60 seconds of events:

into table IntrusionCountTable

select count(*) as countIntrusion60Sec

from IntrusionEvent#time(60)

group by fromAddress, toAddress

Considering the example above, when an intrusion event arrives and a row for the group-by key

values (from and to-address) does not exists, the engine creates a new row and updates the

aggregation-type columns. If the row for the group-by key values exists, the engine updates the

aggregation-type columns of the existing row.

Tables can have no primary key columns. In this case a table either has a single row or is empty.

The next two EPL statements demonstrate table use without a primary key column:

create table TotalIntrusionCountTable (totalIntrusions count(*))

into table TotalIntrusionCountTable select count(*) as totalIntrusions from

 IntrusionEvent

In conjunction with into table the unidirectional keyword is not supported.

6.3.2.1. Group-By Clause Requirements

The use of the into table clause requires that the group by clause must list group-by

expressions that match the table's primary key declarations in terms of the number, return type

Chapter 6. EPL Reference: Nam...

228

and order of group-by expressions. It is not necessary that table column names match group-by

expression texts.

For example consider a table with a single long-type primary key column:

create table MyTable (theKey long primary key, theCount count(*))

The following EPL are all not valid:

// Invalid: No group-by clause however the table declares a primary key

into table MyTable select count(*) as theCount from MyEvent

// Invalid: Two expressions in the group-by clause however the table declares

 a single primary key

into table MyTable select count(*) as theCount from MyEvent group by

 longPropertyOne, longPropertyTwo

// Invalid: The group-by clause expression returns a string-typed value however

 the table expects a long-type primary key

into table MyTable select count(*) as theCount from MyEvent group by

 stringProperty

You may use the rollup, cube and grouping sets keywords in conjunction with tables.

6.3.2.2. Aggregation State Requirements

The use of the into table clause requires that all aggregation state of the EPL statement resides

in table columns.

For example consider a simple table as follows:

create table MyTable (theKey long primary key, theCount count(*))

The following EPL is not valid:

// Invalid: the sum aggregation state is not available in a table column

into table MyTable select count(*) as theCount, sum(intProperty) from MyEvent

 group by longProperty

Table Column Keyed-Access Expressions

229

6.3.2.3. Aggregation Function Requirements

The use of the into table clause requires that all aggregation functions that are listed in

the statement are compatible with table column types, and that the statement has at least one

aggregation function.

For example consider a simple table as follows:

create table MyTable (theKey long primary key, theCount count(*))

The following EPL is not valid:

// Invalid: the sum aggregation state is not compatible with count(*) that was

 declared for the table column's type

into table MyTable select sum(intProperty) as theCount from MyEvent group by

 longProperty

If declared, the distinct keyword and filter expressions must also match. The event type

information must match for event aggregation functions.

6.3.2.4. Column Naming Requirements

The use of the into table clause requires that the aggregation functions are named. You can

name an expression two ways.

1. First, you can name the aggregation function expression by adding it to the select-clause and

by providing the as-keyword followed by the table column name. The examples earlier use this

technique.

2. Second, you can name the aggregation function by placing it into a declared expression that

carries the same name as the table column.

This example demonstrates the second method of naming an aggregation function:

expression alias totalIntrusions {count(*)}

select totalIntrusions from IntrusionEvent

6.3.3. Table Column Keyed-Access Expressions

For accessing table columns by primary key, EPL provides a convenient syntax that allows you

to read table column values simply by providing the table name, primary key value expressions

(if required by the table) and the column name.

Chapter 6. EPL Reference: Nam...

230

The synopsis for table-column access expressions is:

table-name[primary_key_expr [, primary_key_expr] [,...]][.column-name]

The expression starts with the table name. If the table declares primary keys you must provide

the primary_key_expr value expressions for each primary key within square brackets. To access

a specific column, add the (.) dot character and the column name.

For example, consider a table that holds the count of intrusion events keyed by the combination

of from-address and to-address:

create table IntrusionCountTable (

 fromAddress string primary key,

 toAddress string primary key,

 countIntrusion10Sec count(*)

)

Assuming that a FireWallEvent has string-type properties named from and to, the next EPL

statement outputs the current 10-second intrusion count as held by the IntrusionCountTable

row for the matching combination of keys:

select IntrusionCountTable[from, to].countIntrusion10Sec from FirewallEvent

The number of primary key expressions, the return type of the primary key expressions and the

order in which they are provided must match the primary key columns that were declared for the

table. If the table does not have any primary keys declared, you cannot provide any primary key

expressions.

If a row for the primary key (or compound key) cannot be found, the engine returns a null value.

An example table without primary key columns is shown next:

create table TotalIntrusionCountTable (totalIntrusions count(*))

A sample statement that outputs the current total count every 60 seconds is:

select TotalIntrusionCountTable.totalIntrusions from pattern[every

 timer:interval(60 sec)]

Table access expressions can be used anywhere in statements except as parameter expressions

for data windows, the update istream, context declarations, output limit expressions, pattern

Inserting Into Tables

231

observer and guard parameters, pattern every-distinct, pattern match-until bounds, pattern

followed-by max and create window insert or select expression and as a create variable

assignment expression.

6.3.3.1. Reading All Column Values

If your keyed-access expression emits the column name, the engine returns all current column

values.

An example EPL:

select IntrusionCountTable[from, to] from FirewallEvent

The engine returns each column value, or null if no row is found. For aggregation-type columns

it returns the current aggregation value.

6.3.3.2. Accessing Aggregation State With The Dot Operator

Certain aggregation functions allow accessing aggregation state using the (.) dot operator. This

includes the window and the sorted aggregation function as well as all other custom multi-function

aggregation function.

The first and last aggregation functions can be used with table columns that declare window.

The maxby and minby aggregation functions can be used with table columns that declare sorted.

The EPL shown below declares a table that keeps an unsorted set of events and a sorted set of

events. This sample table has no primary key columns:

create table MyTable (

 theWindow window(*) @type(MyEvent),

 theSorted sorted(mySortValue) @type(MyEvent)

)

The EPL to read the first and the maxBy value is:

select MyTable.theWindow.first(), MyTable.theSorted.maxBy() from SomeOtherEvent

Plug-in custom multi-function aggregations can be used the same way.

6.3.4. Inserting Into Tables

The insert into clause inserts rows into a table. Your application must ensure that the column

names and types match the declared column names and types of the table to be inserted into,

when provided.

Chapter 6. EPL Reference: Nam...

232

For inserting into a table and for simultaneously checking if the inserted row already exists in

the table or for atomic update-insert operation on a table, consider using on-merge as described

in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-merge is similar to the SQL

merge clause and provides what is known as an "Upsert" operation: Update existing rows or if

no existing rows(s) are found then insert a new row, all in one atomic operation provided by a

single EPL statement.

The following statement populates the example table declared earlier:

insert into IntrusionCountTable select fromAddress, toAddress from FirewallEvent

Note that when a row with the same primary key values already exists, your statement may

encounter a unique index violation at runtime. If the inserted-into table does not have primary

key columns, the table holds a maximum of one row and your statement may also encounter a

unique index violation upon attempting to insert a second row. Use on-merge to prevent inserts

of duplicate rows.

Table columns that are aggregation functions cannot be inserted-into and must be updated using

into table instead.

You may also explicitly list column names as discussed earlier in Section 6.2.2, “Inserting Into

Named Windows”. For insert-into, the context name must be the same context name as

declared for the create table statement or the context name must be absent for both.

6.3.5. Selecting From Tables

A table can be referred to by any statement in the from-clause of the statement.

Tables do not provide an insert and remove stream. When a table appears alone in the from-

clause (other than as part of a subquery), the statement produces output only when iterated (see

pull API) or when executing an on-demand (fire-and-forget) query.

Assuming you have declared a table by name IntrusionCountTable as shown earlier, the

following statement only returns rows when iterated or when executing the EPL as an on-demand

query or when adding an output snapshot:

select * from IntrusionCountTable

For tables, the contained-event syntax and the declaration of views is not supported. In a join, a

table in the from-clause cannot be marked as unidirectional. You may not specify any of the

retain-flags. Tables cannot be used in the from-clause of match-recognize statements, in context

declarations, in pattern filter atoms and update istream.

The following are examples of invalid statements:

Selecting From Tables

233

// invalid statement examples

select * from IntrusionCountTable#time(30 sec) // views not allowed

select * from IntrusionCountTable unidirectional, MyEvent // tables cannot

 be marked as unidirectional

Tables can be used in subqueries and joins.

It follows a sample subselect and join against the table:

select

 (select * from IntrusionCountTable as intr

 where intr.fromAddress = firewall.fromAddress and intr.toAddress =

 firewall.toAddress)

from IntrusionEvent as firewall

select * from IntrusionCountTable as intr, IntrusionEvent as firewall

where intr.fromAddress = firewall.fromAddress and intr.toAddress =

 firewall.toAddress

If the subselect or join specifies all of a table's primary key columns, please consider using the

table-access expression instead. It offers a more concise syntax.

Note that for a subquery against a table that may return multiple rows, the information about

subquery multi-row selection applies. For subselects, consider using @eventbean to preserve

table type information in the output event.

Note that for joins against tables the engine does not allow specifying table filter expressions in

parenthesis, in the from clause. Filter expressions must instead be placed into the where-clause.

You may access aggregation state the same way as in table-access expressions, using the dot

(.) operator.

The EPL shown below declares a table that keeps a set of events, and shows a join that selects

window aggregation state:

create table MyWindowTable (theWindow window(*) @type(MyEvent))

select theWindow.first(), theWindow.last(), theWindow.window() from MyEvent,

 MyWindowTable

Chapter 6. EPL Reference: Nam...

234

6.4. Triggered Select: the On Select clause

The on select clause performs a one-time, non-continuous query on a named window or table

every time a triggering event arrives or a triggering pattern matches. The query can consider all

rows, or only rows that match certain criteria, or rows that correlate with an arriving event or a

pattern of arriving events.

The syntax for the on select clause is as follows:

on event_type[(filter_criteria)] [as stream_name]

[insert into insert_into_def]

select select_list

from window_or_table_name [as stream_name]

[where criteria_expression]

[group by grouping_expression_list]

[having grouping_search_conditions]

[order by order_by_expression_list]

The event_type is the name of the type of events that trigger the query against the named window

or table. It is optionally followed by filter_criteria which are filter expressions to apply to arriving

events. The optional as keyword can be used to assign a stream name. Patterns or named

windows can also be specified in the on clause, see the samples in Section 6.7.1, “Using Patterns

in the On Delete Clause” (for a named window as a trigger only insert stream events trigger actions)

(tables cannot be triggers).

The insert into clause works as described in Section 5.10, “Merging Streams and Continuous

Insertion: the Insert Into Clause”. The select clause is described in Section 5.3, “Choosing Event

Properties And Events: the Select Clause”. For all clauses the semantics are equivalent to a join

operation: The properties of the triggering event or events are available in the select clause and

all other clauses.

The window_or_table_name in the from clause is the name of the named window or table to

select rows from. The as keyword is also available to assign a stream name to the table or named

window. The as keyword is helpful in conjunction with wildcard in the select clause to select rows

via the syntax select streamname.* .

The optional where clause contains a criteria_expression that correlates the arriving (triggering)

event to the rows to be considered from the table or named window. The criteria_expression may

also simply filter for rows to be considered by the query.

The group by clause, the having clause and the order by clause are all optional and work as

described in earlier chapters.

Queries against tables and named windows work the same. The examples herein use the

OrdersNamedWindow named window and the SecuritySummaryTable table to provide examples

for each.

Triggered Select: the On Select clause

235

The sample statement below outputs, when a query event arrives, the count of all rows held by

the SecuritySummaryTable table:

on QueryEvent select count(*) from SecuritySummaryTable

This sample query outputs the total volume per symbol ordered by symbol ascending and only

non-zero volumes of all rows held by the OrdersNamedWindow named window:

on QueryEvent

select symbol, sum(volume) from OrdersNamedWindow

group by symbol having volume > 0 order by symbol

When using wildcard (*) to select from streams in an on-select clause, each stream, that is the

triggering stream and the selected-upon table or named window, are selected, similar to a join.

Therefore your wildcard select returns two columns: the triggering event and the selection result

row, for each row.

on QueryEvent as queryEvent

select * from OrdersNamedWindow as win

The query above returns a queryEvent column and a win column for each event. If only a single

stream's event is desired in the result, use select win.* instead.

Upon arrival of a QueryEvent event, this statement selects all rows in the OrdersNamedWindow

named window:

on QueryEvent select win.* from OrdersNamedWindow as win

The engine executes the query on arrival of a triggering event, in this case a QueryEvent. It posts

the query results to any listeners to the statement, in a single invocation, as the new data array.

The where clause filters and correlates rows in the table or named window with the triggering

event, as shown next:

on QueryEvent(volume>0) as query

select query.symbol, query.volume, win.symbol from OrdersNamedWindow as win

where win.symbol = query.symbol

Chapter 6. EPL Reference: Nam...

236

Upon arrival of a QueryEvent, if that event has a value for the volume property that is greater

than zero, the engine executes the query. The query considers all events currently held by the

OrdersNamedWindow that match the symbol property value of the triggering QueryEvent event.

6.4.1. Notes on On-Select With Named Windows

For correlated queries that correlate triggering events with rows held by a named window, Esper

internally creates efficient indexes to enable high performance querying of rows. It analyzes the

where clause to build one or more indexes for fast lookup in the named window based on the

properties of the triggering event.

To trigger an on-select when an update to the selected named window occurs or when the

triggering event is the same event that is being inserted into the named window, specify the named

window name as the event type.

The next query fires the select for every change to the named window OrdersNamedWindow:

on OrdersNamedWindow as trig

select onw.symbol, sum(onw.volume)

from OrdersNamedWindow as onw

where onw.symbol = trig.symbol

For named windows, the iterator of the EPStatement object representing the on select clause

returns the last batch of selected events in response to the last triggering event, or null if the last

triggering event did not select any rows.

An on-select statement executes under a shareable named window context partition lock.

6.4.2. Notes on On-Select With Tables

For tables, the iterator of the EPStatement object representing the on select clause returns

no events.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes

either primary key columns or secondary explicitly-created indexes to enable high performance

querying of rows, based on an analysis of the where clause.

6.4.3. On-Select Compared To Join

The similarities and differences between an on select clause and a regular or outer join (and

not unidirectional) are as follows:

1. A join is evaluated when any of the streams participating in the join have new events (insert

stream) or events leaving data windows (remove stream). A join is therefore bi-directional or

Triggered Select+Delete: the On Select Delete clause

237

multi-directional. However, the on select statement has one triggering event or pattern that

causes the query to be evaluated and is thus uni-directional.

2. The query within the on select statement is not continuous: It executes only when a triggering

event or pattern occurs. Aggregation and groups are computed anew considering the contents

of the table or named window at the time the triggering event arrives.

On-select and the unidirectional join can be compared as follows.

On-select, on-merge, on-insert, on-delete, on-update and on-select-and-delete operate

only on named windows or tables. Unidirectional joins however can operate on any stream. If the

unidirectional join is between a single named window or table and a triggering event or pattern

and that triggering event or pattern is marked unidirectional, the unidirectional join is equivalent

to on-select.

A unidirectional join does not execute under a named window context partition lock and instead

is a consumer relationship to the named window.

6.5. Triggered Select+Delete: the On Select Delete clause

The on select delete clause performs a one-time, non-continuous query on a table or named

window every time a triggering event arrives or a triggering pattern matches, similar to on-select

as described in the previous section. In addition, any selected rows are also deleted.

The syntax for the on select delete clause is as follows:

on trigger

select [and] delete select_list...

... (please see on-select for insert into, from, group by, having, order

 by)...

The syntax follows the syntax of on-select as described earlier. The select clause follows the

optional and keyword and the delete keyword. The from-clause can list either a table or a named

window.

The example statement below selects and deletes all rows from OrdersNamedWindow named

window when a QueryEvent arrives:

on QueryEvent select and delete window(win.*) as rows from OrdersNamedWindow

 as win

The sample EPL above also shows the use of the window aggregation function. It specifies the

window aggregation function to instruct the engine to output a single event, regardless of the

number of rows in the named window, and that contains a column rows that contains a collection

of the selected event's underlying objects.

6.6. Updating Data: the On Update clause

Chapter 6. EPL Reference: Nam...

238

An on update clause updates rows held by a table or named window. The clause can be used

to update all rows, or only rows that match certain criteria, or rows that correlate with an arriving

event or a pattern of arriving events.

For updating a table or named window and for simultaneously checking if the updated row exists

or for atomic update-insert operation on a named window or table, consider using on-merge as

described in Section 6.8, “Triggered Upsert using the On-Merge Clause”. On-merge is similar to

the SQL merge clause and provides what is known as an "Upsert" operation: Update existing

events or if no existing event(s) are found then insert a new event, all in one atomic operation

provided by a single EPL statement.

The syntax for the on update clause is as follows:

on event_type[(filter_criteria)] [as stream_name]

update window_or_table_name [as stream_name]

set mutation_expression [, mutation_expression [,...]]

[where criteria_expression]

The event_type is the name of the type of events that trigger an update of rows in a named window.

It is optionally followed by filter_criteria which are filter expressions to apply to arriving events. The

optional as keyword can be used to assign a name for use in expressions and the where clause.

Patterns and named windows can also be specified in the on clause.

The window_or_table_name is the name of the table or named window to update rows. The as

keyword is also available to assign a name to the named window or table.

After the set keyword follows a list of comma-separated mutation_expression expressions. A

mutation expression is any valid EPL expression. Subqueries may by part of expressions however

aggregation functions and the prev or prior function may not be used in expressions.

The below table shows some typical mutation expessions:

Table 6.1. Mutation Expressions in Update And Merge

Description Syntax and Examples

Assignment
property_name

 = value_expression

price = 10, side = 'BUY'

Event Method Invocation (not available for tables)
alias_or_windowname.methodname(...)

orderWindow.clear()

Updating Data: the On Update clause

239

Description Syntax and Examples

Property Method Invocation
property_name.methodname(...)

accountMap.clear()

User-Defined Function Call
functionname(...)

clearQuantities(orderRow)

The optional where clause contains a criteria_expression that correlates the arriving (triggering)

event to the rows to be updated in the table or named window. The criteria_expression may also

simply filter for rows to be updated.

Queries against tables and named windows work the same. We use the term property and column

interchangeably. The examples herein use the OrdersNamedWindow named window and the

SecuritySummaryTable table to provide examples for each. Let's look at a couple of examples.

In the simplest form, this statement updates all rows in the named window OrdersNamedWindow

when any UpdateOrderEvent event arrives, setting the price property to zero for all rows currently

held by the named window:

on UpdateOrderEvent update OrdersNamedWindow set price = 0

This example demonstrates the use of a where clause and updates the SecuritySummaryTable

table. Upon arrival of a triggering ResetEvent it updates the active column value to false for all

table rows that have an active column value of true:

on ResetEvent update SecuritySummaryTable set active = false where active = true

The next example shows a more complete use of the syntax, and correlates the triggering event

with rows held by the OrdersNamedWindow named window:

on NewOrderEvent(volume>0) as myNewOrders

update OrdersNamedWindow as myNamedWindow

set price = myNewOrders.price

where myNamedWindow.symbol = myNewOrders.symbol

Chapter 6. EPL Reference: Nam...

240

In the above sample statement, only if a NewOrderEvent event with a volume greater then zero

arrives does the statement trigger. Upon triggering, all rows in the named window that have the

same value for the symbol property as the triggering NewOrderEvent event are then updated (their

price property is set to that of the arriving event). The statement also showcases the as keyword

to assign a name for use in the where expression.

Your application can subscribe a listener to your on update statements to determine update

events. The statement post any rows that are updated to all listeners attached to the statement

as new data, and the events prior to the update as old data.

The following example shows the use of tags and a pattern. It sets the price value of orders to

that of either a FlushOrderEvent or OrderUpdateEvent depending on which arrived:

on pattern [every ord=OrderUpdateEvent(volume>0) or every flush=FlushOrderEvent]

update OrdersNamedWindow as win

set price = case when ord.price is null then flush.price else ord.price end

where ord.id = win.id or flush.id = win.id

When updating indexed properties use the syntax propertyName[index] = value with the

index value being an integer number. When updating mapped properties use the syntax

propertyName(key) = value with the key being a string value.

The engine executes assignments in the order they are listed. When performing multiple

assignments, the engine takes the most recent column value according to the last assignment,

if any. To instruct the engine to use the initial value before update, prefix the column name with

the literal initial.

The following statement illustrates:

on UpdateEvent as upd

update MyWindow as win

set field_a = 1,

 field_b = win.field_a, // assigns the value 1

 field_c = initial.field_a // assigns the field_a original value before update

The next example assumes that your application provides a user-defined function copyFields

that receives 3 parameters: The update event, the new row and the initial state before-update row.

on UpdateEvent as upd update MyWindow as win set copyFields(win, upd, initial)

You may invoke a method on a value object, for those properties that hold value objects, as follows:

Notes on On-Update With Named Windows

241

on UpdateEvent update MyWindow as win set someproperty.clear()

For named windows only, you may also invoke a method on the named window event type.

The following example assumes that your event type provides a method by name populateFrom

that receives the update event as a parameter:

on UpdateEvent as upd update MyWindow as win set win.populateFrom(upd)

The following restrictions apply:

1. Each property to be updated via assignment must be writable. For tables, all columns are

always writable.

2. For underlying event representations that are Java objects, a event object class must implement

the java.io.Serializable interface as discussed in Section 5.20.1, “Immutability and Updates”

and must provide setter methods for updated properties.

3. When using an XML underlying event type, event properties in the XML document

representation are not available for update.

4. Nested properties are not supported for update. Revision event types and variant streams may

also not be updated.

6.6.1. Notes on On-Update With Named Windows

Statements that reference the named window receive the new event in the insert stream and the

event prior to the update in the remove stream.

For correlated queries (as above) that correlate triggering events with events held by a named

window, Esper internally creates efficient indexes to enable high performance update of events.

The iterator of the EPStatement object representing the on update clause can also be helpful:

It returns the last batch of updated events in response to the last triggering event, in any order,

or null if the last triggering event did not update any rows.

6.6.2. Notes on On-Update With Tables

On-Update may not update primary key columns.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes

either primary key columns or secondary explicitly-created indexes to enable high performance

querying of rows, based on an analysis of the where clause.

The iterator of the EPStatement object representing the on update clause does not return

any rows.

6.7. Deleting Data: the On Delete clause

Chapter 6. EPL Reference: Nam...

242

An on delete clause removes rows from a named window or table. The clause can be used to

remove all rows, or only rows that match certain criteria, or rows that correlate with an arriving

event or a pattern of arriving events.

The syntax for the on delete clause is as follows:

on event_type[(filter_criteria)] [as stream_name]

delete from window_or_table_name [as stream_name]

[where criteria_expression]

The event_type is the name of the type of events that trigger removal from the table or named

window. It is optionally followed by filter_criteria which are filter expressions to apply to arriving

events. The optional as keyword can be used to assign a name for use in the where clause.

Patterns and named windows can also be specified in the on clause as described in the next

section.

The window_or_table_name is the name of the named window or table to delete rows from. The

as keyword is also available to assign a name to the table or named window.

The optional where clause contains a criteria_expression that correlates the arriving (triggering)

event to the rows to be removed. The criteria_expression may also simply filter for rows without

correlating.

On-delete can be used against tables and named windows. The examples herein use the

OrdersNamedWindow named window and the SecuritySummaryTable table to provide examples

for each.

In the simplest form, this statement deletes all rows from the SecuritySummaryTable table when

any ClearEvent arrives:

on ClearEvent delete from SecuritySummaryTable

The next example shows a more complete use of the syntax, and correlates the triggering event

with events held by the OrdersNamedWindow named window:

on NewOrderEvent(volume>0) as myNewOrders

delete from OrdersNamedWindow as myNamedWindow

where myNamedWindow.symbol = myNewOrders.symbol

In the above sample statement, only if a NewOrderEvent event with a volume greater then zero

arrives does the statement trigger. Upon triggering, all rows in the named window that have the

same value for the symbol property as the triggering NewOrderEvent event are removed. The

statement also showcases the as keyword to assign a name for use in the where expression.

Using Patterns in the On Delete Clause

243

6.7.1. Using Patterns in the On Delete Clause

By means of patterns the on delete clause and on select clause (described below) can look

for more complex conditions to occur, possibly involving multiple events or the passing of time.

The syntax for on delete with a pattern expression is show next:

on pattern [pattern_expression] [as stream_name]

delete from window_or_table_name [as stream_name]

[where criteria_expression]

The pattern_expression is any pattern that matches zero or more arriving events. Tags can be

used to name events in the pattern and can occur in the optional where clause to correlate to

events to be removed from a named window.

In the next example the triggering pattern fires every 10 seconds. The effect is that every 10

seconds the statement removes all rows from the SecuritySummaryTable table:

on pattern [every timer:interval(10 sec)] delete from SecuritySummaryTable

The following example shows the use of tags in a pattern and executes against the

OrdersNamedWindow named window instead:

on pattern [every ord=OrderEvent(volume>0) or every flush=FlushOrderEvent]

delete from OrdersNamedWindow as win

where ord.id = win.id or flush.id = win.id

The pattern above looks for OrderEvent events with a volume value greater then zero and tags

such events as 'ord'. The pattern also looks for FlushOrderEvent events and tags such events

as 'flush'. The where clause deletes from the OrdersNamedWindow named window any rows that

match in the value of the 'id' property either of the arriving events.

6.7.2. Notes on On-Delete With Named Windows

Statements that reference the named window receive the deleted event as part of the remove

stream.

For correlated queries (as above) that correlate triggering events with rows held by a named

window, Esper internally creates efficient indexes to enable high performance deletion of rows.

The iterator of the EPStatement object representing the on update clause can also be helpful:

It returns the last batch of deleted rows in response to the last triggering event, in any order, or

null if the last triggering event did not update any rows.

Chapter 6. EPL Reference: Nam...

244

6.7.3. Notes on On-Update With Tables

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes

either primary key columns or secondary explicitly-created indexes to enable high performance

querying of rows, based on an analysis of the where clause.

The iterator of the EPStatement object representing the on delete clause does not return

any rows.

6.8. Triggered Upsert using the On-Merge Clause

The on merge clause is similar to the SQL merge clause. It provides what is known as an "Upsert"

operation: Update existing rows or if no existing row(s) are found then insert a new row, all in an

atomic operation provided by a single EPL statement.

The syntax for the on merge clause is as follows:

on event_type[(filter_criteria)] [as stream_name]

merge [into] window_or_table_name [as stream_name]

[where criteria_expression]

 when [not] matched [and search_condition]

 then [

 insert [into streamname]

 [(property_name [, property_name] [,...])]

 select select_expression [, select_expression[,...]]

 [where filter_expression]

 |

 update set mutation_expression [, mutation_expression [,...]]

 [where filter_expression]

 |

 delete

 [where filter_expression]

]

 [then [insert|update|delete]] [,then ...]

 [when ... then ... [...]]

The event_type is the name of the type of events that trigger the merge. It is optionally followed

by filter_criteria which are filter expressions to apply to arriving events. The optional as keyword

can be used to assign a name for use in the where clause. Patterns and named windows can also

be specified in the on clause as described in prior sections.

The window_or_table_name is the name of the named window or table to insert, update or delete

rows. The as keyword is also available to assign a name to the named window or table.

The optional where clause contains a criteria_expression that correlates the arriving (triggering)

event to the rows to be considered of the table or named window. We recommend specifying a

criteria expression that is as specific as possible.

Triggered Upsert using the On-Merge Clause

245

Following the where clause is one or more when matched or when not matched clauses in any

order. Each may have an additional search condition associated.

After each when [not] matched follow one or more then clauses that each contains the action

to take: Either an insert, update or delete keyword.

After when not matched only insert action(s) are available. After when matched any insert,

update and delete action(s) are available.

After insert follows, optionally, the into keyword followed by the stream name or named window

to insert-into. If no into and stream name is specified, the insert applies to the current table

or named window. It follows an optional list of columns inserted. It follows the required select

keyword and one or more select-clause expressions. The wildcard (*) is available in the select-

clause as well. It follows an optional where-clause that may return Boolean false to indicate that

the action should not be applied.

After update follows the set keyword and one or more mutation expressions. For mutation

expressions please see Section 6.6, “Updating Data: the On Update clause”. It follows an optional

where-clause that may return Boolean false to indicate that the action should not be applied.

After delete follows an optional where-clause that may return Boolean false to indicate that the

action should not be applied.

When according to the where-clause criteria_expression the engine finds no rows in the named

window or table that match the condition, the engine evaluates each when not matched clause.

If the optional search condition returns true or no search condition was provided then the engine

performs all of the actions listed after each then.

When according to the where-clause criteria_expression the engine finds one or more rows in

the named window or table that match the condition, the engine evaluates each when matched

clause. If the optional search condition returns true or no search condition was provided the engine

performs all of the actions listed after each then.

The engine executes when matched and when not matched in the order specified. If the optional

search condition returns true or no search condition was specified then the engine takes the

associated action (or multiple actions for multiple then keywords). When the block of actions

completed the engine proceeds to the next matching row, if any. After completing all matching

rows the engine continues to the next triggering event if any.

On-merge can be used with tables and named windows. The examples herein declare a

ProductWindow named window and also use the SecuritySummaryTable table to provide

examples for each.

This example statement updates the SecuritySummaryTable table when a ResetEvent arrives

setting the active column's value to false:

on ResetEvent merge SecuritySummaryTable

Chapter 6. EPL Reference: Nam...

246

when matched and active = true then update set active = false

A longer example utilizing a named window follows. We start by declaring a schema that provides

a product id and that holds a total price:

create schema ProductTotalRec as (productId string, totalPrice double)

We create a named window that holds a row for each unique product:

create window ProductWindow#unique(productId) as ProductTotalRec

The events for this example are order events that hold an order id, product id, price, quantity and

deleted-flag declared by the next schema:

create schema OrderEvent as (orderId string, productId string, price double,

 quantity int, deletedFlag boolean)

The following EPL statement utilizes on-merge to total up the price for each product based on

arriving order events:

on OrderEvent oe

 merge ProductWindow pw

 where pw.productId = oe.productId

 when matched

 then update set totalPrice = totalPrice + oe.price

 when not matched

 then insert select productId, price as totalPrice

In the above example, when an order event arrives, the engine looks up in the product named

window the matching row or rows for the same product id as the arriving event. In this example the

engine always finds no row or one row as the product named window is declared with a unique

data window based on product id. If the engine finds a row in the named window, it performs the

update action adding up the price as defined under when matched. If the engine does not find

a row in the named window it performs the insert action as defined under when not matched,

inserting a new row.

The insert keyword may be followed by a list of columns as shown in this EPL snippet:

// equivalent to the insert shown in the last 2 lines in above EPL

...when not matched

Triggered Upsert using the On-Merge Clause

247

 then insert(productId, totalPrice) select productId, price

The second example demonstrates the use of a select-clause with wildcard, a search condition

and the delete keyword. It creates a named window that holds order events and employs on-

merge to insert order events for which no corresponding order id was found, update quantity to the

quantity provided by the last arriving event and delete order events that are marked as deleted:

create window OrderWindow#keepall as OrderEvent

on OrderEvent oe

 merge OrderWindow pw

 where pw.orderId = oe.orderId

 when not matched

 then insert select *

 when matched and oe.deletedFlag=true

 then delete

 when matched

 then update set pw.quantity = oe.quantity, pw.price = oe.price

In the above example the oe.deletedFlag=true search condition instructs the engine to take

the delete action only if the deleted-flag is set.

You may specify multiple actions by providing multiple then keywords each followed by an action.

Each of the insert, update and delete actions can itself have a where-clause as well. If a where-

clause exists for an action, the engine evaluates the where-clause and applies the action only if

the where-clause returns Boolean true.

This example specifies two update actions and uses the where-clause to trigger different update

behavior depending on whether the order event price is less than zero. This example assumes

that the host application defined a clearorder user-defined function, to demonstrate calling a

user-defined function as part of the update mutation expressions:

on OrderEvent oe

 merge OrderWindow pw

 where pw.orderId = oe.orderId

 when matched

 then update set clearorder(pw) where oe.price < 0

 then update set pw.quantity = oe.quantity, pw.price = oe.price where oe.price

 >= 0

To insert events into another stream and not the named window, use insert into streamname.

Chapter 6. EPL Reference: Nam...

248

In the next example each matched-clause contains two actions, one action to insert a log event

and a second action to insert, delete or update:

on OrderEvent oe

 merge OrderWindow pw

 where pw.orderId = oe.orderId

 when not matched

 then insert into LogEvent select 'this is an insert' as name

 then insert select *

 when matched and oe.deletedFlag=true

 then insert into LogEvent select 'this is a delete' as name

 then delete

 when matched

 then insert into LogEvent select 'this is a update' as name

 then update set pw.quantity = oe.quantity, pw.price = oe.price

While the engine evaluates and executes all actions listed under the same matched-clause in

order, you may not rely on updated field values of an earlier action to trigger the where-clause of

a later action. Similarly you should avoid simultaneous update and delete actions for the same

match: the engine does not guarantee whether the update or the delete take final affect.

Your application can subscribe a listener to on merge statements to determine inserted, updated

and removed events. Statements post any events that are inserted to, updated or deleted from a

named window to all listeners attached to the statement as new data and removed data.

The following limitations apply to on-merge statements:

1. Aggregation functions and the prev and prior operators are not available in conditions and

the select-clause.

6.8.1. Notes on On-Merge With Named Windows

Statements that reference the named window receive an insert and remove stream represening

the insertions, changes and deletions to named window rows.

For correlated queries (as above) that correlate triggering events with rows held by a named

window, Esper internally creates efficient indexes to enable high performance update and removal

of events especially from named windows that hold large numbers of events.

Upon iteration, the statement provides the last inserted events, if any.

6.8.2. Notes on On-Merge With Tables

On-Merge may not update primary key columns.

For correlated queries that correlate triggering events with rows held by a table, the engine utilizes

either primary key columns or secondary explicitly-created indexes to enable high performance

querying of rows, based on an analysis of the where clause.

Explicitly Indexing Named Windows and Tables

249

The iterator of the EPStatement object representing the on merge clause does not return any

rows.

6.9. Explicitly Indexing Named Windows and Tables

You may explicitly create an index on a table or a named window. The engine considers explicitly-

created as well as implicitly-allocated indexes (named windows only) in query planning and

execution of the following types of usages of tables and named windows:

1. On-demand (fire-and-forget, non-continuous) queries as described in Section 16.5, “On-

Demand Fire-And-Forget Query Execution”.

2. On-select, on-merge, on-update, on-delete and on-insert.

3. Subqueries against tables and named windows.

4. For joins (including outer joins) with named windows the engine considers the filter criteria listed

in parenthesis using the syntax

name_window_name(filter_criteria)

for index access.

5. For joins with tables the engine considers the primary key columns (if any) as well as any table

indexes.

The syntax to create an explicit index on a named window or table is:

create [unique] index index_name on window_or_table_name (

 column_expression [hash|btree|index_type_expression]

 [, column_expression] [hash|btree|index_type_expression]

 [,...]

)

The optional unique keyboard indicates that the column expressions uniquely identify rows. If

unique is not specified the index allows duplicate rows.

The index_name is the name assigned to the index. The name uniquely identifies the index and

is used in engine query plan logging.

The window_or_table_name is the name of an existing table or named window. If the named

window or table has rows already, the engine builds an index for the rows.

After the table name or named window name follows a list of pairs of column_expression column

expression and index type.

A column expression is the expression that is subject to index building. Typically a column

expression is an event property or column name. For special application-provided or spatial

indexes other column expressions are allowed and such indexes may allow multiple columns to

be combined.

Chapter 6. EPL Reference: Nam...

250

Following each column expression you may specify the index type by providing the optional

hash or btree keywords or an index_type_expression. For special application-provided or spatial

indexes please use the index_type_expression.

If you specify no keyword or the hash keyword for a property, the index will be a hash-based

(unsorted) index in respect to that property. If you specify the btree keyword, the index will be

a binary-tree-based sorted index in respect to that property. You may combine hash and btree

properties for the same index. Specify btree for a property if you expect to perform numerical

or string comparison using relational operators (<, >, >=, <=), the between or the in keyword for

ranges and inverted ranges. Use hash (the default) instead of btree if you expect to perform exact

comparison using =.

For hash and btree index types the column expression must be an event property or column

name. Expressions such as col+1 are not currently supported for hash and btree index types

but are supported for other index types.

The create table syntax is the same for tables and named windows. The examples herein create

a new UserProfileWindow named window and also use the SecuritySummaryTable table.

This sample EPL creates an non-unique index on the active column of table

SecuritySummaryTable:

create index MyIndex on SecuritySummaryTable(active)

We list a few example EPL statements next that create a named window and create a single index:

// create a named window

create window UserProfileWindow#time(1 hour) select * from UserProfile

// create a non-unique index (duplicates allowed) for the user id property only

create index UserProfileIndex on UserProfileWindow(userId)

Next, execute an on-demand fire-and-forget query as shown below, herein we use the prepared

version to demonstrate:

String query = "select * from UserProfileWindow where userId='Joe'";

EPOnDemandPreparedQuery prepared = epRuntime.prepareQuery(query);

// query performance excellent in the face of large number of rows

EPOnDemandQueryResult result = prepared.execute();

// ...later ...

prepared.execute(); // execute a second time

Explicitly Indexing Named Windows and Tables

251

A unique index is generally preferable over non-unique indexes. For named windows, if your data

window declares a unique data window (std:unique, std:firstunique, including intersections

and grouped unique data windows) it is not necessary to create a unique index unless index

sharing is enabled, since the engine considers the unique data window declaration in query

planning.

The engine enforces uniqueness (e.g. unique constraint) for unique indexes. If your application

inserts a duplicate row the engine raises a runtime exception when processing the statement and

discards the row. The default error handler logs such an exception and continues.

For example, if the user id together with the profile id uniquely identifies an entry into the named

window, your application can create a unique index as shown below:

// create a unique index on user id and profile id

create unique index UserProfileIndex on UserProfileWindow(userId, profileId)

By default, the engine builds a hash code -based index useful for direct comparison via equals

(=). Filter expressions that look for ranges or use in, between do not benefit from the hash-

based index and should use the btree keyword. For direct comparison via equals (=) then engine

does not use btree indexes.

The next example creates a composite index over two fields symbol and buyPrice:

// create a named window

create window TickEventWindow#time(1 hour) as (symbol string, buyPrice double)

// create a non-unique index

create index idx1 on TickEventWindow(symbol hash, buyPrice btree)

A sample fire-and-forget query is shown below (this time the API calls are not shown):

// query performance excellent in the face of large number of rows

select * from TickEventWindow where symbol='GE' and buyPrice between 10 and 20

Note

A table that does not declare one or more primary key columns cannot have a

secondary index, as the table holds a maximum of one row.

Chapter 6. EPL Reference: Nam...

252

6.10. Using Fire-And-Forget Queries with Named

Windows and Tables

Fire-and-Forget queries can be run against both tables and named windows. We use the term

property and column interchangeably.

For selecting from named windows and tables, please see the examples in Section 16.5, “On-

Demand Fire-And-Forget Query Execution”.

For data manipulation (insert, update, delete) queries, the on-demand query API returns the

inserted, updated or deleted rows when the query executes against a named window.

6.10.1. Inserting Data

Your application can insert rows into a table or named window using on-demand (fire-and-

forget, non-continuous) queries as described in Section 16.5, “On-Demand Fire-And-Forget Query

Execution”.

The engine allows the standard SQL syntax and values keyword and also supports using select

to provide values.

The syntax using the values keyword is:

insert into window_or_table_name [(property_names)]

values (value_expressions)

The syntax using select is as follows:

insert into window_or_table_name [(property_names)]

select value_expressions

The window_or_table_name is the name of the table or named window to insert rows into.

After the named window or table name you can optionally provide a comma-separated list of

property names.

When providing property names, the order of value expressions in the values list or select clause

must match the order of property names specified. Column names provided in the select-clause,

if specified, are ignored.

When not providing property names and when specifying the values keyword, the order of values

must match the order of properties declared for the named window or table. When not providing

property names and when specifying the select-clause, expressions must name the properties to

be inserted into by assigning a column name using the as keyword.

The example code snippet inserts a new order row into the OrdersWindow named window:

Updating Data

253

String query =

 "insert into OrdersWindow(orderId, symbol, price) values ('001', 'GE', 100)";

epService.getEPRuntime().executeQuery(query);

Instead of the values keyword you may specify a select-clause as this example shows:

String query =

 "insert into OrdersWindow(orderId, symbol, price) select '001', 'GE', 100";

epService.getEPRuntime().executeQuery(query);

The following EPL inserts the same values as above but specifies property names as part of the

select-clause expressions:

insert into OrdersWindow

select '001' as orderId, 'GE' as symbol, 100 as price

The next EPL inserts the same values as above and does not specify property names thereby

populating the first 3 properties of the type of the named window:

insert into OrdersWindow values ('001', 'GE', 100)

6.10.2. Updating Data

Your application can update table and named window rows using on-demand (fire-and-forget,

non-continuous) queries as described in Section 16.5, “On-Demand Fire-And-Forget Query

Execution”.

The syntax for the update clause is as follows:

update window_or_table_name [as stream_name]

set mutation_expression [, mutation_expression [,...]]

[where criteria_expression]

The window_or_table_name is the name of the table or named window to remove rows from. The

as keyword is also available to assign a name to the table or named window.

After the set keyword follows a comma-separated list of mutation expressions. For fire-and-

forget queries the following restriction applies: Subqueries, aggregation functions and the prev or

prior function may not be used in expressions. Mutation expressions are detailed in Section 6.6,

“Updating Data: the On Update clause”.

The optional where clause contains a criteria_expression that identifies rows to be updated.

Chapter 6. EPL Reference: Nam...

254

The example code snippet updates those rows of the named window that have a negative value

for volume:

String query = "update OrdersNamedWindow set volume = 0 where volumne = 0";

epService.getEPRuntime().executeQuery(query);

To instruct the engine to use the initial property value before update, prefix the property name

with the literal initial.

6.10.3. Deleting Data

Your application can delete rows from a named window or table using on-demand (fire-and-

forget, non-continuous) queries as described in Section 16.5, “On-Demand Fire-And-Forget Query

Execution”.

The syntax for the delete clause is as follows:

delete from window_or_table_name [as stream_name]

 [where criteria_expression]

The window_or_table_name is the name of the named window or table to delete rows from. The

as keyword is also available to assign a name to the named window or table.

The optional where clause contains a criteria_expression that identifies rows to be removed from

the named window or table.

The example code snippet deletes from a named window all rows that have a negative value for

volume:

String query = "delete from OrdersNamedWindow where volume <= 0";

epService.getEPRuntime().executeQuery(query);

6.11. Versioning and Revision Event Type Use with

Named Windows

As outlined in Section 2.8, “Updating, Merging and Versioning Events”, revision event types

process updates or new versions of events held by a named window.

A revision event type is simply one or more existing pre-configured event types whose events are

related, as configured by static configuration, by event properties that provide same key values.

The purpose of key values is to indicate that arriving events are related: An event amends, updates

or adds properties to an earlier event that shares the same key values. No additional EPL is

needed when using revision event types for merging event data.

Versioning and Revision Event Type Use with Named Windows

255

Revision event types can be useful in these situations:

1. Some of your events carry only partial information that is related to a prior event and must be

merged together.

2. Events arrive that add additional properties or change existing properties of prior events.

3. Events may carry properties that have null values or properties that do no exist (for example

events backed by Map or XML), and for such properties the earlier value must be used instead.

To better illustrate, consider a revision event type that represents events for creation and updates

to user profiles. Let's assume the user profile creation events carry the user id and a full profile. The

profile update events indicate only the user id and the individual properties that actually changed.

The user id property shall serve as a key value relating profile creation events and update events.

A revision event type must be configured to instruct the engine which event types participate and

what their key properties are. Configuration is described in Section 17.4.29, “Revision Event Type”

and is not shown here.

Assume that an event type UserProfileRevisions has been configured to hold profile events,

i.e. creation and update events related by user id. This statement creates a named window to hold

the last 1 hour of current profiles per user id:

create window UserProfileWindow#time(1 hour) select * from UserProfileRevisions

insert into UserProfileWindow select * from UserProfileCreation

insert into UserProfileWindow select * from UserProfileUpdate

In revision event types, the term base event is used to describe events that are subject to update.

Events that update, amend or add additional properties to base events are termed delta events. In

the example, base events are profile creation events and delta events are profile update events.

Base events are expected to arrive before delta events. In the case where a delta event arrives

and is not related by key value to a base event or a revision of the base event currently held by the

named window the engine ignores the delta event. Thus, considering the example, profile update

events for a user id that does not have an existing profile in the named window are not applied.

When a base or delta event arrives, the insert and remove stream output by the named window

are the current and the prior version of the event. Let's come back to the example. As creation

events arrive that are followed by update events or more creation events for the same user id, the

engine posts the current version of the profile as insert stream (new data) and the prior version

of the profile as remove stream (old data).

Chapter 6. EPL Reference: Nam...

256

Base events are also implicitly delta events. That is, if multiple base events of the same key

property values arrive, then each base event provides a new version. In the example, if multiple

profile creation events arrive for the same user id then new versions of the current profile for that

user id are output by the engine for each base event, as it does for delta events.

The expiry policy as specified by view definitions applies to each distinct key value, or multiple

distinct key values for composite keys. An expiry policy re-evaluates when new versions arrive. In

the example, user profile events expire from the time window when no creation or update event

for a given user id has been received for 1 hour.

Tip

It usually does not make sense to configure a revision event type without delta

event types. Use the unique data window (std:unique) or unique data window

in intersection with other data windows instead (i.e. std:unique(field)#time(1

hour)).

Several strategies are available for merging or overlaying events as the configuration chapter

describes in greater detail.

Any of the Map, XML and JavaBean event representations as well as plug-in event representations

may participate in a revision event type. For example, profile creation events could be JavaBean

events, while profile update events could be java.util.Map events.

Delta events may also add properties to the revision event type. For example, one could add

a new event type with security information to the revision event type and such security-related

properties become available on the resulting revision event type.

The following restrictions apply to revision event types:

• Nested properties are only supported for the JavaBean event representation. Nested properties

are not individually versioned; they are instead versioned by the containing property.

• Dynamic, indexed and mapped properties are only supported for nested properties and not as

properties of the revision event type itself.

6.12. Events As Property

Columns in a named window and table may also hold an event or multiple events. More information

on the insert into clause providing event columns is in Section 5.10.5, “Event as a Property”.

A sample declaration for a named window and a table is:

create schema InnerData (value string)

Events As Property

257

create table ContainerTable (innerdata InnerData)

create window ContainerWindow#time(30) as (innerdataArray InnerData[]) // array

 of events

The second sample creates a named window that specifies two columns: A column that holds

an OrderEvent, and a column by name priceTotal. A matching insert into statement is also

part of the sample:

create window OrdersWindow#time(30) as select this, price as priceTotal from

 OrderEvent

insert into OrdersWindow select order, price * unit as priceTotal

from ServiceOrderEvent as order

Note that the this proprerty must exist on the event and must return the event class itself

(JavaBean events only). The property type of the additional priceTotal column is the property

type of the existing price property.

258

Chapter 7.

259

Chapter 7. EPL Reference: Patterns
7.1. Event Pattern Overview

Event patterns match when an event or multiple events occur that match the pattern's definition.

Patterns can also be time-based.

Pattern expressions consist of pattern atoms and pattern operators:

1. Pattern atoms are the basic building blocks of patterns. Atoms are filter expressions, observers

for time-based events and plug-in custom observers that observe external events not under

the control of the engine.

2. Pattern operators control expression lifecycle and combine atoms logically or temporally.

The below table outlines the different pattern atoms available:

Table 7.1. Pattern Atoms

Pattern Atom Example

Filter expressions specify an event to

look for. StockTick(symbol='ABC', price > 100)

Time-based event observers specify time

intervals or time schedules. timer:interval(10 seconds)

timer:at(*, 16, *, *, *)

timer:schedule(....)

Custom plug-in observers can add

pattern language syntax for observing

application-specific events.

myapplication:myobserver("http://

someResource")

There are 4 types of pattern operators:

1. Operators that control pattern sub-expression repetition: every, every-distinct, [num] and

until

2. Logical operators: and, or, not

3. Temporal operators that operate on event order: -> (followed-by)

4. Guards are where-conditions that control the lifecycle of subexpressions. Examples are

timer:within, timer:withinmax and while-expression. Custom plug-in guards may also be

used.

Chapter 7. EPL Reference: Pat...

260

Pattern expressions can be nested arbitrarily deep by including the nested expression(s) in ()

round parenthesis.

Underlying the pattern matching is a state machine that transitions between states based on

arriving events and based on time advancing. A single event or advancing time may cause a

reaction in multiple parts of your active pattern state. Patterns are stateful as the engine maintains

pattern state.

7.2. How to use Patterns

7.2.1. Pattern Syntax

This is an example pattern expression that matches on every ServiceMeasurement events

in which the value of the latency event property is over 20 seconds, and on every

ServiceMeasurement event in which the success property is false. Either one or the other

condition must be true for this pattern to match.

every spike=ServiceMeasurement(latency>20000)

 or every error=ServiceMeasurement(success=false)

In the example above, the pattern expression or operator indicates that the pattern should fire

when either of the filter expressions fire. The every operator indicates to fire for every matching

event and not just the first matching event. The left hand of the or operator filters for events with

a high latency value. The right hand of the or operator filters for events with error status. Filter

expressions are explained in Section 7.4, “Filter Expressions In Patterns”.

The example above assigned the tags spike and error to the events in the pattern. The tags

are important since the engine only places tagged events into the output event(s) that a pattern

generates, and that the engine supplies to listeners of the pattern statement. The tags can further

be selected in the select-clause of an EPL statement as discussed in Section 5.4.2, “Pattern-

based Event Streams”.

Patterns can also contain comments within the pattern as outlined in Section 5.2.2, “Using

Comments”.

Pattern statements are created via the EPAdministrator interface. The EPAdministrator

interface allows to create pattern statements in two ways: Pattern statements that want to make

use of the EPL select clause or any other EPL constructs use the createEPL method to create

a statement that specifies one or more pattern expressions. EPL statements that use patterns

are described in more detail in Section 5.4.2, “Pattern-based Event Streams”. Use the syntax as

shown in below example.

EPAdministrator admin =

 EPServiceProviderManager.getDefaultProvider().getEPAdministrator();

Patterns in EPL

261

String eventName = ServiceMeasurement.class.getName();

EPStatement myTrigger = admin.createEPL("select * from pattern [" +

 "every spike=" + eventName + "(latency>20000) or every error=" + eventName

 + "(success=false)]");

Pattern statements that do not need to make use of the EPL select clause or any other EPL

constructs can use the createPattern method, as in below example.

EPStatement myTrigger = admin.createPattern(

 "every spike=" + eventName + "(latency>20000) or every error=" + eventName

 + "(success=false)");

7.2.2. Patterns in EPL

A pattern may appear anywhere in the from clause of an EPL statement including joins and

subqueries. Patterns may therefore be used in combination with the where clause, group by

clause, having clause as well as output rate limiting and insert into.

In addition, a data window view can be declared onto a pattern. A data window declared onto a

pattern only serves to retain pattern matches. A data window declared onto a pattern does not

limit, cancel, remove or delete intermediate pattern matches of the pattern when pattern matches

leave the data window.

This example statement demonstrates the idea by selecting a total price per customer over pairs of

events (ServiceOrder followed by a ProductOrder event for the same customer id within 1 minute),

occurring in the last 2 hours, in which the sum of price is greater than 100, and using a where

clause to filter on name:

select a.custId, sum(a.price + b.price)

from pattern [every a=ServiceOrder ->

 b=ProductOrder(custId = a.custId) where timer:within(1 min)]#time(2 hour)

where a.name in ('Repair', b.name)

group by a.custId

having sum(a.price + b.price) > 100

7.2.3. Subscribing to Pattern Events

When a pattern fires it publishes one or more events to any listeners to the pattern statement. The

listener interface is the com.espertech.esper.client.UpdateListener interface.

The example below shows an anonymous implementation of the

com.espertech.esper.client.UpdateListener interface. We add the anonymous listener

Chapter 7. EPL Reference: Pat...

262

implementation to the myPattern statement created earlier. The listener code simply extracts the

underlying event class.

myPattern.addListener(new UpdateListener() {

 public void update(EventBean[] newEvents, EventBean[] oldEvents) {

 ServiceMeasurement spike = (ServiceMeasurement) newEvents[0].get("spike");

 ServiceMeasurement error = (ServiceMeasurement) newEvents[0].get("error");

 ... // either spike or error can be null, depending on which occurred

 ... // add more logic here

 }

});

Listeners receive an array of EventBean instances in the newEvents parameter. There is one

EventBean instance passed to the listener for each combination of events that matches the pattern

expression. At least one EventBean instance is always passed to the listener.

The properties of each EventBean instance contain the underlying events that caused the pattern

to fire, if events have been named in the filter expression via the name=eventType syntax. The

property name is thus the name supplied in the pattern expression, while the property type is the

type of the underlying class, in this example ServiceMeasurement.

7.2.4. Pulling Data from Patterns

Data can also be obtained from pattern statements via the safeIterator() and iterator()

methods on EPStatement (the pull API) If the pattern had fired at least once and the

@IterableUnbound annotation is declared for the statement, then the iterator returns the last event

for which it fired. The hasNext() method can then be used to determine if the pattern had fired.

if (myPattern.iterator().hasNext()) {

 ServiceMeasurement event = (ServiceMeasurement)

 view.iterator().next().get("alert");

 ... // some more code here to process the event

}

else {

 ... // no matching events at this time

}

Further, if a data window is defined onto a pattern, the iterator returns the pattern matches

according to the data window expiry policy.

This pattern specifies a length window of 10 elements that retains the last 10 matches of A and

B events, for use via iterator or for use in a join or subquery:

Pattern Error Reporting

263

select * from pattern [every (A or B)]#length(10)

7.2.5. Pattern Error Reporting

While the pattern compiler analyzes your pattern and verifies its integrity, it may not detect certain

pattern errors that may occur at runtime. Sections of this pattern documentation point out common

cases where the pattern engine will log a runtime error. We recommend turning on the log warning

level at project development time to inspect and report on warnings logged. If a statement name

is assigned to a statement then the statement name is logged as well.

7.2.6. Suppressing Same-Event Matches

Any given event can contribute to multiple matches.

For example, consider the following pattern:

every a=A -> B

Given this sequence of events:

A1 A2 B1

When event B1 arrives the pattern matches for both the combination {A1, B1} and the combination

{A2, B1}. The engine indicates both matches to the listener or subscriber by delivering an array

containing both matches in a single listener or subscriber invocation.

Use the @SuppressOverlappingMatches pattern-level annotation to instruct the engine to discard

all but the first match among multiple overlapping matches.

The same example with the pattern-level annotation is:

select * from pattern @SuppressOverlappingMatches [every a=A -> b=B]

When event B1 arrives the pattern outputs only the first combination that matches, namely the

combination {A1, B1}. The engine discards the second combination ({A2, B1}) that matches as it

detects that event B1 overlaps between the first and the second match.

Note

• The engine only considers tagged events for detecting overlap.

• Suppression takes place among multiple simultaneously occurring matches as

a result of a single event arriving or time advancing.

Chapter 7. EPL Reference: Pat...

264

• Partially completed patterns are not impacted and existing pattern state does

not change as a result of suppression.

• Limitation: The annotation cannot be used with patterns in joins.

7.2.7. Discarding Partially Completed Patterns

Partially-completed patterns are incomplete matches that are not yet indicated by the engine

because the complete pattern condition is not satisfied. Any given event can be part of multiple

partially-completed patterns.

For example, consider the following pattern:

every a=A -> B and C(id=a.id)

Given this sequence of events:

A1{id='id1'} A2{id='id2'} B1

According to the sequence above there are no matches. The pattern is partially completed waiting

for C events. The combination {A1, B1} is waiting for a C{id='id1'} event before the pattern match

is complete for that combination. The combination {A2, B1} is waiting for a C{id='id2'} event before

the pattern match is complete for that combination.

Assuming event C1{id='id1') arrives the pattern outputs the combination {A1, B1, C1}. Assuming

event C2{id='id2') arrives the pattern outputs the combination {A2, B1, C2}. Note that event B1 is

part of both partially-completed patterns.

Use the @DiscardPartialsOnMatch pattern-level annotation to instruct the engine that when any

matches occur to discard partially completed patterns that overlap in terms of the events that make

up the match (or matches if there are multiple matches).

The same example using the @DiscardPartialsOnMatch pattern-level annotation is:

select * from pattern @DiscardPartialsOnMatch [every a=A -> B and C(id=a.id)]

When event C1{id='id1') arrives the pattern outputs the match combination {A1, B1, C1}. Upon

indication of the match the engine discards all partially-completed patterns that refer to either

of the A1, B1 and C1 events. Since event B1 is part of a partially-completed pattern waiting

for C{id='id2'}, the engine discards that partially-completed pattern. Therefore when C2{id='id2'}

arrives the engine outputs no matches.

When specifying both @DiscardPartialsOnMatch and @SuppressOverlappingMatches the

engine discards the partially-completed patterns that overlap all matches including suppressed

matches.

Operator Precedence

265

Note

• The engine only considers tagged events for detecting overlap.

• Only partially completed patterns are impacted.

• Limitation: The annotation cannot be used with patterns in joins.

• Limitation: Removing partially completed patterns is not an undo operation.

There is no reversal in truth-value, i.e. past matches are not retracted or indicated

as a remove stream. The not operator can change truth value to permanently

false. The change in truth-value does not get reversed when a match removes

the event that caused the not operator to become permanently false.

7.3. Operator Precedence

The operators at the top of this table take precedence over operators lower on the table.

Table 7.2. Pattern Operator Precedence

PrecedenceOperator Description Example

1 guard

postfix

where timer:within

and while

(expression) (incl.

withinmax and plug-in

pattern guard)

MyEvent where timer:within(1 sec)

a=MyEvent while (a.price between 1 and

 10)

2 unary every, not, every-

distinct every MyEvent

timer:interval(5 min) and not MyEvent

3 repeat [num], until
[5] MyEvent

[1..3] MyEvent until MyOtherEvent

4 and and
every (MyEvent and MyOtherEvent)

5 or or
every (MyEvent or MyOtherEvent)

Chapter 7. EPL Reference: Pat...

266

PrecedenceOperator Description Example

6 followed-

by

->
every (MyEvent -> MyOtherEvent)

If you are not sure about the precedence, please consider placing parenthesis () around your

subexpressions. Parenthesis can also help make expressions easier to read and understand.

The following table outlines sample equivalent expressions, with and without the use of

parenthesis for subexpressions.

Table 7.3. Equivalent Pattern Expressions

Expression Equivalent Reason

every A or B (every A) or B The every operator has higher precedence then the

or operator.

every A -> B or C (every A) -> (B or C) The or operator has higher precedence then the

followed-by operator.

A -> B or B -> A A -> (B or B) -> A The or operator has higher precedence then the

followed-by operator, specify as (A -> B) or (B ->

A) instead.

A and B or C (A and B) or C The and operator has higher precedence then the or

operator.

A -> B until C -> D A -> (B until C) -> D The until operator has higher precedence then the

followed-by operator.

[5] A or B ([5] A) or B The [num] repeat operator has higher precedence

then the or operator.

every A where

timer:within(10)

every (A where

timer:within(10))

The where postfix has higher precedence then the

every operator.

7.4. Filter Expressions In Patterns

The simplest form of filter is a filter for events of a given type without any conditions on the event

property values. This filter matches any event of that type regardless of the event's properties.

The example below is such a filter. Note that this event pattern would stop firing as soon as the

first RfidEvent is encountered.

com.mypackage.myevents.RfidEvent

To make the event pattern fire for every RfidEvent and not just the first event, use the every

keyword.

Filter Expressions In Patterns

267

every com.mypackage.myevents.RfidEvent

The example above specifies the fully-qualified Java class name as the event type. Via

configuration, the event pattern above can be simplified by using the name that has been defined

for the event type.

every RfidEvent

Interfaces and superclasses are also supported as event types. In the below example

IRfidReadable is an interface class, and the statement matches any event that implements this

interface:

every org.myorg.rfid.IRfidReadable

The filtering criteria to filter for events with certain event property values are placed within

parenthesis after the event type name:

RfidEvent(category="Perishable")

All expressions can be used in filters, including static method invocations that return a boolean

value:

RfidEvent(com.mycompany.MyRFIDLib.isInRange(x, y) or (x<0 and y < 0))

Filter expressions can be separated via a single comma ','. The comma represents a logical AND

between expressions:

RfidEvent(zone=1, category=10)

...is equivalent to...

RfidEvent(zone=1 and category=10)

For more information on filters please see Section 5.4.1, “Filter-based Event Streams”. Contained-

event selection on filters in patterns is further described in Section 5.19, “Contained-Event

Selection”.

Chapter 7. EPL Reference: Pat...

268

Filter criteria can also refer to events matching prior named events in the same expression. Below

pattern is an example in which the pattern matches once for every RfidEvent that is preceded by

an RfidEvent with the same asset id.

every e1=RfidEvent -> e2=RfidEvent(assetId=e1.assetId)

The syntax shown above allows filter criteria to reference prior results by specifying the event

name tag of the prior event, and the event property name. The tag names in the above example

were e1 and e2. This syntax can be used in all filter operators or expressions including ranges

and the in set-of-values check:

every e1=RfidEvent ->

 e2=RfidEvent(MyLib.isInRadius(e1.x, e1.y, x, y) and zone in (1, e1.zone))

An arriving event changes the truth value of all expressions that look for the event. Consider the

pattern as follows:

every (RfidEvent(zone > 1) and RfidEvent(zone < 10))

The pattern above is satisfied as soon as only one event with zone in the interval [2, 9] is received.

7.4.1. Filter Expressions and Filter Indexes

Important

A detailed description of how filters become active and are indexed engine-wide is

provided at Section 3.9.2.2, “Filter Index Pattern Example”.

An expression such as a=A -> B(id=a.id) (A followed-by B with the same id

as A) is not just a state change, in fact the engine registers new B-filter instances

dynamically and in engine-wide shared filter indexes. This means that while such a

pattern seems to be slow if you are sending A-events, the engine can filter, match

or discard B-events very fast as for B-events it only needs to perform a lookup in

filter indexes. If you are looking for best performance and don't expect to need filter

indexes, or if you compare to another technology that doesn't have the concept of

filter indexes, please use match-recognize instead.

The following operators are highly optimized through filter indexes and are the preferred means

of filtering high-volume event streams:

• equals =

Controlling Event Consumption

269

• not equals !=

• comparison operators < , > , >=, <=

• ranges

• use the between keyword for a closed range where both endpoints are included

• use the in keyword and round () or square brackets [] to control how endpoints are included

• for inverted ranges use the not keyword and the between or in keywords

• list-of-values checks using the in keyword or the not in keywords followed by a comma-

separated list of values

At compile time the engine scans filter expressions for subexpressions that can be indexed. The

above list of operators represents the set of operators that the engine can best convert into filter

indexes. The use of comma or logical and in filter expressions does not impact optimizations by

the engine.

7.4.2. Controlling Event Consumption

An arriving event applies to all filter expressions for which the event matches. In other words, an

arriving event is not consumed by any specify filter expression(s) but applies to all active filter

expressions of all pattern sub-expressions.

You may provide the @consume annotation as part of a filter expression to control consumption of

an arriving event. If an arriving event matches the filter expression marked with @consume it is no

longer available to other filter expressions of the same pattern that also match the arriving event.

The @consume can include a level number in parenthesis. A higher level number consumes the

event first. The default level number is 1. Multiple filter expressions with the same level number

for @consume all match the event.

Consider the next sample pattern:

a=RfidEvent(zone='Z1') and b=RfidEvent(assetId='0001')

This pattern fires when a single RfidEvent event arrives that has zone 'Z1' and assetId '0001'. The

pattern also matches when two RfidEvent events arrive, in any order, wherein one has zone 'Z1'

and the other has assetId '0001'.

Mark a filter expression with @consume to indicate that if an arriving event matches multiple filter

expressions that the engine prefers the marked filter expression and does not match any other

filter expression.

This updated pattern statement uses @consume to indicate that a match against zone is preferred:

a=RfidEvent(zone='Z1')@consume and b=RfidEvent(assetId='0001')

Chapter 7. EPL Reference: Pat...

270

This pattern no longer fires when a single RfidEvent arrives that has zone 'Z1' and assetId '0001',

because when the first filter expression matches the pattern engine consumes the event. The

pattern only matches when two RfidEvent events arrive in any order. One event must have zone

'Z1' and the other event must have a zone other than 'Z1' and an assetId '0001'.

The next sample pattern provides a level number for each @consume:

a=RfidEvent(zone='Z1')@consume(2)

 or b=RfidEvent(assetId='0001')@consume(1)

 or c=RfidEvent(category='perishable'))

The pattern fires when an RfidEvent arrives with zone 'Z1'. In this case the output event populates

property 'a' but not properties 'b' and 'c'. The pattern also fires when an RfidEvent arrives with a

zone other than 'Z1' and an asset id of '0001'. In this case the output event populates property 'b'

but not properties 'a' and 'c'. The pattern also fires when an RfidEvent arrives with a zone other

than 'Z1' and an asset id other than '0001' and a category of 'perishable'. In this case the output

event populates property 'c' but not properties 'a' and 'b'.

7.4.3. Use With Named Windows and Tables

When your filter expression provides the name of a named window then the filter expression

matches each time an event is inserted into the named window that matches the filter conditions.

For example, assume a named window that holds the last order event per order id:

create window LastOrderWindow#unique(orderId) as OrderEvent

Assume that all order events are inserted into the named window using insert-into:

insert into LastOrderWindow select * from OrderEvent

This sample pattern fires 10 seconds after an order event with a price greater then 100 was

inserted:

select * from pattern [every o=LastOrderWindow(price >= 100) -> timer:interval(10

 sec)]

The pattern above fires only for events inserted-into the LastOrderWindow named window and

does not fire when an order event was updated using on-update or merged using on-merge.

If your application would like to have the pattern fire for any change to the named window events

including updates and merges, you must select from the named window as follows:

Pattern Operators

271

insert into OrderWindowChangeStream select * from LastOrderWindow

select * from pattern [every o=OrderWindowChangeStream(price >= 100) ->

 timer:interval(10 sec)]

A table cannot be listed as part of a pattern filter, however any filter EPL expressions can have

tables access expressions and subqueries against tables.

Assuming that MyTable is a table, the following is not allowed:

// not allowed

select * from pattern [every MyTable -> timer:interval(10 sec)]

7.5. Pattern Operators

7.5.1. Every

The every operator indicates that the pattern sub-expression should restart when the

subexpression qualified by the every keyword evaluates to true or false. Without the every

operator the pattern sub-expression stops when the pattern sub-expression evaluates to true or

false.

As a side note, please be aware that a single invocation to the UpdateListener interface may

deliver multiple events in one invocation, since the interface accepts an array of values.

Thus the every operator works like a factory for the pattern sub-expression contained within.

When the pattern sub-expression within it fires and thus quits checking for events, the every

causes the start of a new pattern sub-expression listening for more occurrences of the same event

or set of events.

Every time a pattern sub-expression within an every operator turns true the engine starts a new

active subexpression looking for more event(s) or timing conditions that match the pattern sub-

expression. If the every operator is not specified for a subexpression, the subexpression stops

after the first match was found.

This pattern fires when encountering an A event and then stops looking.

A

This pattern keeps firing when encountering A events, and doesn't stop looking.

Chapter 7. EPL Reference: Pat...

272

every A

When using every operator with the -> followed-by operator, each time the every operator

restarts it also starts a new subexpression instance looking for events in the followed-by

subexpression.

Let's consider an example event sequence as follows.

A1 B1 C1 B2 A2 D1 A3 B3 E1 A4 F1 B4

Table 7.4. 'Every' operator examples

Example Description

every (A -> B)
Detect an A event followed by a B event. At the time when B occurs

the pattern matches, then the pattern matcher restarts and looks for

the next A event.

1. Matches on B1 for combination {A1, B1}

2. Matches on B3 for combination {A2, B3}

3. Matches on B4 for combination {A4, B4}

every A -> B
The pattern fires for every A event followed by a B event.

1. Matches on B1 for combination {A1, B1}

2. Matches on B3 for combination {A2, B3} and {A3, B3}

3. Matches on B4 for combination {A4, B4}

A -> every B
The pattern fires for an A event followed by every B event.

1. Matches on B1 for combination {A1, B1}.

2. Matches on B2 for combination {A1, B2}.

3. Matches on B3 for combination {A1, B3}

4. Matches on B4 for combination {A1, B4}

every A -> every B
The pattern fires for every A event followed by every B event.

1. Matches on B1 for combination {A1, B1}.

2. Matches on B2 for combination {A1, B2}.

3. Matches on B3 for combination {A1, B3} and {A2, B3} and {A3, B3}

4. Matches on B4 for combination {A1, B4} and {A2, B4} and {A3, B4}

and {A4, B4}

The examples show that it is possible that a pattern fires for multiple combinations of events that

match a pattern expression. Each combination is posted as an EventBean instance to the update

method in the UpdateListener implementation.

Every

273

Let's consider the every operator in conjunction with a subexpression that matches 3 events that

follow each other:

every (A -> B -> C)

The pattern first looks for A events. When an A event arrives, it looks for a B event. After the B

event arrives, the pattern looks for a C event. Finally, when the C event arrives the pattern fires.

The engine then starts looking for an A event again.

Assume that between the B event and the C event a second A2 event arrives. The pattern would

ignore the A2 event entirely since it's then looking for a C event. As observed in the prior example,

the every operator restarts the subexpression A -> B -> C only when the subexpression fires.

In the next statement the every operator applies only to the A event, not the whole subexpression:

every A -> B -> C

This pattern now matches for each A event that is followed by a B event and then a C event,

regardless of when the A event arrives. Note that for each A event that arrives the pattern engine

starts a new subexpression looking for a B event and then a C event, outputting each combination

of matching events.

7.5.1.1. Every Operator Equivalence

A pattern that only has the every operator and a single filter expression is equivalent to selecting

the same filter in the from clause:

select * from StockTickEvent(symbol='GE') // Prefer this

// ... equivalent to ...

select * from pattern[every StockTickEvent(symbol='GE')]

7.5.1.2. Limiting Subexpression Lifetime

As the introduction of the every operator states, the operator starts new subexpression instances

and can cause multiple matches to occur for a single arriving event.

New subexpressions also take a very small amount of system resources and thereby your

application should carefully consider when subexpressions must end when designing patterns.

Use the timer:within construct and the and not constructs to end active subexpressions. The

data window onto a pattern stream does not serve to limit pattern sub-expression lifetime.

Lets look at a concrete example. Consider the following sequence of events arriving:

A1 A2 B1

Chapter 7. EPL Reference: Pat...

274

This pattern matches on arrival of B1 and outputs two events (an array of length 2 if using a

listener). The two events are the combinations {A1, B1} and {A2, B1}:

every a=A -> b=B

The and not operators are used to end an active subexpression.

The next pattern matches on arrival of B1 and outputs only the last A event which is the combination

{A2, B1}:

every a=A -> (b=B and not A)

The and not operators cause the subexpression looking for {A1, B?} to end when A2 arrives.

Similarly, in the pattern below the engine starts a new subexpression looking for a B event every

1 second. After 5 seconds there are 5 subexpressions active looking for a B event and 5 matches

occur at once if a B event arrives after 5 seconds.

every timer:interval(1 sec) -> b=B

Again the and not operators can end subexpressions that are not intended to match any longer:

every timer:interval(1 sec) -> (b=B and not timer:interval(1 sec))

// equivalent to

every timer:interval(1 sec) -> (b=B where timer:within(1 sec))

7.5.1.3. Every Operator Example

In this example we consider a generic pattern in which the pattern must match for each A event

followed by a B event and followed by a C event, in which both the B event and the C event must

arrive within 1 hour of the A event. The first approach to the pattern is as follows:

every A -> (B -> C) where timer:within(1 hour)

Consider the following sequence of events arriving:

A1 A2 B1 C1 B2 C2

First, the pattern as above never stops looking for A events since the every operator instructs the

pattern to keep looking for A events.

Every

275

When A1 arrives, the pattern starts a new subexpression that keeps A1 in memory and looks for

any B event. At the same time, it also keeps looking for more A events.

When A2 arrives, the pattern starts a new subexpression that keeps A2 in memory and looks for

any B event. At the same time, it also keeps looking for more A events.

After the arrival of A2, there are 3 subexpressions active:

1. The first active subexpression with A1 in memory, looking for any B event.

2. The second active subexpression with A2 in memory, looking for any B event.

3. A third active subexpression, looking for the next A event.

In the pattern above, we have specified a 1-hour lifetime for subexpressions looking for B and C

events. Thus, if no B and no C event arrive within 1 hour after A1, the first subexpression goes

away. If no B and no C event arrive within 1 hour after A2, the second subexpression goes away.

The third subexpression however stays around looking for more A events.

The pattern as shown above thus matches on arrival of C1 for combination {A1, B1, C1} and for

combination {A2, B1, C1}, provided that B1 and C1 arrive within an hour of A1 and A2.

You may now ask how to match on {A1, B1, C1} and {A2, B2, C2} instead, since you may need to

correlate on a given property.

The pattern as discussed above matches every A event followed by the first B event followed by

the next C event, and doesn't specifically qualify the B or C events to look for based on the A

event. To look for specific B and C events in relation to a given A event, the correlation must use

one or more of the properties of the A event, such as the "id" property:

every a=A -> (B(id=a.id -> C(id=a.id)) where timer:within(1 hour)

The pattern as shown above thus matches on arrival of C1 for combination {A1, B1, C1} and on

arrival of C2 for combination {A2, B2, C2}.

7.5.1.4. Sensor Example

This example looks at temperature sensor events named Sample. The pattern detects when 3

sensor events indicate a temperature of more then 50 degrees uninterrupted within 90 seconds

of the first event, considering events for the same sensor only.

every sample=Sample(temp > 50) ->

((Sample(sensor=sample.sensor, temp > 50) and not Sample(sensor=sample.sensor,

 temp <= 50))

 ->

 (Sample(sensor=sample.sensor, temp > 50) and not Sample(sensor=sample.sensor,

 temp <= 50))

Chapter 7. EPL Reference: Pat...

276

) where timer:within(90 seconds))

The pattern starts a new subexpression in the round braces after the first followed-by operator for

each time a sensor indicated more then 50 degrees. Each subexpression then lives a maximum

of 90 seconds. Each subexpression ends if a temperature of 50 degress or less is encountered

for the same sensor. Only if 3 temperature events in a row indicate more then 50 degrees, and

within 90 seconds of the first event, and for the same sensor, does this pattern fire.

7.5.2. Every-Distinct

Similar to the every operator in most aspects, the every-distinct operator indicates that the

pattern sub-expression should restart when the subexpression qualified by the every-distinct

keyword evaluates to true or false. In addition, the every-distinct eliminates duplicate results

received from an active subexpression according to its distinct-value expressions.

The synopsis for the every-distinct pattern operator is:

every-distinct(distinct_value_expr [, distinct_value_exp[...]

[, expiry_time_period])

Within parenthesis are one or more distinct_value_expr expressions that return the values by

which to remove duplicates.

You may optionally specify an expiry_time_period time period. If present, the pattern engine

expires and removes distinct key values that are older then the time period, removing their

associated memory and allowing such distinct values to match again. When your distinct value

expressions return an unlimited number of values, for example when your distinct value is a

timestamp or auto-increment column, you should always specify an expiry time period.

When specifying properties in the distinct-value expression list, you must ensure that the event

types providing properties are tagged. Only properties of event types within filter expressions that

are sub-expressions to the every-distinct may be specified.

For example, this pattern keeps firing for every A event with a distinct value for its aprop property:

every-distinct(a.aprop) a=A

Note that the pattern above assigns the a tag to the A event and uses a.prop to identify the prop

property as a value of the a event A.

A pattern that returns the first Sample event for each sensor, assuming sensor is a field that returns

a unique id identifying the sensor that originated the Sample event, is:

every-distinct(s.sensor) s=Sample

Every-Distinct

277

The next pattern looks for pairs of A and B events and returns only the first pair for each

combination of aprop of an A event and bprop of a B event:

every-distinct(a.aprop, b.bprop) (a=A and b=B)

The following pattern looks for A events followed by B events for which the value of the aprop of

an A event is the same value of the bprop of a B event but only for each distinct value of aprop

of an A event:

every-distinct(a.aprop) a=A -> b=B(bprop = a.aprop)

When specifying properties as part of distinct-value expressions, properties must be available

from tagged event types in sub-expressions to the every-distinct.

The following patterns are not valid:

// Invalid: event type in filter not tagged

every-distinct(aprop) A

// Invalid: property not from a sub-expression of every-distinct

a=A -> every-distinct(a.aprop) b=B

When an active subexpression to every-distinct becomes permanently false, the distinct-

values seen from the active subexpression are removed and the sub-expression within is

restarted.

For example, the below pattern detects each A event distinct by the value of aprop.

every-distinct(a.aprop) (a=A and not B)

In the pattern above, when a B event arrives, the subexpression becomes permanently false and

is restarted anew, detecting each A event distinct by the value of aprop without considering prior

values.

When your distinct key is a timestamp or other non-unique property, specify an expiry time period.

The following example returns every distinct A event according to the timestamp property on the

A event, retaining each timestamp value for 10 seconds:

every-distinct(a.timestamp, 10 seconds) a=A

Chapter 7. EPL Reference: Pat...

278

In the example above, if for a given A event and its timestamp value the same timestamp value

occurs again for another A event before 10 seconds passed, the A event is not a match. If 10

seconds passed the pattern indicates a second match.

You may not use every-distinct with a timer-within guard to expire keys: The expiry time notation

as above is the recommended means to expire keys.

// This is not the same as above; It does not expire transaction ids and is

 not recommended

every-distinct(a.timestamp) a=A where timer:within(10 sec)

7.5.3. Repeat

The repeat operator fires when a pattern sub-expression evaluates to true a given number of

times. The synopsis is as follows:

[match_count] repeating_subexpr

The repeat operator is very similar to the every operator in that it restarts the repeating_subexpr

pattern sub-expression up to a given number of times.

match_count is a positive number that specifies how often the repeating_subexpr pattern sub-

expression must evaluate to true before the repeat expression itself evaluates to true, after which

the engine may indicate a match.

For example, this pattern fires when the last of five A events arrives:

[5] A

Parenthesis must be used for nested pattern sub-expressions. This pattern fires when the last of

a total of any five A or B events arrives:

[5] (A or B)

Without parenthesis the pattern semantics change, according to the operator precedence

described earlier. This pattern fires when the last of a total of five A events arrives or a single B

event arrives, whichever happens first:

[5] A or B

Repeat-Until

279

Tags can be used to name events in filter expression of pattern sub-expressions. The next pattern

looks for an A event followed by a B event, and a second A event followed by a second B event.

The output event provides indexed and array properties of the same name:

[2] (a=A -> b=B)

Using tags with repeat is further described in Section 7.5.4.6, “Tags and the Repeat Operator”.

Consider the following pattern that demonstrates the behavior when a pattern sub-expression

becomes permanently false:

[2] (a=A and not C)

In the case where a C event arrives before 2 A events arrive, the pattern above becomes

permanently false.

Lets add an every operator to restart the pattern and thus keep matching for all pairs of A events

that arrive without a C event in between each pair:

every [2] (a=A and not C)

Since pattern matches return multiple A events, your select clause should use tag a as an array,

for example:

select a[0].id, a[1].id from pattern [every [2] (a=A and not C)]

7.5.4. Repeat-Until

The repeat until operator provides additional control over repeated matching.

The repeat until operator takes an optional range, a pattern sub-expression to repeat, the until

keyword and a second pattern sub-expression that ends the repetition. The synopsis is as follows:

[range] repeated_pattern_expr until end_pattern_expr

Without a range, the engine matches the repeated_pattern_expr pattern sub-expression until the

end_pattern_expr evaluates to true, at which time the expression turns true.

An optional range can be used to indicate the minimum number of times that the

repeated_pattern_expr pattern sub-expression must become true.

Chapter 7. EPL Reference: Pat...

280

The optional range can also specify a maximum number of times that repeated_pattern_expr

pattern sub-expression evaluates to true and retains tagged events. When this number is reached,

the engine stops the repeated_pattern_expr pattern sub-expression.

The until keyword is always required when specifying a range and is not required if specifying

a fixed number of repeat as discussed in the section before.

7.5.4.1. Unbound Repeat

In the unbound repeat, without a range, the engine matches the repeated_pattern_expr pattern

sub-expression until the end_pattern_expr evaluates to true, at which time the expression turns

true. The synopsis is:

repeated_pattern_expr until end_pattern_expr

This is a pattern that keeps looking for A events until a B event arrives:

A until B

Nested pattern sub-expressions must be placed in parenthesis since the until operator has

precedence over most operators. This example collects all A or B events for 10 seconds and

places events received in indexed properties 'a' and 'b':

(a=A or b=B) until timer:interval(10 sec)

7.5.4.2. Bound Repeat Overview

The synopsis for the optional range qualifier is:

[[low_endpoint] : [high_endpoint]]

low_endpoint is an optional number that appears on the left of a colon (:), after which follows an

optional high_endpoint number.

A range thus consists of a low_endpoint and a high_endpoint in square brackets and separated by

a colon (:) characters. Both endpoint values are optional but either one or both must be supplied.

The low_endpoint can be omitted to denote a range that starts at zero. The high_endpoint can

be omitted to denote an open-ended range.

Some examples for valid ranges might be:

[3 : 10]

[:3] // range starts at zero

Repeat-Until

281

[2:] // open-ended range

The low_endpoint, if specified, defines the minimum number of times that the

repeated_pattern_expr pattern sub-expression must become true in order for the expression to

become true.

The high_endpoint, if specified, is the maximum number of times that the repeated_pattern_expr

pattern sub-expression becomes true. If the number is reached, the engine stops the

repeated_pattern_expr pattern sub-expression.

In all cases, only at the time that the end_pattern_expr pattern sub-expression evaluates to true

does the expression become true. If end_pattern_expr pattern sub-expression evaluates to false,

then the expression evaluates to false.

7.5.4.3. Bound Repeat - Open Ended Range

An open-ended range specifies only a low endpoint and not a high endpoint.

Consider the following pattern which requires at least three A events to match:

[3:] A until B

In the pattern above, if a B event arrives before 3 A events occurred, the expression ends and

evaluates to false.

7.5.4.4. Bound Repeat - High Endpoint Range

A high-endpoint range specifies only a high endpoint and not a low endpoint.

In this sample pattern the engine will be looking for a maximum of 3 A events. The expression

turns true as soon as a single B event arrives regardless of the number of A events received:

[:3] A until B

The next pattern matches when a C or D event arrives, regardless of the number of A or B events

that occurred:

[:3] (a=A or b=B) until (c=C or d=D)

In the pattern above, if more then 3 A or B events arrive, the pattern stops looking for additional A

or B events. The 'a' and 'b' tags retain only the first 3 (combined) matches among A and B events.

The output event contains these tagged events as indexed properties.

Chapter 7. EPL Reference: Pat...

282

7.5.4.5. Bound Repeat - Bounded Range

A bounded range specifies a low endpoint and a high endpoint.

The next pattern matches after at least one A event arrives upon the arrival of a single B event:

[1:3] a=A until B

If a B event arrives before the first A event, then the pattern does not match. Only the first 3 A

events are returned by the pattern.

7.5.4.6. Tags and the Repeat Operator

The tags assigned to events in filter subexpressions within a repeat operator are available for use

in filter expressions and also in any EPL clause.

This sample pattern matches 2 A events followed by a B event. Note the filter on B events: only

a B event that has a value for the "beta" property that equals any of the "id" property values of

the two A events is considered:

[2] A -> B(beta in (a[0].id, a[1].id))

The next EPL statement returns pairs of A events:

select a, a[0], a[0].id, a[1], a[1].id

from pattern [every [2] a=A]

The select clause of the statement above showcases different ways of accessing tagged events:

• The tag itself can be used to select an array of underlying events. For example, the 'a' expression

above returns an array of underlying events of event type A.

• The tag as an indexed property returns the underlying event at that index. For instance, the

'a[0]' expression returns the first underlying A event, or null if no such A event was matched

by the repeat operator.

• The tag as a nested, indexed property returns a property of the underlying event at that index.

For example, the 'a[1].id' expression returns the 'id' property value of the second A event, or

null if no such second A event was matched by the repeat operator.

7.5.4.7. Note on Indexed Tags

You may not use indexed tags defined in the sub-expression to the repeat operator in the same

subexpression. For example, in the following pattern the subexpression to the repeat operator

And

283

is (a=A() -> b=B(id=a[0].id)) and the tag a cannot be used in its indexed form in the filter

for event B:

// invalid

every [2] (a=A() -> b=B(id=a[0].id))

You can use tags without an index:

// valid

every [2] (a=A() -> b=B(id=a.id))

7.5.5. And

Similar to the Java && operator the and operator requires both nested pattern expressions to turn

true before the whole expression turns true (a join pattern).

This pattern matches when both an A event and a B event arrive, at the time the last of the two

events arrive:

A and B

This pattern matches on any sequence of an A event followed by a B event and then a C event

followed by a D event, or a C event followed by a D and an A event followed by a B event:

(A -> B) and (C -> D)

Note that in an and pattern expression it is not possible to correlate events based on event property

values. For example, this is an invalid pattern:

// This is NOT valid

a=A and B(id = a.id)

The above expression is invalid as it relies on the order of arrival of events, however in an and

expression the order of events is not specified and events fulfill an and condition in any order. The

above expression can be changed to use the followed-by operator:

// This is valid

a=A -> B(id = a.id)

// another example using 'and'...

Chapter 7. EPL Reference: Pat...

284

a=A -> (B(id = a.id) and C(id = a.id))

Consider a pattern that looks for the same event:

A and A

The pattern above fires when a single A event arrives. The first arriving A event triggers a state

transition in both the left and the right hand side expression.

In order to match after two A events arrive in any order, there are two options to express this

pattern. The followed-by operator is one option and the repeat operator is the second option, as

the next two patterns show:

A -> A

// ... or ...

[2] A

7.5.6. Or

Similar to the Java “||” operator the or operator requires either one of the expressions to turn true

before the whole expression turns true.

Look for either an A event or a B event. As always, A and B can itself be nested expressions

as well.

A or B

The next EPL outputs all A and B events:

every A or every B

Elaborating further, the expression every A or every B is equivalent to every (A or B). We

prefer every A or every B as the every keyword lets the engine know that filters for A and

B can remain active. Consider the expression every A or every timer:interval(10 sec)

which is not equivalent to every (A or timer:interval(10 sec)). This is because in the latter

expression when an A event arrives the interval restarts.

7.5.7. Not

Not

285

The not operator negates the truth value of an expression. Pattern expressions prefixed with not

are automatically defaulted to true upon start, and turn permanently false when the expression

within turns true.

The not operator is generally used in conjunction with the and operator or subexpressions as the

below examples show.

This pattern matches only when an A event is encountered followed by a B event but only if no

C event was encountered before either an A event and a B event, counting from the time the

pattern is started:

(A -> B) and not C

Assume we'd like to detect when an A event is followed by a D event, without any B or C events

between the A and D events:

A -> (D and not (B or C))

It may help your understanding to discuss a pattern that uses the or operator and the not operator

together:

a=A -> (b=B or not C)

In the pattern above, when an A event arrives then the engine starts the subexpression B or not

C. As soon as the subexpression starts, the not operator turns to true. The or expression turns

true and thus your listener receives an invocation providing the A event in the property 'a'. The

subexpression does not end and continues listening for B and C events. Upon arrival of a B event

your listener receives a second invocation. If instead a C event arrives, the not turns permanently

false however that does not affect the or operator (but would end an and operator).

To test for absence of an event, use timer:interval together with and not operators. The

sample statement reports each 10-second interval during which no A event occurred:

every (timer:interval(10 sec) and not A)

In many cases the not operator, when used alone, does not make sense. The following example

is invalid and will log a warning when the engine is started:

// not a sensible pattern

(not a=A) -> B(id=a.id)

Chapter 7. EPL Reference: Pat...

286

7.5.8. Followed-by

The followed by -> operator specifies that first the left hand expression must turn true and only

then is the right hand expression evaluated for matching events.

Look for an A event and if encountered, look for a B event. As always, A and B can itself be nested

event pattern expressions.

A -> B

This is a pattern that fires when 2 status events indicating an error occur one after the other.

StatusEvent(status='ERROR') -> StatusEvent(status='ERROR')

A pattern that takes all A events that are not followed by a B event within 5 minutes:

every A -> (timer:interval(5 min) and not B)

A pattern that takes all A events that are not preceded by B within 5 minutes:

every (timer:interval(5 min) and not B -> A)

7.5.8.1. Limiting Sub-Expression Count

The followed-by -> operator can optionally be provided with an expression that limits the number

of sub-expression instances of the right-hand side pattern sub-expression.

The synopsis for the followed-by operator with limiting expression is:

lhs_expression -[limit_expression]> rhs_expression

Each time the lhs_expression pattern sub-expression turns true the pattern engine starts a new

rhs_expression pattern sub-expression. The limit_expression returns an integer value that defines

a maximum number of pattern sub-expression instances that can simultaneously be present for

the same rhs_expression.

When the limit is reached the pattern engine issues a

com.espertech.esper.client.hook.ConditionPatternSubexpressionMax notification object

to any condition handlers registered with the engine as described in Section 16.11, “Condition

Handling” and does not start a new pattern sub-expression instance for the right-hand side pattern

sub-expression.

Followed-by

287

For example, consider the following pattern which returns for every A event the first B event that

matches the id field value of the A event:

every a=A -> b=B(id = a.id)

In the above pattern, every time an A event arrives (lhs) the pattern engine starts a new pattern

sub-expression (rhs) consisting of a filter for the first B event that has the same value for the id

field as the A event.

In some cases your application may want to limit the number of right-hand side sub-expressions

because of memory concerns or to reduce output. You may add a limit expression returning an

integer value as part of the operator.

This example employs the followed-by operator with a limit expression to indicate that maximally

2 filters for B events (the right-hand side pattern sub-expression) may be active at the same time:

every a=A -[2]> b=B(id = a.id)

Note that the limit expression in the example above is not a limit per value of id field, but a limit

counting all right-hand side pattern sub-expression instances that are managed by that followed-

by sub-expression instance.

If your followed-by operator lists multiple sub-expressions with limits, each limit applies to the

immediate right-hand side. For example, the pattern below limits the number of filters for B events

to 2 and the number of filters for C events to 3:

every a=A -[2]> b=B(id = a.id) -[3]> c=C(id = a.id)

7.5.8.2. Limiting Engine-wide Sub-Expression Count

Esper allows setting a maximum number of pattern sub-expressions in the configuration,

applicable to all followed-by operators of all statements.

If your application has patterns in multiple EPL statements and all such patterns should count

towards a total number of pattern sub-expression counts, you may consider setting a maximum

number of pattern sub-expression instances, engine-wide, via the configuration described in

Section 17.4.17.1, “Followed-By Operator Maximum Subexpression Count”.

When the limit is reached the pattern engine issues a notification object to any condition handlers

registered with the engine as described in Section 16.11, “Condition Handling”. Depending on your

configuration the engine can prevent the start of a new pattern sub-expression instance for the

right-hand side pattern sub-expression, until pattern sub-expression instances end or statements

are stopped or destroyed.

Chapter 7. EPL Reference: Pat...

288

The notification object issued to condition handlers is an instance

of com.espertech.esper.client.hook.ConditionPatternEngineSubexpressionMax. The

notification object contains information which statement triggered the limit and the pattern counts

per statement for all statements.

For information on static and runtime configuration, please consult Section 17.4.17.1, “Followed-

By Operator Maximum Subexpression Count”. The limit can be changed and disabled or enabled

at runtime via the runtime configuration API.

7.5.9. Pattern Guards

Guards are where-conditions that control the lifecycle of subexpressions. Custom guard functions

can also be used. The section Chapter 19, Integration and Extension outlines guard plug-in

development in greater detail.

The pattern guard where-condition has no relationship to the EPL where clause that filters sets

of events.

Take as an example the following pattern expression:

MyEvent where timer:within(10 sec)

In this pattern the timer:within guard controls the subexpression that is looking for MyEvent

events. The guard terminates the subexpression looking for MyEvent events after 10 seconds

after start of the pattern. Thus the pattern alerts only once when the first MyEvent event arrives

within 10 seconds after start of the pattern.

The every keyword requires additional discussion since it also controls subexpression lifecycle.

Let's add the every keyword to the example pattern:

every MyEvent where timer:within(10 sec)

The difference to the pattern without every is that each MyEvent event that arrives now starts a

new subexpression, including a new guard, looking for a further MyEvent event. The result is that,

when a MyEvent arrives within 10 seconds after pattern start, the pattern execution will look for

the next MyEvent event to arrive within 10 seconds after the previous one.

By placing parentheses around the every keyword and its subexpression, we can have the every

under the control of the guard:

(every MyEvent) where timer:within(10 sec)

Pattern Guards

289

In the pattern above, the guard terminates the subexpression looking for all MyEvent events after

10 seconds after start of the pattern. This pattern alerts for all MyEvent events arriving within 10

seconds after pattern start, and then stops.

Guards do not change the truth value of the subexpression of which the guard controls the

lifecycle, and therefore do not cause a restart of the subexpression when used with the every

operator. For example, the next pattern stops returning matches after 10 seconds unless a match

occurred within 10 seconds after pattern start:

every ((A and B) where timer:within(10 sec))

7.5.9.1. The timer:within Pattern Guard

The timer:within guard acts like a stopwatch. If the associated pattern expression does not turn

true within the specified time period it is stopped and permanently false.

The synopsis for timer:within is as follows:

timer:within(time_period_expression)

The time_period_expression is a time period (see Section 5.2.1, “Specifying Time Periods”) or an

expression providing a number of seconds as a parameter. The interval expression may contain

references to properties of prior events in the same pattern as well as variables and substitution

parameters.

This pattern fires if an A event arrives within 5 seconds after statement creation.

A where timer:within (5 seconds)

This pattern fires for all A events that arrive within 5 seconds. After 5 seconds, this pattern stops

matching even if more A events arrive.

(every A) where timer:within (5 seconds)

This pattern matches for any one A or B event in the next 5 seconds.

(A or B) where timer:within (5 sec)

This pattern matches for any 2 errors that happen 10 seconds within each other.

Chapter 7. EPL Reference: Pat...

290

every (StatusEvent(status='ERROR') -> StatusEvent(status='ERROR') where

 timer:within (10 sec))

The following guards are equivalent:

timer:within(2 minutes 5 seconds)

timer:within(125 sec)

timer:within(125)

7.5.9.2. The timer:withinmax Pattern Guard

The timer:withinmax guard is similar to the timer:within guard and acts as a stopwatch that

additionally has a counter that counts the number of matches. It ends the subexpression when

either the stopwatch ends or the match counter maximum value is reached.

The synopsis for timer:withinmax is as follows:

timer:withinmax(time_period_expression, max_count_expression)

The time_period_expression is a time period (see Section 5.2.1, “Specifying Time Periods”) or an

expression providing a number of seconds.

The max_count_expression provides the maximum number of matches before the guard ends

the subexpression.

Each parameter expression may also contain references to properties of prior events in the same

pattern as well as variables and substitution parameters.

This pattern fires for every A event that arrives within 5 seconds after statement creation but only

up to the first two A events:

(every A) where timer:withinmax (5 seconds, 2)

If the result of the max_count_expression is 1, the guard ends the subexpression after the first

match and indicates the first match.

This pattern fires for the first A event that arrives within 5 seconds after statement creation:

(every A) where timer:withinmax (5 seconds, 1)

If the result of the max_count_expression is zero, the guard ends the subexpression upon the first

match and does no indicate any matches.

Pattern Guards

291

This example receives every A event followed by every B event (as each B event arrives) until

the 5-second subexpression timer ends or X number of B events have arrived (assume X was

declared as a variable):

every A -> (every B) where timer:withinmax (5 seconds, X)

7.5.9.3. The while Pattern Guard

The while guard is followed by an expression that the engine evaluates for every match

reported by the guard pattern sub-expression. When the expression returns false the pattern sub-

expression ends.

The synopsis for while is as follows:

while (guard_expression)

The guard_expression is any expression that returns a boolean true or false. The expression

may contain references to properties of prior events in the same pattern as well as variables and

substitution parameters.

Each time the subexpression indicates a match, the engine evaluates guard_expression and if

true, passes the match and when false, ends the subexpression.

This pattern fires for every A event until an A event arrives that has a value of zero or less for its

size property (assuming A events have an integer size property).

(every a=A) while (a.size > 0)

Note the parenthesis around the every subexpression. They ensure that, following precedence

rules, the guard applies to the every operator as well.

7.5.9.4. Guard Time Interval Expressions

The timer:within and timer:withinmax guards may be parameterized by an expression that

contains one or more references to properties of prior events in the same pattern.

As a simple example, this pattern matches every A event followed by a B event that arrives within

delta seconds after the A event:

every a=A -> b=B where timer:within (a.delta seconds)

Chapter 7. EPL Reference: Pat...

292

Herein A event is assumed to have a delta property that provides the number of seconds to wait

for B events. Each arriving A event may have a different value for delta and the guard is therefore

parameterized dynamically based on the prior A event received.

When multiple events accumulate, for example when using the match-until or repeat pattern

elements, an index must be provided:

[2] a=A -> b=B where timer:within (a[0].delta + a[1].delta)

The above pattern matches after 2 A events arrive followed by a B event within a time interval

after the A event that is defined by the sum of the delta properties of both A events.

7.5.9.5. Combining Guard Expressions

You can combine guard expression by using parenthesis around each subexpression.

The below pattern matches for each A event while A events of size greater then zero arrive and

only within the first 20 seconds:

((every a=A) while (a.size > 0)) where timer:within(20)

7.6. Pattern Atoms

7.6.1. Filter Atoms

Filter atoms have been described in section Section 7.4, “Filter Expressions In Patterns”.

7.6.2. Observer Atoms Overview

Observers observe time-based events for which the thread-of-control originates by the engine

timer or external timer event. Custom observers can also be developed that observe timer events

or other engine-external application events such as a file-exists check. The section Chapter 19,

Integration and Extension outlines observer plug-in development in greater detail.

7.6.3. Interval (timer:interval)

The timer:interval pattern observer waits for the defined time before the truth value of the

observer turns true. The observer takes a time period (see Section 5.2.1, “Specifying Time

Periods”) as a parameter, or an expression that returns the number of seconds.

The observer may be parameterized by an expression that contains one or more references

to properties of prior events in the same pattern, or may also reference variables, substitution

parameters or any other expression returning a numeric value.

Crontab (timer:at)

293

After an A event arrived wait 10 seconds then indicate that the pattern matches.

A -> timer:interval(10 seconds)

The pattern below fires every 20 seconds.

every timer:interval(20 sec)

The next example pattern fires for every A event that is not followed by a B event within 60 seconds

after the A event arrived. The B event must have the same "id" property value as the A event.

every a=A -> (timer:interval(60 sec) and not B(id=a.id))

Consider the next example, which assumes that the A event has a property waittime:

every a=A -> (timer:interval(a.waittime + 2) and not B(id=a.id))

In the above pattern the logic waits for 2 seconds plus the number of seconds provided by the

value of the waittime property of the A event.

7.6.4. Crontab (timer:at)

The timer:at pattern observer is similar in function to the Unix “crontab” command. At a specified

time the expression turns true. The at operator can also be made to pattern match at regular

intervals by using an every operator in front of the timer:at operator.

The syntax is: timer:at (minutes, hours, days of month, months, days of week [,

seconds [, time zone]]).

The value for seconds and time zone is optional. Each element allows wildcard * values. Ranges

can be specified by means of lower bounds then a colon ‘:’ then the upper bound. The division

operator */x can be used to specify that every xth value is valid. Combinations of these operators

can be used by placing these into square brackets ([]).

The timer:at observer may also be parameterized by an expression that contains one or more

references to properties of prior events in the same pattern, or may also reference variables,

substitution parameters or any other expression returning a numeric value. The frequency division

operator */x and parameters lists within brackets ([]) are an exception: they may only contain

variables, substitution parameters or numeric values.

This expression pattern matches every 5 minutes past the hour.

Chapter 7. EPL Reference: Pat...

294

every timer:at(5, *, *, *, *)

The below timer:at pattern matches every 15 minutes from 8am to 5:45pm (hours 8 to 17 at

0, 15, 30 and 45 minutes past the hour) on even numbered days of the month as well as on the

first day of the month.

timer:at (*/15, 8:17, [*/2, 1], *, *)

The below table outlines the fields, valid values and keywords available for each field:

Table 7.5. Crontab Fields

Field Name Mandatory? Allowed Values Additional Keywords

Minutes yes 0 - 59

Hours yes 0 - 23

Days Of Month yes 1 - 31 last, weekday, lastweekday

Months yes 1 - 12

Days Of Week yes 0 (Sunday) - 6

(Saturday)

last

Seconds no (required if

specifying a time

zone)

0 - 59

Time Zone no any string (not

validated, see

TimeZone

javadoc)

The keyword last used in the days-of-month field means the last day of the month (current

month). To specify the last day of another month, a value for the month field has to be provided.

For example: timer:at(*, *, last,2,*) is the last day of February.

The last keyword in the day-of-week field by itself simply means Saturday. If used in the day-

of-week field after another value, it means "the last xxx day of the month" - for example "5 last"

means "the last Friday of the month". So the last Friday of the current month will be: timer:at(*,

*, *, *, 5 last). And the last Friday of June: timer:at(*, *, *, 6, 5 last).

The keyword weekday is used to specify the weekday (Monday-Friday) nearest the given day.

Variant could include month like in: timer:at(*, *, 30 weekday, 9, *) which for year 2007

is Friday September 28th (no jump over month).

Crontab (timer:at)

295

The keyword lastweekday is a combination of two parameters, the last and the weekday

keywords. A typical example could be: timer:at(*, *, *, lastweekday, 9, *) which will

define Friday September 28th (example year is 2007).

The time zone is a string-type value that specifies the time zone of the schedule. You must specify

a value for seconds when specifying a time zone. Esper relies on the java.util.TimeZone to

interpret the time zone value. Note that TimeZone does not validate time zone strings.

The following timer:at pattern matches at 5:00 pm Pacific Standard Time (PST):

timer:at (0, 17, *, *, *, *, 'PST')

Any expression may occur among the parameters. This example invokes a user-defined function

computeHour to return an hour:

timer:at (0, computeHour(), *, *, *, *)

The following restrictions apply to crontab parameters:

• It is not possible to specify both Days Of Month and Days Of Week.

7.6.4.1. timer:at and the every Operator

When using timer:at with the every operator the crontab-like timer computes the next time at

which the timer should fire based on the specification and the current time. When using every,

the current time is the time the timer fired or the statement start time if the timer has not fired once.

For example, this pattern fires every 1 minute starting at 1:00pm and ending at 1:59pm, every day:

every timer:at(*, 13, *, *, *)

Assume the above statement gets started at 1:05pm and 20 seconds. In such case the above

pattern fires every 1 minute starting at 1:06pm and ending at 1:59pm for that day and 1:00pm to

1:59pm every following day.

To get the pattern to fire only once at 1pm every day, explicitly specify the minute to start. The

pattern below fires every day at 1:00pm:

every timer:at(0, 13, *, *, *)

By specifying a second resolution the timer can be made to fire every second, for instance:

Chapter 7. EPL Reference: Pat...

296

every timer:at(*, *, *, *, *, *)

7.6.5. Schedule (timer:schedule)

The timer:schedule observer is a flexible observer for scheduling.

The observer implements relevant parts of the ISO 8601 specification however it is not necessary

to use ISO 8601 formats. The ISO 8601 standard is an international standard covering the

exchange of date and time-related data. The standard specifies a date format, a format for time

periods and a format for specifying the number of repetitions. Please find more information on

ISO 8601 at Wikipedia [http://en.wikipedia.org/wiki/ISO_8601].

The observer takes the following named parameters:

Table 7.6. Timer Schedule Parameters

Name Description

iso An expression returning a string-type ISO 8601

formatted date, time period and/or number of

repetitions.

repetitions An expression returning a numeric value that

specifies a number of repetitions. Provide

a value of -1 for an unlimited number of

repetitions. If unspecified, the number of

repetitions is one.

date An expression returning a string-type ISO 8601

formatted date, or an expression that returns

any of these types: long, Date, Calendar,

LocalDateTime, ZonedDateTime.

period An expression returning a time period, see

Section 5.2.1, “Specifying Time Periods”

In summary, for example, the below pattern schedules two callbacks: The first callback 2008-03-01

at 13:00:00 UTC and the second callback on 2009-05-11 at 15:30:00 UTC.

select * from pattern[every timer:schedule(iso: 'R2/2008-03-01T13:00:00Z/

P1Y2M10DT2H30M')]

The number of repetitions, date and period can be separated and do not have to be ISO 8601

strings, allowing each part to be an own expression.

This example specifies separate expressions. The equivalent schedule to the above example is:

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Schedule (timer:schedule)

297

select * from pattern[every timer:schedule(repetitions: 2, date:

 '2008-03-01T13:00:00Z', period: 1 year 2 month 10 days 2 hours 30 minutes)]

When providing the iso parameter, it must be the only parameter. The repetitions parameter

is only allowed in conjunction with other parameters.

7.6.5.1. Specifying ISO8601 Dates, Periods and Repetition

7.6.5.1.1. Specifying Dates

The complete document for ISO 8601, the international standard for the representation of dates

and times, can be found at http://www.w3.org/TR/NOTE-datetime.

The supported ISO 8601 date formats are:

Table 7.7. ISO 8601 Period Examples

Description Format Example

Complete date plus hours, minutes

and seconds (zero milliseconds, zero

microseconds):

YYYY-MM-

DDThh:mm:ssTZD

1997-07-16T19:20:30Z

(i.e. GMT+00:00,

UTC)

1997-07-16T19:20:30+01:00

(i.e. GMT+01:00)

1997-07-16T19:20:30

(i.e. local time zone)

Complete date plus hours, minutes, seconds

and a decimal fraction of a second (zero

microseconds)

YYYY-MM-

DDThh:mm:ss.sTZD

1997-07-16T19:20:30.45Z

(i.e. GMT+00:00,

UTC)

1997-07-16T19:20:30.45+01:00

(i.e. GMT+01:00)

1997-07-16T19:20:30.45

(i.e. local time zone)

7.6.5.1.2. Specifying Periods

In ISO 8601, periods are specified by a P and an optional year, month, week and day count. If

there is a time part, add T and optionally provide the hour, minute and seconds. The format does

not have any whitespace. The synopsis is:

http://www.w3.org/TR/NOTE-datetime

Chapter 7. EPL Reference: Pat...

298

P [nY] [nM] [nW] [nD] [T [nH [nM] [nS]]

The Y stands for years, the M for month as well as minutes, the W for weeks and the D for days.

The H stands for hours and the S means seconds.

Table 7.8. ISO 8601 Period Examples

Example Description

P10M 10 months

PT10M 10 minutes

P1Y3M12D 1 year, 3 month and 12 days

P10DT5M 10 days and 5 minutes

P1Y2M3DT4H5M6S1 year, 2 month, 3 days, 4 hours, 5 minutes, 6 seconds

7.6.5.1.3. Specifying Repetitions

In ISO 8601, repetition is specified by an R and an optional number of repetitions without any white

space. The synopsis is:

R [nn]

For example R5 means 5 repetitions, and just R means unlimited repetitions.

7.6.5.2. Scheduling a callback to occur for a given date (non-

repeating)

To instruct the engine to observe a date, provide a date to the observer. When time advances to

the specified date, the pattern subexpression fires.

For example, this pattern fires once when time reaches 2012-10-01 at 5:52:00 (UTC):

timer:schedule(iso:'2012-10-01T05:52:00Z')

This equivalent pattern specifies separate expressions:

every timer:schedule(date: '2012-10-01T05:52:00Z')

When the observer fires, the pattern subexpression becomes permanently false and the engine

does not restart the observer.

If the provided date is a past date as compared to engine time, the pattern subexpression becomes

permanently false on start.

Schedule (timer:schedule)

299

7.6.5.3. Scheduling a callback to occur after a given period (non-

repeating)

To instruct the engine to observe a period starting from the current engine time, provide a

period. When time advances to the current engine time plus the specified period, the pattern

subexpression fires.

Assuming the current engine time is 2012-10-01 at 5:52:00 (UTC), this pattern fires once when

time reaches 5:53:00:

timer:schedule(iso:'PT1M')

This equivalent pattern specifies separate expressions:

every timer:schedule(period: 1 minute)

When the observer fires, the pattern subexpression becomes permanently false and the engine

does not restart the observer.

7.6.5.4. Scheduling a callback to occur after a given date and period

(non-repeating)

To instruct the engine to observe a period starting from a given date, provide a date and a period.

When time advances to the date plus the specified period, the pattern subexpression fires.

Assuming the current engine time is 5:52:00 (UTC), this pattern fires once when time reaches

2012-10-01 at 5:53:00:

timer:schedule(iso:'2012-10-01T05:52:00Z/PT1M')

This equivalent pattern specifies separate expressions:

every timer:schedule(date: '2012-10-01T05:52:00Z', period: 1 minute)

When the observer fires, the pattern subexpression becomes permanently false and the engine

does not restart the observer.

Chapter 7. EPL Reference: Pat...

300

7.6.5.5. Scheduling a callback to occur periodically (repeating)

To instruct the engine to observe a period starting from the current engine time and repeatedly

thereafter anchored to current engine time, provide a number of repetitions and a period (see

synopsis provided earlier), like this:

repetitions/period

timer:schedule(iso: 'R2/PT1M')

When time advances to the current engine time plus the specified period, the pattern

subexpression fires for the first time. Repeatedly when time advances to the current engine time

plus a multiple of the specified period, the pattern subexpression fires, up to the number of

repetitions specified (if any).

This pattern specifies a repetition of two. Assuming the current engine time is 2012-10-01 at

5:52:00 (UTC), it fires when time reaches 5:53:00 and again when time reaches 5:54:00:

every timer:schedule(iso: 'R2/PT1M')

This equivalent pattern specifies separate expressions:

every timer:schedule(repetitions: 2, period: 1 minute)

All schedule computations are relative to (i.e. anchored to) current engine time at observer start.

Once the number of repetitions is reached relative to the current engine time at observer start, the

pattern subexpression becomes permanently false and the engine does not restart the observer.

Note

Please specify the every operator for repeating schedules.

7.6.5.6. Scheduling a callback to occur periodically starting from a

given date (repeating)

To instruct the engine to observe a period starting from a given date and repeatedly thereafter

anchored to the provide date, provide a number of repetitions and a date and a period (see

synopsis provided earlier), like this:

repetitions/date/period

Schedule (timer:schedule)

301

When time advances to the date, the pattern subexpression fires for the first time. You may

specify a date older than current engine time as an anchor. Repeatedly when time advances to

the date plus a multiple of the specified period, the pattern subexpression fires, up to the number

of repetitions specified (if any).

This pattern specifies a repetition of two. The pattern fires when time reaches 2012-10-01 at

5:52:00 (UTC) and again when time reaches 5:53:00.

every timer:schedule(iso: 'R2/2012-10-01T05:52:00Z/PT1M')

This equivalent pattern specifies separate expressions:

every timer:schedule(repetitions: 2, date:'2012-10-01T05:52:00Z', period: 1

 minute)

All schedule computations are relative to (i.e. anchored to) the provided date. Once the number

of repetitions is reached relative to the provided date, the pattern subexpression becomes

permanently false and the engine does not restart the observer.

Note

Please specify the every operator for repeating schedules.

7.6.5.7. Additional Usage Examples

The pattern below outputs every MyEvent event after the MyEvent arrived and upon the next round

15 seconds:

select * from pattern[every e=MyEvent -> timer:schedule(iso:

 'R/1980-01-01T00:00:00Z/PT15S']

Assuming a MyEvent event arrives on 2012-10-01 at 5:51:07 the output for that event occurs at

5:51:15.

All parameters can be expressions. The date parameter could, for example, be used with

current_timestamp to compute a schedule:

select * from pattern[date: current_timestamp.withTime(9, 0, 0, 0)]

The above statement fires only at 9am and not after 9am on the same day (one repetition).

Chapter 7. EPL Reference: Pat...

302

7.6.5.8. Samples With Equivalent EPL

The following EPL is equivalent:

select * from pattern[every timer:schedule(iso: 'R2/2008-03-01T13:00:00Z/

P1Y2M10DT2H30M')]

select * from pattern[every (timer:schedule(iso: '2008-03-01T13:00:00Z') or

 timer:schedule(iso: '2009-05-11T15:30:00Z'))]

select * from pattern[every (timer:schedule(iso: '2008-03-01T13:00:00Z') or

 timer:schedule(iso: '2008-03-01T13:00:00Z/P1Y2M10DT2H30M'))]

7.6.5.9. Implementation Notes

Your environment should have the JAXB date parser available. The engine uses

javax.xml.datatype.DatatypeFactory.newInstance().newXMLGregorianCalendar(dateText).toGregorianCalendar()

for date parsing.

Chapter 8.

303

Chapter 8. EPL Reference: Match

Recognize

8.1. Overview

Using match recognize patterns are defined in the familiar syntax of regular expressions.

The match recognize syntax presents an alternative way to specify pattern detection as compared

to the EPL pattern language described in the previous chapter. A comparison of match recognize

and EPL patterns is below.

The match recognize syntax is a proposal for incorporation into the SQL standard. It is thus subject

to change as the standard evolves and finalizes (it has not finalized yet). Please consult "row-

pattern-recogniton-11-public.pdf" for further information.

You may be familiar with regular expressions in the context of finding text of interest in a string,

such as particular characters, words, or patterns of characters. Instead of matching characters,

match recognize matches sequences of events of interest.

Esper can apply match-recognize patterns in real-time upon arrival of new events in a stream of

events (also termed incrementally, streaming or continuous). Esper can also match patterns on-

demand via the iterator pull-API, if specifying a named window or data window on a stream

(tables cannot be used in the from-clause with match-recognize). The engine maintains state for

partial pattern matches and match-recognize patterns are therefore stateful constructs.

8.2. Comparison of Match Recognize and EPL Patterns

This section compares pattern detection via match recognize and via the EPL pattern language.

Table 8.1. Comparison Match Recognize to EPL Patterns

Category EPL Patterns Match Recognize

Purpose Pattern detection in

sequences of events.

Same.

Standards Not standardized, similar to

Rapide pattern language.

Proposal for incorporation into

the SQL standard.

Real-time Processing Yes. Yes.

On-Demand query via Iterator No. Yes.

Language Nestable expressions

consisting of boolean AND,

OR, NOT and time or arrival-

Regular expression consisting

of variables each representing

conditions on events.

Chapter 8. EPL Reference: Mat...

304

Category EPL Patterns Match Recognize

based constructs such as ->

(followed-by), timer:within

and timer:interval.

Event Types An EPL pattern may react

to multiple different types of

events.

The input is a single type of

event (unless used with variant

streams).

Data Window Interaction Disconnected, i.e. an event

leaving a data window does

not change pattern state.

Connected, i.e. an event

leaving a data window

removes the event from match

selection.

Semantic Evaluation Truth-value based: A EPL

pattern such as (A and B)

can fire when a single event

arrives that satisfies both A

and B conditions.

Sequence-based: A regular

expression (A B) requires at

least two events to match.

Time Relationship Between

Events

The timer:within,

timer:interval and NOT

operator can expressively

search for absence of events

or other more complex timing

relationships.

Some support for detecting

absence of events using the

interval clause.

Extensibility Custom pattern objects, user-

defined functions.

User-defined functions,

custom aggregation functions.

Memory Use Likely between 500 bytes to 2k

per open sequence, depends

on pattern.

Likely between 100 bytes to 1k

per open sequence, depends

on pattern.

8.3. Syntax

The synopsis is as follows:

match_recognize (

 [partition by partition_expression [, partition_expression] [,...]]

 measures measure_expression as col_name [, measure_expression as col_name

] [,...]

 [all matches]

 [after match skip (past last row | to next row | to current row)]

 pattern (variable_regular_expr [, variable_regular_expr] [,...])

 [interval time_period [or terminated]]

 [define variable as variable_condition [, variable

 as variable_condition] [,...]]

)

Syntax Example

305

The match_recognize keyword starts the match recognize definition and occurs right after the

from clause in an EPL select statement. It is followed by parenthesis that surround the match

recognize definition.

Partition by is optional and may be used to specify that events are to be partitioned by one

or more event properties or expressions. If there is no Partition by then all rows of the table

constitute a single partition. The regular expression applies to events in the same partition and

not across partitions.

The measures clause defines columns that contain expressions over the pattern variables. The

expressions can reference partition columns, singleton variables, aggregates as well as indexed

properties on the group variables. Each measure_expression expression must be followed by the

as keyword and a col_name column name.

The all matches keywords are optional and instructs the engine to find all possible matches.

By default matches are ranked and the engine returns a single match following an algorithm to

eliminate duplicate matches, as described below. When specifying all matches, matches may

overlap and may start at the same row.

The after match skip keywords are optional and serve to determine the resumption point of

pattern matching after a match has been found. By default the behavior is after match skip

past last row. This means that after eliminating duplicate matches, the logic skips to resume

pattern matching at the next event after the last event of the current match.

The pattern component is used to specify a regular expression. The regular expression is built

from variable names, and may use quantifiers such as *, +, ?, *?, +?, ??, {repetition} and |

alteration (concatenation is indicated by the absence of any operator sign between two successive

items in a pattern).

With the optional interval keyword, time period and or terminated you can control how long

the engine should wait for further events to arrive that may be part of a matching event sequence,

before indicating a match (or matches) (not applicable to on-demand pattern matching).

Define is optional and is used to specify the boolean condition(s) that define some or all variable

names that are declared in the pattern. A variable name does not require a definition and if there

is no definition, the default is a predicate that is always true. Such a variable name can be used

to match any row.

8.3.1. Syntax Example

For illustration, the examples in this chapter use the TemperatureSensorEvent event. Each event

has 3 properties: the id property is a unique event id, the device is a sensor device number

and the temp property is a temperature reading. An event described as "id=E1, device=1,

temp=100" is a TemperatureSensorEvent event with id "E1" for device 1 with a reading of 100.

This example statement looks for two TemperatureSensorEvent events from the same device,

directly following each other, that indicate a jump in temperature of 10 or more between the two

events:

Chapter 8. EPL Reference: Mat...

306

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A.id as a_id, B.id as b_id, A.temp as a_temp, B.temp as b_temp

 pattern (A B)

 define

 B as Math.abs(B.temp - A.temp) >= 10

)

The partition by ensures that the regular expression applies to sequences of events from the

same device.

The measures clause provides a list of properties or expressions to be selected from matching

events. Each property name must be prefixed by the variable name.

In the pattern component the statement declares two variables: A and B. As a matter of

convention, variable names are uppercase characters.

The define clause specifies no condition for variable A. This means that A defaults to true and

any event matches A. Therefore, the pattern can start at any event.

The pattern A B indicates to look for a pattern in which an event that fulfills the condition for

variable A is immediately followed by an event that fulfills the condition for variable B. A pattern

thus defines the sequence (or sequences) of conditions that must be met for the pattern to fire.

Below table is an example sequence of events and output of the pattern:

Table 8.2. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=50

2000 id=E2, device=1, temp=55

3000 id=E3, device=1, temp=60

4000 id=E4, device=1, temp=70 a_id = E3, b_id = E4, a_temp = 60, b_temp = 70

5000 id=E5, device=1, temp=85

6000 id=E6, device=1, temp=85

7000 id=E7, device=2, temp=100

At time 4000 when event with id E4 (or event E4 or just E4 for short) arrives the pattern matches

and produces an output event. Matching then skips past the last event of the current match (E4)

and begins at event E5 (the default skip clause is past last row). Therefore events E4 and E5 do

not constitute a match.

At time 3000, events E1 and E3 do not constitute a match as E3 does not immediately follow E,

since there is E2 in between.

Pattern and Pattern Operators

307

At time 7000, event E7 does not constitute a match as it is from device 2 and thereby not in the

same partition as prior events.

8.4. Pattern and Pattern Operators

The pattern specifies the pattern to be recognized in the ordered sequence of events in a partition

using regular expression syntax. Each variable name in a pattern corresponds to a boolean

condition, which is specified later using the define component of the syntax. Thus the pattern

can be regarded as implicitly declaring one or more variable names; the definition of those variable

names appears later in the syntax. If a variable is not defined the variable defaults to true.

It is permitted for a variable name to occur more than once in a pattern, for example pattern

(A B A).

8.4.1. Operator Precedence

The operators at the top of this table take precedence over operators lower on the table.

Table 8.3. Match Recognize Regular Expression Operator Precedence

PrecedenceOperator Description Example

1 Grouping ()
(A B)

2 Quantifiers * + ? {repetition}
A* B+ C?

3 Concatenation (no operator)
A B

4 Alternation |
A | B

If you are not sure about the precedence, please consider placing parenthesis () around your

groups. Parenthesis can also help make expressions easier to read and understand.

8.4.2. Concatenation

The concatenation is indicated by the absence of any operator sign between two successive items

in a pattern.

In below pattern the two items A and B have no operator between them. The pattern matches

for any event immediately followed by an event from the same device that indicates a jump in

temperature over 10:

select * from TemperatureSensorEvent

Chapter 8. EPL Reference: Mat...

308

match_recognize (

 partition by device

 measures A.id as a_id, B.id as b_id, A.temp as a_temp, B.temp as b_temp

 pattern (A B)

 define

 B as Math.abs(B.temp - A.temp) >= 10

)

Please see the Section 8.3.1, “Syntax Example” for a sample event sequence.

8.4.3. Alternation

The alternation operator is a vertical bar (|).

The alternation operator has the lowest precedence of all operators. It tells the engine to match

either everything to the left of the vertical bar, or everything to the right of the vertical bar. If you

want to limit the reach of the alternation, you will need to use parentheses for grouping.

This example pattern looks for a sequence of an event with a temperature over 50 followed

immediately by either an event with a temperature less than 45 or an event that indicates the

temperature jumped by 10 (all for the same device):

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A.id as a_id, B.id as b_id, C.id as c.id

 pattern (A (B | C))

 define

 A as A.temp >= 50,

 B as B.temp <= 45,

 C as Math.abs(C.temp - A.temp) >= 10)

Below table is an example sequence of events and output of the pattern:

Table 8.4. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=50

2000 id=E2, device=1, temp=45 a_id=E1, b_id=E2, c_id=null

3000 id=E3, device=1, temp=46

4000 id=E4, device=1, temp=48

5000 id=E5, device=1, temp=50

6000 id=E6, device=1, temp=60 a_id = E5, b_id = null, c_id=E6

Quantifiers Overview

309

8.4.4. Quantifiers Overview

Quantifiers are postfix operators with the following choices:

Table 8.5. Quantifiers

Quantifier Meaning

* Zero or more matches (greedy).

+ One or more matches (greedy).

? Zero or one match (greedy).

*? Zero or more matches (reluctant).

+? One or more matches (reluctant).

?? Zero or one match (reluctant).

Quantifiers that control the number of repetitions are:

Table 8.6. Quantifiers

Quantifier Meaning

{n} Exactly n matches.

{n, } n or more matches.

{n, m} Between n and m matches (inclusive).

{ ,m} Between zero and m matches (inclusive).

Repetition quantifiers can be combined with other quantifiers and grouping. For example A?{2}

or (A B){2} are valid.

8.4.5. Permutations

To detect patterns that consist of a permutation of variables you may use

match_recognize_permute. It is possible to express a permutation as alternations but it becomes

clumsy when many variables are involved. For example, if all permutations of three variables A B

C are needed we could express it as: (A B C | A C B | B A C | B C A | C A B | C B A).

You may use match_recognize_permute followed by a comma-separated list of variables,

grouping, alternations or concatenations.

The following table outlines sample equivalent permutations.

Table 8.7. Equivalent Pattern Expressions

Pattern Equivalent

match_recognize_permute(A) A

match_recognize_permute(A,B) (A B|B A)

Chapter 8. EPL Reference: Mat...

310

Pattern Equivalent

match_recognize_permute(A,B,C) A B C|A C B|B A C|B C A|C A B|C B A

match_recognize_permute((A B), C) (A B) C|C (A B)

A match_recognize_permute(B,C) D A (B C|C B) D

match_recognize_permute(A,

match_recognize_permute(B, C))

A (B C|C B)|(B C|C B) A

This sample pattern looks for either an event with temperature less than 100 and then an event

with temperature greater or equal to 100, or an event with temperature greater or equal to 100

and then an event with temperature less than 100.

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A.id as a_id, B.id as b_id

 pattern (match_recognize_permute(A, B))

 define

 A as A.temp < 100,

 B as B.temp >= 100)

An example sequence of events that matches the pattern above is:

Table 8.8. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100 a_id = E1, b_id = E2

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=99 a_id = E4, b_id = E3

5000 id=E5, device=1, temp=98

8.4.6. Variables Can be Singleton or Group

A singleton variable is a variable in a pattern that does not have a quantifier or has a zero-or-one

quantifier (? or ??) and occurs only once in the pattern (except with alteration). In the measures

clause a singleton variable can be selected as:

variableName.propertyName

Variables with a zero-or-more or one-or-more quantifier, or variables that occur multiple places in

a pattern (except when using alteration), may match multiple events and are group variables. In

the measures clause a group variable must be selected either by providing an index or via any of

the aggregation functions, such as first, last, count and sum:

Eliminating Duplicate Matches

311

variableName[index].propertyName

last(variableName.propertyName)

Enumeration methods can also be applied to group variables. An example is provided in

Section 11.4.11, “Match-Recognize Group Variable”.

Please find examples of singleton and group variables and example measures and define clauses

below.

8.4.6.1. Additional Aggregation Functions

For group variables all existing aggregation functions can be used and in addition the following

aggregation functions may be used (measures-clause only):

Table 8.9. Syntax and results of aggregate functions

Aggregate Function Result

first([all|distinct] expression) Returns the first value.

last([all|distinct] expression) Returns the last value.

8.4.7. Eliminating Duplicate Matches

The execution of match recognize is continuous and real-time by default. This means that every

arriving event, or batch of events if using batching, evaluates against the pattern and matches

are immediately indicated. Elimination of duplicate matches occurs between all matches of the

arriving events (or batch of events) at a given time.

As an alternative, and if your application does not require continuous pattern evaluation, you may

use the iterator API to perform on-demand matching of the pattern. For the purpose of indicating

to the engine to not generate continuous results, specify the @Hint('iterate_only') hint.

When using one-or-more, zero-or-more or zero-or-one quantifiers (?, +, *, ??, +?, *?), the

output of the real-time continuous query can differ from the output of the on-demand iterator

execution: The continuous query will output a match (or multiple matches) as soon as matches are

detected at a given time upon arrival of events (not knowing what further events may arrive). The

on-demand execution, since it knows all possible events in advance, can determine the longest

match(es). Thus elimination of duplicate matches can lead to different results between real-time

and on-demand use.

If the all matches keywords are specified, then all matches are returned as the result and no

elimination of duplicate matches as below occurs.

Otherwise matches to a pattern in a partition are ordered by preferment. Preferment is given to

matches based on the following priorities:

1. A match that begins at an earlier row is preferred over a match that begins at a later row.

Chapter 8. EPL Reference: Mat...

312

2. Of two matches matching a greedy quantifier, the longer match is preferred.

3. Of two matches matching a reluctant quantifier, the shorter match is preferred.

After ranking matches by preferment, matches are chosen as follows:

1. The first match by preferment is taken.

2. The pool of matches is reduced as follows based on the SKIP TO clause: If SKIP PAST LAST

ROW is specified, all matches that overlap the first match are discarded from the pool. If SKIP

TO NEXT ROW is specified, then all matches that overlap the first row of the first match are

discarded. If SKIP TO CURRENT ROW is specified, then no matches are discarded.

3. The first match by preferment of the ones remaining is taken.

4. Step 2 is repeated to remove more matches from the pool.

5. Steps 3 and 4 are repeated until there are no remaining matches in the pool.

8.4.8. Greedy Or Reluctant

Reluctant quantifiers are indicated by an additional question mark (*?, +?, ??,). Reluctant

quantifiers try to match as few rows as possible, whereas non-reluctant quantifiers are greedy and

try to match as many rows as possible.

Greedy and reluctant come into play only for match selection among multiple possible matches.

When specifying all matches there is no difference between greedy and reluctant quantifiers.

Consider the below example. The conditions may overlap: an event with a temperature reading

of 105 and over matches both A and B conditions:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A.id as a_id, B.id as b_id

 pattern (A?? B?)

 define

 A as A.temp >= 100

 B as B.temp >= 105)

A sample sequence of events and pattern matches:

Table 8.10. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=2, temp=106 a_id=null, b_id=E2

3000 id=E3, device=1, temp=100 a_id=E3, b_id=null

Quantifier - One Or More (+ and +?)

313

As the ? qualifier on condition B is greedy, event E2 matches the pattern and is indicated as a B

event by the measure clause (and not as an A event therefore a_id is null).

8.4.9. Quantifier - One Or More (+ and +?)

The one-or-more quantifier (+) must be matched one or more times by events. The operator is

greedy and the reluctant version is +?.

In the below example with pattern (A+ B+) the pattern consists of two variable names, A and

B, each of which is quantified with +, indicating that they must be matched one or more times.

The pattern looks for one or more events in which the temperature is over 100 followed by one

or more events indicating a higher temperature:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures first(A.id) as first_a, last(A.id) as last_a, B[0].id as b0_id,

 B[1].id as b1_id

 pattern (A+ B+)

 define

 A as A.temp >= 100,

 B as B.temp > A.temp)

An example sequence of events that matches the pattern above is:

Table 8.11. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=101 first_a = E2, last_a = E3, b0_id = E4, b1_id =

null

5000 id=E5, device=1, temp=102

Note that for continuous queries, there is no match that includes event E5 since after the pattern

matches for E4 the pattern skips to start fresh at E5 (by default skip clause). When performing on-

demand matching via iterator, event E5 gets included in the match and the output is first_a

= E2, last_a = E3, b0_id = E4, b1_id = E5.

8.4.10. Quantifier - Zero Or More (* and *?)

The zero-or-more quantifier (*) must be matched zero or more times by events. The operator is

greedy and the reluctant version is *?.

Chapter 8. EPL Reference: Mat...

314

The pattern looks for a sequence of events in which the temperature starts out below 50 and then

stays between 50 and 60 and finally comes over 60:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A.id as a_id, count(B.id) as count_b, C.id as c_id

 pattern (A B* C)

 define

 A as A.temp < 50,

 B as B.temp between 50 and 60,

 C as C.temp > 60)

An example sequence of events that matches the pattern above is:

Table 8.12. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=55

2000 id=E2, device=1, temp=52

3000 id=E3, device=1, temp=49

4000 id=E4, device=1, temp=51

5000 id=E5, device=1, temp=55

6000 id=E5, device=1, temp=61 a_id=E3, count_b=2, c_id=E6

8.4.11. Quantifier - Zero Or One (? and ??)

The zero-or-one quantifier (?) must be matched zero or one time by events. The operator is greedy

and the reluctant version is ??.

The pattern looks for a sequence of events in which the temperature is below 50 and then dips to

over 50 and then to under 50 before indicating a value over 55:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A.id as a_id, B.id as b_id, C.id as c_id, D.id as d_id

 pattern (A B? C? D)

 define

 A as A.temp < 50,

 B as B.temp > 50,

 C as C.temp < 50,

 D as D.temp > 55)

Repetition - Exactly N Matches

315

An example sequence of events that matches the pattern above is:

Table 8.13. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=44

2000 id=E2, device=1, temp=49

3000 id=E3, device=1, temp=51

4000 id=E4, device=1, temp=49

5000 id=E5, device=1, temp=56 a_id=E2, b_id=E3, c_id=E4, d_id=E5

6000 id=E5, device=1, temp=61

8.4.12. Repetition - Exactly N Matches

The exactly-n quantifier ({n}) must be matched exactly N times. The repetition quantifier can be

combined with other non-repetition quantifiers and can be used with grouping.

In the below example the pattern (A{2}) consists of one variable names, A, quantified with {2},

indicating that the condition must match exactly two times.

This sample pattern looks for two events in which the temperature is over 100:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A[0].id as a0_id, A[1].id as a1_id

 pattern (A{2})

 define

 A as A.temp >= 100)

An example sequence of events that matches the pattern above is:

Table 8.14. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100 a0_id = E2, a1_id = E3

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=102 a0_id = E4, a1_id = E5

The next sample applies the quantifier to a group. This sample pattern looks for a four events in

which the temperature is, in sequence, 100, 101, 100 and 101:

Chapter 8. EPL Reference: Mat...

316

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A[0].id as a0_id, A[1].id as a1_id

 pattern (A B){2}

 define

 A as A.temp = 100,

 B as B.temp = 101)

8.4.13. Repetition - N Or More Matches

The quantifier {n, } must be matched N or more times. The repetition quantifier can be combined

with other non-repetition quantifiers and can be used with grouping.

In the below example the pattern (A{2,} B) consists of two variable names, A and B. The

condition A must match two or more times and the B condition must match once.

This sample pattern looks for two or more events in which the temperature is over 100 and

thereafter an event with a temperature over 102:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A[0].id as a0_id, A[1].id as a1_id, A[2].id as a2_id, B.id as b_id

 pattern (A{2,} B)

 define

 A as A.temp >= 100,

 B as B.temp >= 102)

An example sequence of events that matches the pattern above is:

Table 8.15. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=102 a0_id = E2, a1_id = E3, a2_id = E4, b_id = E5

8.4.14. Repetition - Between N and M Matches

The quantifier {n, m} must be matched between N and M times. The repetition quantifier can be

combined with other non-repetition quantifiers and can be used with grouping.

Repetition - Between Zero and M Matches

317

In the below example the pattern (A{2,3} B) consists of two variable names, A and B. The

condition A must match two or three times and the B condition must match once.

This sample pattern looks for two or three events in which the temperature is over 100 and

thereafter an event with a temperature over 102:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A[0].id as a0_id, A[1].id as a1_id, A[2].id as a2_id, B.id as b_id

 pattern (A{2,3} B)

 define

 A as A.temp >= 100,

 B as B.temp >= 102)

An example sequence of events that matches the pattern above is:

Table 8.16. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=102 a0_id = E2, a1_id = E3, a2_id = E4, b_id = E5

8.4.15. Repetition - Between Zero and M Matches

The quantifier {, m} must be matched between zero and M times. The repetition quantifier can

be combined with other non-repetition quantifiers and can be used with grouping.

In the below example the pattern (A{, 2} B) consists of two variable names, A and B. The

condition A must match zero, once or twice and the B condition must match once.

This sample pattern looks for between zero and two events in which the temperature is over 100

and thereafter an event with a temperature over 102:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A[0].id as a0_id, A[1].id as a1_id, B.id as b_id

 pattern (A{,2} B)

 define

 A as A.temp >= 100,

Chapter 8. EPL Reference: Mat...

318

 B as B.temp >= 102)

An example sequence of events that matches the pattern above is:

Table 8.17. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=99

2000 id=E2, device=1, temp=100

3000 id=E3, device=1, temp=100

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=102 a0_id = E3, a1_id = E4, b_id = E5

8.4.16. Repetition Equivalence

The following table outlines sample equivalent patterns.

Table 8.18. Equivalent Pattern Expressions

Expression Equivalent

Atom Examples

A{2} A A

A{2, } A A A*

A{2, 4} A A A? A?

A{, 2} A? A?

Group Examples

(A B){2} (A B) (A B)

(A B){2, } (A B) (A B) (A B)*

(A B){2, 4} (A B) (A B) (A B)? (A B)?

(A B){, 2} (A B)? (A B)?

Quantifier Examples

A+{2, } A+ A+ A*

A?{2, } A? A? A*

A+{2, 4} A+ A+ A* A*

A+{, 2} A* A*

8.5. Define Clause

Within define are listed the boolean conditions that defines a variable name that is declared in

the pattern.

The Prev Operator

319

A variable name does not require a definition and if there is no definition, the default is a predicate

that is always true. Such a variable name can be used to match any row.

The definitions of variable names may reference the same or other variable names as prior

examples have shown.

If a variable in your condition expression is a singleton variable, then only individual columns may

be referenced. If the variable is not matched by an event, a null value is returned.

If a variable in your condition expression is a group variable, then only indexed columns may be

referenced. If the variable is not matched by an event, a null value is returned.

Aggregation functions are not allowed within expressions of the define clause. However define-

clause expressions can utilize enumeration methods.

8.5.1. The Prev Operator

The prev function may be used in a define expression to access columns of the previous row of

a variable name. If there is no previous row, the null value is returned.

The prev function can accept an optional non-negative integer argument indicating the offset to

the previous rows. That argument must be a constant. In this case, the engine returns the property

from the N-th row preceding the current row, and if the row doesn’t exist, it returns null.

This function can access variables currently defined, for example:

Y as Y.price < prev(Y.price, 2)

It is not legal to use prev with another variable then the one being defined:

// not allowed

Y as Y.price < prev(X.price, 2)

The prev function returns properties of events in the same partition. Also, it returns properties of

events according to event order-of-arrival. When using data windows or deleting events from a

named window, the remove stream does not remove events from the prev function.

The pattern looks for an event in which the temperature is greater or equal 100 and that, relative to

that event, has an event preceding it by 2 events that also had a temperature greater or equal 100:

select * from TemperatureSensorEvent

match_recognize (

 partition by device

 measures A.id as a_id

 pattern (A)

Chapter 8. EPL Reference: Mat...

320

 define

 A as A.temp > 100 and prev(A.temp, 2) > 100)

An example sequence of events that matches the pattern above is:

Table 8.19. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=98

2000 id=E2, device=1, temp=101

3000 id=E3, device=1, temp=101

4000 id=E4, device=1, temp=99

5000 id=E5, device=1, temp=101 a_id=E5

8.6. Measure Clause

The measures clause defines exported columns that contain expressions over the pattern

variables. The expressions can reference partition columns, singleton variables and any

aggregation functions including last and first on the group variables.

Expressions in the measures clause must use the as keyword to assign a column name.

If a variable is a singleton variable then only individual columns may be referenced, not

aggregates. If the variable is not matched by an event, a null value is returned.

If a variable is a group variable and used in an aggregate, then the aggregate is performed over

all rows that have matched the variable. If a group variable is not in an aggregate function, its

variable name must be post-fixed with an index. See Section 8.4.6, “Variables Can be Singleton

or Group” for more information.

8.7. Datawindow-Bound

When using match recognize with a named window or stream bound by a data window, all

events removed from the named window or data window also removed the match-in-progress that

includes the event(s) removed.

The next example looks for four sensor events from the same device immediately following each

other and indicating a rising temperature, but only events that arrived in the last 10 seconds are

considered:

select * from TemperatureSensorEvent#time(10 sec)

match_recognize (

partition by device

measures A.id as a_id

Interval

321

pattern (A B C D)

define

B as B.temp > A.temp,

C as C.temp > B.temp,

D as D.temp > C.temp)

An example sequence of events that matches the pattern above is:

Table 8.20. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=80

2000 id=E2, device=1, temp=81

3000 id=E3, device=1, temp=82

4000 id=E4, device=1, temp=81

7000 id=E5, device=1, temp=82

9000 id=E6, device=1, temp=83

13000 id=E7, device=1, temp=84 a_id=E4, a_id=E5, a_id=E6, a_id=E7

15000 id=E8, device=1, temp=84

20000 id=E9, device=1, temp=85

21000 id=E10, device=1, temp=86

26000 id=E11, device=1, temp=87

Note that E8, E9, E10 and E11 doe not constitute a match since E8 leaves the data window at

25000.

8.8. Interval

With the optional interval keyword and time period you can control how long the engine should

wait for further events to arrive that may be part of a matching event sequence, before indicating

a match (or matches). This is not applicable to on-demand pattern matching.

The interval timer starts are the arrival of the first event matching a sequence for a partition. When

the time interval passes and an event sequence matches, duplicate matches are eliminated and

output occurs.

The next example looks for sensor events indicating a temperature of over 100 waiting for any

number of additional events with a temperature of over 100 for 5 seconds before indicating a

match:

select * from TemperatureSensorEvent

match_recognize (

Chapter 8. EPL Reference: Mat...

322

partition by device

measures A.id as a_id, count(B.id) as count_b, first(B.id) as first_b, last(B.id)

 as last_b

pattern (A B*)

interval 5 seconds

define

 A as A.temp > 100,

 B as B.temp > 100)

An example sequence of events that matches the pattern above is:

Table 8.21. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=98

2000 id=E2, device=1, temp=101

3000 id=E3, device=1, temp=102

4000 id=E4, device=1, temp=104

5000 id=E5, device=1, temp=104

7000 a_id=E2, count_b=3, first_b=E3, last_b=E5

Notice that the engine waits 5 seconds (5000 milliseconds) after the arrival time of the first event

E2 of the match at 2000, to indicate the match at 7000.

8.9. Interval-Or-Terminated

The interval keyword and time period can be followed by or terminated keywords. When or-

terminated is specified, the engine detects when a pattern state cannot match further and outputs

matching event sequences collected so far that are otherwise only output at the end of the interval.

This is not applicable to on-demand pattern matching.

Same as for interval alone, the interval timer starts are the arrival of the first event matching

a sequence for a partition. Event arrival can terminate the interval and lead to immediate output

as follows:

• When an event arrives in the sequence that causes pattern state to terminate because no further

match is possible, the event sequence matches, duplicate matches are eliminated and output

occurs immediately (and not at the end of the interval), for the affected event sequence(s).

• Otherwise, when the time interval passes and an event sequence matches, duplicate matches

are eliminated and output occurs.

The next example looks for sensor events indicating a temperature of over 100, waiting for any

number of additional events with a temperature of over 100 for 5 seconds or when the temperature

falls to equal or below 100, whichever happens first:

Use with Different Event Types

323

select * from TemperatureSensorEvent

match_recognize (

partition by device

measures A.id as a_id, count(B.id) as count_b, first(B.id) as first_b, last(B.id)

 as last_b

pattern (A B*)

interval 5 seconds or terminated

define

 A as A.temp > 100,

 B as B.temp > 100)

An example sequence of events that matches the pattern above is:

Table 8.22. Example

Arrival Time Tuple Output Event (if any)

1000 id=E1, device=1, temp=98

2000 id=E2, device=1, temp=101

3000 id=E3, device=1, temp=102

4000 id=E4, device=1, temp=101

5000 id=E5, device=1, temp=100 a_id=E2, count_b=2, first_b=E3, last_b=E4

7000 (no further output)

Note

Interval and Interval with or terminated make most sense for open-ended

patterns such as, for example, pattern (A B*) or pattern (A B C+).

For patterns that terminate when a given event arrives, for example, pattern (A

B), an Interval in combination with or terminated should not be specified and

if specified have no effect on matching.

8.10. Use with Different Event Types

You may match different types of events using match-recognize by following any of these

strategies:

1. Declare a variant stream.

2. Declare a supertype for your event types in the create schema syntax.

3. Have you event classes implement a common interface or extend a common base class.

A short example that demonstrates variant streams and match-recognize is listed below:

Chapter 8. EPL Reference: Mat...

324

// Declare one sample type

create schema S0 as (col string)

// Declare second sample type

create schema S1 as (col string)

// Declare variant stream holding either type

create variant schema MyVariantStream as S0, S1

// Populate variant stream

insert into MyVariantStream select * from S0

// Populate variant stream

insert into MyVariantStream select * from S1

// Simple pattern to match S0 S1 pairs

select * from MyVariantType#time(1 min)

match_recognize (

 measures A.id? as a, B.id? as b

 pattern (A B)

 define

 A as typeof(A) = 'S0',

 B as typeof(B) = 'S1'

)

8.11. Limiting Engine-wide State Count

Esper allows setting a maximum number of states in the configuration, applicable to all match-

recognize constructs of all statements.

If your application uses match-recognize in multiple EPL statements and all such match-recognize

constructs should count towards a total number of states counts, you may consider setting a

maximum number of states, engine-wide, via the configuration described in Section 17.4.18.1,

“Maximum State Count”.

When the limit is reached the match-recognize engine issues a notification object to any

condition handlers registered with the engine as described in Section 16.11, “Condition Handling”.

Depending on your configuration the engine can prevent the allocation of a new state instance,

Limitations

325

until states are discarded or statements are stopped or destroyed or context partitions are

terminated.

The notification object issued to condition handlers is an instance of

com.espertech.esper.client.hook.ConditionMatchRecognizeStatesMax. The notification

object contains information which statement triggered the limit and the state counts per statement

for all statements.

For information on static and runtime configuration, please consult Section 17.4.18.1, “Maximum

State Count”. The limit can be changed and disabled or enabled at runtime via the runtime

configuration API.

8.12. Limitations

Please note the following limitations:

1. Subqueries are not allowed in expressions within match_recognize.

2. Joins and outer joins are not allowed in the same statement as match_recognize.

3. match_recognize may not be used within on-select or on-insert statements.

4. When using match_recognize on unbound streams (no data window provided) the iterator

pull API returns no rows.

326

Chapter 9.

327

Chapter 9. EPL Reference:

Operators
Esper arithmetic and logical operator precedence follows Java standard arithmetic and logical

operator precedence.

9.1. Arithmetic Operators

The below table outlines the arithmetic operators available.

Table 9.1. Syntax and results of arithmetic operators

Operator Description

+, - As unary operators they denote a

positive or negative expression. As

binary operators they add or subtract.

*, / Multiplication and division are binary

operators.

% Modulo binary operator.

9.2. Logical And Comparison Operators

The below table outlines the logical and comparison operators available.

Table 9.2. Syntax and results of logical and comparison operators

Operator Description

NOT Returns true if the following condition is

false, returns false if it is true.

OR Returns true if either component

condition is true, returns false if both are

false.

AND Returns true if both component

conditions are true, returns false if either

is false.

=, !=, <, > <=, >=, is, is not Comparison.

9.2.1. Null-Value Comparison Operators

The null value is a special value, see http://en.wikipedia.org/wiki/Null_(SQL) [http://

en.wikipedia.org/wiki/Null_%28SQL%29] (source:Wikipedia) for more information.

Thereby the following expressions all return null:

http://en.wikipedia.org/wiki/Null_%28SQL%29
http://en.wikipedia.org/wiki/Null_%28SQL%29
http://en.wikipedia.org/wiki/Null_%28SQL%29

Chapter 9. EPL Reference: Ope...

328

2 != null

null = null

2 != null or 1 = 2

2 != null and 2 = 2

Use the is and is not operators for comparing values that can be null.

The following expressions all return true:

2 is not null

null is not 2

null is null

2 is 2

The engine allows is and is not with any expression, not only in connection with the null

constant.

9.3. Concatenation Operators

The below table outlines the concatenation operators available.

Table 9.3. Syntax and results of concatenation operators

Operator Description

|| Concatenates character strings

9.4. Binary Operators

Array Definition Operator

329

The below table outlines the binary operators available.

Table 9.4. Syntax and results of binary operators

Operator Description

& Bitwise AND if both operands are

numbers; conditional AND if both

operands are boolean.

| Bitwise OR if both operands are

numbers; conditional OR if both

operands are boolean.

^ Bitwise exclusive OR (XOR).

9.5. Array Definition Operator

The { and } curly braces are array definition operators following the Java array initialization syntax.

Arrays can be useful to pass to user-defined functions or to select array data in a select clause.

Array definitions consist of zero or more expressions within curly braces. Any type of expression

is allowed within array definitions including constants, arithmetic expressions or event properties.

This is the syntax of an array definition:

{ [expression [,expression...]] }

Consider the next statement that returns an event property named actions. The engine populates

the actions property as an array of java.lang.String values with a length of 2 elements. The

first element of the array contains the observation property value and the second element the

command property value of RFIDEvent events.

select {observation, command} as actions from RFIDEvent

The engine determines the array type based on the types returned by the expressions in the array

definiton. For example, if all expressions in the array definition return integer values then the type

of the array is java.lang.Integer[]. If the types returned by all expressions are compatible

number types, such as integer and double values, the engine coerces the array element values

and returns a suitable type, java.lang.Double[] in this example. The type of the array returned

is Object[] if the types of expressions cannot be coerced or return object values. Null values can

also be used in an array definition.

Arrays can come in handy for use as parameters to user-defined functions:

select * from RFIDEvent where Filter.myFilter(zone, {1,2,3})

Chapter 9. EPL Reference: Ope...

330

9.6. Dot Operator

You can use the dot operator to invoke a method on the result of an expression. The dot operator

uses the dot (.) or period character.

The dot-operator is relevant with enumeration methods: Enumeration methods perform tasks

such as transformation, filtering, aggregation, sequence-matching, sorting and others on subquery

results, named windows, tables, event properties or inputs that are or can be projected to a

collection of events, scalar values or objects. See Chapter 11, EPL Reference: Enumeration

Methods

Further the dot-operator is relevant to date-time methods. Date-time methods work on date-time

values to add or subtract time periods, set or round calendar fields or query fields, among other

tasks. See Chapter 12, EPL Reference: Date-Time Methods.

The dot-operator is also relevant to spatial methods and the use of spatial indexes. See

Chapter 13, EPL Reference: Spatial Methods and Indexes.

This section only describes the dot-operator in relation to property instance methods, the special

get and size indexed-property methods and duck typing.

The synopsis for the dot operator is as follows

expression.method([parameter [,...]])[.method(...)][...]

The expression to evaluate by the dot operator is in parenthesis. After the dot character follows

the method name and method parameters in parenthesis.

You may use the dot operator when your expression returns an object that you want to invoke

a method on. The dot operator allows duck typing and convenient array and collection access

methods.

This example statement invokes the getZones method of the RFID event class by referring to the

stream name assigned in the from-clause:

select rfid.getZones() from RFIDEvent as rfid

The size() method can be used to return the array length or collection size. Use the get method

to return the value at a given index for an array or collection.

The next statement selects array size and returns the last array element:

select arrayproperty.size() as arraySize,

 arrayproperty.get((arrayproperty).size - 1) as lastInArray

 from ProductEvent

Duck Typing

331

9.6.1. Duck Typing

Duck typing is when the engine checks at runtime for the existence of a method regardless of

object class inheritance hierarchies. This can be useful, for example, when a dynamic property

returns an object which may or may not provide a method to return the desired value.

Duck typing is disabled in the default configuration to consistently enforce strong typing. Please

enable duck typing via engine expression settings as described in Section 17.4.25, “Engine

Settings related to Expression Evaluation”.

The statement below selects a dynamic property by name productDesc and invokes the

getCounter() method if that method exists on the property value, or returns the null value if the

method does not exist for the dynamic property value of if the dynamic property value itself is null:

select (productDesc?).getCounter() as arraySize from ProductEvent

9.7. The 'in' Keyword

The in keyword determines if a given value matches any value in a list. The syntax of the keyword

is:

test_expression [not] in (expression [,expression...])

The test_expression is any valid expression. The keyword is followed by a list of expressions to

test for a match. The optional not keyword specifies that the result of the predicate be negated.

The result of an in expression is of type Boolean. If the value of test_expression is equal to any

expression from the comma-separated list, the result value is true. Otherwise, the result value

is false.

The next example shows how the in keyword can be applied to select certain command types

of RFID events:

select * from RFIDEvent where command in ('OBSERVATION', 'SIGNAL')

The statement is equivalent to:

select * from RFIDEvent where command = 'OBSERVATION' or command = 'SIGNAL'

Expression may also return an array, a java.util.Collection or a java.util.Map. Thus event

properties that are lists, sets or maps may provide values to compare against test_expression.

Chapter 9. EPL Reference: Ope...

332

All expressions must be of the same type or a compatible type to test_expression. The in

keyword may coerce number values to compatible types. If expression returns an array, then

the component type of the array must be compatible, unless the component type of the array is

Object.

If expression returns an array of component type Object, the operation compares each element

of the array, applying equals semantics.

If expression returns a Collection, the operation determines if the collection contains the value

returned by test_expression, applying contains semantics.

If expression returns a Map, the operation determines if the map contains the key value returned

by test_expression, applying containsKey semantics.

Constants, arrays, Collection and Map expressions or event properties can be used combined.

For example, and assuming a property named 'mySpecialCmdList' exists that contains a list of

command strings:

select * from RFIDEvent where command in ('OBSERVATION', 'SIGNAL',

 mySpecialCmdList)

When using prepared statements and substitution parameters with the in keyword, make sure to

retain the parenthesis. Substitution values may also be arrays, Collection and Map values:

test_expression [not] in (? [,?...])

Note that if there are no successes and at least one right-hand row yields null for the operator's

result, the result of the any construct will be null, not false. This is in accordance with SQL's normal

rules for Boolean combinations of null values.

9.7.1. 'in' for Range Selection

The in keyword can be used to specify ranges, including open, half-closed, half-open and inverted

ranges.

Ranges come in the following 4 varieties. The round () or square [] bracket indicate whether

an endpoint is included or excluded. The low point and the high-point of the range are separated

by the colon : character.

• Open ranges that contain neither endpoint (low:high)

• Closed ranges that contain both endpoints [low:high]. The equivalent 'between' keyword also

defines a closed range.

• Half-open ranges that contain the low endpoint but not the high endpoint [low:high)

• Half-closed ranges that contain the high endpoint but not the low endpoint (low:high]

The 'between' Keyword

333

The following statement two statements are equivalent: Both statements select orders where the

price is in the range of zero and 10000 (endpoints inclusive):

select * from OrderEvent where price in [0:10000]

select * from OrderEvent where price between 0 and 10000

The next statement selects order events where the price is greater then 100 and less-or-equal

to 2000:

select * from OrderEvent where price in (100:2000]

Use the not in keywords to specify an inverted range.

The following statement selects an inverted range by selecting all order events where the price is

less then zero or the price is greater or equal to 10000:

select * from OrderEvent where price not in (0:10000]

In case the value of low endpoint is less then the value of high endpoint the in operator reverses

the range.

The following two statements are also equivalent:

select * from OrderEvent where price in [10000:0]

select * from OrderEvent where price >= 0 and price <= 1000

9.8. The 'between' Keyword

The between keyword specifies a range to test. The syntax of the keyword is:

test_expression [not] between begin_expression and end_expression

The test_expression is any valid expression and is the expression to test for in the range defined by

begin_expression and end_expression. The not keyword specifies that the result of the predicate

be negated.

Chapter 9. EPL Reference: Ope...

334

The result of a between expression is of type Boolean. If the value of test_expression is

greater then or equal to the value of begin_expression and less than or equal to the value of

end_expression, the result is true.

The next example shows how the between keyword can be used to select events with a price

between 55 and 60 (endpoints inclusive).

select * from StockTickEvent where price between 55 and 60

The equivalent expression without between is:

select * from StockTickEvent where price >= 55 and price <= 60

And also equivalent to:

select * from StockTickEvent where price between 60 and 55

While the between keyword always includes the endpoints of the range, the in operator allows

finer control of endpoint inclusion.

In case the value of begin_expression is less then the value of end_expression the between

operator reverses the range.

The following two statements are also equivalent:

select * from StockTickEvent where price between 60 and 55

select * from StockTickEvent where price >= 55 and price <= 60

9.9. The 'like' Keyword

The like keyword provides standard SQL pattern matching. SQL pattern matching allows you

to use '_' to match any single character and '%' to match an arbitrary number of characters

(including zero characters). In Esper, SQL patterns are case-sensitive by default. The syntax of

like is:

test_expression [not] like pattern_expression [escape string_literal]

The 'regexp' Keyword

335

The test_expression is any valid expression yielding a String-type or a numeric result. The optional

not keyword specifies that the result of the predicate be negated. The like keyword is followed

by any valid standard SQL pattern_expression yielding a String-typed result. The optional escape

keyword signals the escape character to escape '_' and '%' values in the pattern. The default

escape character is backslash (\).

The result of a like expression is of type Boolean. If the value of test_expression matches the

pattern_expression, the result value is true. Otherwise, the result value is false.

An example for the like keyword is below.

select * from PersonLocationEvent where name like '%Jack%'

The escape character can be defined as follows. In this example the where-clause matches events

where the suffix property is a single '_' character.

select * from PersonLocationEvent where suffix like '!_' escape '!'

9.10. The 'regexp' Keyword

The regexp keyword is a form of pattern matching based on regular expressions implemented

through the Java java.util.regex package. The syntax of regexp is:

test_expression [not] regexp pattern_expression

The test_expression is any valid expression yielding a String-type or a numeric result. The optional

not keyword specifies that the result of the predicate be negated. The regexp keyword is followed

by any valid regular expression pattern_expression yielding a String-typed result.

The result of a regexp expression is of type Boolean. If the value of test_expression matches

the regular expression pattern_expression, the result value is true. Otherwise, the result value

is false.

An example for the regexp keyword is below.

select * from PersonLocationEvent where name regexp '.*Jack.*'

The rexexp function matches the entire region against the pattern via

java.util.regex.Matcher.matches() method. Please consult the Java API documentation for

more information or refer to Regular Expression Flavors [http://www.regular-expressions.info/

refflavors.html].

http://www.regular-expressions.info/refflavors.html
http://www.regular-expressions.info/refflavors.html
http://www.regular-expressions.info/refflavors.html

Chapter 9. EPL Reference: Ope...

336

9.11. The 'any' and 'some' Keywords

The any operator is true if the expression returns true for one or more of the values returned by

a list of expressions including array, Collection and Map values.

The synopsis for the any keyword is as follows:

expression operator any (expression [,expression...])

The left-hand expression is evaluated and compared to each expression result using the given

operator, which must yield a Boolean result. The result of any is "true" if any true result is obtained.

The result is "false" if no true result is found (including the special case where the expressions

are collections that return no rows).

The operator can be any of the following values: =, !=, <>, <, <=, >, >=.

The some keyword is a synonym for any. The in construct is equivalent to = any.

Expression may also return an array, a java.util.Collection or a java.util.Map. Thus event

properties that are lists, sets or maps may provide values to compare against.

All expressions must be of the same type or a compatible type. The any keyword coerces number

values to compatible types. If expression returns an array, then the component type of the array

must be compatible, unless the component type of the array is Object.

If expression returns an array, the operation compares each element of the array.

If expression returns a Collection, the operation determines if the collection contains the value

returned by the left-hand expression, applying contains semantics. When using relationship

operators <, <=, >, >= the operator applies to each element in the collection, and non-numeric

elements are ignored.

If expression returns a Map, the operation determines if the map contains the key value returned by

the left-hand expression, applying containsKey semantics. When using relationship operators <,

<=, >, >= the operator applies to each key in the map, and non-numeric map keys are ignored.

Constants, arrays, Collection and Map expressions or event properties can be used combined.

The next statement demonstrates the use of the any operator:

select * from ProductOrder where category != any (categoryArray)

The above query selects ProductOrder event that have a category field and a category array, and

returns only those events in which the category value is not in the array.

Note that if there are no successes and at least one right-hand row yields null for the operator's

result, the result of the any construct will be null, not false. This is in accordance with SQL's normal

rules for Boolean combinations of null values.

The 'all' Keyword

337

9.12. The 'all' Keyword

The all operator is true if the expression returns true for all of the values returned by a list of

expressions including array, Collection and Map values.

The synopsis for the all keyword is as follows:

expression operator all (expression [,expression...])

The left-hand expression is evaluated and compared to each expression result using the given

operator, which must yield a Boolean result. The result of all is "true" if all rows yield true (including

the special case where the expressions are collections that returns no rows). The result is "false"

if any false result is found. The result is null if the comparison does not return false for any row,

and it returns null for at least one row.

The operator can be any of the following values: =, !=, <>, <, <=, >, >=.

The not in construct is equivalent to != all.

Expression may also return an array, a java.util.Collection or a java.util.Map. Thus event

properties that are lists, sets or maps may provide values to compare against.

All expressions must be of the same type or a compatible type. The all keyword coerces number

values to compatible types. If expression returns an array, then the component type of the array

must be compatible, unless the component type of the array is Object.

If expression returns an array, the operation compares each element of the array.

If expression returns a Collection, the operation determines if the collection contains the value

returned by the left-hand expression, applying contains semantics. When using relationship

operators <, <=, >, >= the operator applies to each element in the collection, and non-numeric

elements are ignored.

If expression returns a Map, the operation determines if the map contains the key value returned by

the left-hand expression, applying containsKey semantics. When using relationship operators <,

<=, >, >= the operator applies to each key in the map, and non-numeric map keys are ignored.

Constants, arrays, Collection and Map expressions or event properties can be used combined.

The next statement demonstrates the use of the all operator:

select * from ProductOrder where category = all (categoryArray)

The above query selects ProductOrder event that have a category field and a category array, and

returns only those events in which the category value matches all values in the array.

9.13. The 'new' Keyword

Chapter 9. EPL Reference: Ope...

338

The new has two uses:

1. Populate a new data structure by evaluating column names and assignment expressions.

2. Instantiate an object of a given class by its constructor.

9.13.1. Using 'new' To Populate A Data Structure

The new data structure operator populates a new data structure by evaluating column names and

assignment expressions. This is useful when an expression should return multiple results, for

performing a transformation or inside enumeration method lambda expressions.

The synopsis is as follows:

new { column_name = [assignment_expression] [,column_name...] }

The result of the new-operator is a map data structure that contains column_name keys and

values. If an assignment expression is provided for a column, the operator evaluates the

expression and assigns the result to the column name. If no assignment expression is provided,

the column name is assumed to be an event property name and the value is the event property

value.

The next statement demonstrates the use of the new operator:

select new {category, price = 2*price} as priceInfo from ProductOrder

The above query returns a single property priceInfo for each arriving ProductOrder event. The

property value is itself a map that contains two entries: For the key name category the value of

the category property and for the key name price the value of the price property multiplied by two.

The next EPL is an example of the new operator within an expression definition and a case-

statement (one EPL statement not multiple):

expression calcPrice {

 productOrder => case

 when category = 'fish' then new { sterialize = 'XRAY', priceFactor = 1.01 }

 when category = 'meat' then new { sterialize = 'UVL', priceFactor = 1 }

 end

}

select calcPrice(po) as priceDetail from ProductOrder po

In above example the expression calcPrice returns both a sterialize string value and a

priceFactor double value. The expression is evaluated as part of the select-clause and the

map-type result placed in the priceDetail property of output events.

Using 'new' To Instantiate An Object

339

When used within the case operator, the operator validates that the data structure is compatible

between each case-when result in terms of column names and types. The default value for else

in case is null.

9.13.2. Using 'new' To Instantiate An Object

The new instantiation operator can instantiate an object of the given class.

The synopsis is as follows:

new class-name([parameter [, parameter [,...]]])

The class-name is the name of the class to instantiate an object for. The classname can either be

fully-qualified or you can add the package or classname to the engine imports.

After the classname follow parenthesis and any number of parameter expressions. The engine

expects that the class declares a public constructor matching the number and return types of

parameter expressions.

Assuming that OrderHolder is an imported class, the next statement demonstrates the use of

the new operator:

select new OrderHolder(po) as orderHolder from ProductOrder as po

340

Chapter 10.

341

Chapter 10. EPL Reference:

Functions
10.1. Single-row Function Reference

Single-row functions return a single value for every single result row generated by your statement.

These functions can appear anywhere where expressions are allowed.

Esper allows static Java library methods as single-row functions, and also features built-in single-

row functions. In addition, Esper allows instance method invocations on named streams.

You may also register your own single-row function name with the engine so that your EPL

statements become less cluttered. This is described in detail in Section 19.3, “Single-Row

Function”. Single-row functions that return an object can be chained.

Esper auto-imports the following Java library packages:

• java.lang.*

• java.math.*

• java.text.*

• java.util.*

Thus Java static library methods can be used in all expressions as shown in below example:

select symbol, Math.round(volume/1000)

from StockTickEvent#time(30 sec)

In general, arbitrary Java class names have to be fully qualified (e.g. java.lang.Math) but Esper

provides a mechanism for user-controlled imports of classes and packages as outlined in

Section 17.4.7, “Class and package imports”.

The below table outlines the built-in single-row functions available.

Table 10.1. Syntax and results of single-row functions

Single-row Function Result

case value

 when compare_value then result

 [when compare_value then result ...]

 [else result]

 end

Returns result where the first value

equals compare_value.

case

 when condition then result

Returns the result for the first condition

that is true.

Chapter 10. EPL Reference: Fu...

342

Single-row Function Result

 [when condition then result ...]

 [else result]

 end

cast(expression, type_name)
Casts the result of an expression to the

given type.

coalesce(expression, expression

 [, expression ...])

Returns the first non-null value in the

list, or null if there are no non-null

values.

current_evaluation_context()
Returns an object containing the engine

URI, EPL statement name and context

partition id (when applicable).

current_timestamp[()]
Returns the current engine time as

a long value. Reserved keyword with

optional parenthesis.

exists(dynamic_property_name)
Returns true if the dynamic property

exists for the event, or false if the

property does not exist.

instanceof(expression, type_name

 [, type_name ...])

Returns true if the expression returns an

object whose type is one of the types

listed.

istream()
Returns true if the event is part of the

insert stream and false if the event is

part of the remove stream.

max(expression, expression [, expression

 ...])

Returns the highest numeric value

among the 2 or more comma-separated

expressions.

min(expression, expression [, expression

 ...])

Returns the lowest numeric value

among the 2 or more comma-separated

expressions.

prev(expression, event_property)
Returns a property value or all

properties of a previous event, relative

to the event order within a data window,

or according to an optional index

parameter (N) the positional Nth-from-

last value.

prevtail(expression, event_property)
Returns a property value or all

properties of the first event in a data

window relative to the event order

within a data window, or according to

The Case Control Flow Function

343

Single-row Function Result

an optional index parameter (N) the

positional Nth-from-first value.

prevwindow(event_property)
Returns a single property value of all

events or all properties of all events in

a data window in the order that reflects

the sort order of the data window.

prevcount(event_property)
Returns the count of events (number of

data points) in a data window.

prior(expression, event_property)
Returns a property value of a prior

event, relative to the natural order of

arrival of events

typeof(expression)
If expression is a stream name, returns

the event type name of the evaluated

event, often used with variant streams.

If expression is a property name or

expression, returns the name of the

expression result type.

10.1.1. The Case Control Flow Function

The case control flow function has two versions. The first version takes a value and a list of

compare values to compare against, and returns the result where the first value equals the

compare value. The second version takes a list of conditions and returns the result for the first

condition that is true.

The return type of a case expression is the compatible aggregated type of all return values.

The case expression is sometimes used with the new operator to return multiple results, see

Section 9.13, “The 'new' Keyword”.

The example below shows the first version of a case statement. It has a String return type and

returns the value 'one'.

select case myexpression when 1 then 'one' when 2 then 'two' else 'more' end

 from ...

The second version of the case function takes a list of conditions. The next example has a Boolean

return type and returns the boolean value true.

select case when 1>0 then true else false end from ...

Chapter 10. EPL Reference: Fu...

344

10.1.2. The Cast Function

The cast function casts the return type of an expression to a designated type. The function accepts

two parameters: The first parameter is the property name or expression that returns the value to

be casted. The second parameter is the type to cast to. You can use the as keyword instead of

comma (,) to separate parameters.

Valid parameters for the second (type) parameter are:

• Any of the Java built-in types: int, long, byte, short, char, double, float, string,

BigInteger, BigDecimal, where string is a short notation for java.lang.String and

BigInteger as well as BigDecimal are the classes in java.math. The type name is not case-

sensitive. For example:

cast(price, double)

• The fully-qualified class name of the class to cast to, for example:

cast(product as org.myproducer.Product)

• For parsing date-time values, any of the date-time types: date, calendar, long,

localdatetime, zoneddatetime, localdate, localtime. For these types the dateformat

parameter is required as discussed below.

The cast function is often used to provide a type for dynamic (unchecked) properties. Dynamic

properties are properties whose type is not known at compile type. These properties are always

of type java.lang.Object.

The cast function as shown in the next statement casts the dynamic "price" property of an "item"

in the OrderEvent to a double value.

select cast(item.price?, double) from OrderEvent

The cast function returns a null value if the expression result cannot be casted to the desired

type, or if the expression result itself is null.

The cast function adheres to the following type conversion rules:

• For all numeric types, the cast function utilitzes java.lang.Number to convert numeric types,

if required.

• For casts to string or java.lang.String, the function calls toString on the expression result.

• For casts to other objects including application objects, the cast function considers a Java

class's superclasses as well as all directly or indirectly-implemented interfaces by superclasses.

10.1.2.1. The Cast Function For Parsing Dates

The Cast Function

345

The cast function can parse string-type date-time values to long-type milliseconds, Date,

Calendar, LocalDateTime, ZonedDateTime, LocalDate and LocalTime objects.

You must provide the dateformat named parameter as the last parameter to the cast function.

The dateformat parameter expression must return a String-typed value, a SimpleDateFormat-

type value or a DateTimeFormatter-type value. Return a SimpleDateFormat for long/

Date/Calendar. Return a DateTimeFormatter for LocalDateTime/ZonedDateTime/LocalDate/

LocalTime.

The next EPL outputs the date May 2, 2010 as a Date-type value:

select cast('20100502', date, dateformat: 'yyyyMMdd') from OrderEvent

You may use date-time methods when cast is returning a date-time value. Expressions can be

any expression and do not need to be string constants.

You may parse dates that are ISO 8601-formatted dates by specifying iso as the date format.

The ISO 8601 date format is described in Section 7.6.5.1.1, “Specifying Dates”.

For example, assuming the orderDate property is a ISO 8601 formatted date, the engine can

convert it to a long millisecond value like this:

select cast(orderDate, long, dateformat: 'iso') from OrderEvent

The next table shows the recognized date types available:

Table 10.2. Date Types for Casting/Parsing

Value provided to Cast as the second parameter Result Type

date, java.util.Date java.util.Date

calendar, java.util.Calendar java.util.Calendar

long, java.lang.Long long

localdatetime, java.time.LocalDateTime java.time.LocalDateTime

localdate, java.time.LocalDate java.time.LocalDate

localtime, java.time.LocalTime java.time.LocalTime

zoneddatetime, java.time.ZonedDateTime java.time.ZonedDateTime

Additional examples are:

select cast(orderDate, localdatetime,

 dateformat:java.time.format.DateTimeFormatter.ISO_DATE_TIME) from OrderEvent

Chapter 10. EPL Reference: Fu...

346

select cast(orderDate, calendar, dateformat:SimpleDateFormat.getInstance()) from

 OrderEvent

10.1.3. The Coalesce Function

The result of the coalesce function is the first expression in a list of expressions that returns a

non-null value. The return type is the compatible aggregated type of all return values.

This example returns a String-typed result of value 'foo':

select coalesce(null, 'foo') from ...

10.1.4. The Current_Evaluation_Context Function

The current_evaluation_context function takes no parameters and returns

expression evaluation contextual information as an object of type

com.espertech.esper.client.hook.EPLExpressionEvaluationContext. The object provides

the engine URI, the statement name and the context partition id of the currently-evaluated

expression.

For example:

select current_evaluation_context().getEngineURI() as engineURI from MyEvent

The context partition id will be -1 when the statement is not associated to a context.

10.1.5. The Current_Timestamp Function

The current_timestamp function is a reserved keyword and requires no parameters. The result

of the current_timestamp function is the long-type value of the current engine system time.

The function returns the current engine timestamp at the time of expression evaluation. When

using external-timer events, the function provides the last value of the externally-supplied time at

the time of expression evaluation.

This example selects the current engine time:

select current_timestamp from MyEvent

// equivalent to

select current_timestamp() from MyEvent

10.1.6. The Exists Function

The Grouping Function

347

The exists function returns a boolean value indicating whether the dynamic property, provided

as a parameter to the function, exists on the event. The exists function accepts a single dynamic

property name as its only parameter.

The exists function is for use with dynamic (unchecked) properties. Dynamic properties are

properties whose type is not known at compile type. Dynamic properties return a null value if the

dynamic property does not exists on an event, or if the dynamic property exists but the value of

the dynamic property is null.

The exists function as shown next returns true if the "item" property contains an object that has a

"serviceName" property. It returns false if the "item" property is null, or if the "item" property does

not contain an object that has a property named "serviceName" :

select exists(item.serviceName?) from OrderEvent

10.1.7. The Grouping Function

The grouping function is a SQL-standard function useful in statements that have a group by-

clause and that utilize one of the rollup, cube or grouping sets keywords. The function can be

used only in the select-clause, having-clause and order by-clauses.

The function takes a single expression as a parameter and returns an integer value of zero or one

indicating whether a specified expression in a group-by-clause is aggregated or not. The function

returns 1 for aggregated or 0 for not aggregated.

The grouping function can help you distinguish null values returned because of the output row's

aggregation level from null values returned by event properties or other expressions.

The parameter expression must match exactly one of the expressions in the group-by-clause.

Please see an example in the next section.

10.1.8. The Grouping_Id Function

The grouping_id function is a SQL-standard function useful in statements that have a group by-

clause and that utilize one of the rollup, cube or grouping sets keywords. The function can be

used only in the select-clause, having-clause and order by-clauses.

The function takes one or more expressions as a parameter and returns an integer value indicating

grouping level. The engine computes the grouping level by taking the results of multiple grouping

functions and concatenating them into a bit vector (a string of ones and zeros).

Assume a car event that has a property for name, place and number of cars:

create schema CarEvent(name string, place string, numcars int)

Chapter 10. EPL Reference: Fu...

348

The next EPL computes the total number of cars for each of the following groupings: per name

and place, per name, per place and overall.

select name, place, sum(numcars), grouping(name), grouping(place),

 grouping_id(name, place)

from CarEvent group by grouping sets((name, place),name, place,())

Assume your application processes a car event with properties like so:

CarEvent={name='skoda', place='france', numcars=100}.

The engine outputs 4 rows as shown in the next table:

Table 10.3. Example output for grouping and grouping_id functions (CarEvent

1)

name place sum(numcars) grouping(name)grouping(place)grouping_id(name,

place)

skoda france 100 0 0 0

skoda null 100 0 1 1

null france 100 1 0 2

null null 100 1 1 3

Assume your application processes a second car event: CarEvent={name='skoda',

place='germany', numcars=75}.

The engine outputs 4 rows as shown in the next table:

Table 10.4. Example output for grouping and grouping_id functions (CarEvent

2)

name place sum(numcars) grouping(name)grouping(place)grouping_id(name,

place)

skoda germany 75 0 0 0

skoda null 175 0 1 1

null germany 75 1 0 2

null null 175 1 1 3

The parameter expressions must match exactly to expressions in the group-by-clause.

10.1.9. The Instance-Of Function

The instanceof function returns a boolean value indicating whether the type of value returned

by the expression is one of the given types. The first parameter to the instanceof function is an

expression to evaluate. The second and subsequent parameters are Java type names.

The Istream Function

349

The function determines the return type of the expression at runtime by evaluating the expression,

and compares the type of object returned by the expression to the defined types. If the type of

object returned by the expression matches any of the given types, the function returns true. If

the expression returned null or a type that does not match any of the given types, the function

returns false.

The instanceof function is often used in conjunction with dynamic (unchecked) properties.

Dynamic properties are properties whose type is not known at compile type.

This example uses the instanceof function to select different properties based on the type:

select case when instanceof(item, com.mycompany.Service) then serviceName?

 when instanceof(item, com.mycompany.Product) then productName? end

 from OrderEvent

The instanceof function returns false if the expression tested by instanceof returned null.

Valid parameters for the type parameter list are:

• Any of the Java built-in types: int, long, byte, short, char, double, float, string,

where string is a short notation for java.lang.String. The type name is not case-sensitive.

For example, the next function tests if the dynamic "price" property is either of type float or type

double:

instanceof(price?, double, float)

• The fully-qualified class name of the class to cast to, for example:

instanceof(product, org.myproducer.Product)

The function considers an event class's superclasses as well as all the directly or indirectly-

implemented interfaces by superclasses.

10.1.10. The Istream Function

The istream function returns a boolean value indicating whether within the context of expression

evaluation the current event or set of events (joins) are part of the insert stream (true) or part of

the remove stream (false). The function takes no parameters.

Use the istream function with data windows and select irstream and insert irstream into.

In the following example the istream function always returns boolean true since no data window

is declared:

select irstream *, istream() from OrderEvent

Chapter 10. EPL Reference: Fu...

350

The next example declares a data window. For newly arriving events the function returns boolean

true, for events that expire after 10 seconds the function returns boolean false:

select irstream *, istream() from OrderEvent#time(10 sec)

The istream function returns true for all cases where insert or remove stream does not apply,

such as when used in parameter expressions to data windows or in stream filter expressions.

10.1.11. The Min and Max Functions

The min and max function take two or more parameters that itself can be expressions. The min

function returns the lowest numeric value among the 2 or more comma-separated expressions,

while the max function returns the highest numeric value. The return type is the compatible

aggregated type of all return values.

The next example shows the max function that has a Double return type and returns the value 1.1.

select max(1, 1.1, 2 * 0.5) from ...

The min function returns the lowest value. The statement below uses the function to determine

the smaller of two timestamp values.

select symbol, min(ticks.timestamp, news.timestamp) as minT

 from StockTickEvent#time(30 sec) as ticks, NewsEvent#time(30 sec) as news

 where ticks.symbol = news.symbol

10.1.12. The Previous Function

The prev function returns the property value or all event properties of a previous event. For data

windows that introduce a sort order other than the order of arrival, such as the sorted data window

and the time order data window, the function returns the event at the specified position.

The prev function is not an aggregation function and therefore does not return results per

group when used with group by. Please consider the last, lastever or first aggregation

functions instead as described in Section 10.2.2, “Event Aggregation Functions”. You must use

an aggregation function instead of prev when querying a named window or table.

The first parameter to the prev function is an index parameter and denotes the i-th previous event,

in the order established by the data window. If no index is provided, the default index is 1 and the

function returns the previous event. The second parameter is a property name or stream name. If

specifying a property name, the function returns the value for the previous event property value.

If specifying a stream name, the function returns the previous event underlying object.

The Previous Function

351

This example selects the value of the price property of the 2nd-previous event from the current

Trade event:

select prev(2, price) from Trade#length(10)

By using the stream alias in the previous function, the next example selects the trade event itself

that is immediately previous to the current Trade event

select prev(1, trade) from Trade#length(10) as trade

Since the prev function takes the order established by the data window into account, the function

works well with sorted windows.

In the following example the statement selects the symbol of the 3 Trade events that had the

largest, second-largest and third-largest volume.

select prev(0, symbol), prev(1, symbol), prev(2, symbol)

 from Trade#sort(3, volume desc)

The i-th previous event parameter can also be an expression returning an Integer-type value. The

next statement joins the Trade data window with an RankSelectionEvent event that provides a

rank property used to look up a certain position in the sorted Trade data window:

select prev(rank, symbol) from Trade#sort(10, volume desc), RankSelectionEvent

 unidirectional

Use the prev function in combination with a grouped data window to access a previous event

per grouping criteria.

The example below returns the price of the previous Trade event for the same symbol, or null

if for that symbol there is no previous Trade event:

select prev(1, price) from Trade#groupwin(symbol)#length(2)

The prev function returns a null value if the data window does not currently hold the i-th previous

event. The example below illustrates this using a time batch window. Here the prev function

returns a null value for any events in which the previous event is not in the same batch of events.

Note that the prior function as discussed below can be used if a null value is not the desired result.

Chapter 10. EPL Reference: Fu...

352

select prev(1, symbol) from Trade#time_batch(1 min)

An alternative form of the prev function allows the index to not appear or appear after the property

name if the index value is a constant and not an expression:

select prev(1, symbol) from Trade

// ... equivalent to ...

select prev(symbol) from Trade

// ... and ...

select prev(symbol, 1) from Trade

The combination of the prev function and std:groupwin view returns the property value for a

previous event in the given data window group.

The following example returns for each event the current smallest price per symbol:

select symbol, prev(0, price) as topPricePerSymbol

from Trade#groupwin(symbol)#sort(1, price asc)

10.1.12.1. Restrictions

The following restrictions apply to the prev functions and its results:

• The function always returns a null value for remove stream (old data) events.

• The function requires a data window view, or a std:groupwin and data window view, without

any additional sub-views. See Section 14.3, “Data Window Views” for built-in data window

views.

10.1.12.2. Comparison to the prior Function

The prev function is similar to the prior function. The key differences between the two functions

are as follows:

• The prev function returns previous events in the order provided by the data window, while the

prior function returns prior events in the order of arrival as posted by a stream's declared views.

• The prev function requires a data window view while the prior function does not have any

view requirements.

• The prev function returns the previous event grouped by a criteria by combining the

std:groupwin view and a data window. The prior function returns prior events posted by the

last view regardless of data window grouping.

The Previous-Tail Function

353

• The prev function returns a null value for remove stream events, i.e. for events leaving a data

window. The prior function does not have this restriction.

10.1.13. The Previous-Tail Function

The prevtail function returns the property value or all event properties of the positional-first event

in a data window. For data windows that introduce a sort order other than the order of arrival, such

as the sorted data window and the time order data window, the function returns the first event at

the specified position.

The prevtail function is not an aggregation function and therefore does not return results per

group when used with group by. Please consider the first, firstever or window aggregation

functions instead as described in Section 10.2.2, “Event Aggregation Functions”. You must use

an aggregation function instead of prevtail when querying a named window or table.

The first parameter is an index parameter and denotes the i-th from-first event in the order

established by the data window. If no index is provided the default is zero and the function returns

the first event in the data window. The second parameter is a property name or stream name. If

specifying a property name, the function returns the value for the previous event property value.

If specifying a stream name, the function returns the previous event underlying object.

This example selects the value of the price property of the first (oldest) event held in the length

window:

select prevtail(price) from Trade#length(10)

By using the stream alias in the prevtail function, the next example selects the trade event itself

that is the second event held in the length window:

select prevtail(1, trade) from Trade#length(10) as trade

Since the prevtail function takes the order established by the data window into account, the

function works well with sorted windows.

In the following example the statement selects the symbol of the 3 Trade events that had the

smallest, second-smallest and third-smallest volume.

select prevtail(0, symbol), prevtail(1, symbol), prevtail(2, symbol)

 from Trade#sort(3, volume asc)

The i-th previous event parameter can also be an expression returning an Integer-type value. The

next statement joins the Trade data window with an RankSelectionEvent event that provides a

rank property used to look up a certain position in the sorted Trade data window:

Chapter 10. EPL Reference: Fu...

354

select prevtail(rank, symbol) from Trade#sort(10, volume asc), RankSelectionEvent

 unidirectional

The prev function returns a null value if the data window does not currently holds positional-first

or the Nth-from-first event. For batch data windows the value returned is relative to the current

batch.

The following example returns the first and second symbol value in the batch:

select prevtail(0, symbol), prevtail(1, symbol) from Trade#time_batch(1 min)

An alternative form of the prevtail function allows the index to not appear or appear after the

property name if the index value is a constant and not an expression:

select prevtail(1, symbol) from Trade

// ... equivalent to ...

select prevtail(symbol) from Trade

// ... and ...

select prevtail(symbol, 1) from Trade

The combination of the prevtail function and std:groupwin view returns the property value for

a positional first event in the given data window group.

Let's look at an example. This statement outputs the oldest price per symbol retaining the last

10 prices per symbol:

select symbol, prevtail(0, price) as oldestPrice

from Trade#groupwin(symbol)#length(10)

10.1.13.1. Restrictions

The following restrictions apply to the prev functions and its results:

• The function always returns a null value for remove stream (old data) events.

• The function requires a data window view, or a std:groupwin and data window view, without

any additional sub-views. See Section 14.3, “Data Window Views” for built-in data window

views.

10.1.14. The Previous-Window Function

The prevwindow function returns property values or all event properties for all events in a data

window. For data windows that introduce a sort order other than the order of arrival, such as the

The Previous-Window Function

355

sorted data window and the time order data window, the function returns the event data sorted

in that order, otherwise it returns the events sorted by order of arrival with the newest arriving

event first.

The prevwindow function is not an aggregation function and therefore does not return results per

group when used with group by. Please consider the window aggregation function instead as

described in Section 10.2.2, “Event Aggregation Functions”. You must use an aggregation function

instead of prevwindow when querying a named window or table.

The single parameter is a property name or stream name. If specifying a property name, the

function returns the value of the event property for all events held by the data window. If specifying

a stream name, the function returns the event underlying object for all events held by the data

window.

This example selects the value of the price property of all events held in the length window:

select prevwindow(price) from Trade#length(10)

By using the stream alias in the prevwindow function, the next example selects all trade events

held in the length window:

select prevwindow(trade) from Trade#length(10) as trade

When used with a data window that introduces a certain sort order, the prevwindow function

returns events sorted according to that sort order.

The next statement outputs for every arriving event the current 10 underying trade event objects

that have the largest volume:

select prevwindow(trade) from Trade#sort(10, volume desc) as trade

The prevwindow function returns a null value if the data window does not currently hold any

events.

The combination of the prevwindow function and std:groupwin view returns the property value(s)

for all events in the given data window group.

This example statement outputs all prices per symbol retaining the last 10 prices per symbol:

select symbol, prevwindow(price) from Trade#groupwin(symbol)#length(10)

Chapter 10. EPL Reference: Fu...

356

10.1.14.1. Restrictions

The following restrictions apply to the prev functions and its results:

• The function always returns a null value for remove stream (old data) events.

• The function requires a data window view, or a std:groupwin and data window view, without

any additional sub-views. See Section 14.3, “Data Window Views” for built-in data window

views.

10.1.15. The Previous-Count Function

The prevcount function returns the number of events held in a data window.

The prevcount function is not an aggregation function and therefore does not return results

per group when used with group by. Please consider the count(*) or countever aggregation

functions instead as described in Section 10.2, “Aggregation Functions”. You must use an

aggregation function instead of prevcount when querying a named window or table.

The single parameter is a property name or stream name of the data window to return the count for.

This example selects the number of data points for the price property held in the length window:

select prevcount(price) from Trade#length(10)

By using the stream alias in the prevcount function the next example selects the count of trade

events held in the length window:

select prevcount(trade) from Trade#length(10) as trade

The combination of the prevcount function and std:groupwin view returns the count of events

in the given data window group.

This example statement outputs the number of events retaining the last 10 events per symbol:

select symbol, prevcount(price) from Trade#groupwin(symbol)#length(10)

10.1.15.1. Restrictions

The following restrictions apply to the prev functions and its results:

• The function always returns a null value for remove stream (old data) events.

• The function requires a data window view, or a std:groupwin and data window view, without

any additional sub-views. See Section 14.3, “Data Window Views” for built-in data window

views.

The Prior Function

357

10.1.16. The Prior Function

The prior function returns the property value of a prior event. The first parameter is an expression

returning a constant integer-typed value that denotes the i-th prior event in the natural order of

arrival. The second parameter is a property name for which the function returns the value for the

prior event. The second parameter is a property name or stream name. If specifying a property

name, the function returns the property value for the prior event. If specifying a stream name, the

function returns the prior event underlying object.

This example selects the value of the price property of the 2nd-prior event to the current Trade

event.

select prior(2, price) from Trade

By using the stream alias in the prior function, the next example selects the trade event itself

that is immediately prior to the current Trade event

select prior(1, trade) from Trade as trade

The prior function can be used on any event stream or view and does not have any specific

view requirements. The function operates on the order of arrival of events by the event stream

or view that provides the events.

The next statement uses a time batch window to compute an average volume for 1 minute of Trade

events, posting results every minute. The select-clause employs the prior function to select the

current average and the average before the current average:

select average, prior(1, average)

 from TradeAverages#time_batch(1 min)#uni(volume)

10.1.17. The Type-Of Function

The typeof function, when parameterized by a stream name, returns the event type name of the

evaluated event which can be useful with variant streams. When parameterized by an expression

or property name, the function returns the type name of the expression result or null if the

expression result is null.

In summary, the function determines the return type of the expression at runtime by evaluating

the expression and returns the type name of the expression result.

The typeof function is often used in conjunction with variant streams. A variant stream is a

predefined stream into which events of multiple disparate event types can be inserted. The typeof

Chapter 10. EPL Reference: Fu...

358

function, when passed a stream name alias, returns the name of the event type of each event

in the stream.

The following example elaborates on the use of variant streams with typeof. The first statement

declares a variant stream SequencePatternStream:

create variant schema SequencePatternStream as *

The next statement inserts all order events and is followed by a statement to insert all product

events:

insert into SequencePatternStream select * from OrderEvent;

insert into SequencePatternStream select * from PriceEvent;

This example statement returns the event type name for each event in the variant stream:

select typeof(sps) from SequencePatternStream as sps

The next example statement detects a pattern by utilizing the typeof function to find pairs of order

event immediately followed by product event:

select * from SequencePatternStream match_recognize(

 measures A as a, B as b

 pattern (A B)

 define A as typeof(A) = "OrderEvent",

 B as typeof(B) = "ProductEvent"

)

When passing a property name to the typeof function, the function evaluates whether the property

type is event type (a fragment event type). If the property type is event type, the function returns

the type name of the event in the property value or null if not provided. If the property type is not

event type, the function returns the simple class name of the property value.

When passing an expression to the typeof function, the function evaluates the expression and

returns the simple class name of the expression result value or null if the expression result value

is null.

Aggregation Functions

359

This example statement returns the simple class name of the value of the dynamic property prop

of events in stream MyStream, or a null value if the property is not found for an event or the

property value itself is null:

select typeof(prop?) from MyStream

When using subclasses or interface implementations as event classes or when using Map-event

type inheritance, the function returns the event type name provided when the class or Map-type

event was registered, or if the event type was not registered, the function returns the fully-qualified

class name.

10.2. Aggregation Functions

Aggregation functions are stateful and consider sets of events or value points. The group by

clause is often used in conjunction with aggregation functions to group the result-set by one or

more columns.

Aggregation functions can be a column type for table declarations. This allows easy sharing

of aggregated state, co-location of aggregations and other data as well as co-aggregation by

multiple statements into the same aggregation state. Please see Section 6.1.2, “Table Overview”

for details.

The EPL language extends the standard SQL aggregation functions by allowing filters and

by further useful aggregation functions that can track a data window or compute event rates,

for example. Your application may also add its own aggregation function as Section 19.5,

“Aggregation Function” describes.

The EPL language allows each aggregation function to specify its own grouping criteria. Please

find further information in Section 5.6.4, “Specifying grouping for each aggregation function”.

The EPL language allows each aggregation function to specify its own filter criteria. Please find

further information in Section 5.6.5, “Specifying a filter expression for each aggregation function”.

Aggregation values are always computed incrementally: Insert and remove streams result in

aggregation value changes. The exceptions are on-demand queries and joins when using the

unidirectional keyword. Aggregation functions are optimized to retain the minimal information

necessary to compute the aggregated result, and to share aggregation state between eligible

other aggregation functions in the same statement so that same-kind aggregation state is never

held multiple times unless required.

Most aggregation functions can also be used with unbound streams when no data window is

specified. A few aggregation functions require a data window or named window as documented

below.

10.2.1. SQL-Standard Functions

The SQL-standard aggregation functions are shown in below table.

Chapter 10. EPL Reference: Fu...

360

Table 10.5. Syntax and results of SQL-standard aggregation functions

Aggregate Function Result

avedev([all|

distinct] expression

 [, filter_expr])

Mean deviation of the (distinct) values in the expression,

returning a value of double type.

The optional filter expression limits the values considered for

computing the mean deviation.

avg([all|

distinct] expression

 [, filter_expr])

Average of the (distinct) values in the expression, returning a

value of double type.

The optional filter expression limits the values considered for

computing the average.

count([all|

distinct] expression

 [, filter_expr])

Number of the (distinct) non-null values in the expression,

returning a value of long type.

The optional filter expression limits the values considered for

the count.

count(*

 [, filter_expr])

Number of events, returning a value of long type.

The optional filter expression limits the values considered for

the count.

max([all|

distinct] expression)

fmax([all|

distinct] expression, filter_expr)

Highest (distinct) value in the expression, returning a value of

the same type as the expression itself returns.

Use fmax to provide a filter expression that limits the values

considered for computing the maximum.

Consider using maxby instead if return values must include

additional properties.

maxever([all|

distinct] expression)

fmaxever([all|

distinct] expression, filter_expr)

Highest (distinct) value - ever - in the expression, returning a

value of the same type as the expression itself returns.

Use fmaxever to provide a filter expression that limits the

values considered for computing the maximum.

Consider using maxbyever instead if return values must include

additional properties.

median([all|

distinct] expression

 [, filter_expr])

Median (distinct) value in the expression, returning a value of

double type. Double Not-a-Number (NaN) values are ignored

in the median computation.

The optional filter expression limits the values considered for

computing the median.

SQL-Standard Functions

361

Aggregate Function Result

min([all|

distinct] expression)

fmin([all|

distinct] expression, filter_expr)

Lowest (distinct) value in the expression, returning a value of

the same type as the expression itself returns.

Use fmin to provide a filter expression that limits the values

considered for computing the maximum.

Consider using minby instead if return values must include

additional properties.

minever([all|

distinct] expression)

fminever([all|

distinct] expression, filter_expr)

Lowest (distinct) value - ever - in the expression, returning a

value of the same type as the expression itself returns.

Use fminever to provide a filter expression that limits the

values considered for computing the maximum.

Consider using minbyever instead if return values must include

additional properties.

stddev([all|

distinct] expression

 [, filter_expr])

Standard deviation of the (distinct) values in the expression,

returning a value of double type.

The optional filter expression limits the values considered for

computing the standard deviation.

sum([all|

distinct] expression

 [, filter_expr])

Totals the (distinct) values in the expression, returning a value

of long, double, float or integer type depending on the

expression.

The optional filter expression limits the values considered for

computing the total.

If your application provides double-type values to an aggregation function, avoid using Not-a-

Number (NaN) and infinity. Also when using double-type values, round-off errors (or rounding

errors) may occur due to double-type precision. Consider rounding your result value to the desired

precision.

Each of the aggregation functions above takes an optional filter expression as a parameter. The

filter expression must return a boolean-type value and applies to the events considered for the

aggregation. If a filter expression is provided, then only if the filter expression returns a value of

true does the engine update the aggregation for that event or combination of events.

Consider the following example, which computes the quantity fraction of buy orders among all

orders:

select sum(quantity, side='buy') / sum(quantity) as buy_fraction from Orders

Chapter 10. EPL Reference: Fu...

362

Use the fmin and fmax aggregation functions instead of the min and max aggregation functions

when providing a filter expression (the min and max functions are also single-row functions).

The next example computes the minimum quantity for buy orders and a separate minimum

quantity for sell orders:

select fmin(quantity, side='buy'), fmin(quantity, side = 'sell') from Orders

This sample statement demonstrates specifying grouping criteria for an aggregation function using

the group_by named parameter. It computes, for the last one minute of orders, the ratio of orders

per account compared to all orders:

select count(*)/count(*, group_by:()) as ratio from Orders#time(1 min) group

 by account

10.2.2. Event Aggregation Functions

The event aggregation functions return one or more events or event properties. When used with

group by the event aggregation functions return one or more events or event properties per group.

The sorted and the window event aggregation functions require that a data window or named

window is declared for the applicable stream. They cannot be used on unbound streams.

The below table summarizes the event aggregation functions available:

Table 10.6. Event Aggregation Functions

Function Result

first(...) Returns the first event or an event property value of the first

event.

Section 10.2.2.1, “First Aggregation Function”.

last(...) Returns the last event or an event property value of the last

event.

Section 10.2.2.2, “Last Aggregation Function”.

maxby(criteria) Returns the event with the highest sorted value according to

criteria expressions.

Section 10.2.2.3, “Maxby Aggregation Function”.

maxbyever(criteria) Returns the event with the highest sorted value, ever, according

to criteria expressions.

Section 10.2.2.4, “Maxbyever Aggregation Function”.

Event Aggregation Functions

363

Function Result

minby(criteria) Returns the event with the lowest sorted value according to

criteria expressions.

Section 10.2.2.5, “Minby Aggregation Function”.

minbyever(criteria) Returns the event with the lowest sorted value, ever, according

to criteria expressions.

Section 10.2.2.6, “Minbyever Aggregation Function”.

sorted(criteria) Returns events sorted according to criteria expressions.

Section 10.2.2.7, “Sorted Aggregation Function”.

window(...) Returns all events or all event's property values.

Section 10.2.2.8, “Window Aggregation Function”.

In connection with named windows and tables, event aggregation functions can also be used in

on-select, selects with named window or table in the from clause, subqueries against named

windows or tables and on-demand fire-and-forget queries.

The event aggregation functions are often useful in connection with enumeration methods

and they can provide input events for enumeration. Please see Chapter 11, EPL Reference:

Enumeration Methods for more information.

When comparing the last aggregation function to the prev function, the differences are as follows.

The prev function is not an aggregation function and thereby not sensitive to the presence of

group by. The prev function accesses data window contents directly and respects the sort order

of the data window. The last aggregation function returns results based on arrival order and

tracks data window contents in a separate shared data structure.

When comparing the first aggregation function to the prevtail function, the differences are

as follows. The prevtail function is not an aggregation function and thereby not sensitive to

the presence of group by. The prevtail function accesses data window contents directly and

respects the sort order of the data window. The first aggregation function returns results based

on arrival order and tracks data window contents in a separate shared data structure.

When comparing the window aggregation function to the prevwindow function, the differences are

as follows. The prevwindow function is not an aggregation function and thereby not sensitive to

the presence of group by. The prevwindow function accesses data window contents directly and

respects the sort order of the data window. The window aggregation function returns results based

on arrival order and tracks data window contents in a separate shared data structure.

When comparing the count aggregation function to the prevcount function, the differences are

as follows. The prevcount function is not an aggregation function and thereby not sensitive to

the presence of group by.

Chapter 10. EPL Reference: Fu...

364

When comparing the last aggregation function to the nth aggregation function, the differences

are as follows. The nth aggregation function does not consider out-of-order deletes (for example

with on-delete and sorted windows) and does not revert to the prior expression value when the

last event or nth-event was deleted from a data window. The last aggregation function tracks the

data window and reflects out-of-order deletes.

From an implementation perspective, the first, last and window aggregation functions share

a common data structure for each stream. The sorted, minby and maxby aggregation functions

share a common data structure for each stream.

10.2.2.1. First Aggregation Function

The synopsis for the first aggregation function is:

first(*|stream.*|value_expression [, index_expression] [,

 filter:filter_expression])

The first aggregation function returns properties of the very first event. When used with group

by, it returns properties of the first event for each group. When specifying an index expression, the

function returns properties of the Nth-subsequent event to the first event, all according to order

of arrival.

The first parameter to the function is required and defines the event properties or expression result

to return. The second parameter is an optional index_expression that must return an integer value

used as an index to evaluate the Nth-subsequent event to the first event.

You may specify the wildcard (*) character in which case the function returns the underlying event

of the single selected stream. When selecting a single stream you may specify no parameter

instead of wildcard. For joins and subqueries you must use the stream wildcard syntax below.

You may specify the stream name and wildcard (*) character in the stream.* syntax. This returns

the underlying event for the specified stream.

You may specify a value_expression to evaluate for the first event. The value expression may not

select properties from multiple streams.

The index_expression is optional. If no index expression is provided, the function returns the first

event. If present, the function evaluates the index expression to determine the value for N, and

evaluates the Nth-subsequent event to the first event. A value of zero returns the first event and

a value of 1 returns the event subsequent to the first event. You may not specify event properties

in the index expression.

The function returns null if there are no events or when the index is larger than the number of

events held. When used with group by, it returns null if there are no events for that group or

when the index is larger than the number of events held for that group.

To explain, consider the statement below which selects the underlying event of the first sensor

event held by the length window of 2 events.

Event Aggregation Functions

365

select first(*) from SensorEvent#length(2)

Assume event E1, event E2 and event E3 are of type SensorEvent. When event E1 arrives the

statement outputs the underlying event E1. When event E2 arrives the statement again outputs

the underlying event E1. When event E3 arrives the statement outputs the underlying event E2,

since event E1 has left the data window.

The stream wildcard syntax is useful for joins and subqueries. This example demonstrates a

subquery that returns the first SensorEvent when a DoorEvent arrives:

select (select first(se.*) from SensorEvent#length(2) as se) from DoorEvent

The following example shows the use of an index expression. The output value for f1 is the

temperature property value of the first event, the value for f2 is the temperature property value

of the second event:

select first(temperature, 0) as f1, first(temperature, 1) as f2

from SensorEvent#time(10 sec)

You may use dot-syntax to invoke a method on the first event. You may also append a property

name using dot-syntax.

10.2.2.2. Last Aggregation Function

The synopsis for the last aggregation function is:

last(*|stream.*|value_expression [, index_expression][,

 filter:filter_expression])

The last aggregation function returns properties of the very last event. When used with group

by, it returns properties of the last event for each group. When specifying an index expression, the

function returns properties of the Nth-prior event to the last event, all according to order of arrival.

Similar to the first aggregation function described above, you may specify the wildcard (*)

character, no parameter or stream name and wildcard (*) character or a value_expression to

evaluate for the last event.

The index_expression is optional. If no index expression is provided, the function returns the last

event. If present, the function evaluates the index expression to determine the value for N, and

evaluates the Nth-prior event to the last event. A value of zero returns the last event and a value

of 1 returns the event prior to the last event. You may not specify event properties in the index

expression.

Chapter 10. EPL Reference: Fu...

366

The function returns null if there are no events or when the index is larger than the number of

events held. When used with group by, it returns null if there are no events for that group or

when the index is larger than the number of events held for that group.

The next statement selects the underlying event of the first and last sensor event held by the time

window of 10 seconds:

select first(*), last(*) from SensorEvent#time(10 sec)

The statement shown next selects the last temperature (f1) and the prior-to-last temperature (f1)

of sensor events in the last 10 seconds:

select last(temperature, 0) as f1, select last(temperature, 1) as f2

from SensorEvent#time(10 sec)

10.2.2.3. Maxby Aggregation Function

The synopsis for the maxby aggregation function is:

maxby(sort_criteria_expression [asc/desc][, sort_criteria_expression [asc/

desc]...][, filter:filter_expression])

The maxby aggregation function returns the greatest of all events, compared by using criteria

expressions. When used with group by, it returns the greatest of all events per group.

This example statement returns the sensor id and the temperature of the sensor event that had

the highest temperature among all sensor events:

select maxby(temperature).sensorId, maxby(temperature).temperature from

 SensorEvent

The next EPL returns the sensor event that had the highest temperature and the sensor event

that had the lowest temperature, per zone, among the last 10 seconds of sensor events:

select maxby(temperature), minby(temperature) from SensorEvent#time(10 sec)

 group by zone

Your EPL may specify multiple criteria expressions. If the sort criteria expression is descending

please append the desc keyword.

Event Aggregation Functions

367

The following EPL returns the sensor event with the highest temperature and if there are multiple

sensor events with the highest temperature the query returns the sensor event that has the newest

timestamp value:

select maxby(temperature asc, timestamp desc) from SensorEvent

Event properties that are listed in criteria expressions must refer to the same event stream and

cannot originate from different event streams.

If your query does not define a data window and does not refer to a named window, the semantics

of maxby are the same as maxbyever.

10.2.2.4. Maxbyever Aggregation Function

The synopsis for the maxbyever aggregation function is:

maxbyever(sort_criteria_expression [asc/desc][, sort_criteria_expression

 [asc/desc]...][, filter:filter_expression])

The maxbyever aggregation function returns the greatest of all events that ever occurred,

compared by using criteria expressions. When used with group by, it returns the greatest of all

events that ever occurred per group.

Compared to the maxby aggregation function the maxbyever does not consider the data window

or named window contents and instead considers all arriving events.

The next EPL computes the difference, per zone, between the maximum temperature considering

all events and the maximum temperature considering only the events in the last 10 seconds:

select maxby(temperature).temperature - maxbyever(temperature).temperature

from SensorEvent#time(10) group by zone

10.2.2.5. Minby Aggregation Function

The synopsis for the minby aggregation function is:

minby(sort_criteria_expression [asc/desc][, sort_criteria_expression [asc/

desc]...][, filter:filter_expression])

Similar to the maxby aggregation function, the minby aggregation function returns the lowest of all

events, compared by using criteria expressions. When used with group by, it returns the lowest

of all events per group.

Please review the section on maxby for more information.

Chapter 10. EPL Reference: Fu...

368

10.2.2.6. Minbyever Aggregation Function

Similar to the maxbyever aggregation function, the minbyever aggregation function returns the

lowest of all events that ever occurred, compared by using criteria expressions. When used with

group by, it returns the lowest of all events per group that ever occured.

Please review the section on maxbyever for more information.

10.2.2.7. Sorted Aggregation Function

The synopsis for the sorted aggregation function is:

sorted(sort_criteria_expression [asc/desc][, sort_criteria_expression [asc/

desc]...][, filter:filter_expression])

The sorted aggregation function maintains a list of events sorted according to criteria

expressions. When used with group by, it maintains a list of events sorted according to criteria

expressions per group.

The sample EPL listed next returns events sorted according to temperature ascending for the

same zone:

select sorted(temperature) from SensorEvent group by zone

Your EPL may specify multiple criteria expressions. If the sort criteria expression is descending

please append the desc keyword.

Enumeration methods can be useful in connection with sorted as the function provides the sorted

events as input.

This EPL statement finds the sensor event that when sorted according to temperature is the first

sensor event for a Friday timestamp among sensor events for the same zone:

select sorted(temperature).first(v => timestamp.getDayOfWeek()=6)

from SensorEvent

Event properties that are listed in criteria expressions must refer to the same event stream and

cannot originate from different event streams.

If used in a regular select statement, the use of sorted requires that your EPL defines a data

window for the stream or utilizes a named window.

10.2.2.8. Window Aggregation Function

The synopsis for the window aggregation function is:

Approximation Aggregation Functions

369

window(*|stream.*|value_expression [, filter:filter_expression])

The window aggregation function returns all rows. When used with group by, it returns the rows

for each group.

Similar to the first aggregation function described above, you may specify the wildcard (*)

character or stream name and wildcard (*) character or a value_expression to evaluate for all

events.

The function returns null if there are no rows. When used with group by, it returns null if there

are no rows for that group.

The next statement selects the underlying event of all events held by the time window of 10

seconds:

select window(*) from SensorEvent#time(10 sec)

If used in a regular select statement, the window aggregation function requires that your stream is

bound by a data window or a named window. You may not use the window aggregation function

on unbound streams with the exception of on-demand queries or subqueries.

This example statement assumes that the OrderWindow named window exists. For each event

entering or leaving the OrderWindow named window it outputs the total amount removing negative

amounts:

select window(*).where(v => v.amount > 0).aggregate(0d, (r, v) => r + v.amount)

 from OrderWindow

10.2.3. Approximation Aggregation Functions

Under approximation aggregation function we understand aggregations that perform approximate

analysis. Compared to the previously-introduced aggregation functions, the functions discussed

here have a degree of accuracy and probabilistic behavior.

10.2.3.1. Count-Min Sketch

Count-min sketch (or CM sketch) is a probabilistic sub-linear space streaming algorithm (source:

Wikipedia). Count-min sketch computes an approximate frequency, without retaining distinct

values in memory, making the algorithm suitable for summarizing very large spaces of distinct

values. The estimated count can be used for estimated top-K and estimated heavy-hitters, for

example.

The original and detail of the algorithm is described in the paper by Graham Cormode and S.

Muthukrishnan. An improved data stream summary: The Count-min sketch and its applications

(2004. 10.1016/j.jalgor.2003.12.001).

Chapter 10. EPL Reference: Fu...

370

Count-min sketch can only be used with tables and is not available as an aggregation function

other than in a table declaration.

Count-min sketch does not consider events leaving a data window and does not process a remove

stream.

10.2.3.1.1. Declaration

The table column type for Count-min sketch is countMinSketch.

For example, the next EPL declares a table that holds a Count-min sketch (does not provision

a top-K):

create table WordCountTable(wordcms countMinSketch())

You can parameterize the algorithm by providing a JSON-format structure to the declaration. The

available parameters are all optional:

Table 10.7. Count-min Sketch Parameters

Name Description

epsOfTotalCount Specifies the accuracy (number of values counted * accuracy >= number of

errors) of type double.

This value defaults to 0.0001.

confidence Provides the certainty with which we reach the accuracy of type double.

The default is 0.99.

seed A seed value for computing hash codes of type integer.

This default is 123456.

topk The number of top-K values as an integer. If null, the algorithm maintains

no top-K list.

This value defaults to null (no top-K available).

agent The agent is an extension API class that can interact with Count-min sketch

state and also receives the value objects. The agent defines the type of the

values that can be counted. The default agent only allows string-type values

and utilizes UTF-16 charset encoding.

The default agent is

com.espertech.esper.client.util.CountMinSketchAgentStringUTF16.

The next example EPL declares all available parameters:

Approximation Aggregation Functions

371

create table WordCountTable (wordcms countMinSketch({

 epsOfTotalCount: 0.000002,

 confidence: 0.999,

 seed: 38576,

 topk: 20,

 agent: 'com.mycompany.CountMinSketchCustomAgent'

}))

The default for the topk parameter is null. Thereby the engine by default does not compute top-K.

By specifying a positive integer value for topk the algorithm maintains a list of values representing

the top estimated counts.

By default, the Count-min sketch group of aggregation functions operates on string-type

values only. The aggregation function allows registering an agent that can handle any other

type of value objects and that allows overriding behavior. The agent class must implement

the interface com.espertech.esper.client.util.CountMinSketchAgent. Please see the

JavaDoc for implementing an agent. The agent API is an extension API and is subject to change

between versions.

10.2.3.1.2. Counting Values

The countMinSketchAdd function counts value(s). It expects a single parameter expression

returning the value(s) to be counted. The function can only be used with statements that utilize

into table and can accept a filter: filter expression as a parameter.

This example EPL counts words:

into table WordCountTable select countMinSketchAdd(word) as wordcms from

 WordEvent

10.2.3.1.3. Estimating Current Count

The countMinSketchFrequency function returns an estimated count for a given value. It expects

a single parameter expression returning the value(s) for which to estimate and return the long-

type count. The function can only be used as a table-access function against a table column that

declares the aggregation countMinSketch.

The next example EPL returns, when a EstimateWordCountEvent event arrives, the estimated

frequency of a given word:

select WordCountTable.wordcms.countMinSketchFrequency(word) from

 EstimateWordCountEvent

Chapter 10. EPL Reference: Fu...

372

10.2.3.1.4. Obtaining Top-K

The countMinSketchTopK function returns top-K. The function expects no parameters. The

function can only be used as a table-access function against a table column that declares the

aggregation countMinSketch and only if the Count-min sketch was parameterized with a non-null

topk parameter (the default is null, see declaration above).

The function returns an array of com.espertech.esper.client.util.CountMinSketchTopK.

The following EPL outputs top-K every 10 seconds:

select WordCountTable.wordcms.countMinSketchTopk() from pattern[every

 timer:interval(10 sec)]

10.2.3.1.5. Agent API Example

We provide a sample agent code that handles String-type values below. The complete code is

available for class CountMinSketchAgentStringUTF16 as part of sources.

public class CountMinSketchAgentStringUTF16 implements CountMinSketchAgent {

 public Class[] getAcceptableValueTypes() {

 return new Class[] {String.class};

 }

 public void add(CountMinSketchAgentContextAdd ctx) {

 String text = (String) ctx.getValue();

 if (text == null) {

 return;

 }

 byte[] bytes = toBytesUTF16(text);

 ctx.getState().add(bytes, 1); // increase count by 1

 }

 public Long estimate(CountMinSketchAgentContextEstimate ctx) {

 String text = (String) ctx.getValue();

 if (text == null) {

 return null;

 }

 byte[] bytes = toBytesUTF16(text);

 return ctx.getState().frequency(bytes);

 }

}

10.2.4. Additional Aggregation Functions

Esper provides the following additional aggregation functions beyond those in the SQL standard:

Additional Aggregation Functions

373

Table 10.8. Syntax and results of EPL aggregation functions

Aggregate Function Result

countever(* [, filter_expr])

countever(expression [,

filter_expr])

The countever aggregation function returns the number of

events ever. When used with group by it returns the number

of events ever for that group.

When used with a data window, the result of the function

does not change as data points leave a data window. Use the

count(*) or prevcount function to return counts relative to a

data window.

The optional filter expression limits the values considered for

counting rows. The distinct keyword is not allowed. When an

expression is provided instead of wildcard, counts the non-null

values.

The next example statement outputs the count-ever for sell

orders:

select countever(*, side='sell') from Order

firstever(expression [,

filter_expr])

The firstever aggregation function returns the very first value

ever. When used with group by it returns the first value ever

for that group.

When used with a data window, the result of the function does

not change as data points leave a data window. Use the first

or prevtail function to return values relative to a data window.

The optional filter expression limits the values considered for

retaining the first-ever value.

The next example statement outputs the first price ever for sell

orders:

select firstever(price, side='sell') from Order

lastever(expression [,

filter_expr])

Returns the last value or last value per group, when used with

group by.

This sample statement outputs the total price, the first price and

the last price per symbol for the last 30 seconds of events and

every 5 seconds:

Chapter 10. EPL Reference: Fu...

374

Aggregate Function Result

select symbol, sum(price), lastever(price),

 firstever(price)

from StockTickEvent#time(30 sec)

group by symbol

output every 5 sec

When used with a data window, the result of the function does

not change as data points leave a data window (for example

when all data points leave the data window). Use the last or

prev function to return values relative to a data window.

The optional filter expression limits the values considered for

retaining the last-ever value.

The next example statement outputs the last price (ever) for sell

orders:

select lastever(price, side='sell') from Order

leaving([filter:filter_expression]) Returns true when any remove stream data has passed, for use

in the having clause to output only when a data window has

filled.

The leaving aggregation function is useful when you want to

trigger output after a data window has a remove stream data

point. Use the output after syntax as an alternative to output

after a time interval.

This sample statement uses leaving() to output after the first

data point leaves the data window, ignoring the first datapoint:

select symbol, sum(price)

from StockTickEvent#time(30 sec)

having leaving()

nth(expression, N_index [,

filter:filter_expression])

Returns the Nth oldest element; If N=0 returns the most recent

value. If N=1 returns the value before the most recent value.

If N is larger than the events held in the data window for this

group, returns null.

Additional Aggregation Functions

375

Aggregate Function Result

A maximum N historical values are stored, so it can be safely

used to compare recent values in large views without incurring

excessive overhead.

As compared to the prev row function, this aggregation function

works within the current group by group, see Section 3.7.2,

“Output for Aggregation and Group-By”.

This statement outputs every 2 seconds the groups that have

new data and their last price and the previous-to-last price:

select symbol, nth(price, 1), last(price)

from StockTickEvent

group by symbol

output last every 2 sec

rate(number_of_seconds [,

filter:filter_expression])

Returns an event arrival rate per second over the provided

number of seconds, computed based on engine time.

Returns null until events fill the number of seconds. Useful

with output snapshot to output a current rate. This function

footprint is for use without a data window onto the stream(s).

A sample statement to output, every 2 seconds, the arrival rate

per second considering the last 10 seconds of events is shown

here:

select rate(10) from StockTickEvent

output snapshot every 2 sec

The aggregation function retains an engine timestamp value for

each arriving event.

rate(timestamp_property[,

accumulator] [,

filter:filter_expression])

Returns an event arrival rate over the data window including the

last remove stream event. The timestamp_property is the name

of a long-type property of the event that provides a timestamp

value.

The first parameter is a property name or expression providing

millisecond timestamp values.

The optional second parameter is a property or expression for

computing an accumulation rate: If a value is provided as a

Chapter 10. EPL Reference: Fu...

376

Aggregate Function Result

second parameter then the accumulation rate for that quantity

is returned (e.g. turnover in dollars per second).

This footprint is designed for use with a data window and

requires a data window declared onto the stream. Returns null

until events start leaving the window.

This sample statement outputs event rate for each group

(symbol) with fixed sample size of four events (and considering

the last event that left). The timestamp event property must be

part of the event for this to work.

select colour, rate(timestamp) as rate

from StockTickEvent#groupwin(symbol)#length(4)

group by symbol

Built-in aggregation functions can be disabled via configuration (see Section 17.4.25.4, “Extended

Built-in Aggregation Functions”). A custom aggregation function of the same name as a built-on

function may be registered to override the built-in function.

10.3. User-Defined Functions

A user-defined function (UDF) is a single-row function that can be invoked anywhere as an

expression itself or within an expresson. The function must simply be a public static method that

the classloader can resolve at statement creation time. The engine resolves the function reference

at statement creation time and verifies parameter types.

For information on calling external services via instance method invocation, please see

Section 5.17.5, “Class and Event-Type Variables”. For invoking methods on events, please see

Section 5.4.5, “Using the Stream Name”

You may register your own function name for the user-defined function. Please see the instructions

in Section 19.3, “Single-Row Function” for registering a function name for a user-defined single-

row function.

A single-row function that has been registered with a function name can simply be referenced

as function_name(parameters) thus EPL statements can be less cluttered as no class name

is required. The engine also optimizes evaluation of such registered single-row functions when

used in filter predicate expressions as described in Section 19.3.4, “Single-Row Functions in Filter

Predicate Expressions”.

An example EPL statement that utilizes the discount function is shown next (assuming that

function has been registered).

User-Defined Functions

377

select discount(quantity, price) from OrderEvent

When selecting from a single stream, use the wildcard (*) character to pass the underlying event:

select discount(*) from OrderEvent

Alternatively use the stream alias or EPL pattern tag to pass an event:

select discount(oe) from OrderEvent as oe

User-defined functions can be also be invoked on instances of an event: Please see Section 5.4.5,

“Using the Stream Name” to invoke event instance methods on a named stream.

Note that user-defined functions (not single-row functions) are candidate for caching their return

result if the parameters passed are constants and they are not used chained. Please see below

for details and configuration.

The example below assumes a class MyClass that exposes a public static method myFunction

accepting 2 parameters, and returing a numeric type such as double.

select 3 * com.mycompany.MyClass.myFunction(price, volume) as myValue

from StockTick#time(30 sec)

User-defined functions also take array parameters as this example shows. The section on

Section 9.5, “Array Definition Operator” outlines in more detail the types of arrays produced.

select * from RFIDEvent where com.mycompany.rfid.MyChecker.isInZone(zone, {10,

 20, 30})

Java class names have to be fully qualified (e.g. java.lang.Math) but Esper provides a mechanism

for user-controlled imports of classes and packages as outlined in Section 17.4.7, “Class and

package imports”.

User-defined functions can return any value including null, Java objects or arrays. Therefore

user-defined functions can serve to transform, convert or map events, or to extract information

and assemble further events.

The following statement is a simple pattern that looks for events of type E1 that are followed by

events of type E2. It assigns the tags "e1" and "e2" that the function can use to assemble a final

event for output:

Chapter 10. EPL Reference: Fu...

378

select MyLib.mapEvents(e1, e2) from pattern [every e1=E1 -> e2=E2]

User-defined functions may also be chained: If a user-defined function returns an object then the

object can itself be the target of the next function call and so on.

Assume that there is a calculator function in the MyLib class that returns a class which provides

the search method taking two parameters. The EPL that takes the result of the calculator

function and that calls the search method on the result and returns its return value is shown below:

select MyLib.calculator().search(zonevariable, zone) from RFIDEvent]

A user-defined function should be implemented thread-safe.

10.3.1. Event Type Conversion via User-Defined Function

A function that converts from one event type to another event type is shown in the next example.

The first statement declares a stream that consists of MyEvent events. The second statement

employs a conversion function to convert MyOtherEvent events to events of type MyEvent:

insert into MyStream select * from MyEvent

 insert into MyStream select MyLib.convert(other) from MyOtherEvent as other

In the example above, assuming the event classes MyEvent and MyOtherEvent are Java classes,

the static method should have the following footprint:

public static MyEvent convert(MyOtherEvent otherEvent)

10.3.2. User-Defined Function Result Cache

For user-defined functions that take no parameters or only constants as parameters the engine

automatically caches the return result of the function, and invokes the function only once. This

is beneficial to performance if your function indeed returns the same result for the same input

parameters.

You may disable caching of return values of user-defined functions via configuration as described

in Section 17.4.25.3, “User-Defined Function or Static Method Cache”.

10.3.3. Parameter Matching

EPL follows Java standards in terms of widening, performing widening automatically in cases

where widening type conversion is allowed without loss of precision, for both boxed and primitive

types.

Select-Clause transpose Function

379

When user-defined functions are overloaded, the function with the best match is selected based

on how well the arguments to a function can match up with the parameters, giving preference to

the function that requires the least number of widening conversions.

User-defined functions that can receive an arbitrary number of parameter values can use varargs,

i.e. can define a function such as function(T arg1, T... args) {...}.

Boxing and unboxing of arrays is not supported in UDF as it is not supported in Java. For example,

an array of Integer and an array of int are not compatible types.

When passing the event or underlying event to your method, either declare the parameter

to take EventBean (i.e. myfunc(EventBean event)) or as the underlying event type (i.e.

myfunc(OrderEvent event)).

When using {} array syntax in EPL, the resulting type is always a boxed type: "{1, 2}" is an array

of Integer (and not int since it may contain null values), "{1.0, 2d}" is an array of Double and

"{'A', "B"}" is an array of String, while "{1, "B", 2.0}" is an array of Object (Object[]).

10.3.4. Receiving a Context Object

Esper can pass an object containing contextual information such as statement name, function

name, engine URI and context partition id to your method. The container for this information

is EPLMethodInvocationContext in package com.espertech.esper.client.hook. Please

declare your method to take EPLMethodInvocationContext as the last parameter. The engine

then passes the information along.

A sample method footprint and EPL are shown below:

public static double computeSomething(double number, EPLMethodInvocationContext

 context) {...}

select MyLib.computeSomething(10) from MyEvent

10.4. Select-Clause transpose Function

The transpose function is only valid in the select-clause and indicates that the result of the

parameter expression should become the underlying event object of the output event.

The transpose function takes a single expression as a parameter. The result object of the

parameter expression is subject to transposing as described below.

The function can be useful with insert into to allow an object returned by an expression to

become the event itself in the output stream.

Chapter 10. EPL Reference: Fu...

380

Any expression returning a Java object can be used with the transpose function. Typical

examples for expressions are a static method invocation, the result of an enumeration method,

a plug-in single row function or a subquery.

The examples herein assume that a single-row function by name makeEvent returns an

OrderEvent instance (a POJO object, not shown).

The following EPL takes the result object of the invocation of the makeEvent method (assumed

to be an OrderEvent instance) and returns the OrderEvent instance as the underlying event of

the output event:

select transpose(makeEvent(oi)) from OrderIndication oi

Your select-clause can select additional properties or expressions. In this case the output event

underlying object is a pair of the expression result object and the additional properties.

The next EPL also selects the origin property of the order indication event. The output event is

a pair of the OrderEvent instance and a map containing the property name and value of origin:

select origin, transpose(makeEvent(oi)) from OrderIndication oi

If the transpose function is not a top-level function, i.e. if it occurs within another expression or

within any other clause then the select-clause, the function simply returns the expression result

of the parameter expression.

10.4.1. Transpose with Insert-Into

You may insert transposed output events into another stream.

If the stream name in the insert-into clause is already associated to an event type, the engine

checks whether the event type associated to the stream name provided in the insert-into clause

matches the event type associated to the object returned by the expression. If the stream name

in the insert-into clause is not already associated to an existing event type the engine associates

a new event type using the stream name provided in the insert-into clause.

The type returned by the expression must match the event representation that is defined for the

stream, i.e. must be a subtype or implementation of the respective class (POJO, object-array or

Map).

For example, the next statement associates the stream name OrderEvent with a class.

Alternatively this association can be achieved via static or runtime configuration API:

create schema OrderEvent as com.mycompany.OrderEvent

Transpose with Insert-Into

381

An EPL statement can insert into the OrderEvent stream the OrderEvent instance returned by

the makeEvent method, as follows:

insert into OrderEvent select transpose(makeEvent(oi)) from OrderIndication oi

It is not valid to select additional properties or expressions in this case, as they would not be part

of the output event. The following is not valid:

// not valid

insert into OrderEvent select origin, transpose(makeEvent(oi)) from

 OrderIndication oi

382

Chapter 11.

383

Chapter 11. EPL Reference:

Enumeration Methods

11.1. Overview

EPL provides enumeration methods that work with lambda expressions to perform common

tasks on subquery results, named windows, tables, event properties or inputs that are or can be

projected to a collection of events, scalar values or objects.

Enumeration methods are stateless and the use of enumeration methods alone does not cause

the engine to retain any events or other state (with the possible exception of short-lived caching

of evaluation results).

A lambda expression is an anonymous expression. Lambda expressions are useful for

encapsulating user-defined expressions that are applied to each element in a collection. This

section discusses built-in enumeration methods and their lambda expression parameters.

Lambda expressions use the lambda operator =>, which is read as "goes to" (-> may be used

and is equivalent). The left side of the lambda operator specifies the lambda expression input

parameter(s) (if any) and the right side holds the expression. The lambda expression x => x * x

is read "x goes to x times x.". Lambda expressions are also used for expression declaration as

discussed in Section 5.2.9, “Expression Declaration”.

When writing lambdas, you do not have to specify a type for the input parameter(s) or output

result(s) because the engine can infer all types based on the input and the expression body.

So if you are querying an RFIDEvent, for example, then the input variable is inferred to be an

RFIDEvent event, which means you have access to its properties and methods.

The term element in respect to enumeration methods means a single event, scalar value or object

in a collection that is the input to an enumeraton method. The term collection means a sequence

or group of elements.

The below table summarizes the built-in enumeration methods available:

Table 11.1. Enumeration Methods

Method Result

aggregate(seed, accumulator

lambda)

Aggregate elements by using seed as an initial accumulator

value and applying an accumulator expression.

Section 11.6.1, “Aggregate”.

allof(predicate lambda) Return true when all elements satisfy a condition.

Section 11.6.2, “AllOf”.

anyof(predicate lambda) Return true when any element satisfies a condition.

Chapter 11. EPL Reference: En...

384

Method Result

Section 11.6.3, “AnyOf”.

average() Computes the average of values obtained from numeric

elements.

Section 11.6.4, “Average”.

average(projection lambda) Computes the average of values obtained from elements by

invoking a projection expression on each element.

Section 11.6.4, “Average”.

countof() Returns the number of elements.

Section 11.6.5, “CountOf”.

countof(predicate lambda) Returns the number of elements that satisfy a condition.

Section 11.6.5, “CountOf”.

distinctOf() Returns distinct elements according to default hash and equals

semantics.

Section 11.6.6, “DistinctOf”.

distinctOf(key-selector

lambda)

Returns distinct elements according using the key function

provided.

Section 11.6.6, “DistinctOf”.

except(source) Produces the set difference of the two collections.

Section 11.6.7, “Except”.

firstof() Returns the first element.

Section 11.6.8, “FirstOf”.

firstof(predicate lambda) Returns the first element that satisfies a condition.

Section 11.6.8, “FirstOf”.

groupby(key-selector lambda) Groups the elements according to a specified key-selector

expression.

Section 11.6.9, “GroupBy”.

groupby(key-selector lambda,

value-selector lambda)

Groups the elements according to a key-selector expression

mapping each element to a value according to a value-selector.

Section 11.6.9, “GroupBy”.

intersect(source) Produces the set intersection of the two collections.

Section 11.6.10, “Intersect”.

Overview

385

Method Result

lastof() Returns the last element.

Section 11.6.11, “LastOf”.

lastof(predicate lambda) Returns the last element that satisfies a condition.

Section 11.6.11, “LastOf”.

leastFrequent() Returns the least frequent value among a collection of values.

Section 11.6.12, “LeastFrequent”.

leastFrequent(transform

lambda)

Returns the least frequent value returned by the transform

expression when applied to each element.

Section 11.6.12, “LeastFrequent”.

max() Returns the maximum value among a collection of elements.

Section 11.6.13, “Max”.

max(value-selector lambda) Returns the maximum value returned by the value-selector

expression when applied to each element.

Section 11.6.13, “Max”.

maxby(value-selector lambda) Returns the element that provides the maximum value returned

by the value-selector expression when applied to each element.

Section 11.6.14, “MaxBy”.

min() Returns the minimum value among a collection of elements.

Section 11.6.13, “Max”.

min(value-selector lambda) Returns the minimum value returned by the value-selector

expression when applied to each element.

Section 11.6.15, “Min”.

minby(value-selector lambda) Returns the element that provides the minimum value returned

by the value-selector expression when applied to each

element..

Section 11.6.16, “MinBy”.

mostFrequent() Returns the most frequent value among a collection of values.

Section 11.6.17, “MostFrequent”.

mostFrequent(transform

lambda)

Returns the most frequent value returned by the transform

expression when applied to each element.

Section 11.6.17, “MostFrequent”.

orderBy() Sorts the elements in ascending order.

Chapter 11. EPL Reference: En...

386

Method Result

Section 11.6.18, “OrderBy and OrderByDesc”.

orderBy(key-selector lambda) Sorts the elements in ascending order according to a key.

Section 11.6.18, “OrderBy and OrderByDesc”.

orderByDesc() Sorts the elements in descending order.

Section 11.6.18, “OrderBy and OrderByDesc”.

orderByDesc(key-selector

lambda)

Sorts the elements in descending order according to a key.

Section 11.6.18, “OrderBy and OrderByDesc”.

reverse Reverses the order of elements.

Section 11.6.19, “Reverse”.

selectFrom(transform lambda) Transforms each element resulting in a collection of

transformed elements.

Section 11.6.20, “SelectFrom”.

sequenceEqual(second) Determines whether two collections are equal by comparing

each element (equals semantics apply).

Section 11.6.21, “SequenceEqual”.

sumOf() Computes the sum from a collection of numeric elements.

Section 11.6.22, “SumOf”.

sumOf(projection lambda) Computes the sum by invoking a projection expression on each

element.

Section 11.6.22, “SumOf”.

take(numElements) Returns a specified number of contiguous elements from the

start.

Section 11.6.23, “Take”.

takeLast(numElements) Returns a specified number of contiguous elements from the

end.

Section 11.6.24, “TakeLast”.

takeWhile(predicate lambda) Returns elements from the start as long as a specified condition

is true.

Section 11.6.25, “TakeWhile”.

takeWhile((predicate, index)

lambda)

Returns elements from the start as long as a specified condition

is true, allowing each element's index to be used in the logic of

the predicate expression.

Example Events

387

Method Result

Section 11.6.25, “TakeWhile”.

takeWhileLast(predicate) Returns elements from the end as long as a specified condition

is true.

Section 11.6.26, “TakeWhileLast”.

takeWhileLast((predicate,index)

lambda)

Returns elements from the end as long as a specified condition

is true, allowing each element's index to be used in the logic of

the predicate expression.

Section 11.6.26, “TakeWhileLast”.

toMap(key-selector lambda,

value-selector lambda)

Returns a Map according to specified key selector and value-

selector expressions.

Section 11.6.27, “ToMap”.

union(source) Forms a union of the input elements with source elements.

Section 11.6.28, “Union”.

where(predicate lambda) Filters elements based on a predicate.

Section 11.6.29, “Where”.

where((predicate,index)

lambda)

Filters elements based on a predicate, allowing each element's

index to be used in the logic of the predicate expression.

Section 11.6.29, “Where”.

11.2. Example Events

The examples in this section come out of the domain of location report (aka. RFID, asset tracking

etc.) processing:

1. The Item event is a report of the location of a certain item. An item can be either a piece of

luggage or a passenger.

2. The LocationReport event contains a list of Item items for which it reports location.

3. The Zone event describes areas that items may move through.

The examples use example single-row functions for computing the distance (distance) and

for determining if a location falls within a rectangle (inrect) that are not provided by the EPL

language. These example UDF functions are not enumeration methods and are used in EPL

statements to provide a sensible example.

The Item event contains an assetId id, a (x,y) location, a luggage flag to indicate whether the

item represents a luggage (true) or passenger (false), and the assetIdPassenger that holds the

asset id of the associated passenger when the item is a piece of luggage.

Chapter 11. EPL Reference: En...

388

The Item event is defined as follows (access methods not shown for brevity):

public class Item {

 String assetId; // passenger or luggage asset id

 Location location; // (x,y) location

 boolean luggage; // true if this item is a luggage piece

 String assetIdPassenger; // if the item is luggage, contains passenger

 associated

...

The LocationReport event contains a list of Item items for which it reports events.

The LocationReport event is defined as follows:

public class LocationReport {

 List<Item> items;

...

The Zone event contains a zone name and (x1, y1, x2, y2) rectangle.

The Zone event is defined as follows:

public class Zone {

 String name;

 Rectangle rectangle;

...

The Location object is a nested object to Item and provides the current (x,y) location:

public class Location {

 int x;

 int y;

...

The Rectangle object is a nested object to Zone and provides a zone rectangle(x1,y1,x2,y2):

public class Rectangle {

 int x1;

 int y1;

 int x2;

 int y2;

How to Use

389

...

11.3. How to Use

11.3.1. Syntax

The syntax for enumeration methods is the same syntax as for any chained invocation:

input_coll.enum_method_name([method_parameter [, method_parameter [,...]]])

 .[[enum_method_name(...) [...]] | property_name]

Following the input_coll input collection (options outlined below), is the . (dot) operator and the

enum_method_name enumeration method name. It follows in parenthesis a comma-separated

list of method parameter expressions. Additional enumeration methods can be chained thereafter.

An event property name can follow for those enumeration methods returning an event-typed (non-

scalar) element.

If the method parameter is a lambda expression with a single lambda-parameter, specify the

lambda-parameter name followed by the => lambda operator and followed by the expression. The

synopsis for use with a single lambda-parameter is:

method_parameter: lamda_param => lamda_expression

If the method parameter is a lambda expression with two or more lambda-parameters, specify

the lambda parameter names in parenthesis followed by the => lambda operator followed by the

expression. The synopsis for use with multiple lambda-parameters is:

method_parameter: (lamda_param [,lamda_param [,...]]) => lamda_expression

Generally for lambda expressions, the engine applies the lambda expression to each element in

the input collection. The expression yields a result that, depending on the particular enumeration

method, is used for aggregation, as a filter or for output, for example.

11.3.2. Introductory Examples

Let's look at an EPL statement that employs the where enumeration method and a lambda

expression. This example returns items that have a (x, y) location of (0, 0):

select items.where(i => i.location.x = 0 and i.location.y = 0) as zeroloc

from LocationReport

As enumeration methods can be chained, this selection is equivalent:

Chapter 11. EPL Reference: En...

390

select items.where(i => i.location.x = 0).where(i => i.location.y = 0) as zeroloc

from LocationReport

According to above statement the engine outputs in field zeroloc a collection of Item objects

matching the condition.

The where enumeration method has a second version that has two lambda-parameters. The

second parameter is the name of the index property which represents the current index of the

element within the collection.

This sample query returns a collection that consists of the first 3 items. This sample query does

not use the item lambda parameter:

select items.where((item, indexElement) => indexElement < 3) as firstThreeItems

from LocationReport

11.3.3. Input, Output and Limitations

It is not necessary to use classes for event representation. The example above applies the same

to Object-array, Map or XML underlying events.

For most enumeration methods the input can be any collection of events, scalar values or objects.

For some enumeration methods limitations apply that are documented below. For example,

the sumOf enumeration method requires a collection of numeric scalar values if used without

parameters. If the input to sumOf is a collection of events or scalar values the enumeration method

requires a lambda expression as parameter that yields the numeric value to use to compute the

sum.

Many examples of this section operate on the collection returned by the event property items in

the LocationReport event class. There are many other inputs yielding collections as listed below.

Most examples herein use an event property as a input simply because the example can thus be

brief and does not need to refer to a subquery, named window, table or other concept.

For enumeration methods that return a collection, for example where and orderBy, the engine

outputs an implementation of the Collection interface that contains the selected value(s). The

collection returned must be considered read-only. As Java does not allow resettable iterators,

the Collection interface allows more flexibility to query size and navigate among collection

elements. We recommend against down-casting a collection returned by the engine to a more

specific subclass of the Collection interface.

For enumeration methods that return an element, for example firstOf, lastOf, minBy and maxBy

the engine outputs the scalar value or the underlying event if operating on events. You may add

an event property name after the enumeration method to return a property value.

Enumeration methods generally retain the order of elements provided by the collection.

Inputs

391

The following restrictions apply to enumeration methods:

1. Enumeration methods returning a collection return a read-only implementation of the

Collection interface. You may not use any of the write-methods such as add or remove on

a result collection.

11.4. Inputs

The input of data for built-in enumeration methods is a collection of scalar values, events or other

objects. Input can originate from any of the following:

1. A subquery.

2. A named window.

3. A table.

4. A property of an event that is itself a collection of events or classes, i.e. an indexed property.

5. Any of the event aggregation functions (window, first, last, sorted, maxby, minby,

maxbyever, minbyever).

6. The special prevwindow, prev and prevtail single-row functions.

7. A plug-in single-row function, a user-defined function, a script or an enum type.

8. A declared expression.

9. Another enumeration method that returns a collection.

10.An array returned by the {} array operator.

11.A collection or array returned by a method call on an event or a method call on a variable.

12.A variable. Usually variables declared as an array.

13.A substitution parameter value provided by a prepared statement.

14.In a match-recognize pattern, a group variable.

15.In an EPL pattern, events collected in a repeat ([...]) and a repeat-until (... until ...).

11.4.1. Subquery Results

Subqueries can return the rows of another stream's data window or rows from a named window

or table. By providing a where-clause the rows returned by a subquery can be correlated to data

provided by stream(s) in the from-clause. See Section 5.11, “Subqueries”.

A subquery that selects (*) wildcard provides a collection of events as input. A subquery that

selects a single value expression provides a collection of scalar values as input. Subqueries that

selects multiple value expressions are not allowed as input to enumeration methods.

The following example uses a subquery to retrieve all zones for each location report item where

the location falls within the rectangle of the zone. Please see a description of example events

and functions above.

select assetId,

 (select * from Zone#unique(name)).where(z => inrect(z.rectangle, location))

 as zones

Chapter 11. EPL Reference: En...

392

from Item

You may place the subquery in an expression declaration to reuse the subquery in multiple places

of the same EPL statement.

This sample EPL declares the same query as above in an expression declaration:

expression myquery {itm =>

 (select * from Zone#unique(name)).where(z => inrect(z.rectangle, itm.location))

}

select assetId, myquery(item) as subq,

 myquery(item).where(z => z.zone = 'Z01') as assetItem

from Item as item

The above query also demonstrates how an enumeration method, in the example the where-

method, can be run across the results returned by a subquery in an expression declaration.

Place a single column in the subquery select-clause to provide a collection of scalar values as

input.

The next example selects all names of zones and orders the names returning an order collection

of string names every 30 seconds:

select (select name from Zone#unique(name)).orderBy() as orderedZones

from pattern[every timer:interval(30)]

The next example utilizes a subquery that counts zone events per name and finds those that have

a count greater then 1:

select (select name, count(*) as cnt from Zone#keepall group by name)

 .where(v => cnt > 1) from LocationReport]

When the subquery selects a single column that is itself an event, the result of the subquery is a

collection of events of that type and can provide input to enumeration methods.

For example:

create schema SettlementEvent (symbol string);

create schema PriceEvent (symbol string, price double);

Named Window

393

create schema OrderEvent (orderId string, pricedata PriceEvent);

select (select pricedata from OrderEvent#unique(orderId))

 .anyOf(v => v.symbol = 'GE') as has_ge from SettlementEvent(symbol = 'GE')

Note that the engine can cache intermediate results thereby is not forced to re-evaluate the

subquery for each occurrence in the select-clause.

11.4.2. Named Window

Named windows are globally-visible data windows. See Section 6.2, “Named Window Usage”.

You may specify the named window name as input for an enumeration method and can optionally

provide a correlation where-clause. The syntax is equivalent to a sub-query against a named

window but much shorter.

Synopsis:

named-window-name[(correlation-expression)].enum-method-name(...)

When selecting all events in a named window you do not need the correlation-expression.

To select a subset of data in the named window, specify a correlation-expression. From the

perspective of best runtime performance, a correlation expression is preferred to reduce the

number of rows returned.

The following example first declares a named window to hold the last zone event per zone name:

create window ZoneWindow#unique(name) as Zone

Then we create a statement to insert zone events that arrive to the named window:

insert into ZoneWindow select * from Zone

Finally this statement queries the named window to retrieve all zones for each location report item

where the location falls within the rectangle of the zone:

select ZoneWindow.where(z => inrect(z.rectangle, location)) as zones from Item

If you have a filter or correlation expression, append the expression to the named window name

and place in parenthesis.

Chapter 11. EPL Reference: En...

394

This slightly modified query is the example above except that it adds a filter expression such that

only zones with name Z1, Z2 or Z3 are considered:

select ZoneWindow(name in ('Z1', 'Z2', 'Z3')).where(z => inrect(z.rectangle,

 location)) as zones

from Item

You may prefix property names provided by the named window with the name to disambiguate

property names.

This sample query prefixed the name property and returns the count of matching zones:

select ZoneWindow(ZoneWindow.name in ('Z1', 'Z2', 'Z3')).countof()) as zoneCount

from Item

The engine internally interprets the shortcut syntax and creates a subquery from it. Thus all

indexing and query planning for subqueries against named windows apply here as well.

11.4.3. Table

Tables are globally-visible data structures. See Section 6.3, “Table Usage”.

Tables can hold aggregation state such as the window and sorted aggregation state.

The example EPL below declares a table to hold StockTick events in a column named theTicks:

create table MyTable(theTicks window(*) @type(StockTick))

The table column can be input to an enumeration method, for example:

select MyTable.theTicks.anyOf(v=> price > 100) from MyEvent

11.4.4. Event Property

Indexed event properties are event properties that are a collection, array or iterable of scalar

values or objects.

The LocationReport event from the example contains a list of Item events. Any indexed property

(list, array, collection, iterable) is eligible for use as input to an enumeration method. If the indexed

property contains non-scalar objects the objects are treated as events and can be used as input

to enumeration methods as a collection of events.

Event Aggregation Function

395

The next sample query returns items that are less then 20 units away from the center, taking the

items event property provided by each LocationReport event as input:

select items.where(p => distance(0, 0, p.location.x, p.location.y) < 20) as

 centeritems

from LocationReport

The following example consists of two statements: The first statement declares an a new event

type and the second statement invokes the sequenceEqual method to compare sequences

contained in two properties of the same event:

create schema MyEvent (seqone String[], seqtwo String[])

select seqone.sequenceEqual(seqtwo) from MyEvent

11.4.5. Event Aggregation Function

Event aggregation functions return an event or multiple events. They are aggregation functions

and as such sensitive to the presence of group by. See Section 10.2.2, “Event Aggregation

Functions”.

You can use window, first or last event aggregation functions as input to an enumeration

method. Specify the * wildcard as the parameter to the event aggregation function to provide a

collection of events as input. Or specify a property name as the parameter to event aggregation

function to provide a collection of scalar values as input.

You can use the sorted, maxby, minby, maxbyever or minbyever event aggregation functions as

input to an enumeration method. Specify one or more criteria expressions that provide the sort

order as parameters to the event aggregation function.

In this example query the window(*) aggregation function returns the last 10 seconds of item

location reports for the same asset id as the incoming event. Among that last 10 seconds of events

for the same asset id, the enumeration method returns those item location reports where the

distance to center is less then 20, for each arriving Item event.

Sample query:

select window(*).where(p => distance(0, 0, p.location.x, p.location.y) < 20) as

 centeritems

from Item(type='P')#time(10) group by assetId

Chapter 11. EPL Reference: En...

396

The next sample query instead selects the asset id property of all events and returns an ordered

collection:

select window(assetId).orderBy() as orderedAssetIds

from Item#time(10) group by assetId

The following example outputs the 5 highest prices per symbol among the last 10 seconds of

stock ticks:

select sorted(price desc).take(5) as highest5PricesPerSymbol

from StockTick#time(10) group by symbol

11.4.6. prev, prevwindow and prevtail Single-Row Functions as Input

The prev, prevwindow and prevtail single-row functions allow access into a stream's data

window however are not aggregation functions and and as such not sensitive to the presence of

group by. See Section 10.1.14, “The Previous-Window Function”.

When using any of the prev single-row functions as input to a built-in enumeration method you

can specify the stream name as a parameter to the function or an event property. The input to

the enumeration method is a collection of events if you specify the stream name, or a collection

of scalar value if you specify an event property.

In this example query the prevwindow(stream) single-row function returns the last 10 seconds

of item location reports, among which the enumeration method filters those item location reports

where the distance to center is less then 20, for each Item event that arrived in the last 10 seconds

considering passenger-type Item events only (see filter type = 'P').

Sample query:

select prevwindow(items)

 .where(p => distance(0, 0, p.location.x, p.location.y) < 20) as centeritems

from Item(type='P')#time(10) as items

This sample query demonstrates the use of the prevwindow function to return a collection of scalar

values (collection of asset id) as input to orderby:

select prevwindow(assetId).orderBy() as orderedAssetIds

from Item#time(10) as items

Single-Row Function, User-Defined Function and Enum Types

397

11.4.7. Single-Row Function, User-Defined Function and Enum

Types

Your single-row or user-defined function can return either an array or any collection that

implements either the Collection or Iterable interface. For arrays, the array component type

and for collections, the collection or iterable generic type should be the class providing event

properties.

As an example, assume a ZoneFactory class exists and a static method getZones() returns a

list of zones to filter items, for example:

public class ZoneFactory {

 public static Iterable<Zone> getZones() {

 List<Zone> zones = new ArrayList<Zone>();

 zones.add(new Zone("Z1", new Rectangle(0, 0, 20, 20)));

 return zones;

 }

}

Import the class through runtime or static configuration, or add the method above as a plug-in

single-row function.

The following query returns for each Item event all zones that the item belongs to:

select ZoneFactory.getZones().where(z => inrect(z.rectangle, item.location)) as

 zones

from Item as item

If the class and method were registered as a plug-in single-row function, you can leave the class

name off, for example:

select getZones().where(z => inrect(z.rectangle, item.location)) as zones

from Item as item

Your single-row or user-defined function can also return an array, collection or iterable or scalar

values.

For example, the static method getZoneNames() returns a list of zone names:

public static String[] getZoneNames() {

 return new String[] { "Z1", "Z2"};

Chapter 11. EPL Reference: En...

398

}

The following query returns zone names every 30 seconds and excludes zone Z1:

select getZoneNames().where(z => z != "Z1")

from pattern[every timer:interval(30)]

An enum type can also be a useful source for enumerable values.

The following sample Java declares an enum type EnumOfZones:

public enum EnumOfZones {

 ZONES_OUTSIDE(new String[] {"z1", "z2"}),

 ZONES_INSIDE(new String[] {"z3", "z4"})

 private final String[] zones;

 private EnumOfZones(String[] zones) {

 this.zones = zones;

 }

 public String[] getZones() {

 return zones;

 }

}

A sample statement that utilizes the enum type is shown next:

select EnumOfZones.ZONES_OUTSIDE.getZones().anyOf(v => v = zone) from Item

11.4.8. Declared Expression

A declared expression may return input data for an enumeration method.

The below query declares an expression that returns all passenger location reports among the

items in the location report event in a column named passengerCollection. The query uses the

result returned by the declared expression a second time to filter through the list returning the

passenger location report where the asset id is a given value in a column named passengerP01.

Sample query:

expression passengers {

Variables

399

 lr => lr.items.where(l => l.type='P')

}

select passengers(lr) as passengerCollection,

 passengers(lr).where(x => assetId = 'P01') as passengerP01

from LocationReport lr

The engine applies caching techniques to avoid re-evaluating the declared expression multiple

times.

11.4.9. Variables

A variable may provide input data for an enumeration method.

This constant of array type carries a list of invalid zones:

create constant variable string[] invalid_zones = { 'Z1', 'Z2' };

Sample query:

select invalid_zones.anyOf(v => v = name) as flagged from Zone

11.4.10. Substitution Parameters

A substitution paramater may provide input data for an enumeration method. The value of the

parameter must be array-typed.

Sample query:

select ?.anyOf(v => v = name) as flagged from Zone

11.4.11. Match-Recognize Group Variable

In a match-recognize pattern, the term group variables refers to identifiers that can collect multiple

events.

This example assumes an order event type and each order has an item id. This sample match-

recognize pattern finds a sequence of order events that concludes with an item id matching any

of the collected item ids since the last pattern match:

select * from Order

match_recognize (

Chapter 11. EPL Reference: En...

400

 measures A as a_array, B as b

 pattern (A* B)

 define

 B as A.anyOf(v=> v.itemId = B.itemId)

)

Both the define and the measures clause can contain expressions utilizing enumeration methods.

11.4.12. Pattern Repeat and Repeat-Until Operators

In an EPL pattern, the repeat and repeat-until pattern operators may collect multiple events.

The following pattern fires when two order events arrive followed by an order amendment event

that has an amount larger than the largest amount of any of the preceding order events:

select * from pattern [

 ([2] a=Order) -> b=OrderAmendment(amount > a.max(i => i.amount))

]

11.5. Example

Following the RFID asset tracking example as introduced earlier, this section introduces two use

cases solved by enumeration methods.

The first use case requires us to find any luggage that is more then 20 units away from

the passenger that the luggage belongs to. The declared expression lostLuggage solves this

question.

The second question to answer is: For each of such lost luggage what single other passenger

is nearest to that luggage. The declared expression nearestOwner which uses lostLuggage

answers this question.

Below is the complete EPL statement (one statement not multiple):

// expression to return a collection of lost luggage

expression lostLuggage {

 lr => lr.items.where(l => l.type='L' and

 lr.items.some(p => p.type='P' and p.assetId=l.assetIdPassenger

 and LRUtil.distance(l.location.x, l.location.y, p.location.x, p.location.y)

 > 20))

}

// expression to return all passengers

expression passengers {

 lr => lr.items.where(l => l.type='P')

Reference

401

}

// expression to find the nearest owner

expression nearestOwner {

 lr => lostLuggage(lr).toMap(key => key.assetId,

 value => passengers(lr).minBy(

 p => LRUtil.distance(value.location.x, value.location.y, p.location.x,

 p.location.y))

)

}

select lostLuggage(lr) as val1, nearestOwner(lr) as val2 from LocationReport lr

11.6. Reference

11.6.1. Aggregate

The aggregate enumeration method takes an expression providing the initialization value (seed)

and an accumulator lambda expression. The return value is the final accumulator value.

Via the aggregate method you may perform a calculation over elements. The method initializes

the aggregated value by evaluating the expression provided in the first parameter. The method

then calls the lambda expression of the second parameter once for each element in the input.

The lambda expression receives the last aggregated value and the element from the input. The

result of the expression replaces the previous aggregated value and returns the final result after

completing all elements.

An expression example with scalar values:

{1, 2, 3}.aggregate(0, (result, value) => result + value) // Returns 6

The example below aggregates price of each OrderEvent in the last 10 seconds computing a

total price:

// Initialization value is zero.

// Aggregate by adding up the price.

select window(*).aggregate(0, (result, order) => result + order.price) as

 totalPrice

from OrderEvent#time(10)

In the query above, the initialization value is zero, result is used for the last aggregated value

and order denotes the element that the expression adds the value of the price property.

This example aggregation builds a comma-separated list of all asset ids of all items:

Chapter 11. EPL Reference: En...

402

select items.aggregate('',

 (result, item) => result || (case when result='' then '' else ',' end) ||

 item.assetId) as assets

from LocationReport

In above query, the empty string '' represents the initialization value. The name result is used

for the last aggregated value and the name item is used to denote the element.

The type value returned by the initialization expression must match to the type of value returned

by the accumulator lambda expression.

If the input is null the method returns null. If the input is empty the method returns the initialization

value.

11.6.2. AllOf

The allof enumeration method determines whether all elements satisfy the predicate condition.

The method takes a single parameter: The predicate lambda expression that must yield a Boolean

result. The enumeration method applies the lambda expression to each element and if the

expression returns true for all elements, the method returns true.

An expression example with scalar values:

{1, 2, 3}.allOf(v => v > 0) // Returns true as all values are > 0

{1, 2, 3}.allOf(v => v > 1) // Returns false

The EPL statement below returns true when all items are within 1000 unit distance of center:

select items.allof(i => distance(i.location.x, i.location.y, 0, 0) < 1000) as

 centered

from LocationReport

If the input is null the method returns null. If the input is empty the method returns true.

11.6.3. AnyOf

The anyof enumeration method determines whether any element satisfies the predicate condition.

The only parameter is the predicate lambda expression that must yield a Boolean result. The

enumeration method applies the lambda expression to each element and if the expression returns

true for all elements, the method returns true.

An expression example with scalar values:

Average

403

{1, 2, 3}.anyOf(v => v > 0) // Returns true

{1, 2, 3}.anyOf(v => v > 1) // Returns true

{1, 2, 3}.anyOf(v => v > 3) // Returns false

The EPL statement below return true when any of the items are within 10 unit distance of center:

select items.anyof(i => distance(i.location.x, i.location.y, 0, 0) < 10) as

 centered

from LocationReport

If the input is null the method returns null. If the input is empty the method returns false.

11.6.4. Average

The average enumeration method computes the average of scalar values. If passing a projection

lambda expression the method computes the average obtained by invoking the projection lambda

expression on each element.

The method takes a projection lambda expression yielding a numeric value as a parameter. It

applies the lambda expression to each element and computes the average of the result, returning

a Double value. A BigDecimal is returned for expressions returning BigInteger or BigDecimal.

An expression example with scalar values:

{1, 2, 3}.average() // Returns 2

The EPL statement as shown next computes the average distance from center among all items

in the location report event:

select items.average(i => distance(i.location.x, i.location.y, 0, 0)) as

 avgdistance

from LocationReport

If the input is null the method returns null. If the input is empty the method returns double zero

or BigDecimal zero. For BigDecimal precision and rounding, please see Section 17.4.25.6, “Math

Context”.

11.6.5. CountOf

The countof enumeration method returns the number of elements, or the number of elements

that satisfy a condition.

Chapter 11. EPL Reference: En...

404

The enumeration method has two versions: The first version takes no parameters and computes

the number of elements. The second version takes a predicate lambda expression that must yield

Boolean true or false, and computes the number of elements that satisfy the condition.

An expression example with scalar values:

{1, 2, 3}.countOf() // Returns 3

{1, 2, 3}.countOf(v => v < 2) // Returns 1

The next sample statement counts the number of items:

select items.countOf() as cnt from LocationReport

This example statement counts the number of items that have a distance to center that is less

then 20 units:

select items.countOf(i => distance(i.location.x, i.location.y, 0, 0) < 20) as

 cntcenter

from LocationReport

If the input is null the method returns null. If the input is empty the method returns integer zero.

11.6.6. DistinctOf

The distinctOf enumeration method returns distinct elements.

The enumeration method can take a single key-selector lambda expression as parameter and

returns distinct elements according to the key yielded by the expression. For same-value keys,

distinct returns the first element for that key.

An expression example with scalar values:

{2, 3, 2, 1}.distinctOf() // Returns {2, 3, 1}

This example returns items distinct by item id returning the first item for each distinct item id:

select items.distinctOf(i => itemId) as itemsNearFirst

from LocationReport

The key-selector lambda expression, when provided, must return a comparable type: Any primitive

or boxed or Comparable type is permitted.

Except

405

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

11.6.7. Except

The except enumeration method forms a set difference of the input elements with the elements

that the parameter expression yields.

The enumeration method takes a single parameter that must itself return a collection of events,

objects or scalar values. The method returns the elements of the first collection that do not appear

in the second collection.

An expression example with scalar values:

{1, 2, 3}.except({1}) // Returns {2, 3}

The following statement compares the items of the last location report against all items in the

previous 10 location reports, and reports for each combination only those items in the current item

report that are not also in the location report compared to:

select za.items.except(zb.items) as itemsCompared

from LocationReport as za unidirectional, LocationReport#length(10) as zb

If the input is null the method returns null. For scalar values and objects equals-semantics apply.

11.6.8. FirstOf

The firstOf enumeration method returns the first element or the first element that satisfies a

condition.

The method has two versions: The first version takes no parameters and returns the first element.

The second version takes a predicate lambda expression yielding true or false. It applies the

lambda expression to each element and returns the first element for which the expression returns

true. The return type is the element itself and not a collection. You may append a property name

to return the property value for the first element.

An expression example with scalar values:

{1, 2, 3}.firstOf() // Returns 1

{1, 2, 3}.firstOf(v => v / 2 > 1) // Returns 3

In the following EPL sample the query returns the first item that has a distance to center that is

less then 20 units:

Chapter 11. EPL Reference: En...

406

select items.firstof(i => distance(i.location.x, i.location.y, 0, 0) < 20) as

 firstcenter

from LocationReport

The next sample EPL returns the first item's asset id:

select items.firstof().assetId as firstAssetId from LocationReport

If the input is null, empty or if none of the elements match the condition the method returns null.

11.6.9. GroupBy

The groupby enumeration method groups the elements according to a specified key-selector

lambda expression. There are two version of the groupby method.

The first version of the method takes a key-selector lambda expression and returns a Map of key

with each value a list of objects, one for each distinct key that was encountered. The result is a

Map<Object, Collection<Object>> wherein object is the event underlying object.

The second version of the method takes a key-selector lambda expression and value-selector

lambda expression and returns a Map of key with each value a list of values, one for each distinct

key that was encountered. The result is a Map<Object, Collection<Object>> wherein object

is the result of applying the value-selector expression.

The next query filters out all luggage items using a where method and then groups by the luggage's

passenger asset id. It returns a map of passenger asset id and the collection of luggage items

for each passenger:

select items.where(type='L').groupby(i => assetIdPassenger) as luggagePerPerson

from LocationReport

The query shown below generates a map of item asset id and distance to center:

select items.groupby(

 k => assetId, v => distance(v.location.x, v.location.y, 0, 0)) as

 distancePerItem

from LocationReport

If the input is null the method returns null. Null values as key and value are allowed.

Intersect

407

11.6.10. Intersect

The intersect enumeration method forms a set intersection of the input elements with the

elements that the parameter expression yields.

The enumeration method takes a single parameter that must itself return a collection of events,

objects or scalar values. The method returns the elements of the first collection that also appear

in the second collection.

An expression example with scalar values:

{1, 2, 3}.intersect({2, 3}) // Returns {2, 3}

The following statement compares the items of the last location report against all items in the

previous 10 location reports, and reports for each combination all items in the current item report

that also occur in the other location report:

select za.items.intersect(zb.items) as itemsCompared

from LocationReport as za unidirectional, LocationReport#length(10) as zb

If the input is null the method returns null. For scalar values and objects equals-semantics apply.

11.6.11. LastOf

The lastOf enumeration method returns the last element or the last element that satisfies a

condition.

The method has two versions: The first version takes no parameters and returns the last element.

The second version takes a predicate lambda expression yielding true or false. It applies the

lambda expression to each element and returns the last element for which the expression returns

true. The return type is the element itself and not a collection. You may append a property name

to return the property value for the last element.

An expression example with scalar values:

{1, 2, 3}.lastOf() // Returns 3

{1, 2, 3}.lastOf(v => v < 3) // Returns 2

In the following EPL sample the query returns the last item that has a distance to center that is

less then 20 units:

select items.lastof(i => distance(i.location.x, i.location.y, 0, 0) < 20) as

 lastcenter

Chapter 11. EPL Reference: En...

408

from LocationReport

The next sample EPL returns the last item's asset id:

select items.lastof().assetId as lastAssetId from LocationReport

If the input is null, empty or if none of the elements match the condition the method returns null.

11.6.12. LeastFrequent

The leastFrequent enumeration method returns the least frequent value among a collection of

values, or the least frequent value after applying a transform expression to each element.

The method has two versions: The first version takes no parameters and returns the least frequent

value. The second version takes a transform lambda expression yielding the value to count

occurrences for. The method applies the lambda expression to each element and returns the

expression result value with the least number of occurrences. The return type is the type of value

in the collection or the type of value returned by the transform lambda expression if one was

provided.

An expression example with scalar values:

{1, 2, 3, 2, 1}.leastFrequent() // Returns 3

The example EPL below returns the least frequent item type, counting the distinct item types

among all items for the current LocationReport event:

select items.leastFrequent(i => type) as leastFreqType from LocationReport

If the input is null or empty the method returns null. The transform expression may also yield null.

A null value can be returned as the most frequent value if the most frequent value is null. If multiple

values have the same number of occurrences the method returns the first value with the least

number of occurrences considering the ordering of the collection.

11.6.13. Max

The max enumeration method returns the maximum value among a collection of values.

If no value-selector lambda expression is provided, the method finds the maximum.

If a value-selector lambda expression is provided, the enumeration method invokes a value-

selector lambda expression on each element and returns the maximum value. The type of value

returned follows the return type of the lambda expression that was provided as parameter.

MaxBy

409

An expression example with scalar values:

{1, 2, 3, 2, 1}.max() // Returns 3

The next query returns the maximum distance of any item from center:

select items.max(i => distance(i.location.x, i.location.y, 0, 0)) as maxcenter

from LocationReport

The value-selector lambda expression must return a comparable type: Any primitive or boxed type

or Comparable type is permitted.

If the input is null, empty or if none of the elements when transformed return a non-null value the

method returns null.

11.6.14. MaxBy

The maxBy enumeration method returns the element that provides the maximum value returned

by the value-selector lambda expression when applied to each element.

The enumeration method returns the element itself. You may append an event property name to

return a property value of the element.

The next query returns the first item with the maximum distance to center:

select items.maxBy(i => distance(i.location.x, i.location.y, 0, 0)) as

 maxItemCenter

from LocationReport

The next sample returns the type of the item with the largest asset id (string comparison) among

all items:

select items.maxBy(i => assetId).type as minAssetId from LocationReport

The transform expression must return a comparable type: Any primitive or boxed type or

Comparable type is permitted.

If the input is null, empty or if none of the elements when transformed return a non-null value the

method returns null.

11.6.15. Min

The min enumeration method returns the minimum value among a collection of values.

Chapter 11. EPL Reference: En...

410

If no value-selector lambda expression is provided, the method finds the minimum.

If a value-selector lambda expression is provided, the enumeration method invokes a value-

selector lambda expression on each element and returns the minimum value. The type of value

returned follows the return type of the lambda expression that was provided as parameter.

An expression example with scalar values:

{1, 2, 3, 2, 1}.min() // Returns 1

The next query returns the minimum distance of any item to center:

select items.min(i => distance(i.location.x, i.location.y, 0, 0)) as mincenter

from LocationReport

The transform expression must return a comparable type: Any primitive or boxed type or

Comparable type is permitted.

If the input is null, empty or if none of the elements when transformed return a non-null value the

method returns null.

11.6.16. MinBy

The minBy enumeration method returns the element that provides the minimum value returned by

the value-selector lambda expression when applied to each element.

The enumeration method returns the element itself. You may append an event property name to

return a property value of the element.

The next query returns the first item with the minimum distance to center:

select items.minBy(i => distance(i.location.x, i.location.y, 0, 0)) as

 minItemCenter

from LocationReport

The next sample returns the type of the item with the smallest asset id (string comparison) among

all items:

select items.minBy(i => assetId).type as minAssetId from LocationReport

The transform expression must return a comparable type: Any primitive or boxed or Comparable

type is permitted.

MostFrequent

411

If the input is null, empty or if none of the elements when transformed return a non-null value the

method returns null.

11.6.17. MostFrequent

The mostFrequent enumeration method returns the most frequent value among a collection of

values, or the most frequent value after applying a transform expression to each element.

The method has two versions: The first version takes no parameters and returns the most frequent

value. The second version takes a transform lambda expression yielding the value to count

occurrences for. The method applies the lambda expression to each element and returns the

expression result value with the most number of occurrences. The return type is the type of value

in the collection or the type of value returned by the transform lambda expression if one was

provided.

An expression example with scalar values:

{1, 2, 3, 2, 1, 2}.mostFrequent() // Returns 2

The example EPL below returns the least frequent item type, counting the distinct item types

among all items for the current LocationReport event:

select items.leastFrequent(i => type) as leastFreqType from LocationReport

If the input is null or empty the method returns null. The transform expression may also yield null.

A null value can be returned as the most frequent value if the most frequent value is null. If multiple

values have the same number of occurrences the method returns the first value with the most

number of occurrences considering the ordering of the collection.

11.6.18. OrderBy and OrderByDesc

The orderBy enumeration method sorts elements in ascending order according to a key. The

orderByDesc enumeration method sorts elements in descending order according to a key.

The enumeration method takes a single key-selector lambda expression as parameter and orders

elements according to the key yielded by the expression. For same-value keys, it maintains the

existing order.

An expression example with scalar values:

{2, 3, 2, 1}.orderBy() // Returns {1, 2, 2, 3}

This example orders all items from a location report according to their distance from center:

Chapter 11. EPL Reference: En...

412

select items.orderBy(i => distance(i.location.x, i.location.y, 0, 0)) as

 itemsNearFirst,

 items.orderByDesc(i => distance(i.location.x, i.location.y, 0, 0)) as

 itemsFarFirst

from LocationReport

The key-selector lambda expression must return a comparable type: Any primitive or boxed or

Comparable type is permitted.

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

11.6.19. Reverse

The reverse enumeration method simply reverses the order of elements returning a collection.

An expression example with scalar values:

{2, 3, 2, 1}.reverse() // Returns {1, 2, 3, 2}

The following EPL reverses the items:

select items.reverse() as reversedItems from LocationReport

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

11.6.20. SelectFrom

The selectFrom enumeration method transforms each element resulting in a collection of

transformed elements.

The enumeration method applies a transformation lambda expression to each element and returns

the result of each transformation as a collection. Use the new operator to yield multiple values for

each element, see Section 9.13, “The 'new' Keyword”.

The next EPL query returns a collection of asset ids:

select items.selectFrom(i => assetId) as itemAssetIds from LocationReport

This sample EPL query evaluates each item and returns the asset id as well as the distance from

center for each item:

SequenceEqual

413

select items.selectFrom(i =>

 new {

 assetId,

 distanceCenter = distance(i.location.x, i.location.y, 0, 0)

 }) as itemInfo from LocationReport

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

11.6.21. SequenceEqual

The sequenceEqual enumeration method determines whether two collections are equal by

comparing each element.

The method enumerates the two source collections in parallel and compares corresponding

elements by using the equals method to compare. The method takes a single parameter

expression that must return a collection containing elements of the same type as the input. The

method returns true if the two source sequences are of equal length and their corresponding

elements are equal.

An expression example with scalar values:

{1, 2, 3}.sequenceEqual({1}) // Returns false

{1, 2, 3}.sequenceEqual({1, 2, 3}) // Returns true

The following example compares the asset id of all items to the asset ids returned by a method

ItemUtil.redListed() which is assumed to return a list of asset id of string type:

select items.selectFrom(i => assetId).sequenceEquals(ItemUtil.redListed()) from

 LocationReport

If the input is null the method returns null.

11.6.22. SumOf

The sumOf enumeration method computes the sum. If a projection lambda expression is provided,

the method invokes the projection lambda expression on each element and computes the sum

on each returned value.

The projection lambda expression should yield a numeric value, BigDecimal or BigInteger value.

Depending on the type returned by the projection lambda expression the method returns either

Integer, Long, Double, BigDecimal or BigInteger.

An expression example with scalar values:

Chapter 11. EPL Reference: En...

414

{1, 2, 3}.sumOf() // Returns 6

The following example computes the sum of the distance of each item to center:

select items.sum(i => distance(i.location.x, i.location.y, 0, 0) as

 totalAllDistances

from LocationReport

If the input is null or empty the method returns null.

11.6.23. Take

The take enumeration method returns a specified number of contiguous elements from the start.

The enumeration method takes a single size (non-lambda) expression that returns an Integer

value.

An expression example with scalar values:

{1, 2, 3}.take(2) // Returns {1, 2}

The following example returns the first 5 items:

select items.take(5) as first5Items from LocationReport

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

11.6.24. TakeLast

The takeLast enumeration method returns a specified number of contiguous elements from the

end.

The enumeration method takes a single size (non-lambda) expression that returns an Integer

value.

An expression example with scalar values:

{1, 2, 3}.takeLast(2) // Returns {2, 3}

The following example returns the last 5 items:

TakeWhile

415

select items.takeLast(5) as last5Items from LocationReport

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

11.6.25. TakeWhile

The takeWhile enumeration method returns elements from the start as long as a specified

condition is true.

The enumeration method has two versions. The first version takes a predicate lambda expression

and the second version takes a predicate lambda expression and index for use within the predicate

expression. Both versions return elements from the start as long as the specified condition is true.

An expression example with scalar values:

{1, 2, 3}.takeWhile(v => v < 3) // Returns {1, 2}

{1, 2, 3}.takeWhile((v,ind) => ind > 2) // Returns {1, 2}

{1, 2, -1, 4, 5, 6}.takeWhile((v,ind) => ind < 5 and v > 0) // Returns {1,

 2} (Take while index<5 amd value>0)

This example selects all items from a location report in the order provided until the first item that

has a distance to center greater then 20 units:

select items.takeWhile(i => distance(i.location.x, i.location.y, 0, 0) < 20)

from LocationReport

The second version of the where represents the index of the input element starting at zero for

the first element.

The next example is similar to the query above but also limits the result to the first 10 items:

select items.takeWhile((i, ind) => distance(i.location.x, i.location.y, 0, 0)

 < 20) and ind < 10)

from LocationReport

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

Chapter 11. EPL Reference: En...

416

11.6.26. TakeWhileLast

The takeWhileLast enumeration method returns elements from the end as long as a specified

condition is true.

The enumeration method has two versions. The first version takes a predicate lambda expression

and the second version takes a predicate lambda expression and index for use within the predicate

expression. Both versions return elements from the end as long as the specified condition is true.

An expression example with scalar values:

{1, 2, 3}.takeWhileLast(v => v < 3) // Returns {} (empty collection)

{1, 2, 3}.takeWhileLast(v => v > 1) // Returns {2, 3}

{1, 2, 3}.takeWhileLast((v,ind) => ind > 2) // Returns {2, 3}

{1, 2, -1, 4, 5, 6}.takeWhileLast((v,ind) => ind < 5 and v > 0) // Returns {4,

 5, 6} (Take while index<5 amd value>0)

This example selects all items from a location report, starting from the last element and proceeding

backwards, until the first item that has a distance to center greater then 20 units:

select items.takeWhile(i => distance(i.location.x, i.location.y, 0, 0) < 20)

from LocationReport

The second version provides the index of the input element starting at zero for the last element

(reverse index).

The next example is similar to the query above but also limits the result to the last 10 items:

select items.takeWhile((i, ind) => distance(i.location.x, i.location.y, 0, 0)

 < 20) and ind < 10)

from LocationReport

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

11.6.27. ToMap

The toMap enumeration method returns a Map according to specified key-selector lambda

expression and value-selector lambda expression.

The enumeration method takes a key-selector expression and a value-selector expression. For

each element the method applies the key-selector expression to determine the map key and the

value-selector expression to determine the map value. If the key already exists in the map the

value is overwritten.

Union

417

The next example EPL outputs a map of item asset id and distance to center for each item:

select items.toMap(k => k.assetId, v => distance(v.location.x, v.location.y, 0,

 0)) as assetDistance

from LocationReport

If the input is null the method returns null. If the input is empty the method returns an empty map.

11.6.28. Union

The union enumeration method forms a union of the input elements with the elements that the

parameter expression yields.

The enumeration method takes a single parameter that must itself return a collection of events

(input), objects or scalar values. It appends the collection to the input elements and returns the

appended collection of elements.

An expression example with scalar values:

{1, 2, 3}.union({4, 5}) // Returns {1, 2, 3, 4, 5}

This example selects a union of all items that have an asset id of L001 or that are of type

passenger:

select items.where(i => i.assetId = 'L001')

 .union(items.where(i => i.type = 'P')) as itemsUnion

from LocationReport

If the input is null the method returns null.

11.6.29. Where

The where enumeration method filters elements based on a predicate.

The enumeration method has two versions. The first version takes a predicate lambda expression

and the second version takes a predicate lambda expression and index for use within the predicate

expression. Both version returns all elements for which the predicate expression is true.

An expression example with scalar values:

{1, 2, 3}.where(v => v != 2) // Returns {1, 3}

This example selects all items from a location report that are passenger-type:

Chapter 11. EPL Reference: En...

418

select items.where(p => p.type = 'P') from LocationReport

The second version of the where represents the index of the input element starting at zero for

the first element.

The example below selects all items from a location report that are passenger-type but ignores

the first 3 elements:

select items.where((p, ind) => p.type = 'P' and ind > 2) from LocationReport

If the input is null the method returns null. If the input is empty the method returns an empty

collection.

Chapter 12.

419

Chapter 12. EPL Reference: Date-

Time Methods

12.1. Overview

EPL date-time methods work on date-time values to perform common tasks such as comparing

times and time periods, adding or subtracting time periods, setting or rounding calendar fields and

querying fields.

Date-time methods operate on:

1. Any expression or event property that returns one of the below values:

a. A long-type millisecond or microsecond value.

b. A java.util.Calendar object including subclasses.

c. A java.util.Date object including subclasses.

d. A java.time.LocalDateTime object including subclasses.

e. A java.time.ZonedDateTime object including subclasses.

2. Any event for which the event type declares a start timestamp property name and optionally

also an end timestamp property name. Date-time methods operate on events by means of the

stream-alias.method-name syntax.

The below table summarizes the built-in date-time methods available:

Table 12.1. Date-Time Methods

Method Result

after(event or timestamp) Returns true if an event happens after another event, or a

timestamp is after another timestamp.

Section 12.4.5, “After”.

before(event or timestamp) Returns true if an event happens before another event, or a

timestamp is before another timestamp.

Section 12.4.6, “Before”.

between(timestamp,

timestamp, boolean, boolean)

Returns true if a timestamp is between two timestamps.

Section 12.3.1, “Between”.

coincides(event or timestamp) Returns true if an event and another event happen at the same

time, or two timestamps are the same value.

Chapter 12. EPL Reference: Da...

420

Method Result

Section 12.4.7, “Coincides”.

during(event or timestamp) Returns true if an event happens during the occurrence of

another event, or when a timestamps falls within the occurrence

of an event.

Section 12.4.8, “During”.

finishes(event or timestamp) Returns true if an event starts after another event starts and the

event ends at the same time as the other event.

Section 12.4.9, “Finishes”.

finishedBy(event or

timestamp)

Returns true if an event starts before another event starts and

ends at the same time as the other event.

Section 12.4.10, “Finished By”.

format()

format(format)

Formats the date-time returning a string.

Section 12.3.2, “Format”.

get(field) Returns the value of the given date-time value field.

Section 12.3.3, “Get (By Field)”.

getMillisOfSecond()

getSecondOfMinute()

getMinuteOfHour()

getHourOfDay()

getDayOfWeek()

getDayOfMonth()

getDayOfYear()

getWeekyear()

getMonthOfYear()

getYear()

getEra()

Returns the value of the given date-time value field.

Section 12.3.4, “Get (By Name) ”.

includes(event or timestamp) Returns true if the parameter event happens during the

occurrence of the event, or when a timestamps falls within the

occurrence of an event.

Section 12.4.11, “Includes”.

Overview

421

Method Result

meets(event or timestamp) Returns true if the event's end time is the same as another

event's start time.

Section 12.4.12, “Meets”.

metBy(event or timestamp) Returns true if the event's start time is the same as another

event's end time.

Section 12.4.13, “Met By”.

minus(duration-millis) Returns a date-time with the specified duration in long-type

milliseconds taken away.

Section 12.3.5, “Minus”.

minus(time-period) Returns a date-time with the specified duration in time-period

syntax taken away.

Section 12.3.5, “Minus”.

overlaps(event or timestamp) Returns true if the event starts before another event starts and

finishes after the other event starts, but before the other event

finishes (events have an overlapping period of time).

Section 12.4.14, “Overlaps”.

overlappedBy(event or

timestamp)

Returns true if the parameter event starts before the input

event starts and the parameter event finishes after the input

event starts, but before the input event finishes (events have

an overlapping period of time).

Section 12.4.15, “Overlapped By”.

plus(duration-millis) Returns a date-time with the specified duration in long-type

milliseconds added.

Section 12.3.6, “Plus”.

plus(time-period) Returns a date-time with the specified duration in time-period

syntax added.

Section 12.3.6, “Plus”.

roundCeiling(field) Returns a date-time rounded to the highest whole unit of the

date-time field.

Section 12.3.7, “RoundCeiling”.

roundFloor(field) Returns a date-time rounded to the lowest whole unit of the

date-time field.

Section 12.3.8, “RoundFloor”.

Chapter 12. EPL Reference: Da...

422

Method Result

roundHalf(field) Returns a date-time rounded to the nearest whole unit of the

date-time field.

Section 12.3.9, “RoundHalf”.

set(field, value) Returns a date-time with the specified field set to the value

returned by a value expression.

Section 12.3.10, “Set (By Field)”.

starts(event or timestamp) Returns true if an event and another event start at the same

time and the event's end happens before the other event's end.

Section 12.4.16, “Starts”.

startedBy(event or timestamp) Returns true if an event and another event start at the same

time and the other event's end happens before the input event's

end.

Section 12.4.17, “Started By”.

withDate(year,month,day) Returns a date-time with the specified date, retaining the time

fields.

Section 12.3.11, “WithDate”.

withMax(field) Returns a date-time with the field set to the maximum value for

the field.

Section 12.3.12, “WithMax”.

withMin(field) Returns a date-time with the field set to the minimum value for

the field.

Section 12.3.13, “WithMin”.

withTime(hour,minute,sec,msec)Returns a date-time with the specified time, retaining the date

fields.

Section 12.3.14, “WithTime”.

toCalendar() Returns the Calendar object for this date-time value.

Section 12.3.15, “ToCalendar”.

toDate() Returns the Date object for this date-time value.

Section 12.3.16, “ToDate”.

toMillisec() Returns the long-type milliseconds value for this date-time

value.

Section 12.3.17, “ToMillisec”.

How to Use

423

12.2. How to Use

12.2.1. Syntax

The syntax for date-time methods is the same syntax as for any chained invocation:

input_val.datetime_method_name([method_parameter [, method_parameter

 [,...]]])

 .[datetime_method_name(...) [...]]

Following the input_val input value is the . (dot) operator and the datetime_method_name

date-time method name. It follows in parenthesis a comma-separated list of method parameter

expressions. Additional date-time methods can be chained thereafter.

The input value can be any expression or event property that returns a value of

type long or java.util.Calendar or java.util.Date or java.time.LocalDateTime or

java.time.ZonedDateTime. If the input value is null, the expression result is also null.

The input value can also be an event. In this case the event type of the event must have the start

timestamp property name defined and optionally also the end timestamp property name.

The following example EPL statement employs the withTime date-time method. This example

returns the current engine time with the time-part set to 1 am:

select current_timestamp.withTime(1, 0, 0, 0) as time1am from MyEvent

As date-time methods can be chained, this EPL is equivalent:

select current_timestamp.set('hour', 1).set('min', 0).set('sec', 0).set('msec',

 0) as time1am

from MyEvent

The statement above outputs in field time1am a long-type value (milliseconds or microseconds)

reflecting 1am on the same date as engine time. Since the input value is provided by the built-in

current_timestamp function which returns current engine date as a long-type value the output

is also a long-type value.

You may apply a date-time method to an event property.

Assume that the RFIDEvent event type has a Date-type property by name timeTaken. The

following query rounds each time-taken value down to the nearest minute and outputs a Date-

type value in column timeTakenRounded:

Chapter 12. EPL Reference: Da...

424

select timeTaken.roundFloor('min') as timeTakenRounded from RFIDEvent

You may apply a date-time method to events. This example assumes that the RFIDEvent and

WifiEvent event types both have a timestamp property defined. The EPL compares the timestamps

of the RFIDEvent and the WifiEvent:

select rfid.after(wifi) as isAfter

from RFIDEvent#lastevent rfid, WifiEvent#lastevent wifi

For comparing date-time values and considering event duration (event start and end timestamps)

we recommend any of the interval algebra methods. You may also compare long-type values

using the between or in ranges and inverted ranges or relational operators (> , <, >=, <=).

From a performance perspective, the date-time method evaluation ensures that for each unique

chain of date-time methods only a single calendar objects is copied or created when necessary.

12.3. Calendar and Formatting Reference

12.3.1. Between

The between date-time method compares the input date-time value to the two date-time values

passed in and returns true if the input value falls between the two parameter values.

The synopsis is:

input_val.between(range_start, range_end [, include_start, include_end])

The method takes either 2 or 4 parameters. The first two parameters range_start and range_end

are expressions or properties that yield either a long-typed, Date-typed or Calendar-typed range

start and end value.

The next two parameters include_start and include_end are optional. If not specified, the range

start value and range end value are included in the range i.e. specify a closed range where

both endpoints are included. If specified, the expressions must return a boolean-value indicating

whether to include the range start value and range end value in the range.

The example below outputs true when the time-taken property value of the RFID event falls

between the time-start property value and the time-end property value (closed range includes

endpoints):

select timeTaken.between(timeStart, timeEnd) from RFIDEvent

Format

425

The example below performs the same test as above but does not include endpoints (open range

includes neither endpoint):

select timeTaken.between(timeStart, timeEnd, false, false) from RFIDEvent

If the range end value is less then the range start value, the algorithm reverses the range start

and end value.

If the input date-time value or any of the parameter values evaluate to null the method returns

a null result value.

12.3.2. Format

The format date-time method formats the date-time returning a string.

The method takes either no parameter or a single format parameter.

12.3.2.1. Format with Default Formatter

When passing no parameter, the method returns the date-time value formatted using the default

formatter as follows:

Table 12.2. RoundHalf Examples

Input String Formatter

long, Date, Calendar new SimpleDateFormat()

java.time.LocalTimeDate DateTimeFormatter.ISO_DATE_TIME

java.time.ZonedTimeDate DateTimeFormatter.ISO_ZONED_DATE_TIME

The example below outputs the time-taken property value of the RFID event:

select timeTaken.format() as timeTakenStr from RFIDEvent

12.3.2.2. Providing a Format

For input values that are long-typed, Date-typed or Calendar-typed you must provide an

expression that returns either:

• A String-type format that adheres to SimpleDateFormat rules.

• A DateFormat instance.

For input values that are LocalDateTime-typed or ZonedDateTime-typed you must provide an

expression that returns either:

Chapter 12. EPL Reference: Da...

426

• A String-type format that adheres to DateTimeFormatter rules.

• A DateTimeFormatter instance.

The engine evaluates the format expression at statement compilation time therefore the format

expression must return a value that is not computed from time or events.

For example:

select timeTaken.format('yyyy.MM.dd G 'at' HH:mm:ss') from RFIDEvent

select timeTaken.format(SimpleDateFormat.getDateInstance()) from RFIDEvent

select localDateTime.format(java.time.format.DateTimeFormatter.BASIC_ISO_DATE)

 from RFIDEvent

12.3.3. Get (By Field)

The get date-time method returns the value of the given date-time value field.

The method takes a single string-constant field name as parameter. Please see Section 5.2.1,

“Specifying Time Periods” for a list of recognized keywords (not case-sensitive).

The method returns the numeric value of the field within the date-time value. The value returned

adheres to Calendar-class semantics: For example, the value for month starts at zero and has a

maximum of 11 (Note: for LocalDateTime and ZonedDateTime the range for month is 1 to 12).

The example below outputs the month value of the time-taken property value of the RFID event:

select timeTaken.get('month') as timeTakenMonth from RFIDEvent

12.3.4. Get (By Name)

The following list of getter-methods are available: getMillisOfSecond(),

getSecondOfMinute(), getMinuteOfHour(), getHourOfDay(), getDayOfWeek(),

getDayOfMonth(), getDayOfYear(), getWeekYear(), getMonthOfYear(), getYear() and

getEra().

All get-methods take no parameter and return the numeric value of the field within the date-time

value. The value returned adheres to Calendar-class semantics: For example, the value for month

starts at zero and has a maximum of 11 (Note: for LocalDateTime and ZonedDateTime the range

for month is 1 to 12).

Minus

427

The example below outputs the month value of the time-taken property value of the RFID event:

select timeTaken.getMonthOfYear() as timeTakenMonth from RFIDEvent

12.3.5. Minus

The minus date-time method returns a date-time with the specified duration taken away.

The method has two versions: The first version takes the duration as a long-type millisecond value.

The second version takes the duration as a time-period expression, see Section 5.2.1, “Specifying

Time Periods”.

The example below demonstrates the time-period parameter to subtract two minutes from the

time-taken property value of the RFID event:

select timeTaken.minus(2 minutes) as timeTakenMinus2Min from RFIDEvent

The next example is equivalent but passes a millisecond-value instead:

select timeTaken.minus(2*60*1000) as timeTakenMinus2Min from RFIDEvent

12.3.6. Plus

The plus date-time method returns a date-time with the specified duration added.

The method has two versions: The first version takes the duration as a long-type millisecond value.

The second version takes the duration as a time-period expression, see Section 5.2.1, “Specifying

Time Periods”.

The next example adds two minutes to the time-taken property value of the RFID event:

select timeTaken.plus(2 minutes) as timeTakenPlus2Min from RFIDEvent

The next example is equivalent but passes a millisecond-value instead:

select timeTaken.plus(2*60*1000) as timeTakenPlus2Min from RFIDEvent

12.3.7. RoundCeiling

The roundCeiling date-time method rounds to the highest whole unit of the date-time field.

Chapter 12. EPL Reference: Da...

428

The method takes a single string-constant field name as parameter. Please see Section 5.2.1,

“Specifying Time Periods” for a list of recognized keywords (not case-sensitive).

The next example rounds-to-ceiling the minutes of the time-taken property value of the RFID event:

select timeTaken.roundCeiling('min') as timeTakenRounded from RFIDEvent

If the input time is 2002-05-30 09:01:23.050, for example, the output is 2002-05-30

09:02:00.000 (example timestamps are in format yyyy-MM-dd HH:mm:ss.SSS).

12.3.8. RoundFloor

The roundFloor date-time method rounds to the lowest whole unit of the date-time field.

The method takes a single string-constant field name as parameter. Please see Section 5.2.1,

“Specifying Time Periods” for a list of recognized keywords (not case-sensitive).

The next example rounds-to-floor the minutes of the time-taken property value of the RFID event:

select timeTaken.roundFloor('min') as timeTakenRounded from RFIDEvent

If the input time is 2002-05-30 09:01:23.050, for example, the output is 2002-05-30

09:01:00.000 (example timestamps are in format yyyy-MM-dd HH:mm:ss.SSS).

12.3.9. RoundHalf

The roundFloor date-time method rounds to the nearest whole unit of the date-time field.

The method takes a single string-constant field name as parameter. Please see Section 5.2.1,

“Specifying Time Periods” for a list of recognized keywords (not case-sensitive).

The next example rounds the minutes of the time-taken property value of the RFID event:

select timeTaken.roundHalf('min') as timeTakenRounded from RFIDEvent

The following table provides a few examples of the rounding (example timestamps are in format

yyyy-MM-dd HH:mm:ss.SSS):

Table 12.3. RoundHalf Examples

Input Output

2002-05-30 09:01:23.050 2002-05-30 09:01:00.000

2002-05-30 09:01:29.999 2002-05-30 09:01:00.000

2002-05-30 09:01:30.000 2002-05-30 09:02:00.000

Set (By Field)

429

This method is not support for LocalDateTime and ZonedDateTime input values.

12.3.10. Set (By Field)

The set date-time method returns a date-time with the specified field set to the value returned

by an expression.

The method takes a string-constant field name and an expression returning an integer-value as

parameters. Please see Section 5.2.1, “Specifying Time Periods” for a list of recognized keywords

(not case-sensitive).

The method returns the new date-time value with the field set to the provided value. Note that value

adheres to Calendar-class semantics: For example, the value for month starts at zero and has a

maximum of 11 (Note: for LocalDateTime and ZonedDateTime the range for month is 1 to 12).

The example below outputs the time-taken with the value for month set to April:

select timeTaken.set('month', 3) as timeTakenMonth from RFIDEvent

12.3.11. WithDate

The withDate date-time method returns a date-time with the specified date, retaining the time

fields.

The method takes three expressions as parameters: An expression for year, month and day.

The method returns the new date-time value with the date fields set to the provided values.

For expressions returning null the method ignores the field for which null is returned. Note the

Calendar-class semantics: For example, the value for month starts at zero and has a maximum

of 11.

The example below outputs the time-taken with the date set to May 30, 2002:

select timeTaken.withDate(2002, 4, 30) as timeTakenDated from RFIDEvent

12.3.12. WithMax

The withMax date-time method returns a date-time with the field set to the maximum value for

the field.

The method takes a string-constant field name as parameter. Please see Section 5.2.1,

“Specifying Time Periods” for a list of recognized keywords (not case-sensitive).

The method returns the new date-time value with the specific date field set to the maximum value.

Chapter 12. EPL Reference: Da...

430

The example below outputs the time-taken property value with the second-part as 59 seconds:

select timeTaken.withMax('sec') as timeTakenMaxSec from RFIDEvent

12.3.13. WithMin

The withMin date-time method returns a date-time with the field set to the minimum value for

the field.

The method takes a string-constant field name as parameter. Please see Section 5.2.1,

“Specifying Time Periods” for a list of recognized keywords (not case-sensitive).

The method returns the new date-time value with the specific date field set to the minimum value.

The example below outputs the time-taken property value with the second-part as 0 seconds:

select timeTaken.withMin('sec') as timeTakenMaxSec from RFIDEvent

12.3.14. WithTime

The withTime date-time method returns a date-time with the specified time, retaining the date

fields.

The method takes four expressions as parameters: An expression for hour, minute, second and

millisecond.

The method returns the new date-time value with the time fields set to the provided values. For

expressions returning null the method ignores the field for which null is returned.

The example below outputs the time-taken with the time set to 9am:

select timeTaken.withTime(9, 0, 0, 0) as timeTakenDated from RFIDEvent

12.3.15. ToCalendar

The toCalendar date-time method returns the Calendar object for this date-time value.

The method takes no parameters.

The example below outputs the time-taken as a Calendar object:

select timeTaken.toCalendar() as timeTakenCal from RFIDEvent

ToDate

431

12.3.16. ToDate

The toDate date-time method returns the Date object for this date-time value.

The method takes no parameters.

The example below outputs the time-taken as a Date object:

select timeTaken.toDate() as timeTakenDate from RFIDEvent

12.3.17. ToMillisec

The toMillisec date-time method returns the long-typed millisecond value for this date-time

value.

The method takes no parameters.

The example below outputs the time-taken as a long-typed millisecond value:

select timeTaken.toMillisec() as timeTakenLong from RFIDEvent

12.4. Interval Algebra Reference

Interval algebra methods compare start and end timestamps of events or timestamps in general.

When the expression input is only a timestamp value, such as a long-type value or a Date or

Calendar object, the start and end timestamp represented by that value are the same timestamp

value.

When expression input is an event stream alias, the engine determine the event type for the

stream. If the event type declares a start timestamp property name, the engine uses that start

timestamp property to determine the start timestamp for the event. If the event type also declares

an end timestamp property name, the engine uses that end timestamp property to determine the

end timestamp for the event (i.e. an event with duration). If an end timestamp property name

is not declared, the start and end timestamp for each event is the same value and the event is

considered to have zero duration (i.e. a point-in-time event).

Interval algebra methods all return Boolean-type value. When the input value start timestamp is

null, or the end timestamp (if declared for the event type) is null or any of the start timestamp

and end timestamp (if declared for the event type) values of the first parameter is null, the result

value is null.

12.4.1. Examples

The examples in this section simply use A and B as event type names. The alias a is used to

represent A-type events and respectively the alias b represents B-type events.

Chapter 12. EPL Reference: Da...

432

The create-schema for types A and B is shown next. The two types are declared the same. The

example declares the property providing start timestamp values as startts and the property

providing end timestamp values as endts:

create schema A as (startts long, endts long) starttimestamp 'startts'

 endtimestamp 'endts'

create schema B as (startts long, endts long) starttimestamp 'startts'

 endtimestamp 'endts'

The sample EPL below joins the last A and the last B event. It detects A-B event combinations

for which, when comparing timestamps, the last A event that occurs before the last B event. The

example employs the before method:

select * from A#lastevent as a, B#lastevent as b where a.before(b)

For simplicity, the examples in this section refer to A and the alias a as the input event. The

examples refer to B and the alias b as the parameter event.

12.4.2. Interval Algebra Parameters

The first parameter of each interval algebra methods is the event or timestamp to compare to.

All remaining parameters to interval algebra methods are intervals and can be any of the following:

1. A constant, an event property or more generally any expression returning a numeric value that

is the number of seconds. For example, in the expression a.before(b, 2) the parameter

2 is interpreted to mean 2 seconds. The expression a.before(b, myIntervalProperty) is

interpreted to mean myIntervalProperty seconds.

2. A time period expression as described in Section 12.4.11, “Includes”. For example:

a.before(b, 1 hour 2 minutes).

When an interval parameter is provided and is null, the method result value is null.

12.4.3. Performance

The engine analyzes interval algebra methods as well as the between date-time method in the

where-clause and builds a query plan for execution of joins and subqueries. The query plan

can include hash and btree index lookups using the start and end timestamps as computed by

expressions or provided by events as applicable. Consider turning on query plan logging to obtain

information on the query plan used.

Limitations

433

The query planning is generally most effective when no additional thresholds or ranges are

provided to interval algebra methods, as the query planner may not consider an interval algebra

method that it cannot plan.

The query planner may also not optimally plan the query execution if events or expressions return

different types of date representation. Query planning works best if all date representations use

the same long, Date or Calendar types.

12.4.4. Limitations

Date-time method that change date or time fields, such as withTime, withDate, set or round

methods set the end timestamp to the start timestamp.

For example, in the following expression the parameter to the after method has a zero duration,

and not the end timestamp that the event B endts property provides.

a.after(b.withTime(9, 0, 0, 0))

12.4.5. After

The after date-time method returns true if an event happens after another event, or a timestamp

is after another timestamp.

The method compares the input value's start timestamp (a.startTimestamp) to the first parameter's

end timestamp (b.endTimestamp) to determine whether A happens after B.

If used with one parameter, for example in a.after(b), the method returns true if A starts after

B ends.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.after(b)

// Above matches when:

// a.startTimestamp - b.endTimestamp > 0

If providing two parameters, for example in a.after(b, 5 sec), the method returns true if A

starts at least 5 seconds after B ends.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.after(b, 5 sec)

// Above matches when:

// a.startTimestamp - b.endTimestamp >= 5 seconds

Chapter 12. EPL Reference: Da...

434

If providing three parameters, for example in a.after(b, 5 sec, 10 sec), the method returns

true if A starts at least 5 seconds but no more then 10 seconds after B ends.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.after(b, 5 sec, 10 sec)

// Above matches when:

// 5 seconds <= a.startTimestamp - b.endTimestamp <= 10 seconds

Negative values for the range are allowed. For example in a.after(b, -5 sec, -10 sec), the

method returns true if A starts at least 5 seconds but no more then 10 seconds before B ends.

If the range low endpoint is greater than the range high endpoint, the engine automatically reverses

them. Thus a.after(b, 10 sec, 5 sec) is the same semantics as a.after(b, 5 sec, 10 sec).

12.4.6. Before

The before date-time method returns true if an event happens before another event, or a

timestamp is before another timestamp.

The method compares the input value's end timestamp (a.endTimestamp) and the first

parameter's start timestamp (b.startTimestamp) to determine whether A happens before B.

If used with one parameter, for example in a.before(b), the method returns true if A ends before

B starts.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.before(b)

// Above matches when:

// b.startTimestamp - a.endTimestamp > 0

If providing two parameters, for example in a.before(b, 5 sec), the method returns true if A

ends at least 5 seconds before B starts.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.before(b, 5 sec)

// Above matches when:

// b.startTimestamp - a.endTimestamp >= 5 seconds

If providing three parameters, for example in a.before(b, 5 sec, 10 sec), the method returns

true if A ends at least 5 seconds but no more then 10 seconds before B starts.

Sample EPL:

Coincides

435

select * from A#lastevent as a, B#lastevent as b where a.before(b, 5 sec, 10 sec)

// Above matches when:

// 5 seconds <= b.startTimestamp - a.endTimestamp <= 10 seconds

Negative values for the range are allowed. For example in a.before(b, -5 sec, -10 sec), the

method returns true if A starts at least 5 seconds but no more then 10 seconds after B starts.

If the range low endpoint is greater than the range high endpoint, the engine automatically reverses

them. Thus a.before(b, 10 sec, 5 sec) is the same semantics as a.before(b, 5 sec,

10 sec).

12.4.7. Coincides

The coincides date-time method returns true if an event and another event happen at the same

time, or two timestamps are the same value.

The method compares the input value's start and end timestamp with the first parameter's start

and end timestamp and determines if they equal.

If used with one parameter, for example in a.coincides(b), the method returns true if the start

timestamp of A and B are the same and the end timestamps of A and B are also the same.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.coincides(b)

// Above matches when:

// a.startTimestamp = b.startTimestamp and a.endTimestamp = b.endTimestamp

If providing two parameters, for example in a.coincides(b, 5 sec), the method returns true if

the difference between the start timestamps of A and B is equal to or less then 5 seconds and the

difference between the end timestamps of A and B is also equal to or less then 5 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.coincides(b, 5 sec)

// Above matches when:

// abs(a.startTimestamp - b.startTimestamp) <= 5 sec and

// abs(a.endTimestamp - b.endTimestamp) <= 5 sec

If providing three parameters, for example in a.coincides(b, 5 sec, 10 sec), the method

returns true if the difference between the start timestamps of A and B is equal to or less then 5

seconds and the difference between the end timestamps of A and B is equal to or less then 10

seconds.

Chapter 12. EPL Reference: Da...

436

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.coincides(b, 5 sec,

 10 sec)

// Above matches when:

// abs(a.startTimestamp - b.startTimestamp) <= 5 seconds and

// abs(a.endTimestamp - b.endTimestamp) <= 10 seconds

A negative value for interval parameters is not allowed. If your interval parameter is itself an

expression that returns a negative value the engine logs a warning message and returns null.

12.4.8. During

The during date-time method returns true if an event happens during the occurrence of another

event, or when a timestamps falls within the occurrence of an event..

The method determines whether the input value's start and end timestamp are during the first

parameter's start and end timestamp. The symmetrical opposite is Section 12.4.11, “Includes”.

If used with one parameter, for example in a.during(b), the method returns true if the start

timestamp of A is after the start timestamp of B and the end timestamp of A is before the end

timestamp of B.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.during(b)

// Above matches when:

// b.startTimestamp < a.startTimestamp <= a.endTimestamp < b.endTimestamp

If providing two parameters, for example in a.during(b, 5 sec), the method returns true if the

difference between the start timestamps of A and B is equal to or less then 5 seconds and the

difference between the end timestamps of A and B is also equal to or less then 5 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.during(b, 5 sec)

// Above matches when:

// 0 < a.startTimestamp - b.startTimestamp <= 5 sec and

// 0 < a.endTimestamp - b.endTimestamp <= 5 sec

If providing three parameters, for example in a.during(b, 5 sec, 10 sec), the method returns

true if the difference between the start timestamps of A and B and the difference between the end

timestamps of A and B is between 5 and 10 seconds.

Finishes

437

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.during(b, 5 sec, 10 sec)

// Above matches when:

// 5 seconds <= a.startTimestamp - b.startTimestamp <= 10 seconds and

// 5 seconds <= a.endTimestamp - b.endTimestamp <= 10 seconds

If providing five parameters, for example in a.during(b, 5 sec, 10 sec, 20 sec, 30 sec),

the method returns true if the difference between the start timestamps of A and B is between 5

seconds and 10 seconds and the difference between the end timestamps of A and B is between

20 seconds and 30 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b

 where a.during(b, 5 sec, 10 sec, 20 sec, 30 sec)

// Above matches when:

// 5 seconds <= a.startTimestamp - b.startTimestamp <= 10 seconds and

// 20 seconds < a.endTimestamp - b.endTimestamp <= 30 seconds

12.4.9. Finishes

The finishes date-time method returns true if an event starts after another event starts and the

event ends at the same time as the other event.

The method determines whether the input value's start timestamp is after the first parameter's

start timestamp and the end timestamp of the input value and the first parameter are the same.

The symmetrical opposite is Section 12.4.10, “Finished By”.

If used with one parameter, for example in a.finishes(b), the method returns true if the start

timestamp of A is after the start timestamp of B and the end timestamp of A and B are the same.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.finishes(b)

// Above matches when:

// b.startTimestamp < a.startTimestamp and a.endTimestamp = b.endTimestamp

If providing two parameters, for example in a.finishes(b, 5 sec), the method returns true

if the start timestamp of A is after the start timestamp of B and the difference between the end

timestamps of A and B is equal to or less then 5 seconds.

Sample EPL:

Chapter 12. EPL Reference: Da...

438

select * from A#lastevent as a, B#lastevent as b where a.finishes(b, 5 sec)

// Above matches when:

// b.startTimestamp < a.startTimestamp and

// abs(a.endTimestamp - b.endTimestamp) <= 5 seconds

A negative value for interval parameters is not allowed. If your interval parameter is itself an

expression that returns a negative value the engine logs a warning message and returns null.

12.4.10. Finished By

The finishedBy date-time method returns true if an event starts before another event starts and

the event ends at the same time as the other event.

The method determines whether the input value's start timestamp happens before the first

parameter's start timestamp and the end timestamp of the input value and the first parameter are

the same. The symmetrical opposite is Section 12.4.9, “Finishes”.

If used with one parameter, for example in a.finishedBy(b), the method returns true if the start

timestamp of A is before the start timestamp of B and the end timestamp of A and B are the same.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.finishedBy(b)

// Above matches when:

// a.startTimestamp < b.startTimestamp and a.endTimestamp = b.endTimestamp

If providing two parameters, for example in a.finishedBy(b, 5 sec), the method returns true

if the start timestamp of A is before the start timestamp of B and the difference between the end

timestamps of A and B is equal to or less then 5 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.finishedBy(b, 5 sec)

// Above matches when:

// a.startTimestamp < b.startTimestamp and

// abs(a.endTimestamp - b.endTimestamp) <= 5 seconds

12.4.11. Includes

The includes date-time method returns true if the parameter event happens during the

occurrence of the input event, or when a timestamps falls within the occurrence of an event.

The method determines whether the first parameter's start and end timestamp are during the input

value's start and end timestamp. The symmetrical opposite is Section 12.4.8, “During”.

Includes

439

If used with one parameter, for example in a.includes(b), the method returns true if the start

timestamp of B is after the start timestamp of A and the end timestamp of B is before the end

timestamp of A.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.includes(b)

// Above matches when:

// a.startTimestamp < b.startTimestamp <= b.endTimestamp < a.endTimestamp

If providing two parameters, for example in a.includes(b, 5 sec), the method returns true if

the difference between the start timestamps of A and B is equal to or less then 5 seconds and the

difference between the end timestamps of A and B is also equal to or less then 5 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.includes(b, 5 sec)

// Above matches when:

// 0 < b.startTimestamp - a.startTimestamp <= 5 sec and

// 0 < a.endTimestamp - b.endTimestamp <= 5 sec

If providing three parameters, for example in a.includes(b, 5 sec, 10 sec), the method

returns true if the difference between the start timestamps of A and B and the difference between

the end timestamps of A and B is between 5 and 10 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.includes(b, 5 sec,

 10 sec)

// Above matches when:

// 5 seconds <= a.startTimestamp - b.startTimestamp <= 10 seconds and

// 5 seconds <= a.endTimestamp - b.endTimestamp <= 10 seconds

If providing five parameters, for example in a.includes(b, 5 sec, 10 sec, 20 sec, 30 sec),

the method returns true if the difference between the start timestamps of A and B is between 5

seconds and 10 seconds and the difference between the end timestamps of A and B is between

20 seconds and 30 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b

 where a.includes(b, 5 sec, 10 sec, 20 sec, 30 sec)

// Above matches when:

Chapter 12. EPL Reference: Da...

440

// 5 seconds <= a.startTimestamp - b.startTimestamp <= 10 seconds and

// 20 seconds <= a.endTimestamp - b.endTimestamp <= 30 seconds

12.4.12. Meets

The meets date-time method returns true if the event's end time is the same as another event's

start time.

The method compares the input value's end timestamp and the first parameter's start timestamp

and determines whether they equal.

If used with one parameter, for example in a.meets(b), the method returns true if the end

timestamp of A is the same as the start timestamp of B.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.meets(b)

// Above matches when:

// a.endTimestamp = b.startTimestamp

If providing two parameters, for example in a.meets(b, 5 sec), the method returns true if the

difference between the end timestamp of A and the start timestamp of B is equal to or less then

5 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.meets(b, 5 sec)

// Above matches when:

// abs(b.startTimestamp - a.endTimestamp) <= 5 seconds

A negative value for the interval parameter is not allowed. If your interval parameter is itself an

expression that returns a negative value the engine logs a warning message and returns null.

12.4.13. Met By

The metBy date-time method returns true if the event's start time is the same as another event's

end time.

The method compares the input value's start timestamp and the first parameter's end timestamp

and determines whether they equal.

If used with one parameter, for example in a.metBy(b), the method returns true if the start

timestamp of A is the same as the end timestamp of B.

Sample EPL:

Overlaps

441

select * from A#lastevent as a, B#lastevent as b where a.metBy(b)

// Above matches when:

// a.startTimestamp = b.endTimestamp

If providing two parameters, for example in a.metBy(b, 5 sec), the method returns true if the

difference between the end timestamps of B and the start timestamp of A is equal to or less then

5 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.metBy(b, 5 sec)

// Above matches when:

// abs(a.startTimestamp - b.endTimestamp) <= 5 seconds

A negative value for the interval parameter is not allowed. If your interval parameter is itself an

expression that returns a negative value the engine logs a warning message and returns null.

12.4.14. Overlaps

The overlaps date-time method returns true if the event starts before another event starts and

finishes after the other event starts, but before the other event finishes (events have an overlapping

period of time).

The method determines whether the input value's start and end timestamp indicate an overlap

with the first parameter's start and end timestamp, such that A starts before B starts and A ends

after B started but before B ends.

If used with one parameter, for example in a.overlaps(b), the method returns true if the start

timestamp of A is before the start timestamp of B and the end timestamp of A and is before the

end timestamp of B.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.overlaps(b)

// Above matches when:

// a.startTimestamp < b.startTimestamp < a.endTimestamp < b.endTimestamp

If providing two parameters, for example in a.overlaps(b, 5 sec), the method returns true if,

in addition, the difference between the end timestamp of A and the start timestamp of B is equal

to or less then 5 seconds.

Sample EPL:

Chapter 12. EPL Reference: Da...

442

select * from A#lastevent as a, B#lastevent as b where a.overlaps(b, 5 sec)

// Above matches when:

// a.startTimestamp < b.startTimestamp < a.endTimestamp < b.endTimestamp and

// 0 <= a.endTimestamp - b.startTimestamp <= 5 seconds

If providing three parameters, for example in a.overlaps(b, 5 sec, 10 sec), the method

returns true if, in addition, the difference between the end timestamp of A and the start timestamp

of B is between 5 and 10 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.overlaps(b, 5 sec,

 10 sec)

// Above matches when:

// a.startTimestamp < b.startTimestamp < a.endTimestamp < b.endTimestamp and

// 5 seconds <= a.endTimestamp - b.startTimestamp <= 10 seconds

12.4.15. Overlapped By

The overlappedBy date-time method returns true if the parameter event starts before the input

event starts and the parameter event finishes after the input event starts, but before the input

event finishes (events have an overlapping period of time).

The method determines whether the input value's start and end timestamp indicate an overlap

with the first parameter's start and end timestamp, such that B starts before A starts and B ends

after A started but before A ends.

If used with one parameter, for example in a.overlappedBy(b), the method returns true if the

start timestamp of B is before the start timestamp of A and the end timestamp of B and is before

the end timestamp of A.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.overlappedBy(b)

// Above matches when:

// b.startTimestamp < a.startTimestamp < b.endTimestamp < a.endTimestamp

If providing two parameters, for example in a.overlappedBy(b, 5 sec), the method returns true

if, in addition, the difference between the end timestamp of B and the start timestamp of A is equal

to or less then 5 seconds.

Sample EPL:

Starts

443

select * from A#lastevent as a, B#lastevent as b where a.overlappedBy(b, 5 sec)

// Above matches when:

// b.startTimestamp < a.startTimestamp < b.endTimestamp < a.endTimestamp and

// 0 <= b.endTimestamp - a.startTimestamp <= 5 seconds

If providing three parameters, for example in a.overlappedBy(b, 5 sec, 10 sec), the method

returns true if, in addition, the difference between the end timestamp of B and the start timestamp

of A is between 5 and 10 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.overlappedBy(b, 5 sec,

 10 sec)

// Above matches when:

// b.startTimestamp < a.startTimestamp < b.endTimestamp < a.endTimestamp and

// 5 seconds <= b.endTimestamp - a.startTimestamp <= 10 seconds

12.4.16. Starts

The starts date-time method returns true if an event and another event start at the same time

and the event's end happens before the other event's end.

The method determines whether the start timestamps of the input value and the first parameter

are the same and the end timestamp of the input value is before the end timestamp of the first

parameter.

If used with one parameter, for example in a.starts(b), the method returns true if the start

timestamp of A and B are the same and the end timestamp of A is before the end timestamp of B.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.starts(b)

// Above matches when:

// a.startTimestamp = b.startTimestamp and a.endTimestamp < b.endTimestamp

If providing two parameters, for example in a.starts(b, 5 sec), the method returns true if the

difference between the start timestamps of A and B is between is equal to or less then 5 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.starts(b, 5 sec)

// Above matches when:

// abs(a.startTimestamp - b.startTimestamp) <= 5 seconds and

Chapter 12. EPL Reference: Da...

444

// a.endTimestamp < b.endTimestamp

A negative value for the interval parameter is not allowed. If your interval parameter is itself an

expression that returns a negative value the engine logs a warning message and returns null.

12.4.17. Started By

The startedBy date-time method returns true if an event and another event start at the same

time and the other event's end happens before the input event's end.

The method determines whether the start timestamp of the input value and the first parameter

are the same and the end timestamp of the first parameter is before the end timestamp of the

input value.

If used with one parameter, for example in a.startedBy(b), the method returns true if the start

timestamp of A and B are the same and the end timestamp of B is before the end timestamp of A.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.startedBy(b)

// Above matches when:

// a.startTimestamp = b.startTimestamp and b.endTimestamp < a.endTimestamp

If providing two parameters, for example in a.startedBy(b, 5 sec), the method returns true if the

difference between the start timestamps of A and B is between is equal to or less then 5 seconds.

Sample EPL:

select * from A#lastevent as a, B#lastevent as b where a.startedBy(b, 5 sec)

// Above matches when:

// abs(a.startTimestamp - b.startTimestamp) <= 5 seconds and

// b.endTimestamp < a.endTimestamp

A negative value for the interval parameter is not allowed. If your interval parameter is itself an

expression that returns a negative value the engine logs a warning message and returns null.

Chapter 13.

445

Chapter 13. EPL Reference: Spatial

Methods and Indexes

13.1. Overview

EPL provides spatial methods and spatial indexes.

The engine analyzes filter criteria and the where-clause and considers spatial methods, utilizing

spatial filter indexes or spatial event indexes for efficient matching and lookup.

For general information on the dot-operator please consult Section 9.6, “Dot Operator”.

13.2. Spatial Methods

The below table summarizes the built-in spatial methods available:

Table 13.1. Spatial Methods

Method Result

point(x,y).inside(rectangle(x,y,width,height))Returns true if the point is inside the rectangle.

Section 13.2.1, “Point-Inside-Rectangle”.

rectangle(x,y,width,height).intersects(rectangle(x,y,width,height))Returns true if the rectangle intersects with the rectangle.

Section 13.2.2, “Rectangle-Intersects-Rectangle”.

13.2.1. Point-Inside-Rectangle

The method compares a point to a rectangle and returns true if the point falls inside the rectangle.

The method takes a point as input and a rectangle as a parameter:

point(point_x, point_y [,

 filterindex:configexpression]).inside(rectangle(rect_x, rect_y, width, height))

For the point, please provide the point_x and point_y expressions that return the (x, y)-coordinates

of the point. The filterindex named parameter is for use with filter indexes as described below.

The left-hand side point can be subject to point-region quadtree indexing (MX-CIF quadtrees do

not apply).

For the rectangle, the rect_x expression and rect_y expressions return the (x, y)-coordinates of

the rectangle and the width expression and height expressions return the width and height of the

rectangle.

Chapter 13. EPL Reference: Sp...

446

All expressions must return a number-type and the implementation compares the double-values

returned by the expressions.

A point is considered inside the rectangle if (point_x >= rect_x) and (point_x < rect_x +

width) and (point_y >= rect_y) and (point_y < rect_y + height).

Table 13.2. Point-Inside-Rectangle Examples

Expression Result

point(10, 20).inside(rectangle(0, 0, 50, 50))
true

point(10, 20).inside(rectangle(20, 20, 50, 50))
false

point(10, 20).inside(rectangle(9, 19, 1, 1))
false

point(10, 20).inside(rectangle(9, 19, 1.0001, 1.0001))
true

13.2.2. Rectangle-Intersects-Rectangle

The method compares a rectangle to a rectangle and returns true if the rectangles intersect.

The method takes a rectangle as input and a rectangle as a parameter:

rectangle(rect_x, rect_y, rect_width, rect_height [,

 filterindex:configexpression]).intersects(rectangle(other_x, other_y, other_width, other_height))

The left-hand side is the rectangle's rect_x, rects_y, rect_width and rect_height expressions that

return the (x, y)-coordinates and the size of the rectangle. The filterindex named parameter is

for use with filter indexes as described below. The left-hand side rectangle can be subject to MX-

CIF quadtree indexing (point-region quadtrees do not apply).

For the compared-to rectangle on the right-hand side, the other_x, other_y, other_width and

other_height expressions return the (x, y)-coordinates and size of the compared-to rectangle.

All expressions must return a number-type and the implementation compares the double-values

returned by the expressions.

A rectangle is considered to intersect another rectangle if:

• rect_x + rect_width >= other_x (a is not left of b) and

• rect_x <= other_x + other_width (a is not right of b) and

• rect_y + rect_height >= other_y (a is not above b) and

• rect_y <= other_y + other_height (a is not below b).

Spatial Index - Quadtree

447

Table 13.3. Rectangle-Intersects-Rectangle Examples

Expression Result

rectangle(10, 20, 5, 5).intersects(rectangle(0, 0, 50, 50))
true

rectangle(10, 20, 5, 5).intersects(rectangle(20, 20, 50, 50))
false

rectangle(10, 20, 5, 5).intersects(rectangle(9, 19, 1, 1))
true

rectangle(10, 20, 5, 5).intersects(rectangle(9, 19, 0.999,

 0.999))

false

rectangle(10, 20, 5, 5).intersects(rectangle(15, 25, 1, 1))
true

rectangle(10, 20, 5, 5).intersects(rectangle(15.001, 25.001,

 1, 1))

false

13.3. Spatial Index - Quadtree

13.3.1. Overview

A quadtree is a tree data structure in which each branch node has exactly four children. Quadtrees

are often used to partition a two-dimensional space by recursively subdividing it into four quadrants

or regions (source:WikiPedia).

Quadtree indexes can be used for:

• Filter indexes, which organize active filters so that they can be searched efficiently. When the

engine receives an event, it consults the filter indexes to determine which statements, if any,

must process the event.

• Event indexes, which organize properties of events so that they can be searched efficiently.

When the engine performs statement processing it may use event indexes to find correlated

events efficiently.

The point-region quadtree is a quadtree for the efficient finding of points that fall inside a given

rectangle. Use this index with the point-inside-rectangle method described above.

The MX-CIF quadtree is a quadtree for the efficient finding of rectangles that intersect with a given

rectangle. Use this index with the rectangle-intersects-rectangle method described above.

While point-region quadtree and MX-CIF quadtree are similar, they are not compatible and are

not the same. In point-region quadtree, only leaf nodes have data. In MX-CIF quadtrees both

branch and leaf nodes have data as branches hold rectangles that don't fit any given quadrant.

The engine expands and shrinks both types of trees dynamically based on data by promoting or

Chapter 13. EPL Reference: Sp...

448

subdividing a leaf node to branch nodes when adding data and by demoting or merging branches

to a leaf node when removing data.

13.3.2. Declaring a Point-Region Quadtree Index

Declaring a point-region quadtree index is the same for both filter indexes and event indexes.

Point-region quadtrees are suitable for efficiently finding points inside a rectangle, when there are

many points.

The synopsis to declare a point-region quadtree index, as part of an EPL statement, is:

pointregionquadtree(min_x_expression, min_y_expression,

 width, height [, leaf_capacity_expression [, max_tree_height_expression]])

The min_x_expression, min_y_expression, width, height are index parameter expressions that

return the range of the index. The width and height must be greater zero. The index range rectangle

is represented by double-type values internally. A point is inside the index range if x >= minX

and y >= minY and x < minX+width and y < minY+height.

Note

An attempt to insert points into the index that are outside of the declared index

range causes an exception.

The leaf_capacity_expression is optional and must return a positive integer. It defines the number

of coordinates a node may contain before it gets split into regions. The default value is 4.

The max_tree_height_expression is optional and must return an integer value of 2 or more. It

defines the maximum depth of the tree. Upon the tree reaching the maximum depth a leaf node

does not get split into regions. The default value is 20.

13.3.3. Using a Point-Region Quadtree as a Filter Index

The section that summarizes filter indexes is Section 3.9.2, “Filter Indexes”. As there could be

many point(...).inside(rectangle) filters active, having a filter index allows the engine to

efficiently match incoming events to EPL statements.

For use of a point-region quadtree index within filter criteria you must:

• Define an expression that returns the point-region quadtree configuration, making sure it

specifies pointregionquadtree.

• Add the filterindex named parameter providing the expression name.

For defining a local or global expression, please consult Section 5.2.9, “Expression Declaration”.

This sample EPL query defines the point-region quadtree filter index to have a bounding box of

(0,0,100,100):

Using a Point-Region Quadtree as an Event Index

449

expression myPointRegionQuadtreeSettings { pointregionquadtree(0, 0, 100, 100) }

select * from RectangleEvent(point(0, 0,

 filterindex:myPointRegionQuadtreeSettings).inside(rectangle(x, y, width,

 height)))

The filterindex named parameter instructs the engine that the settings for the point-region

quadtree filter index are provided by the expression myPointRegionQuadtreeSettings, a local

expression in this example. For sharing point-region quadtree settings across statements you may

use a global expression instead. Please see Section 5.18, “Declaring Global Expressions, Aliases

And Scripts: Create Expression”.

If your EPL does not specify filterindex the engine does not build a point-region quadtree filter

index.

If your EPL specifies filterindex the engine always builds and uses a point-region quadtree

filter index. In the case the engine analyses filter criteria and determines that it cannot use the

point-region quadtree filter index, the engine fails statement validation.

If your EPL specifies filterindex and the engine determines that it cannot use the point-region

quadtree filter index it fails statement validation.

The engine shares point-region quadtree filter indexes across the engine within the same event

type given that:

1. Filters have the same rectangle expressions.

2. Filters use the same filterindex parameter i.e. the text myPointRegionQuadtreeSettings

in above example.

3. Filters use the same point-region quadtree index configuration i.e.

pointregionquadtree(0,0,100,100) in above example.

For use with the filterindex named parameter, the following requirements apply towards point

expressions:

1. Point expressions must be a constant, a context-provided built-in property or an event property

provided by a previous pattern match within the same pattern.

For use with the filterindex named parameter, the following requirements apply towards

rectangle expressions:

1. Rectangle expressions must be event properties.

13.3.4. Using a Point-Region Quadtree as an Event Index

The section that summarizes event indexes is Section 3.9.3, “Event Indexes”. The create index

clause is described in Section 6.9, “Explicitly Indexing Named Windows and Tables”.

Chapter 13. EPL Reference: Sp...

450

Declare a point-region quadtree event index as follows:

create index ... on ... (

 (x_expression, y_expression)

 pointregionquadtree(pointregion_quadtree_configuration)

)

The x_expression and y_expression expressions form the index columns. The expressions

return the (x, y)-coordinates and must return numeric values. Coordinates are represented as

double-type values internally. See above for the pointregion_quadtree_configuration point-region

quadtree configuration.

For example, assume we have a table that contains points:

create table PointTable(pointId string primary key, px double, py double)

This example EPL declares an index on the points, with px and py becoming index columns that

determine (x, y)-coordinates:

create index PointIndex on PointTable((px, py) pointregionquadtree(0, 0, 100,

 100))

The above sample quadtree index expects (x, y)-coordinates that are in the range 0 <= px <=

100 and 0 <= py <= 100.

The example schema for events providing rectangles is:

create schema RectangleEvent(rx double, ry double, w double, h double)

This EPL outputs, upon arrival of a RectangleEvent, all points that fall inside the rectangle:

on RectangleEvent

select pointId from PointTable

where point(px, py).inside(rectangle(rx, ry, w, h))

Internally the engine does not instantiate point or rectangle objects at all but instead optimizes the

expression to comparison between double-type values.

13.3.4.1. Point-Region Quadtree Event Index Usage Notes

Point-Region quadtree indexes allow computed values for both index columns and index

parameters. For example, the following EPL declares an index wherein (x, y)-coordinates are

Declaring a MX-CIF Quadtree Index

451

(px/100, py/100)-values. The sample EPL assumes that context.frame is a built-in property

as provided by context FramedCtx:

context FramedCtx create index PointIndex on PointTable((Math.round(px/100),

 Math.round(py/100)) pointregionquadtree(context.frame.startx,

 context.frame.starty, context.frame.w, context.frame.h))

The engine compares the index column expressions to the point-inside-rectangle left-

hand-side expressions to determine which index to use. For example, if the expression is

point(px+1, py+1).inside(rectangle(rx, ry, w, h)) as (px+1, py+1) does not match

(Math.round(px/100), Math.round(py/100)) the query planner does not use the index. If the

expression is point(Math.round(px/100), Math.round(py/100)).inside(rectangle(rx,

ry, w, h)) the query planner does use the index as index column expressions match.

The query planner prefers point-region quadtree over other index types. Index hints are not yet

available for query planning with quadtree indexes.

13.3.5. Declaring a MX-CIF Quadtree Index

Declaring a MX-CIF quadtree index is the same for both filter indexes and event indexes. MX-

CIF quadtrees are suitable for efficiently finding rectangles that intersect with a rectangle, when

there are many rectangles.

The synopsis to declare a MX-CIF quadtree index, as part of an EPL statement, is:

mxcifquadtree(min_x_expression, min_y_expression,

 width, height [, leaf_capacity_expression [, max_tree_height_expression]])

The min_x_expression, min_y_expression, width, height are index parameter expressions that

return the range of the index. The width and height must be greater zero. The index range rectangle

is represented by double-type values internally. A given rectangle must intersect with the index

range.

Note

An attempt to insert rectangles into the index that do not intersect with the declared

index range causes an exception.

The leaf_capacity_expression is optional and must return a positive integer. It defines the number

of coordinates a node may contain before it gets split into regions. The default value is 4.

The max_tree_height_expression is optional and must return an integer value of 2 or more. It

defines the maximum depth of the tree. Upon the tree reaching the maximum depth a leaf node

does not get split into regions. The default value is 20.

Chapter 13. EPL Reference: Sp...

452

13.3.6. Using a MX-CIF Quadtree as a Filter Index

The section that summarizes filter indexes is Section 3.9.2, “Filter Indexes”. As there could be

many rectangle(...).intersects(rectangle) filters active, having a filter index allows the

engine to efficiently match incoming events to EPL statements.

For use of a MX-CIF quadtree index within filter criteria you must:

• Define an expression that returns the MX-CIF quadtree configuration, making sure it specifies

mxcifquadtree.

• Add the filterindex named parameter providing the expression name.

For defining a local or global expression, please consult Section 5.2.9, “Expression Declaration”.

This sample EPL query defines the MX-CIF quadtree filter index to have a bounding box of

(0,0,100,100):

expression myMXCIFQuadtreeSettings { mxcifquadtree(0, 0, 100, 100) }

select * from RectangleEvent(rectangle(10, 20, 5, 5,

 filterindex:myMXCIFQuadtreeSettings).intersects(rectangle(x, y, width,

 height)))

The filterindex named parameter instructs the engine that the settings for the MX-CIF quadtree

filter index are provided by the expression myMXCIFQuadtreeSettings, a local expression in

this example. For sharing MX-CIF quadtree settings across statements you may use a global

expression instead. Please see Section 5.18, “Declaring Global Expressions, Aliases And Scripts:

Create Expression”.

If your EPL does not specify filterindex the engine does not build a MX-CIF quadtree filter

index.

If your EPL specifies filterindex the engine always builds and uses a MX-CIF quadtree filter

index. In the case the engine analyses filter criteria and determines that it cannot use the MX-CIF

quadtree filter index, the engine fails statement validation.

If your EPL specifies filterindex and the engine determines that it cannot use the MX-CIF

quadtree filter index it fails statement validation.

The engine shares MX-CIF quadtree filter indexes across the engine within the same event type

given that:

1. Filters have the same rectangle expressions.

2. Filters use the same filterindex parameter i.e. the text myMXCIFQuadtreeSettings in above

example.

Using a MX-CIF Quadtree as an Event Index

453

3. Filters use the same MX-CIF quadtree index configuration i.e. mxcifquadtree(0,0,100,100)

in above example.

For use with the filterindex named parameter, the following requirements apply towards left-

hand side rectangle expressions:

1. Left-hand side rectangle expressions must be a constant, a context-provided built-in property

or an event property provided by a previous pattern match within the same pattern.

For use with the filterindex named parameter, the following requirements apply towards right-

hand side rectangle expressions:

1. Right-hand side rectangle expressions must be event properties.

13.3.7. Using a MX-CIF Quadtree as an Event Index

The section that summarizes event indexes is Section 3.9.3, “Event Indexes”. The create index

clause is described in Section 6.9, “Explicitly Indexing Named Windows and Tables”.

Declare a MX-CIF quadtree event index as follows:

create index ... on ... (

 (x_expression, y_expression, width_expression, height_expression)

 mxcifquadtree(mxcif_quadtree_configuration)

)

The x_expression, y_expression, width_expression and height_expression expressions form the

index columns. The expressions return the (x, y)-coordinates and rectangle size and must return

numeric values. Coordinates and sizes are represented as double-type values internally. See

above for the mxcif_quadtree_configuration MX-CIF quadtree configuration.

For example, assume we have a table that contains rectangles:

create table RectangleTable(rectangleId string primary key, rx double, ry double,

 rwidth double, rheight double)

This example EPL declares an index on the rectangles, with rx, ry, rwidth and rheight

becoming index columns that determine the (x, y)-coordinates and the sizes:

create index RectangleIndex on RectangleTable((rx, ry, rwidth, rheight)

 mxcifquadtree(0, 0, 100, 100))

The above sample quadtree index expects rectangles to intersect the rectangle (0, 0, 100,

100).

Chapter 13. EPL Reference: Sp...

454

The example schema for arriving events is:

create schema OtherRectangleEvent(otherX double, otherY double, otherWidth

 double, otherHeight double)

This EPL outputs, upon arrival of a OtherRectangleEvent, all rectangles stored in the table that

intersect the arriving-events rectangle:

on OtherRectangleEvent

select rectangleId from RectangleTable

where rectangle(rx, ry, rwidth, rheight).intersects(rectangle(otherX, otherY,

 otherWidth, otherHeight))

Internally the engine does not instantiate rectangle objects at all but instead optimizes the

expression to comparison between double-type values.

13.3.7.1. MX-CIF Quadtree Event Index Usage Notes

MX-CIF quadtree indexes allow computed values for both index columns and index parameters.

For example, the following EPL declares an index wherein (x, y)-coordinates are (px/100,

py/100)-values. The sample EPL assumes that context.frame is a built-in property as provided

by context FramedCtx:

context FramedCtx create index RectangleIndex

 on RectangleTable((Math.round(rx/100), Math.round(ry/100),

 Math.round(rwidth/100), Math.round(rheight/100))

 mxcifquadtree(context.frame.startx, context.frame.starty, context.frame.w,

 context.frame.h))

The engine compares the index column expressions to the rectangle-interwsects-rectangle

left-hand-side expressions to determine which index to use.

The query planner prefers MX-CIF quadtree over other index types. Index hints are not yet

available for query planning with quadtree indexes.

13.4. Spatial Types, Functions and Methods from

External Libraries

The scope of the Esper engine does not include addressing all geographical, topological or spatial

processing. We encourage using external libraries with Esper and Esper. Esper and EPL make it

easy to use and extend EPL, using functions, methods, data types and data structures provided

by external libraries.

Spatial Types, Functions and Methods from External Libraries

455

For example, assume you would like to use a geometric data type and the geographical

distance function. Please consider using the Java Topology Suite (JTS) (https://

www.locationtech.org) which provides a pretty complete set of geo computing functionality.

To pick an example data type, Esper allows any class such as the JTS Geometry class

(org.locationtech.jts.geom.Geometry) to become an event type, an event property type or a

column type in a named window, table. Esper also allows the use of such class anywhere within

EPL expressions as well.

The EPL snippet below declares an event type that has a Geometry property:

create schema ShapeArrivalEvent(shapeId string, geometry

 org.locationtech.jts.geom.Geometry) // use imports to remove the need to have

 a package name

EPL can call methods and your application can declare its own functions. Registering an own EPL

function is described in Section 19.3, “Single-Row Function”.

This sample EPL outputs events that have a distance of more than 100 comparing the current

event's geometry to the last 1 minute of previous event's geometry:

select * from ShapeArrivalEvent as e1 unidirectional, ShapeArrivalEvent.time(1

 minute) as e2

where e1.geometry.distance(e2.geometry) > 100

456

Chapter 14.

457

Chapter 14. EPL Reference: Views
This chapter outlines the views that are built into Esper. All views can be arbitrarily combined

as many of the examples below show. The section on Chapter 3, Processing Model provides

additional information on the relationship of views, filtering and aggregation. Please also see

Section 5.4.3, “Specifying Views” for the use of views in the from clause with streams, patterns

and named windows.

Esper organizes built-in views in namespaces and names. Views that provide sliding or tumbling

data windows are in the win namespace. Other most commonly used views are in the std

namespace. The ext namespace are views that order events. The stat namespace is used for

views that derive statistical data.

Esper distinguishes between data window views and derived-value views. Data windows, or data

window views, are views that retain incoming events until an expiry policy indicates to release

events. Derived-value views derive a new value from event streams and post the result as events

of a new type. Both types of views are stateful.

Two or more data window views can be combined. This allows a sets of events retained by one

data window to be placed into a union or an intersection with the set of events retained by one or

more other data windows. Please see Section 5.4.4, “Multiple Data Window Views” for more detail.

The keep-all data window counts as a data window but has no expiry policy: it retains all events

received. The grouped-window declaration allocates a new data window per grouping criteria and

thereby counts as a data window, but cannot appear alone.

The next table summarizes data window views:

Table 14.1. Built-in Data Window Views

View Syntax Description

Length Window length(size) Sliding length window extending

the specified number of elements

into the past.

Length Batch Window length_batch(size) Tumbling window that batches

events and releases them when a

given minimum number of events

has been collected.

Time Window time(time period) Sliding time window extending

the specified time interval into the

past.

Externally-timed

Window

ext_timed(timestamp

expression, time period)

Sliding time window, based on

the long-type time value supplied

by an expression.

Chapter 14. EPL Reference: Views

458

View Syntax Description

Time Batch Window time_batch(time

period[,optional reference point] [,

flow control])

Tumbling window that batches

events and releases them every

specified time interval, with flow

control options.

Externally-timed Batch

Window

ext_timed_batch(timestamp

expression, time period[,optional

reference point])

Tumbling window that batches

events and releases them every

specified time interval based on

the long-type value supplied by

an expression.

Time-Length

Combination Batch

Window

time_length_batch(time

period, size [, flow control])

Tumbling multi-policy time and

length batch window with flow

control options.

Time-Accumulating

Window

time_accum(time period) Sliding time window accumulates

events until no more events arrive

within a given time interval.

Keep-All Window keepall The keep-all data window view

simply retains all events.

Sorted Window sort(size, sort criteria) Sorts by values returned by sort

criteria expressions and keeps

only the top events up to the given

size.

Ranked Window rank(unique criteria(s), size, sort

criteria(s))

Retains only the most recent

among events having the

same value for the criteria

expression(s) sorted by sort

criteria expressions and keeps

only the top events up to the given

size.

Time-Order Window time_order(timestamp

expression, time period)

Orders events that arrive out-

of-order, using an expression

providing timestamps to be

ordered.

Time-To-Live Window timetolive(timestamp

expression)

Retains events until the time

returned by the timestamp

expression.

Unique Window unique(unique criteria(s)) Retains only the most recent

among events having the

same value for the criteria

expression(s). Acts as a length

459

View Syntax Description

window of size 1 for each distinct

expression value.

Grouped Data Window groupwin(grouping criteria(s)) Groups events into sub-views

by the value of the specified

expression(s), generally used to

provide a separate data window

per group.

Last Event Window lastevent Retains the last event, acts as a

length window of size 1.

First Event Window firstevent Retains the very first

arriving event, disregarding all

subsequent events.

First Unique Window firstunique(unique criteria(s)) Retains only the very first among

events having the same value

for the criteria expression(s),

disregarding all subsequent

events for same value(s).

First Length Window firstlength(size) Retains the first size events,

disregarding all subsequent

events.

First Time Window firsttime(time period) Retains the events arriving until

the time interval has passed,

disregarding all subsequent

events.

Expiry Expression

Window

expr(expiry expression) Expire events based on the result

of an expiry expression passed

as a parameter.

Expiry Expression Batch

Window

expr_batch(expiry expression) Tumbling window that batches

events and releases them

based on the result of an

expiry expression passed as a

parameter.

The table below summarizes views that derive information from received events and present the

derived information as an insert and remove stream of events that are typed specifically to carry

the result of the computations:

Chapter 14. EPL Reference: Views

460

Table 14.2. Built-in Derived-Value Views

View Syntax Description

Size size([expression, ...]) Derives a count of the number

of events in a data window,

or in an insert stream if

used without a data window,

and optionally provides additional

event properties as listed in

parameters.

Univariate statistics uni(value expression

[,expression, ...])

Calculates univariate statistics

on the values returned by the

expression.

Regression linest(value expression, value

expression [,expression, ...])

Calculates regression on the

values returned by two

expressions.

Correlation correl(value expression, value

expression [,expression, ...])

Calculates the correlation value

on the values returned by two

expressions.

Weighted average weighted_avg(value

expression, value expression

[,expression, ...])

Calculates weighted average

given a weight expression and

an expression to compute the

average for.

14.1. A Note on View Name and Parameters

The syntax for view specifications starts with view name and is followed by optional view parameter

expressions in parenthesis:

name(view_parameters)

This example specifies a time window of 5 seconds:

select * from StockTickEvent#time(5 sec)

Alternatively you may specify the namespace name and : colon character in addition:

namespace:name(view_parameters)

The below examples all specify a time window of 5 seconds:

A Note on View Name and Parameters

461

select * from StockTickEvent#time(5 sec)

select * from StockTickEvent#win:time(5 sec)

select * from StockTickEvent.win:time(5 sec)

All expressions are allowed as parameters to views, including expressions that contain variables

or substitution parameters for prepared statements. Subqueries, the special prior and prev

functions and aggregations (with the exception of the expression window and expression batch

window) are not allowed as view parameters.

For example, assuming a variable by name VAR_WINDOW_SIZE is defined:

select * from StockTickEvent#time(VAR_WINDOW_SIZE)

Expression parameters for views are evaluated at the time of context partition instantiation with

the exception of the expression window (expr) and expression batch window (expr_batch).

Also consider multiple data windows in intersection or union (keywords retain-intersection

and retain-union). Consider writing a custom plug-in view if your application requires behavior

that is not yet provided by any of the built-in views.

If a view takes no parameters you may leave parenthesis off or the use empty parenthesis ().

The below examples all specify a keep-all window:

select * from StockTickEvent#keepall

select * from StockTickEvent#keepall()

select * from StockTickEvent.win:keepall()

select * from StockTickEvent.win:keepall

Expression parameters can reference context-provided properties. For example:

Chapter 14. EPL Reference: Views

462

create schema ParameterEvent(windowSize int)

create context MyContext initiated by ParameterEvent as params terminated after

 1 year

context MyContext select * from StockTickEvent#length(context.params.windowSize)

14.2. A Note on Batch Windows

Batch windows buffer events until a certain threshold is reached and then release the batched

events for processing. The released events become the insert stream events and the previous

batch of events constitutes the remove stream events. Batch windows thus retain the current and

the last batch of events in memory.

It is often desirable to aggregate without retaining events in memory, or with just keeping the

current events in memory (and not also the last batch of events). You can declare a context

and define what starts and ends a "batch" instead. Contexts provide a large degree of freedom

in allowing batches to overlap, in allowing batches to span multiple statements and in allowing

batches to have complex start and end conditions. They are further described in Chapter 4,

Context and Context Partitions.

This example declares a non-overlapping context that spans a time interval of 3 seconds (i.e. a

batch of 3 seconds):

create context IntervalSpanning3Seconds start @now end after 3 sec

The next example EPL aggregates events without retaining events in memory and outputs at the

end of each interval:

context IntervalSpanning3Seconds select count(*) from Events output snapshot

 when terminated

Here is an example that outputs all events when at least 10 events, in the 3-second interval, have

collected:

context IntervalSpanning3Seconds select window(*) from Events#keepall having

 count(*) >= 10

Data Window Views

463

For the examples above, at the end of each 3-second interval, the engine discards all data

windows and aggregation state. If your application would like 3-second intervals keyed by some

fields please consider a nested context declaration with a keyed segmented context, for example:

create context PerSymbolInterval3Sec

 context ById partition by symbol from StockTick,

 context Interval3Sec start @now end after 3 sec

Batch windows keep not only the current batch in memory but also the previous batch of events.

For example, let's say at time 0 an event arrives and enters the batch window. At time 3 seconds

(3-second batch window) the event becomes an insert-stream event and the engine now updates

aggregations for that batch (i.e. count goes up to 1). At time 6 seconds the event becomes a

remove-stream event and the engine now updates aggregations for that batch (i.e. count goes

down to 0). Since the engine continually updates aggregations from insert and remove stream

events, and does not re-compute aggregations, batch windows follow the same paradigm.

14.3. Data Window Views

All the views explained below are data window views, as are unique, firstunique, lastevent

and firstevent.

14.3.1. Length window (length or win:length)

This view is a moving (sliding) length window extending the specified number of elements into

the past. The view takes a single expression as a parameter providing a numeric size value that

defines the window size:

length(size_expression)

The below example sums the price for the last 5 stock ticks for symbol GE.

select sum(price) from StockTickEvent(symbol='GE')#length(5)

The next example keeps a length window of 10 events of stock trade events, with a separate

window for each symbol. The sum of price is calculated only for the last 10 events for each symbol

and aggregates per symbol:

select sum(price) from StockTickEvent#groupwin(symbol)#length(10) group by

 symbol

A length window of 1 is equivalent to the last event window lastevent. The lastevent data

window is the preferred notation:

Chapter 14. EPL Reference: Views

464

select * from StockTickEvent#lastevent // Prefer this

// ... equivalent to ...

select * from StockTickEvent#length(1)

14.3.2. Length batch window (length_batch or win:length_batch)

This window view buffers events (tumbling window) and releases them when a given minimum

number of events has been collected. Provide an expression defining the number of events to

batch as a parameter:

length_batch(size_expression)

The next statement buffers events until a minimum of 10 events have collected. Listeners to

updates posted by this view receive updated information only when 10 or more events have

collected.

select * from StockTickEvent#length_batch(10)

14.3.3. Time window (time or win:time)

This view is a moving (sliding) time window extending the specified time interval into the past

based on the system time. Provide a time period (see Section 5.2.1, “Specifying Time Periods”)

or an expression defining the number of seconds as a parameter:

time(time period)

time(seconds_interval_expression)

For the GE stock tick events in the last 1 second, calculate a sum of price.

select sum(price) from StockTickEvent(symbol='GE')#time(1 sec)

The following time windows are equivalent specifications:

time(2 minutes 5 seconds)

time(125 sec)

time(125)

time(MYINTERVAL) // MYINTERVAL defined as a variable

14.3.4. Externally-timed window (ext_timed or win:ext_timed)

Time batch window (time_batch or win:time_batch)

465

Similar to the time window, this view is a moving (sliding) time window extending the specified time

interval into the past, but based on the long-type time value supplied by a timestamp expression.

The view takes two parameters: the expression to return long-typed timestamp values, and a time

period or expression that provides a number of seconds:

ext_timed(timestamp_expression, time_period)

ext_timed(timestamp_expression, seconds_interval_expression)

The key difference comparing the externally-timed window to the regular time window is that the

window slides not based on the engine time, but strictly based on the result of the timestamp

expression when evaluated against the events entering the window.

The algorithm underlying the view compares the timestamp value returned by the expression

when the oldest event arrived with the timestamp value returned by the expression for the newest

arriving event on event arrival. If the time interval between the timestamp values is larger then the

timer period parameter, then the algorithm removes all oldest events tail-first until the difference

between the oldest and newest event is within the time interval. The window therefore slides only

when events arrive and only considers each event's timestamp property (or other expression value

returned) and not engine time.

This view holds stock tick events of the last 10 seconds based on the timestamp property in

StockTickEvent.

select * from StockTickEvent#ext_timed(timestamp, 10 seconds)

The externally-timed data window expects strict ordering of the timestamp values returned by the

timestamp expression. The view is not useful for ordering events in time order, please use the

time-order view instead.

On a related subject, engine time itself can be entirely under control of the application as described

in Section 16.8, “Controlling Time-Keeping”, allowing control over all time-based aspects of

processing in one place.

14.3.5. Time batch window (time_batch or win:time_batch)

This window view buffers events (tumbling window) and releases them every specified time

interval in one update. The view takes a time period or an expression providing a number of

seconds as a parameter, plus optional parameters described next.

time_batch(time_period [,optional_reference_point] [,flow_control])

time_batch(seconds_interval_expression [,optional_reference_point]

 [,flow_control])

Chapter 14. EPL Reference: Views

466

The time batch window takes a second, optional parameter that serves as a reference point to

batch flush times. If not specified, the arrival of the first event into the batch window sets the

reference point. Therefore if the reference point is not specified and the first event arrives at time

t1, then the batch flushes at time t1 plus time_period and every time_period thereafter.

Note

Please see Section 14.2, “A Note on Batch Windows” for information on what a

batch window is and how to best to compute over intervals.

Note that using this view means that the engine keeps events in memory until the

time is up: Consider your event arrival rate and determine if this is the behavior you

want. Use context declaration or output rate limiting such as output snapshot as

an alternative.

The below example batches events into a 5 second window releasing new batches every 5

seconds. Listeners to updates posted by this view receive updated information only every 5

seconds.

select * from StockTickEvent#time_batch(5 sec)

By default, if there are no events arriving in the current interval (insert stream), and no events

remain from the prior batch (remove stream), then the view does not post results to listeners. The

view allows overriding this default behavior via flow control keywords.

The synopsis with flow control parameters is:

time_batch(time_period or seconds_interval_expr [,optional_reference_point]

 [, "flow-control-keyword [, keyword...]"])

The FORCE_UPDATE flow control keyword instructs the view to post an empty result set to

listeners if there is no data to post for an interval. When using this keyword the irstream keyword

should be used in the select clause to ensure the remove stream is also output. Note that

FORCE_UPDATE is for use with listeners to the same statement and not for use with named

windows. Consider output rate limiting instead.

The START_EAGER flow control keyword instructs the view to post empty result sets even

before the first event arrives, starting a time interval at statement creation time. As when using

FORCE_UPDATE, the view also posts an empty result set to listeners if there is no data to post

for an interval, however it starts doing so at time of statement creation rather then at the time of

arrival of the first event.

Externally-timed batch window (ext_timed_batch or win:ext_timed_batch)

467

Taking the two flow control keywords in one sample statement, this example presents a view that

waits for 10 seconds. It posts empty result sets after one interval after the statement is created,

and keeps posting an empty result set as no events arrive during intervals:

select * from MyEvent#time_batch(10 sec, "FORCE_UPDATE, START_EAGER")

The optional reference point is provided as a long-value of milliseconds (or microseconds for

microsecond engine time unit) relative to January 1, 1970 and time 00:00:00.

The following example statement sets the reference point to 5 seconds and the batch size to 1

hour, so that each batch output is 5 seconds after each hour:

select * from OrderSummaryEvent#time_batch(1 hour, 5000L)

14.3.6. Externally-timed batch window (ext_timed_batch or

win:ext_timed_batch)

Similar to the time batch window, this view buffers events (tumbling) and releases them every

specified time interval in one update, but based on the long-type time value supplied by a

timestamp expression. The view has two required parameters taking an expression that returns

long-typed timestamp values and a time period or constant-value expression that provides a

number of seconds:

ext_timed_batch(timestamp_expression, time_period

 [,optional_reference_point])

ext_timed_batch(timestamp_expression, seconds_interval_expression

 [,optional_reference_point])

The externally-timed batch window takes a third, optional parameter that serves as a reference

point to batch flush times. If not specified, the arrival of the first event into the batch window sets

the reference point. Therefore if the reference point is not specified and the first event arrives at

time t1, then the batch flushes at time t1 plus time_period and every time_period thereafter.

The key difference comparing the externally-timed batch window to the regular time batch window

is that the window tumbles not based on the engine time, but strictly based on the result of the

timestamp expression when evaluated against the events entering the window.

The algorithm underlying the view compares the timestamp value returned by the expression

when the oldest event arrived with the timestamp value returned by the expression for the newest

arriving event on event arrival. If the time interval between the timestamp values is larger then the

timer period parameter, then the algorithm posts the current batch of events. The window therefore

Chapter 14. EPL Reference: Views

468

posts batches only when events arrive and only considers each event's timestamp property (or

other expression value returned) and not engine time.

Note that using this view means that the engine keeps events in memory until the time is up:

Consider your event arrival rate and determine if this is the behavior you want. Use context

declaration or output rate limiting such as output snapshot as an alternative.

The below example batches events into a 5 second window releasing new batches every 5

seconds. Listeners to updates posted by this view receive updated information only when event

arrive with timestamps that indicate the start of a new batch:

select * from StockTickEvent#ext_timed_batch(timestamp, 5 sec)

The optional reference point is provided as a long-value of milliseconds (or microseconds) relative

to January 1, 1970 and time 00:00:00.

The following example statement sets the reference point to 5 seconds and the batch size to 1

hour, so that each batch output is 5 seconds after each hour:

select * from OrderSummaryEvent#ext_timed_batch(timestamp, 1 hour, 5000L)

The externally-timed data window expects strict ordering of the timestamp values returned by the

timestamp expression. The view is not useful for ordering events in time order, please use the

timeorder view instead.

On a related subject, engine time itself can be entirely under control of the application as described

in Section 16.8, “Controlling Time-Keeping”, allowing control over all time-based aspects of

processing in one place.

14.3.7. Time-Length combination batch window (time_length_batch

or win:time_length_batch)

This data window view is a combination of time and length batch (tumbling) windows. Similar to

the time and length batch windows, this view batches events and releases the batched events

when either one of the following conditions occurs, whichever occurs first: the data window has

collected a given number of events, or a given time interval has passed.

The view parameters take 2 forms. The first form accepts a time period or an expression providing

a number of seconds, and an expression for the number of events:

time_length_batch(time_period, number_of_events_expression)

time_length_batch(seconds_interval_expression, number_of_events_expression)

Time-Accumulating window (time_accum or win:time_accum)

469

The next example shows a time-length combination batch window that batches up to 100 events

or all events arriving within a 1-second time interval, whichever condition occurs first:

 select * from MyEvent#time_length_batch(1 sec, 100)

In this example, if 100 events arrive into the window before a 1-second time interval passes, the

view posts the batch of 100 events. If less then 100 events arrive within a 1-second interval, the

view posts all events that arrived within the 1-second interval at the end of the interval.

By default, if there are no events arriving in the current interval (insert stream), and no events

remain from the prior batch (remove stream), then the view does not post results to listeners. This

view allows overriding this default behavior via flow control keywords.

The synopsis of the view with flow control parameters is:

time_length_batch(time_period or

 seconds_interval_expression, number_of_events_expression,

 "flow control keyword [, keyword...]")

The FORCE_UPDATE flow control keyword instructs the view to post an empty result set to listeners if

there is no data to post for an interval. The view begins posting no later then after one time interval

passed after the first event arrives. When using this keyword the irstream keyword should be

used in the select clause to ensure the remove stream is also output.

The START_EAGER flow control keyword instructs the view to post empty result sets even

before the first event arrives, starting a time interval at statement creation time. As when using

FORCE_UPDATE, the view also posts an empty result set to listeners if there is no data to post for an

interval, however it starts doing so at time of statement creation rather then at the time of arrival

of the first event.

Taking the two flow control keywords in one sample statement, this example presents a view that

waits for 10 seconds or reacts when the 5th event arrives, whichever comes first. It posts empty

result sets after one interval after the statement is created, and keeps posting an empty result set

as no events arrive during intervals:

 select * from MyEvent#time_length_batch(10 sec, 5, "FORCE_UPDATE, START_EAGER")

14.3.8. Time-Accumulating window (time_accum or win:time_accum)

This data window view is a specialized moving (sliding) time window that differs from the regular

time window in that it accumulates events until no more events arrive within a given time interval,

and only then releases the accumulated events as a remove stream.

Chapter 14. EPL Reference: Views

470

The view accepts a single parameter: the time period or seconds-expression specifying the length

of the time interval during which no events must arrive until the view releases accumulated events.

The synopsis is as follows:

time_accum(time_period)

time_accum(seconds_interval_expression)

The next example shows a time-accumulating window that accumulates events, and then releases

events if within the time interval no more events arrive:

 select * from MyEvent#time_accum(10 sec)

This example accumulates events, until when for a period of 10 seconds no more MyEvent events

arrive, at which time it posts all accumulated MyEvent events.

Your application may only be interested in the batches of events as events leave the data window.

This can be done simply by selecting the remove stream of this data window, populated by the

engine as accumulated events leave the data window all-at-once when no events arrive during

the time interval following the time the last event arrived:

 select rstream * from MyEvent#time_accum(10 sec)

If there are no events arriving, then the view does not post results to listeners.

14.3.9. Keep-All window (keepall or win:keepall)

This keep-all data window view simply retains all events. The view does not remove events from

the data window, unless used with a named window and the on delete clause.

The view accepts no parameters. The synopsis is as follows:

keepall

The next example shows a keep-all window that accumulates all events received into the window:

 select * from MyEvent#keepall

Note that since the view does not release events, care must be taken to prevent retained events

from using all available memory.

14.3.10. First Length (firstlength or win:firstlength)

First Time (firsttime or win:firsttime)

471

The firstlength view retains the very first size_expression events.

The synopsis is:

firstlength(size_expression)

If used within a named window and an on-delete clause deletes events, the view accepts further

arriving events until the number of retained events reaches the size of size_expression.

The below example creates a view that retains only the first 10 events:

select * from MyEvent#firstlength(10)

14.3.11. First Time (firsttime or win:firsttime)

The firsttime view retains all events arriving within a given time interval after statement start.

The synopsis is:

firsttime(time_period)

firsttime(seconds_interval_expression)

The below example creates a view that retains only those events arriving within 1 minute and 10

seconds of statement start:

select * from MyEvent#firsttime(1 minute 10 seconds)

14.3.12. Expiry Expression (expr or win:expr)

The expr view applies an expiry expression and removes events from the data window when the

expression returns false.

Use this view to implement rolling and dynamically shrinking or expanding time, length or other

windows. Rolling can, for example, be controlled based on event properties of arriving events,

based on aggregation values or based on the return result of user-defined functions. Use this view

to accumulate events until a value changes or other condition occurs based on arriving events

or change of a variable value.

The synopsis is:

expr(expiry_expression)

Chapter 14. EPL Reference: Views

472

The expiry expression can be any expression including expressions on event properties, variables,

aggregation functions or user-defined functions. The view applies this expression to the oldest

event(s) currently in the view, as described next.

When a new event arrives or when a variable value referenced by the expiry expression changes

then the view applies the expiry expression starting from the oldest event in the data window. If

the expiry expression returns false for the oldest event, the view removes the event from the data

window. The view then applies the expression to the next oldest event. If the expiry expression

returns true for the oldest event, no further evaluation takes place and the view indicates any new

and expired events through insert and remove stream.

By using variables in the expiry expression it is possible to change the behavior of the view

dynamically at runtime. When one or more variables used in the expression are updated the view

evaluates the expiry expression starting from the oldest event.

Aggregation functions, if present in the expiry expression, are continuously updated as events

enter and leave the data window. Use the grouped data window with this window to compute

aggregations per group.

The engine makes the following built-in properties available to the expiry expression:

Table 14.3. Built-in Properties of the Expiry Expression Data Window View

Name Type Description

current_count int The number of events in the data window including the

currently-arriving event.

expired_count int The number of events expired during this evaluation.

newest_event (same event

type as

arriving

events)

The last-arriving event itself.

newest_timestamp long The engine timestamp associated with the last-arriving

event.

oldest_event (same event

type as

arriving

events)

The currently-evaluated event itself.

oldest_timestamp long The engine timestamp associated with the currently-

evaluated event.

view_reference Object The object handle to this view.

This EPL declares an expiry expression that retains the last 2 events:

select * from MyEvent#expr(current_count <= 2)

Expiry Expression (expr or win:expr)

473

The following example implements a dynamically-sized length window by means of a SIZE

variable. As the SIZE variable value changes the view retains the number of events according to

the current value of SIZE:

create variable int SIZE = 1000

select * from MyEvent#expr(current_count <= SIZE)

The next EPL retains the last 2 seconds of events:

select * from MyEvent#expr(oldest_timestamp > newest_timestamp - 2000)

The following example implements a dynamically-sized time window. As the SIZE long-type

variable value changes the view retains a time interval accordingly:

create variable long SIZE = 1000

select * from MyEvent#expr(newest_timestamp - oldest_timestamp < SIZE)

The following example declares a KEEP variable and flushes all events from the data window

when the variable turns false:

create variable boolean KEEP = true

select * from MyEvent#expr(KEEP)

The next example specifies a rolling window that removes the oldest events from the window until

the total price of all events in the window is less then 1000:

select * from MyEvent#expr(sum(price) < 1000)

This example retains all events that have the same value of the flag event property. When the

flag value changes, the data window expires all events with the old flag value and retains only

the most recent event of the new flag value:

Chapter 14. EPL Reference: Views

474

select * from MyEvent#expr(newest_event.flag = oldest_event.flag)

14.3.12.1. Limitations

You may not use subqueries or the prev and prior functions as part of the expiry expression.

Consider using a named window and on-delete or on-merge instead.

When using variables in the expiry expression, the thread that updates the variable does not

evaluate the view. The thread that updates the variable instead schedules a reevaluation and view

evaluates by timer execution.

14.3.13. Expiry Expression Batch (expr_batch or win:expr_batch)

The expr_batch view buffers events (tumbling window) and releases them when a given expiry

expression returns true.

Use this view to implement dynamic or custom batching behavior, such as for dynamically

shrinking or growing time, length or other batches, for batching based on event properties of

arriving events, aggregation values or for batching based on a user-defined function.

The synopsis is:

expr_batch(expiry_expression, [include_triggering_event])

The expiry expression can be any expression including expressions on event properties, variables,

aggregation functions or user-defined functions. The view applies this expression to arriving

event(s), as described next.

The optional second parameter include_triggering_event defines whether to include the event that

triggers the batch in the current batch (true, the default) or in the next batch (false).

When a new event arrives or when a variable value referenced by the expiry expression changes

or when events get removed from the data window then the view applies the expiry expression. If

the expiry expression returns true the data window posts the collected events as the insert stream

and the last batch of events as remove stream.

By using variables in the expiry expression it is possible to change the behavior of the view

dynamically at runtime. When one or more variables used in the expression are updated the view

evaluates the expiry expression as well.

Aggregation functions, if present in the expiry expression, are continuously updated as events

enter the data window and reset when the engine posts a batch of events. Use the grouped data

window with this window to compute aggregations per group.

The engine makes the following built-in properties available to the expiry expression:

Expiry Expression Batch (expr_batch or win:expr_batch)

475

Table 14.4. Built-in Properties of the Expiry Expression Data Window View

Name Type Description

current_count int The number of events in the data window including the

currently-arriving event.

newest_event (same event

type as arriving

events)

The last-arriving event itself.

newest_timestamp long The engine timestamp associated with the last-arriving

event.

oldest_event (same event

type as arriving

events)

The currently-evaluated event itself.

oldest_timestamp long The engine timestamp associated with the currently-

evaluated event.

view_reference Object The object handle to this view.

This EPL declares an expiry expression that posts event batches consisting of 2 events:

select * from MyEvent#expr_batch(current_count >= 2)

The following example implements a dynamically-sized length batch window by means of a SIZE

variable. As the SIZE variable value changes the view accomulates and posts the number of

events according to the current value of SIZE:

create variable int SIZE = 1000

select * from MyEvent#expr_batch(current_count >= SIZE)

The following example accumulates events until an event arrives that has a value of postme for

property myvalue:

select * from MyEvent#expr_batch(myvalue = 'postme')

The following example declares a POST variable and posts a batch of events when the variable

turns true:

Chapter 14. EPL Reference: Views

476

create variable boolean POST = false

select * from MyEvent#expr_batch(POST)

The next example specifies a tumbling window that posts a batch of events when the total price

of all events in the window is greater then 1000:

select * from MyEvent#expr_batch(sum(price) > 1000)

Specify the second parameter as false when you want the triggering event not included in the

current batch.

This example batches all events that have the same value of the flag event property. When the

flag value changes, the data window releases the batch of events collected for the old flag

value. The data window collects the most recent event and the future arriving events of the same

new flag value:

select * from MyEvent#expr_batch(newest_event.flag != oldest_event.flag, false)

14.3.13.1. Limitations

You may not use subqueries or the prev and prior functions as part of the expiry expression.

Consider using a named window and on-delete or on-merge instead.

When using variables in the expiry expression, the thread that updates the variable does not

evaluate the view. The thread that updates the variable instead schedules a reevaluation and view

evaluates by timer execution.

14.4. Standard view set

14.4.1. Unique (unique or std:unique)

The unique view is a view that includes only the most recent among events having the same

value(s) for the result of the specified expression or list of expressions.

The synopsis is:

unique(unique_expression [, unique_expression ...])

Grouped Data Window (groupwin or std:groupwin)

477

The view acts as a length window of size 1 for each distinct value returned by an expression, or

combination of values returned by multiple expressions. It thus posts as old events the prior event

of the same value(s), if any.

An expression may return a null value. The engine treats a null value as any other value. An

expression can also return a custom application object, whereby the application class should

implement the hashCode and equals methods.

The below example creates a view that retains only the last event per symbol.

select * from StockTickEvent#unique(symbol)

The next example creates a view that retains the last event per symbol and feed.

select * from StockTickEvent#unique(symbol, feed)

When using unique the engine plans queries applying an implicit unique index, where applicable.

Specify @Hint('disable_unique_implicit_idx') to force the engine to plan queries using a

non-unique index.

14.4.2. Grouped Data Window (groupwin or std:groupwin)

This view groups events into sub-views by the value returned by the specified expression or the

combination of values returned by a list of expressions. The view takes a single expression to

supply the group criteria values, or a list of expressions as parameters, as the synopsis shows:

groupwin(grouping_expression [, grouping_expression ...])

The grouping_expression expression(s) return one or more group keys, by which the view creates

sub-views for each distinct group key. Note that the expression should not return an unlimited

number of values: the grouping expression should not return a time value or otherwise unlimited

key.

An expression may return a null value. The engine treats a null value as any other value. An

expression can also return a custom application object, whereby the application class should

implement the hashCode and equals methods.

Use group by instead of the grouped data window to control how aggregations are grouped.

A grouped data window with a length window of 1 is equivalent to the unique data window unique.

The unique data window is the preferred notation:

select * from StockTickEvent#unique(symbol) // Prefer this

Chapter 14. EPL Reference: Views

478

// ... equivalent to ...

select * from StockTickEvent#groupwin(symbol)#length(1)

This example computes the total price for the last 5 events considering the last 5 events per

each symbol, aggregating the price across all symbols (since no group by clause is specified the

aggregation is across all symbols):

select symbol, sum(price) from StockTickEvent#groupwin(symbol)#length(5)

The @Hint("reclaim_group_aged=age_in_seconds") hint instructs the engine to discard grouped

data window state that has not been updated for age_in_seconds seconds. The optional

@Hint("reclaim_group_freq=sweep_frequency_in_seconds") can be specified in addition to

control the frequency at which the engine sweeps data window state. If the hint is not specified, the

frequency defaults to the same value as age_in_seconds. Use the hints when your group criteria

returns a changing or unlimited number of values. By default and without hints the view does not

reclaim or remove data windows for group criteria values.

The updated sample statement with both hints:

// Remove data window views for symbols not updated for 10 seconds or more and

 sweep every 30 seconds

@Hint('reclaim_group_aged=10,reclaim_group_freq=30')

select symbol, sum(price) from StockTickEvent#groupwin(symbol)#length(5)

Reclaim executes when an event arrives and not in the timer thread. In the example above reclaim

can occur up to 40 seconds of engine time after the newest event arrives. Reclaim may affect

iteration order for the statement and iteration order becomes indeterministic with reclaim.

To compute the total price for the last 5 events considering the last 5 events per each symbol and

outputting a price per symbol, add the group by clause:

select symbol, sum(price) from StockTickEvent#groupwin(symbol)#length(5) group

 by symbol

The groupwin grouped-window view can also take multiple expressions that provide values to

group by. This example computes the total price for each symbol and feed for the last 10 events

per symbol and feed combination:

select sum(price) from StockTickEvent#groupwin(symbol, feed)#length(10)

Grouped Data Window (groupwin or std:groupwin)

479

The order in which the groupwin grouped-window view appears within sub-views of a stream

controls the data the engine derives from events for each group. The next 2 statements

demonstrate this using a length window.

Without the groupwin declaration query the same query returns the total price per symbol for only

the last 10 events across all symbols. Here the engine allocates only one length window for all

events:

select sum(price) from StockTickEvent#length(10)

We have learned that by placing the groupwin grouped-window view before other views, these

other views become part of the grouped set of views. The engine dynamically allocates a new

view instance for each subview, every time it encounters a new group key such as a new value for

symbol. Therefore, in groupwin(symbol)#length(10) the engine allocates a new length window

for each distinct symbol. However in length(10) alone the engine maintains a single length

window.

The groupwin can be used with multiple data window views to achieve a grouped intersection

or union policy.

The next query retains the last 4 events per symbol and only those events that are also not older

then 10 seconds:

select * from StockTickEvent#groupwin(symbol)#length(4)#time(10)

Last, we consider a grouped data window for two group criteria. Here, the query results are total

price per symbol and feed for the last 100 events per symbol and feed.

select sum(price) from StockTickEvent#groupwin(symbol, feed)#length(100)

Note

A note on grouped time windows: When using grouped-window with time windows,

note that whether the engine retains 5 minutes of events or retains 5 minutes of

events per group, the result is the same from the perspective of retaining events

as both policies retain, considering all groups, the same set of events. Therefore

please specify the time window alone (ungrouped).

For example:

// Use this:

Chapter 14. EPL Reference: Views

480

select sum(price) from StockTickEvent#time(1 minute)

// is equivalent to (don't use this):

// select sum(price) from StockTickEvent#groupwin(symbol)#time(1

 minute)

// Use the group-by clause for grouping aggregation by symbol.

For advanced users: There is an optional view that can control how the groupwin grouped-window

view gets evaluated and that view is the merge view. The merge view can only occur after a

groupwin grouped-window view in a view chain and controls at what point in the view chain the

merge of the data stream occurs from view-instance-per-criteria to single view.

Compare the following statements:

select * from Market#groupwin(ticker)#length(1000000)

 #weighted_avg(price, volume)#merge(ticker)

// ... and ...

select * from Market#groupwin(ticker)#length(1000000)#merge(ticker)

 #weighted_avg(price, volume)

If your statement does not specify the optional merge view, the semantics are the same as the

first statement.

The first statement, in which the merge-view is added to the end (same as no merge view),

computes weighted average per ticker, considering, per-ticker, the last 1M Market events for each

ticker. The second statement, in which the merge view is added to the middle, computes weighted

average considering, per-ticker, the last 1M Market events, computing the weighted average for

all such events using a single view rather then multiple view instances with one view per ticker.

14.4.3. Size (size) or std:size)

This view posts the number of events received from a stream or view plus any additional event

properties or expression values listed as parameters. The synopsis is:

size([expression, ...] [*])

The view posts a single long-typed property named size. The view posts the prior size as old

data, and the current size as new data to update listeners of the view. Via the iterator method

of the statement the size value can also be polled (read). The view only posts output events when

the size count changes and does not stay the same.

As optional parameters the view takes a list of expressions that the view evaluates against the

last arriving event and provides along the size field. You may also provide the * wildcard selector

to have the view output all event properties.

Last Event (std:lastevent)

481

An alternative to receiving a data window event count is the prevcount function. Compared to

the size view the prevcount function requires a data window while the size view does not. The

related count(...) aggregation function provides a count per group when used with group by.

When combined with a data window view, the size view reports the current number of events in

the data window in the insert stream and the prior number of events in the data window as the

remove stream. This example reports the number of tick events within the last 1 minute:

select size from StockTickEvent#time(1 min)#size

To select additional event properties you may add each event property to output as a parameter

to the view.

The next example selects the symbol and feed event properties in addition to the size property:

select size, symbol, feed from StockTickEvent#time(1 min)#size(symbol, feed)

This example selects all event properties in addition to the size property:

select * from StockTickEvent#time(1 min)#size(*)

The size view is also useful in conjunction with a groupwin grouped-window view to count the

number of events per group. The EPL below returns the number of events per symbol.

select size from StockTickEvent#groupwin(symbol)#size

When used without a data window, the view simply counts the number of events:

select size from StockTickEvent#size

All views can be used with pattern statements as well. The next EPL snippet shows a pattern

where we look for tick events followed by trade events for the same symbol. The size view counts

the number of occurrences of the pattern.

select size from pattern[every s=StockTickEvent ->

 TradeEvent(symbol=s.symbol)]#size

14.4.4. Last Event (std:lastevent)

Chapter 14. EPL Reference: Views

482

This view exposes the last element of its parent view:

lastevent

The view acts as a length window of size 1. It thus posts as old events the prior event in the

stream, if any.

This example statement retains the last stock tick event for the symbol GE.

select * from StockTickEvent(symbol='GE')#lastevent

If you want to output the last event within a sliding window, please see Section 10.1.12, “The

Previous Function”. That function accepts a relative (count) or absolute index and returns event

properties or an event in the context of the specified data window.

14.4.5. First Event (firstevent or std:firstevent)

This view retains only the first arriving event:

firstevent

All events arriving after the first event are discarded.

If used within a named window and an on-delete clause deletes the first event, the view resets

and will retain the next arriving event.

An example of a statement that retains the first ReferenceData event arriving is:

select * from ReferenceData#firstevent

If you want to output the first event within a sliding window, please see Section 10.1.12, “The

Previous Function”. That function accepts a relative (count) or absolute index and returns event

properties or an event in the context of the specified data window.

14.4.6. First Unique (firstunique or std:firstunique)

The firstunique view retains only the very first among events having the same value for the

specified expression or list of expressions.

The synopsis is:

firstunique(unique_expression [, unique_expression ...])

If used within a named window and an on-delete clause deletes events, the view resets and will

retain the next arriving event for the expression result value(s) of the deleted events.

Statistics views

483

The below example creates a view that retains only the first event per category:

select * from ReferenceData#firstunique(category)

When using firstunique the engine plans queries applying an implicit unique index, where

applicable. Specify @Hint('disable_unique_implicit_idx') to force the engine to plan

queries using a non-unique index.

14.5. Statistics views

The statistics views can be used combined with data window views or alone. Very similar to

aggregation functions, these views aggregate or derive information from an event stream. As

compared to aggregation functions, statistics views can post multiple derived fields including

properties from the last event that was received. The derived fields and event properties are

available for querying in the where-clause and are often compared to prior values using the prior

function.

Statistics views accept one or more primary value expressions and any number of optional

additional expressions that return values based on the last event received.

14.5.1. Univariate statistics (uni or stat:uni)

This view calculates univariate statistics on a numeric expression. The view takes a single value

expression as a parameter plus any number of optional additional expressions to return properties

of the last event. The value expression must return a numeric value:

uni(value_expression [,expression, ...] [*])

After the value expression you may optionally list additional expressions or event properties to

evaluate for the stream and return their value based on the last arriving event. You may also

provide the * wildcard selector to have the view output all event properties.

Table 14.5. Univariate statistics derived properties

Property Name Description

datapoints Number of values, equivalent to count(*) for the stream

total Sum of values

average Average of values

variance Variance

stddev Sample standard deviation (square root of variance)

stddevpa Population standard deviation

The below example selects the standard deviation on price for stock tick events for the last 10

events.

Chapter 14. EPL Reference: Views

484

select stddev from StockTickEvent#length(10)#uni(price)

To add properties from the event stream you may simply add all additional properties as

parameters to the view.

This example selects all of the derived values, based on the price property, plus the values of the

symbol and feed event properties:

select * from StockTickEvent#length(10)#uni(price, symbol, feed)

The following example selects all of the derived values plus all event properties:

select * from StockTickEvent#length(10)#uni(price, symbol, *)

14.5.2. Regression (linest or stat:linest)

This view calculates regression and related intermediate results on the values returned by two

expressions. The view takes two value expressions as parameters plus any number of optional

additional expressions to return properties of the last event. The value expressions must return

a numeric value:

linest(value_expression, value_expression [,expression, ...] [*])

After the two value expressions you may optionally list additional expressions or event properties

to evaluate for the stream and return their value based on the last arriving event. You may also

provide the * wildcard selector to have the view output all event properties.

Table 14.6. Regression derived properties

Property Name Description

slope Slope.

YIntercept Y intercept.

XAverage X average.

XStandardDeviationPop X standard deviation population.

XStandardDeviationSampleX standard deviation sample.

XSum X sum.

XVariance X variance.

YAverage X average.

YStandardDeviationPop Y standard deviation population.

Correlation (correl or stat:correl)

485

Property Name Description

YStandardDeviationSampleY standard deviation sample.

YSum Y sum.

YVariance Y variance.

dataPoints Number of data points.

n Number of data points.

sumX Sum of X (same as X Sum).

sumXSq Sum of X squared.

sumXY Sum of X times Y.

sumY Sum of Y (same as Y Sum).

sumYSq Sum of Y squared.

The next example calculates regression and returns the slope and y-intercept on price and offer

for all events in the last 10 seconds.

select slope, YIntercept from StockTickEvent#time(10 seconds)#linest(price,

 offer)

To add properties from the event stream you may simply add all additional properties as

parameters to the view.

This example selects all of the derived values, based on the price and offer properties, plus the

values of the symbol and feed event properties:

select * from StockTickEvent#time(10 seconds)#linest(price, offer, symbol, feed)

The following example selects all of the derived values plus all event properties:

select * from StockTickEvent#time(10 seconds)#linest(price, offer, *)

14.5.3. Correlation (correl or stat:correl)

This view calculates the correlation value on the value returned by two expressions. The view

takes two value expressions as parameters plus any number of optional additional expressions

to return properties of the last event. The value expressions must be return a numeric value:

correl(value_expression, value_expression [,expression, ...] [*])

Chapter 14. EPL Reference: Views

486

After the two value expressions you may optionally list additional expressions or event properties

to evaluate for the stream and return their value based on the last arriving event. You may also

provide the * wildcard selector to have the view output all event properties.

Table 14.7. Correlation derived properties

Property Name Description

correlation Correlation between two event properties

The next example calculates correlation on price and offer over all stock tick events for GE:

select correlation from StockTickEvent(symbol='GE')#correl(price, offer)

To add properties from the event stream you may simply add all additional properties as

parameters to the view.

This example selects all of the derived values, based on the price and offer property, plus the

values of the feed event property:

select * from StockTickEvent(symbol='GE')#correl(price, offer, feed)

The next example selects all of the derived values plus all event properties:

select * from StockTickEvent(symbol='GE')#correl(price, offer, *)

14.5.4. Weighted average (weighted_avg or stat:weighted_avg)

This view returns the weighted average given an expression returning values to compute the

average for and an expression returning weight. The view takes two value expressions as

parameters plus any number of optional additional expressions to return properties of the last

event. The value expressions must return numeric values:

weighted_avg(value_expression_field, value_expression_weight

 [,expression, ...] [*])

After the value expression you may optionally list additional expressions or event properties to

evaluate for the stream and return their value based on the last arriving event. You may also

provide the * wildcard selector to have the view output all event properties.

Weighted average (weighted_avg or stat:weighted_avg)

487

Table 14.8. Weighted average derived properties

Property Name Description

average Weighted average

A statement that derives the volume-weighted average price for the last 3 seconds for a given

symbol is shown below:

select average

from StockTickEvent(symbol='GE')#time(3 seconds)#weighted_avg(price, volume)

To add properties from the event stream you may simply add all additional properties as

parameters to the view.

This example selects all of the derived values, based on the price and volume properties, plus the

values of the symbol and feed event properties:

select *

from StockTickEvent#time(3 seconds)#weighted_avg(price, volume, symbol, feed)

The next example selects all of the derived values plus the values of all event properties:

select *

from StockTickEvent#time(3 seconds)#weighted_avg(price, volume, *)

Aggregation functions could instead be used to compute the weighted average as well. The next

example also posts weighted average per symbol considering the last 3 seconds of stock tick data:

select symbol, sum(price*volume)/sum(volume)

from StockTickEvent#time(3 seconds) group by symbol

The following example computes weighted average keeping a separate data window per symbol

considering the last 5 events of each symbol:

select symbol, average

from StockTickEvent#groupwin(symbol)#length(5)#weighted_avg(price, volume)

Chapter 14. EPL Reference: Views

488

14.6. Extension View Set

The views in this set are data windows that order events according to a criteria.

14.6.1. Sorted Window View (sort or ext:sort)

This view sorts by values returned by the specified expression or list of expressions and keeps

only the top (or bottom) events up to the given size.

This view retains all events in the stream that fall into the sort range. Use the ranked window as

described next to retain events per unique key(s) and sorted.

The syntax is as follows:

sort(size_expression,

 sort_criteria_expression [asc/desc][, sort_criteria_expression [asc/

desc]...])

An expression may be followed by the optional asc or desc keywords to indicate that the values

returned by that expression are sorted in ascending or descending sort order.

The view below retains only those events that have the highest 10 prices considering all events

(and not only the last event per symbol, see rank below) and reports a total price:

select sum(price) from StockTickEvent#sort(10, price desc)

The following example sorts events first by price in descending order, and then by symbol name

in ascending (alphabetical) order, keeping only the 10 events with the highest price (with ties

resolved by alphabetical order of symbol).

select * from StockTickEvent#sort(10, price desc, symbol asc)

The sorted window is often used with the prev, prevwindow or prevtail single-row functions to

output properties of events at a certain position or to output the complete data window according

to sort order.

Use the grouped window to retain a separate sort window for each group. For example, the views

groupwin(market)#sort(10, price desc) instruct the engine to retain, per market, the highest

10 prices.

14.6.2. Ranked Window View (rank or ext:rank)

This view retains only the most recent among events having the same value for the criteria

expression(s), sorted by sort criteria expressions and keeps only the top events up to the given

size.

Time-Order View (time_order or ext:time_order)

489

This view is similar to the sorted window in that it keeps only the top (or bottom) events up to the

given size, however the view also retains only the most recent among events having the same

value(s) for the specified uniqueness expression(s).

The syntax is as follows:

rank(unique_expression [, unique_expression ...],

 size_expression,

 sort_criteria_expression [asc/desc][, sort_criteria_expression [asc/

desc]...])

Specify the expressions returning unique key values first. Then specify a constant value that is

the size of the ranked window. Then specify the expressions returning sort criteria values. The

sort criteria expressions may be followed by the optional asc or desc keywords to indicate that

the values returned by that expression are sorted in ascending or descending sort order.

The view below retains only those events that have the highest 10 prices considering only the last

event per symbol and reports a total price:

select sum(price) from StockTickEvent#rank(symbol, 10, price desc)

The following example retains, for the last event per market and symbol, those events that sort

by price and quantity ascending into the first 10 ranks:

select * from StockTickEvent#rank(market, symbol, 10, price, quantity)

The ranked window is often used with the prev, prevwindow or prevtail single-row functions to

output properties of events at a certain position or to output the complete data window according

to sort order.

This example outputs every 5 seconds the top 10 events according to price descending and

considering only the last event per symbol:

select prevwindow(*) from StockTickEvent#rank(symbol, 10, price desc)

 output snapshot every 5 seconds limit 1 // need only 1 row

Use the grouped window to retain a separate rank for each group. For example, the views

groupwin(market)#rank(symbol, 10, price desc) instruct the engine to retain, per market,

the highest 10 prices considering the last event per symbol.

14.6.3. Time-Order View (time_order or ext:time_order)

Chapter 14. EPL Reference: Views

490

This view orders events that arrive out-of-order, using timestamp-values provided by an

expression, and by comparing that timestamp value to engine time.

The syntax for this view is as follows.

time_order(timestamp_expression, time_period)

time_order(timestamp_expression, seconds_interval_expression)

The first parameter to the view is the expression that supplies timestamp values. The timestamp

is expected to be a long-typed value that denotes an event's time of consideration by the view

(or other expression). This is typically the time of arrival. The second parameter is a number-of-

seconds expression or the time period specifying the time interval that an arriving event should

maximally be held, in order to consider older events arriving at a later time.

Since the view compares timestamp values to engine time, the view requires that the timestamp

values and engine time are both following the same clock. Therefore, to the extend that the clocks

that originated both timestamps differ, the view may produce inaccurate results.

As an example, the next statement uses the arrival_time property of MyTimestampedEvent

events to order and release events by arrival time:

insert rstream into ArrivalTimeOrderedStream

select rstream * from MyTimestampedEvent#time_order(arrival_time, 10 sec)

In the example above, the arrival_time property holds a long-typed timestamp value. On arrival

of an event, the engine compares the timestamp value of each event to the tail-time of the window.

The tail-time of the window is, in this example, 10 seconds before engine time (continuously

sliding). If the timestamp value indicates that the event is older then the tail-time of the time window,

the event is released immediately in the remove stream. If the timestamp value indicates that the

event is newer then the tail-time of the window, the view retains the event until engine time moves

such that the event timestamp is older then tail-time.

The examples thus holds each arriving event in memory anywhere from zero seconds to 10

seconds, to allow for older events (considering arrival time timestamp) to arrive. In other words,

the view holds an event with an arrival time equal to engine time for 10 seconds. The view holds

an event with an arrival time that is 2 seconds older then engine time for 8 seconds. The view

holds an event with an arrival time that is 10 or more seconds older then engine time for zero

seconds, and releases such (old) events immediately into the remove stream.

The insert stream of this sliding window consists of all arriving events. The remove stream of the

view is ordered by timestamp value: The event that has the oldest timestamp value is released

first, followed by the next newer events. Note the statement above uses the rstream keyword in

both the insert into clause and the select clause to select ordered events only. It uses the

insert into clause to makes such ordered stream available for subsequent statements to use.

Time-To-Live View (timetolive or ext:timetolive)

491

It is up to your application to populate the timestamp property into your events or use a sensible

expression that returns timestamp values for consideration by the view. The view also works well

if you use externally-provided time via timer events.

14.6.4. Time-To-Live View (timetolive or ext:timetolive)

This view retains events until engine time reaches the value returned by the given timestamp

expression.

The syntax for this view is as follows:

timetolive(timestamp_expression)

The only parameter to the view is the expression that supplies timestamp values. The timestamp

is expected to be a long-typed value that denotes an event's time-to-live.

Since the view compares timestamp values to engine time, the view requires that the timestamp

values and engine time are both following the same clock.

On arrival of an event, the engine evaluates the timestamp expression and obtains a long-type

timestamp. The engine compares that timestamp value to engine time:

• If the timestamp is older than engine time or the same as engine time, the engine releases the

event immediately into the remove stream and does not retain the event at all.

• If the timestamp value is newer than the engine time, the data window retains the event until

engine time moves forward such that the timestamp is the same or older than engine time.

As an example, the next statement uses the arrival_time property of MyTimestampedEvent

events to release events by arrival time:

insert rstream into ArrivalTimeOrderedStream

select rstream * from MyTimestampedEvent#timetolive(arrival_time)

For example, assume engine time is 8:00:00 (8 am).

• If the arrival_time timestamp is 8:00:00 or older (such as 7:59:00), the data window does

not retain the event at all, i.e. the engine releases the event into the remove stream upon arrival.

• If the arrival_time timestamp is after 8:00:00 the data window retains the event. Let's say the

arrival_time timestamp is 8:02:00 the engine retains the event until engine time is 8:02:00

or newer.

The engine evaluates the expression only once at the arrival of each event to determine that

event's time-to-live.

Chapter 14. EPL Reference: Views

492

The insert stream of this sliding window consists of all arriving events. The remove stream of the

view is ordered by timestamp value: The event that has the oldest timestamp value is released

first, followed by the next newer events. Note the statement above uses the rstream keyword in

both the insert into clause and the select clause to select ordered events only. It uses the

insert into clause to makes such ordered stream available for subsequent statements to use.

It is up to your application to populate the timestamp property into your events or use a sensible

expression that returns timestamp values for consideration by the view. The view also works well

if you use externally-provided time via timer events and if you have engine time track watermarks.

The time-to-live data window is fully equivalent to the time-order data window with a zero value

for the time period.

Chapter 15.

493

Chapter 15. EPL Reference: Data

Flow
15.1. Introduction

Data flows in Esper EPL have the following purposes:

1. Support for data flow programming and flow-based programming.

2. Declarative and runtime manageable integration of Esper input and output adapters that may

be provided by EsperIO or by an application.

3. Remove the need to use an event bus achieving dataflow-only visibility of events and event

types for performance gains.

Data flow operators communicate via streams of either underlying event objects or wrapped

events. Underlying event objects are POJO, Map, Object-array or DOM/XML. Wrapped events are

represented by EventBean instances that associate type information to underlying event objects.

For more information on data flow programming or flow-based programming please consult the

Wikipedia FBP Article [http://en.wikipedia.org/wiki/Flow-based_programming].

Esper offers a number of useful built-in operators that can be combined in a graph to program a

data flow. In addition EsperIO offers prebuilt operators that act as sources or sinks of events. An

application can easily create and use its own data flow operators.

Using data flows an application can provide events to the data flow operators directly without using

an engine's event bus. Not using an event bus (as represented by EPRuntime.sendEvent) can

achieve performance gains as the engine does not need to match events to statements and the

engine does not need to wrap underlying event objects in EventBean instances.

Data flows also allow for finer-grained control over threading, synchronous and asynchronous

operation.

Note

Data flows are new in release 4.6 and may be subject to evolutionary change.

15.2. Usage

15.2.1. Overview

Your application declares a data flow using create dataflow dataflow-name. Declaring the data

flow causes the EPL compiler to validate the syntax and some aspects of the data flow graph of

operators. Declaring the data flow does not actually instantiate or execute a data flow. Resolving

event types and instantiating operators (as required) takes place at time of data flow instantiation.

http://en.wikipedia.org/wiki/Flow-based_programming
http://en.wikipedia.org/wiki/Flow-based_programming

Chapter 15. EPL Reference: Da...

494

After your application has declared a data flow, it can instantiate the data flow and execute it. A

data flow can be instantiated as many times as needed and each data flow instance can only be

executed once.

The example EPL below creates a data flow that, upon execution, outputs the text Hello World

to console and then ends.

create dataflow HelloWorldDataFlow

 BeaconSource -> helloworld.stream { text: 'hello world' , iterations: 1}

 LogSink(helloworld.stream) {}

The sample data flow above declares a BeaconSource operator parameterized by the "hello world"

text and 1 iteration. The -> keyword reads as produces streams. The BeaconSource operator

produces a single stream named helloworld.stream. The LogSink operator receives this stream

and prints it unformatted.

The next program code snippet declares the data flow to the engine:

String epl = "create dataflow HelloWorldDataFlow\n" +

 "BeaconSource -> helloworldStream { text: 'hello world' , iterations: 1}\n" +

 "LogSink(helloworldStream) {}";

epService.getEPAdministrator().createEPL(epl);

After declaring a data flow to an engine, your application can then instantiate and execute the

data flow.

The following program code snippet instantiates the data flow:

EPDataFlowInstance instance =

 epService.getEPRuntime().getDataFlowRuntime().instantiate("HelloWorldDataFlow");

A data flow instance is represented by an EPDataFlowInstance object.

The next code snippet executes the data flow instance:

instance.run();

By using the run method of EPDataFlowInstance the engine executes the data flow using the

same thread (blocking execute) and returns when the data flow completes. A data flow completes

when all operators receive final markers.

Syntax

495

The hello world data flow simply prints an unformatted Hello World string to console. Please

check the built-in operator reference for BeaconSource and LogSink for more options.

15.2.2. Syntax

The synopsis for declaring a data flow is:

create dataflow name

 [schema_declarations]

 [operator_declarations]

After create dataflow follows the data flow name and a mixed list of event type (schema)

declarations and operator declarations.

Schema declarations define an event type. Specify any number of create schema clauses as

part of the data flow declaration followed by a comma character to end each schema declaration.

The syntax for create schema is described in Section 5.15, “Declaring an Event Type: Create

Schema”.

All event types that are defined as part of a data flow are private to the data flow and not available

to other EPL statements. To define event types that are available across data flows and other EPL

statements, use a create schema EPL statement, runtime or static configuration.

Annotations as well as expression declarations and scripts can also be pre-pended to the data

flow declaration.

15.2.2.1. Operator Declaration

For each operator, declare the operator name, input streams, output streams and operator

parameters.

The syntax for declaring a data flow operator is:

operator_name [(input_streams)] [-> output_streams] {

 [parameter_name : parameter_value_expr] [, ...]

}

The operator name is an identifier that identifies an operator.

If the operator accepts input streams then those may be listed in parenthesis after the operator

name, see Section 15.2.2.2, “Declaring Input Streams”.

If the operator can produce output streams then specify -> followed by a list of output stream

names and types. See Section 15.2.2.3, “Declaring Output Streams”.

Following the input and output stream declaration provide curly brackets ({}) containing operator

parameters. See Section 15.2.2.4, “Declaring Operator Parameters”.

Chapter 15. EPL Reference: Da...

496

An operator that receives no input streams, produces no output streams and has no parameters

assigned to it is shown in this EPL example data flow:

create dataflow MyDataFlow

 MyOperatorSimple {}

The next EPL shows a data flow that consists of an operator MyOperator that receives a single

input stream myInStream and produces a single output stream myOutStream holding MyEvent

events. The EPL configures the operator parameter myParameter with a value of 10:

create dataflow MyDataFlow

 create schema MyEvent as (id string, price double),

 MyOperator(myInStream) -> myOutStream<MyEvent> {

 myParameter : 10

 }

The next sections outline input stream, output stream and parameter assignment in greater detail.

15.2.2.2. Declaring Input Streams

In case the operator receives input streams, list the input stream names within parenthesis

following the operator name. As part of the input stream declaration you may use the as keyword

to assign an alias short name to one or multiple input streams.

The EPL shown next declares myInStream and assigns the alias mis:

create dataflow MyDataFlow

 MyOperator(myInStream as mis) {}

Multiple input streams can be listed separated by comma. We use the term input port to mean the

ordinal number of the input stream in the order the input streams are listed.

The EPL as below declares two input streams and assigns an alias to each. The engine assigns

streamOne to input port 0 (zero) and streamTwo to port 1.

create dataflow MyDataFlow

 MyOperator(streamOne as one, streamTwo as two) {}

You may assign multiple input streams to the same port and alias by placing the stream names

into parenthesis. All input streams for the same port must have the same event type associated.

Syntax

497

The next EPL statement declares an operator that receives input streams streamA and streamB

both assigned to port 0 (zero) and alias streamsAB:

create dataflow MyDataFlow

 MyOperator((streamA, streamB) as streamsAB) {}

Input and output stream names can have the dot-character in their name.

The following is also valid EPL:

create dataflow MyDataFlow

 MyOperator(my.in.stream) -> my.out.stream {}

Note

Reserved keywords may not appear in the stream name.

15.2.2.3. Declaring Output Streams

In case the operator produces output streams, list the output streams after the -> keyword. Multiple

output streams can be listed separated by comma. We use the term output port to mean the

ordinal number of the output stream in the order the output streams are listed.

The sample EPL below declares an operator that produces two output streams my.out.one and

my.out.two.

create dataflow MyDataFlow

 MyOperator -> my.out.one, my.out.two {}

Each output stream can be assigned optional type information within less/greater-then (<>). Type

information is required if the operator cannot deduce the output type from the input type and the

operator does not declare explicit output type(s). The event type name can either be an event type

defined within the same data flow or an event type defined in the engine.

This EPL example declares an RFIDSchema event type based on an object-array event

representation and associates the output stream rfid.stream with the RFIDSchema type. The

stream rfid.stream therefore carries object-array (Object[]) typed objects according to schema

RFIDSchema:

create dataflow MyDataFlow

 create objectarray schema RFIDSchema (tagId string, locX double, locY double),

Chapter 15. EPL Reference: Da...

498

 MyOperator -> rfid.stream<RFIDSchema> {}

The keyword eventbean is reserved: Use eventbean<type-name> to indicate that a stream carries

EventBean instances of the given type instead of the underlying event object.

This EPL example declares an RFIDSchema event type based on an object-array event

representation and associates the output stream rfid.stream with the event type, such that the

stream rfid.stream carries EventBean objects:

create dataflow MyDataFlow

 create objectarray schema RFIDSchema (tagId string, locX double, locy double),

 MyOperator -> rfid.stream<eventbean<RFIDSchema>> {}

Use questionmark (?) to indicate that the type of events is not known in advance.

In the next EPL the stream my.stream carries EventBean instances of any type:

create dataflow MyDataFlow

 MyOperator -> my.stream<eventbean<?>> {}

15.2.2.4. Declaring Operator Parameters

Operators can receive constants, objects, EPL expressions and complete EPL statements as

parameters. All parameters are listed within curly brackets ({}) after input and output stream

declarations. Curly brackets are required as a separator even if the operator has no parameters.

The syntax for parameters is:

name : value_expr [,...]

The parameter name is an identifier that is followed by the colon (:) or equals (=) character and

a value expression. A value expression can be any expression, system property, JSON notation

object or EPL statement. Parameters are separated by comma character.

The next EPL demonstrates operator parameters that are scalar values:

create dataflow MyDataFlow

 MyOperator {

 stringParam : 'sample',

 secondString : "double-quotes are fine",

 intParam : 10

 }

Syntax

499

Operator parameters can be any EPL expression including expressions that use variables.

Subqueries, aggregations and the prev and prior functions cannot be applied here.

The EPL shown below lists operator parameters that are expressions:

create dataflow MyDataFlow

 MyOperator {

 intParam : 24*60*60,

 threshold : var_threshold // a variable defined in the engine

 }

To obtain the value of a system property, the special systemProperties property name is

reserved for access to system properties.

The following EPL sets operator parameters to a value obtained from a system property:

create dataflow MyDataFlow

 MyOperator {

 someSystemProperty : systemProperties('mySystemProperty')

 }

Any JSON value can also be used as a value. Use square brackets [] for JSON arrays. Use

curly brackets {} to hold nested Map or other object values. Provide the special class property

to instantiate a given instance by class name. The engine populates the respective array, Map or

Object as specified in the JSON parameter value.

The below EPL demonstrates operator parameters that are JSON values:

create dataflow MyDataFlow

 MyOperator {

 myStringArray: ['a', "b"],

 myMapOrObject: {

 a : 10,

 b : 'xyz',

 },

 myInstance: {

 class: 'com.myorg.myapp.MyImplementation',

 myValue : 'sample'

 }

 }

The special parameter name select is reserved for use with EPL select statements. Please see

the Select built-in operator for an example.

Chapter 15. EPL Reference: Da...

500

15.3. Built-in Operators

The below table summarizes the built-in data flow operators (Esper only) available:

Table 15.1. Esper Built-in Operators

Operator Description

BeaconSource Utility source that generates events. See Section 15.3.1,

“BeaconSource”.

Emitter Special operator for injecting events into a stream. See

Section 15.4.5, “Start Captive”.

EPStatementSource One or more EPL statements act as event sources. See

Section 15.3.2, “EPStatementSource”.

EventBusSink The event bus is the sink: Sends events from the data flow into

the event bus. See Section 15.3.3, “EventBusSink”.

EventBusSource The event bus is the source: Receives events from the event

bus into the data flow. See Section 15.3.4, “EventBusSource”.

Filter Filters an input stream and produces an output stream

containing the events passing the filter criteria. See

Section 15.3.5, “Filter”.

LogSink Utility sink that outputs events to console or log. See

Section 15.3.6, “LogSink”.

Select An EPL select statement that executes on the input stream

events. See Section 15.3.7, “Select”.

The below table summarizes the built-in EsperIO data flow operators. Please see the EsperIO

documentation and source for more information.

Table 15.2. EsperIO Built-in Operators

Operator Description

AMQPSource Attaches to AMQP broker to receive messages to process.

AMQPSink Attaches to AMQP broker to send messages.

FileSource Reads one or more files and produces events from file data.

FileSink Write one or more files from events received.

15.3.1. BeaconSource

The BeaconSource operator generates events and populates event properties.

The BeaconSource operator does not accept any input streams and has no input ports.

BeaconSource

501

The BeaconSource operator must have a single output stream. When the BeaconSource operator

completed generating events according to the number of iterations provided or when it is cancelled

it outputs a final marker to the output stream.

Parameters for the BeaconSource operator are all optional parameters:

Table 15.3. BeaconSource Parameters

Name Description

initialDelay Specifies the number of seconds delay before producing events.

interval Time interval between events. Takes a integer or double-typed value for the

number of seconds. The interval is zero when not provided.

iterations Number of events produced. Takes an integer value. When not provided the

operator produces tuples until the data flow instance gets cancelled.

Event properties to be populated can simply be added to the parameters.

If your declaration provides an event type for the output stream then BeaconSource will populate

event properties of the underlying events. If no event type is specified, BeaconSource creates

an anonymous object-array event type to carry the event properties that are generated and

associates this type with its output stream.

Examples are:

create dataflow MyDataFlow

 create schema SampleSchema(tagId string, locX double), // sample type

 // BeaconSource that produces empty object-array events without delay

 // or interval until cancelled.

 BeaconSource -> stream.one {}

 // BeaconSource that produces one RFIDSchema event populating event properties

 // from a user-defined function "generateTagId" and the provided values.

 BeaconSource -> stream.two<SampleSchema> {

 iterations : 1,

 tagId : generateTagId(),

 locX : 10

 }

 // BeaconSource that produces 10 object-array events populating

 // the price property with a random value.

 BeaconSource -> stream.three {

 iterations : 1,

 interval : 10, // every 10 seconds

 initialDelay : 5, // start after 5 seconds

 price : Math.random() * 100

 }

Chapter 15. EPL Reference: Da...

502

15.3.2. EPStatementSource

The EPStatementSource operator maintains a subscription to the results of one or more EPL

statements. The operator produces the statement output events.

The EPStatementSource operator does not accept any input streams and has no input ports.

The EPStatementSource operator must have a single output stream. It does not generate a final

or other marker.

Either the statement name or the statement filter parameter is required:

Table 15.4. EPStatementSource Parameters

Name Description

collector Optional parameter, used to transform statement output events to submitted

events.

statementName Name of the statement that produces events. The statement does not need

to exist at the time of data flow instantiation.

statementFilter Implementation of the EPDataFlowEPStatementFilter that returns true for

each statement that produces events. Statements do not need to exist at the

time of data flow instantiation.

If a statement name is provided, the operator subscribes to output events of the statement if the

statement exists or when it gets created at a later point in time.

If a statement filter is provided instead, the operator subscribes to output events of all statements

that currently exist and pass the filter pass method or that get created at a later point in time and

pass the filter pass method.

The collector can be specified to transform output events. If no collector is specified the operator

submits the underlying events of the insert stream received from the statement. The collector

object must implement the interface EPDataFlowIRStreamCollector.

Examples are:

create dataflow MyDataFlow

 create schema SampleSchema(tagId string, locX double), // sample type

 // Consider only the statement named MySelectStatement when it exists.

 // No transformation.

 EPStatementSource -> stream.one<eventbean<?>> {

 statementName : 'MySelectStatement'

 }

 // Consider all statements that match the filter object provided.

 // No transformation.

 EPStatementSource -> stream.two<eventbean<?>> {

EventBusSink

503

 statementFilter : {

 class : 'com.mycompany.filters.MyStatementFilter'

 }

 }

 // Consider all statements that match the filter object provided.

 // With collector that performs transformation.

 EPStatementSource -> stream.two<SampleSchema> {

 collector : {

 class : 'com.mycompany.filters.MyCollector'

 },

 statementFilter : {

 class : 'com.mycompany.filters.MyStatementFilter'

 }

 }

15.3.3. EventBusSink

The EventBusSink operator send events received from a data flow into the event bus. Any

statement that looks for any of the events gets triggered, equivalent to EPRuntime.sendEvent or

the insert into clause.

The EventBusSink operator accepts any number of input streams. The operator forwards all

events arriving on any input ports to the event bus, equivalent to EPRuntime.sendEvent.

The EventBusSink operator cannot declare any output streams.

Parameters for the EventBusSink operator are all optional parameters:

Table 15.5. EventBusSink Parameters

Name Description

collector Optional parameter, used to transform data flow events to event bus events.

The collector can be specified to transform data flow events to event bus events. If no collector

is specified the operator submits the events directly to the event bus. The collector object must

implement the interface EPDataFlowEventCollector.

Examples are:

create dataflow MyDataFlow

 BeaconSource -> instream<SampleSchema> {} // produces a sample stream

 // Send SampleSchema events produced by beacon to the event bus.

 EventBusSink(instream) {}

 // Send SampleSchema events produced by beacon to the event bus.

 // With collector that performs transformation.

Chapter 15. EPL Reference: Da...

504

 EventBusSink(instream) {

 collector : {

 class : 'com.mycompany.filters.MyCollector'

 }

 }

15.3.4. EventBusSource

The EventBusSource operator receives events from the event bus and produces an output

stream of the events received. With the term event bus we mean any event visible to the engine

either because the application send the event via EPRuntime.sendEvent or because statements

populated streams as a result of insert into.

The EventBusSource operator does not accept any input streams and has no input ports.

The EventBusSource operator must have a single output stream. It does not generate a final or

other marker. The event type declared for the output stream is the event type of events received

from the event bus.

All parameters to EventBusSource are optional:

Table 15.6. EventBusSource Parameters

Name Description

collector Optional parameter and used to transform event bus events to submitted

events.

filter Filter expression for event bus matching.

The collector can be specified to transform output events. If no collector is specified the operator

submits the underlying events of the stream received from the event bus. The collector object

must implement the interface EPDataFlowEventBeanCollector.

The filter is an expression that the event bus compiles and efficiently matches even in the

presence of a large number of event bus sources. The filter expression must return a boolean-

typed value, returning true for those events that the event bus passes to the operator.

Examples are:

create dataflow MyDataFlow

 // Receive all SampleSchema events from the event bus.

 // No transformation.

 EventBusSource -> stream.one<SampleSchema> {}

 // Receive all SampleSchema events with tag id '001' from the event bus.

 // No transformation.

 EventBusSource -> stream.one<SampleSchema> {

Filter

505

 filter : tagId = '001'

 }

 // Receive all SampleSchema events from the event bus.

 // With collector that performs transformation.

 EventBusSource -> stream.two<SampleSchema> {

 collector : {

 class : 'com.mycompany.filters.MyCollector'

 },

 }

15.3.5. Filter

The Filter operator filters an input stream and produces an output stream containing the events

passing the filter criteria. If a second output stream is provided, the operator sends events not

passing filter criteria to that output stream.

The Filter operator accepts a single input stream.

The Filter operator requires one or two output streams. The event type of the input and output

stream(s) must be the same. The first output stream receives the matching events according to

the filter expression. If declaring two output streams, the second stream receives non-matching

events.

The Filter operator has a single required parameter:

Table 15.7. Filter Parameters

Name Description

filter The filter criteria expression.

Examples are:

create dataflow MyDataFlow

 create schema SampleSchema(tagId string, locX double), // sample type

 BeaconSource -> samplestream<SampleSchema> {} // sample source

 // Filter all events that have a tag id of '001'

 Filter(samplestream) -> tags_001 {

 filter : tagId = '001'

 }

 // Filter all events that have a tag id of '001',

 // putting all other events into the second stream

 Filter(samplestream) -> tags_001, tags_other {

 filter : tagId = '001'

 }

Chapter 15. EPL Reference: Da...

506

15.3.6. LogSink

The LogSink operator outputs events to console or log file in either a JSON, XML or built-in format

(the default).

The LogSink operator accepts any number of input streams. All events arriving on any input ports

are logged.

The LogSink operator cannot declare any output streams.

Parameters for the LogSink operator are all optional parameters:

Table 15.8. LogSink Parameters

Name Description

format Specify format as a string value: json for JSON-formatted output, xml for

XML-formatted output and summary (default) for a built-in format.

layout Pattern string according to which output is formatted. Place %df for data flow

name, %p for port number, %i for data flow instance id, %t for title, %e for

event data.

log Boolean true (default) for log output, false for console output.

linefeed Boolean true (default) for line feed, false for no line feed.

title String title text pre-pended to output.

Examples are:

create dataflow MyDataFlow

 BeaconSource -> instream {} // produces sample stream to use below

 // Output textual event to log using defaults.

 LogSink(instream) {}

 // Output JSON-formatted to console.

 LogSink(instream) {

 format : 'json',

 layout : '%t [%e]',

 log : false,

 linefeed : true,

 title : 'My Custom Title:'

 }

15.3.7. Select

The Select operator is configured with an EPL select statement. It applies events from input

streams to the select statement and outputs results either continuously or when the final marker

arrives.

Select

507

The Select operator accepts one or more input streams.

The Select operator requires a single output stream.

The Select operator requires the select parameter, all other parameters are optional:

Table 15.9. Select Operator Parameters

Name Description

iterate Boolean indicator whether results should be output continuously or only upon

arrival of the final marker.

select EPL select statement in parenthesis.

Set the optional iterate flag to false (the default) to have the operator output results continuously.

Set the iterate flag to true to indicate that the operator outputs results only when the final marker

arrives. If iterate is true then output rate limiting clauses are not supported.

The select parameter is required and provides an EPL select statement within parenthesis. For

each input port the statement should list the input stream name or the alias name in the from

clause. Only filter-based streams are allowed in the from clause and patterns or named windows

are not supported. Also not allowed are the insert into clause, the irstream keyword and

subselects.

The Select operator determines the event type of output events based on the select clause. It is

not necessary to declare an event type for the output stream.

Examples are:

create dataflow MyDataFlow

 create schema SampleSchema(tagId string, locX double), // sample type

 BeaconSource -> instream<SampleSchema> {} // sample stream

 BeaconSource -> secondstream<SampleSchema> {} // sample stream

 // Simple continuous count of events

 Select(instream) -> outstream {

 select: (select count(*) from instream)

 }

 // Demonstrate use of alias

 Select(instream as myalias) -> outstream {

 select: (select count(*) from myalias)

 }

 // Output only when the final marker arrives

 Select(instream as myalias) -> outstream {

 select: (select count(*) from myalias),

 iterate: true

 }

Chapter 15. EPL Reference: Da...

508

 // Same input port for the two sample streams

 Select((instream, secondstream) as myalias) -> outstream {

 select: (select count(*) from myalias)

 }

 // A join with multiple input streams,

 // joining the last event per stream forming pairs

 Select(instream, secondstream) -> outstream {

 select: (select a.tagId, b.tagId

 from instream#lastevent as a, secondstream#lastevent as b)

 }

 // A join with multiple input streams and using aliases.

 Select(instream as S1, secondstream as S2) -> outstream {

 select: (select a.tagId, b.tagId

 from S1#lastevent as a, S2#lastevent as b)

 }

15.4. API

This section outlines the steps to declare, instantiate, execute and cancel or complete data flows.

15.4.1. Declaring a Data Flow

Use the createEPL and related create methods on EPAdministrator to declare a data flow or

the deployment admin API. The EPStatementObjectModel statement object model can also be

used to declare a data flow.

Annotations that are listed at the top of the EPL text are applied to all EPL statements and

operators in the data flow. Annotations listed for a specific operator apply to that operator only.

The next program code snippet declares a data flow to the engine:

String epl = "@Name('MyStatementName') create dataflow HelloWorldDataFlow\n" +

 "BeaconSource -> helloworldStream { text: 'hello world' , iterations: 1}\n" +

 "LogSink(helloworldStream) {}";

EPStatement stmt = epService.getEPAdministrator().createEPL(epl);

The statement name that can be assigned to the statement is used only for statement

management. Your application may stop and/or destroy the statement declaring the data flow

thereby making the data flow unavailable for instantiation. Existing instances of the data flow

are not affected by a stop or destroy of the statement that declares the data flow (example:

stmt.destroy()).

Listeners or the subscriber to the statement declaring a data flow receive no events or other output.

The statement declaring a data flow returns no rows when iterated.

Instantiating a Data Flow

509

15.4.2. Instantiating a Data Flow

The com.espertech.esper.client.dataflow.EPDataFlowRuntime available via

getDataFlowRuntime on EPRuntime manages declared data flows.

Use the instantiate method on EPDataFlowRuntime to instantiate a data flow after it has been

declared. Pass the data flow name and optional instantiation options to the method. A data flow

can be instantiated any number of times.

A data flow instance is represented by an instance of EPDataFlowInstance. Each instance has

a state as well as methods to start, run, join and cancel as well as methods to obtain execution

statistics.

Various optional arguments including operator parameters can be passed to instantiate via the

EPDataFlowInstantiationOptions object as explained in more detail below.

The following code snippet instantiates the data flow:

EPDataFlowInstance instance =

 epService.getEPRuntime().getDataFlowRuntime().instantiate("HelloWorldDataFlow");

The engine does not track or otherwise retain data flow instances in memory. It is up to your

application to retain data flow instances as needed.

Each data flow instance associates to a state. The start state is EPDataFlowState.INSTANTIATED.

The end state is either COMPLETED or CANCELLED.

The following table outlines all states:

Table 15.10. Data Flow Instance States

State Description

INSTANTIATED Start state, applies when a data flow instance has been

instantiated and has not executed.

RUNNING A data flow instance transitions from instantiated to running

when any of the start, run or startCaptive methods are

invoked.

COMPLETED A data flow instance transitions from running to completed when

all final markers have been processed by all operators.

CANCELLED A data flow instance transitions from running to cancelled when

your application invokes the cancel method on the data flow

instance.

Chapter 15. EPL Reference: Da...

510

15.4.3. Executing a Data Flow

After your application instantiated a data flow instance it can execute the data flow instance using

either the start, run or startCaptive methods.

Use the start method to have the engine allocate a thread for each source operator. Execution

is non-blocking. Use the join method to have one or more threads join a data flow instance

execution.

Use the run method to have the engine use the current thread to execute the single source

operator. Multiple source operators are not allowed when using run.

Use the startCaptive method to have the engine return all Runnable instances and emitters, for

the purpose of having complete control over execution. The engine allocates no threads and does

not perform any logic for the data flow unless your application employs the Runnable instances

and emitters returned by the method.

The next code snippet executes the data flow instance as a blocking call:

instance.run();

By using the run method of EPDataFlowInstance the engine executes the data flow instance

using the same thread (blocking execute) and returns when the data flow instance completes. A

data flow instance completes when all operators receive final markers.

The hello world data flow simply prints an unformatted Hello World string to console. The

BeaconSource operator generates a final marker when it finishes the 1 iteration. The data flow

instance thus transitions to complete after the LogSink operator receives the final marker, and

the thread invoking the run method returns.

The next code snippet executes the data flow instance as a non-blocking call:

instance.start();

Use the cancel method to cancel execution of a running data flow instance:

instance.cancel();

Use the join method to join execution of a running data flow instance, causing the joining thread

to block until the data flow instance either completes or is cancelled:

instance.join();

Instantiation Options

511

15.4.4. Instantiation Options

The EPDataFlowInstantiationOptions object that can be passed to the instantiate method

may be used to customize the operator graph, operator parameters and execution of the data

flow instance.

Passing runtime parameters to data flow operators is easiest using the addParameterURI method.

The first parameter is the data flow operator name and the operator parameter name separated

by the slash character. The second parameter is the value object.

For example, in order to pass the file name to the FileSource operator at runtime, use the

following code:

EPDataFlowInstantiationOptions options = new EPDataFlowInstantiationOptions();

options.addParameterURI("FileSource/file", filename);

EPDataFlowInstance instance = epService.getEPRuntime().getDataFlowRuntime()

 .instantiate("MyFileReaderDataFlow",options);

instance.run();

The optional operatorProvider member takes an implementation of the

EPDataFlowOperatorProvider interface. The engine invokes this provider to obtain operator

instances.

The optional parameterProvider member takes an implementation of the

EPDataFlowOperatorParameterProvider interface. The engine invokes this provider to obtain

operator parameter values. The values override the values provided via parameter URI above.

The optional exceptionHandler member takes an implementation of the

EPDataFlowExceptionHandler interface. The engine invokes this provider to when exceptions

occur.

The optional dataFlowInstanceId can be assigned any string value for the purpose of identifying

the data flow instance.

The optional dataFlowInstanceUserObject can be assigned any object value for the purpose

of associating a user object to the data flow instance.

Set the operatorStatistics flag to true to obtain statistics for operator execution.

Set the cpuStatistics flag to true to obtain CPU statistics for operator execution.

15.4.5. Start Captive

Use the startCaptive method on a EPDataFlowInstance data flow instance

when your application requires full control over threading. This method returns an

EPDataFlowInstanceCaptive instance that contains a list of java.lang.Runnable instances that

represent each source operator.

Chapter 15. EPL Reference: Da...

512

The special Emitter operator can occur in a data flow. This emitter can be used to

inject events into the data flow without writing a new operator. Emitter takes a single name

parameter that provides the name of the emitter and that is returned in a map of emitters by

EPDataFlowInstanceCaptive.

The example EPL below creates a data flow that uses emitter.

create dataflow HelloWorldDataFlow

 create objectarray schema SampleSchema(text string), // sample type

 Emitter -> helloworld.stream<SampleSchema> { name: 'myemitter' }

 LogSink(helloworld.stream) {}

Your application may obtain the Emitter instance and sends events directly into the output stream.

This feature is only supported in relationship with startCaptive since the engine does not allocate

any threads or run source operators.

The example code snippet below obtains the emitter instance and send events directly into the

data flow instance:

EPDataFlowInstance instance =

 epService.getEPRuntime().getDataFlowRuntime().instantiate("HelloWorldDataFlow",

 options);

EPDataFlowInstanceCaptive captiveStart = instance.startCaptive();

Emitter emitter = captiveStart.getEmitters().get("myemitter");

emitter.submit(new Object[] {"this is some text"});

When emitting DOM XML events please emit the root element obtained from

document.getDocumentElement().

15.4.6. Data Flow Punctuation with Markers

When your application executes a data flow instance by means of the start (non-blocking) or

run (blocking) methods, the data flow instance stays running until either completed or cancelled.

While cancellation is always via the cancel method, completion occurs when all source operators

provide final markers.

The final marker is an object that implements the EPDataFlowSignalFinalMarker interface.

Some operators may also provide or process data window markers which implement the

EPDataFlowSignalWindowMarker interface. All such signals implement the EPDataFlowSignal

interface.

Some source operators such as EventBusSource and EPStatementSource do not generate final

markers as they act continuously.

Exception Handling

513

15.4.7. Exception Handling

All exceptions during the execution of a data flow are logged and reported to the

EPDataFlowExceptionHandler instance if one was provided.

If no exception handler is provided or the provided exception handler re-throws or generates a

new runtime exception, the source operator handles the exception and completes (ends). When

all source operators complete then the data flow instance transitions to complete.

15.5. Examples

The following example is a rolling top words count implemented as a data flow, over a 30 second

time window and providing the top 3 words every 2 seconds:

create dataflow RollingTopWords

 create objectarray schema WordEvent (word string),

 Emitter -> wordstream<WordEvent> {name:'a'} {} // Produces word stream

 Select(wordstream) -> wordcount { // Sliding time window count per word

 select: (select word, count(*) as wordcount

 from wordstream#time(30) group by word)

 }

 Select(wordcount) -> wordranks { // Rank of words

 select: (select window(*) as rankedWords

 from wordcount#sort(3, wordcount desc)

 output snapshot every 2 seconds)

 }

 LogSink(wordranks) {}

The next example implements a bargain index computation that separates a mixed trade and

quote event stream into a trade and a quote stream, computes a vwap and joins the two streams

to compute an index:

create dataflow VWAPSample

 create objectarray schema TradeQuoteType as (type string, ticker string, price

 double, volume long, askprice double, asksize long),

 MyObjectArrayGraphSource -> TradeQuoteStream<TradeQuoteType> {}

 Filter(TradeQuoteStream) -> TradeStream {

 filter: type = "trade"

 }

Chapter 15. EPL Reference: Da...

514

 Filter(TradeQuoteStream) -> QuoteStream {

 filter: type = "quote"

 }

 Select(TradeStream) -> VwapTrades {

 select: (select ticker, sum(price * volume) / sum(volume) as vwap,

 min(price) as minprice

 from TradeStream#groupwin(ticker)#length(4) group by ticker)

 }

 Select(VwapTrades as T, QuoteStream as Q) -> BargainIndex {

 select:

 (select case when vwap > askprice then asksize * (Math.exp(vwap - askprice))

 else 0.0d end as index

 from T#unique(ticker) as t, Q#lastevent as q

 where t.ticker = q.ticker)

 }

 LogSink(BargainIndex) {}

The final example is a word count data flow, in which three custom operators tokenize, word count

and aggregate. The custom operators in this example are discussed next.

create dataflow WordCount

 MyLineFeedSource -> LineOfTextStream {}

 MyTokenizerCounter(LineOfTextStream) -> SingleLineCountStream {}

 MyWordCountAggregator(SingleLineCountStream) -> WordCountStream {}

 LogSink(WordCountStream) {}

15.6. Operator Implementation

This section discusses how to implement classes that serve as operators in a data flow. The

section employs the example data flow as shown earlier.

This example data flow has operators MyLineFeedSource, MyTokenizerCounter and

MyWordCountAggregator that are application provided operators:

create dataflow WordCount

 MyLineFeedSource -> LineOfTextStream {}

 MyTokenizerCounter(LineOfTextStream) -> SingleLineCountStream {}

 MyWordCountAggregator(SingleLineCountStream) -> WordCountStream {}

 LogSink(WordCountStream) {}

In order to resolve application operators, add the package or operator class to imports:

Sample Operator Acting as Source

515

// Sample code adds 'package.*' to simply import the package.

epService.getEPAdministrator().getConfiguration()

 .addImport(MyTokenizerCounter.class.getPackage().getName() + ".*");

15.6.1. Sample Operator Acting as Source

The implementation class must implement the DataFlowSourceOperator interface.

The implementation for the sample MyLineFeedSource with comments is:

// The OutputTypes annotation can be used to specify the type of events

// that are output by the operator.

// If provided, it is not necessary to declare output types in the data flow.

// The event representation is object-array.

@OutputTypes(value = {

 @OutputType(name = "line", typeName = "String")

 })

// Provide the DataFlowOpProvideSignal annotation to indicate that

// the source operator provides a final marker.

@DataFlowOpProvideSignal

public class MyLineFeedSource implements DataFlowSourceOperator {

 // Use the DataFlowContext annotation to indicate the field that receives

 the emitter.

 // The engine provides the emitter.

 @DataFlowContext

 private EPDataFlowEmitter dataFlowEmitter;

 // Mark a parameter using the DataFlowOpParameter annotation

 @DataFlowOpParameter

 private String myStringParameter;

 private final Iterator<String> lines;

 public MyLineFeedSource(Iterator<String> lines) {

 this.lines = lines;

 }

 // Invoked by the engine at time of data flow instantiation.

 public DataFlowOpInitializeResult initialize(DataFlowOpInitializateContext

 context) throws Exception {

 return null; // can return type information here instead

 }

Chapter 15. EPL Reference: Da...

516

 // Invoked by the engine at time of data flow instante execution.

 public void open(DataFlowOpOpenContext openContext) {

 // attach to input

 }

 // Invoked by the engine in a tight loop.

 // Submits the events which contain lines of text.

 public void next() {

 // read and submit events

 if (lines.hasNext()) {

 dataFlowEmitter.submit(new Object[] {lines.next()});

 }

 else {

 dataFlowEmitter.submitSignal(new EPDataFlowSignalFinalMarker() {});

 }

 }

 // Invoked by the engine at time of cancellation or completion.

 public void close(DataFlowOpCloseContext openContext) {

 // detach from input

 }

}

15.6.2. Sample Tokenizer Operator

The implementation for the sample MyTokenizerCounter with comments is:

// Annotate with DataFlowOperator so the engine knows its a data flow operator

@DataFlowOperator

@OutputTypes({

 @OutputType(name = "line", type = int.class),

 @OutputType(name = "wordCount", type = int.class),

 @OutputType(name = "charCount", type = int.class)

 })

public class MyTokenizerCounter {

 @DataFlowContext

 private EPDataFlowEmitter dataFlowEmitter;

 // Name the method that receives data onInput(...)

 public void onInput(String line) {

 // tokenize

 StringTokenizer tokenizer = new StringTokenizer(line, " \t");

 int wordCount = tokenizer.countTokens();

 int charCount = 0;

Sample Aggregator Operator

517

 while(tokenizer.hasMoreTokens()) {

 String token = tokenizer.nextToken();

 charCount += token.length();

 }

 // submit count of line, words and characters

 dataFlowEmitter.submit(new Object[] {1, wordCount, charCount});

 }

}

15.6.3. Sample Aggregator Operator

The implementation for the sample MyWordCountAggregator with comments is:

@DataFlowOperator

@OutputTypes(value = {

 @OutputType(name = "stats", type = MyWordCountStats.class)

 })

public class MyWordCountAggregator {

 @DataFlowContext

 private EPDataFlowEmitter dataFlowEmitter;

 private final MyWordCountStats aggregate = new MyWordCountStats();

 public void onInput(int lines, int words, int chars) {

 aggregate.add(lines, words, chars);

 }

 // Name the method that receives a marker onSignal

 public void onSignal(EPDataFlowSignal signal) {

 // Received puntuation, submit aggregated totals

 dataFlowEmitter.submit(aggregate);

 }

}

518

Chapter 16.

519

Chapter 16. API Reference

16.1. API Overview

Esper has the following primary interfaces:

• The event and event type interfaces are described in Section 16.6, “Event and Event Type”.

• The administrative interface to create and manage EPL and pattern statements, and set runtime

configurations, is described in Section 16.3, “The Administrative Interface”.

• The runtime interface to send events into the engine, set and get variable values and execute

on-demand queries, is described in Section 16.4, “The Runtime Interface”.

For EPL introductory information please see Section 5.1, “EPL Introduction” and patterns are

described at Section 7.1, “Event Pattern Overview”.

The JavaDoc documentation is also a great source for API information.

16.2. The Service Provider Interface

The EPServiceProvider interface represents an engine instance. Each instance of an Esper

engine is completely independent of other engine instances and has its own administrative and

runtime interface.

An instance of the Esper engine is obtained via static methods on

the EPServiceProviderManager class. The getDefaultProvider method and the

getProvider(String providerURI) methods return an instance of the Esper engine. The latter

can be used to obtain multiple instances of the engine for different provider URI values. The

EPServiceProviderManager determines if the provider URI matches all prior provider URI values

and returns the same engine instance for the same provider URI value. If the provider URI has

not been seen before, it creates a new engine instance.

The code snipped below gets the default instance Esper engine. Subsequent calls to get the

default engine instance return the same instance.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();

This code snippet gets an Esper engine for the provider URI RFIDProcessor1. Subsequent calls

to get an engine with the same provider URI return the same instance.

EPServiceProvider epService =

 EPServiceProviderManager.getProvider("RFIDProcessor1");

Chapter 16. API Reference

520

Since the getProvider methods return the same cached engine instance for each URI, there is

no need to statically cache an engine instance in your application.

An existing Esper engine instance can be reset via the initialize method on the

EPServiceProvider instance. This operation stops and removes all statements and resets the

engine to the configuration provided when the engine instance for that URI was obtained. If no

configuration is provided, an empty (default) configuration applies.

After initialize your application must obtain new administrative and runtime services. Any

administrative and runtime services obtained before the initialize are invalid and have undefined

behavior.

The next code snippet outlines a typical sequence of use:

// Configure the engine, this is optional

Configuration config = new Configuration();

config.configure("configuration.xml"); // load a configuration from file

config.set....(...); // make additional configuration settings

// Obtain an engine instance

EPServiceProvider epService =

 EPServiceProviderManager.getDefaultProvider(config);

// Optionally, use initialize if the same engine instance has been used before

 to start clean

epService.initialize();

// Optionally, make runtime configuration changes

epService.getEPAdministrator().getConfiguration().add...(...);

// Destroy the engine instance when no longer needed, frees up resources

epService.destroy();

An existing Esper engine instance can be destroyed via the destroy method on the

EPServiceProvider instance. This stops and removes all statements as well as frees all

resources held by the instance. After a destroy the engine can no longer be used.

The EPServiceStateListener interface may be implemented by your application to receive

callbacks when an engine instance is about to be destroyed and after an engine instance

has been initialized. Listeners are registered via the addServiceStateListener method. The

EPStatementStateListener interface is used to receive callbacks when a new statement gets

created and when a statement gets started, stopped or destroyed. Listeners are registered via

the addStatementStateListener method.

When destroying an engine instance your application must make sure that threads that are

sending events into the engine have completed their work. More generally, the engine should not

be currently in use during or after the destroy operation.

The Administrative Interface

521

As engine instances are completely independent, your application may not send EventBean

instances obtained from one engine instance into a second engine instance since the event type

space between two engine instances is not shared.

16.3. The Administrative Interface

16.3.1. Creating Statements

Create event pattern expression and EPL statements via the administrative interface

EPAdministrator.

For managing one or more related statements as a module, please consider the deployment

administrative API and EPL modules as further described in Section 18.4, “Packaging and

Deploying Overview”.

This code snippet gets an Esper engine then creates an event pattern and an EPL statement.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();

EPAdministrator admin = epService.getEPAdministrator();

EPStatement 10secRecurTrigger = admin.createPattern(

 "every timer:at(*, *, *, *, *, */10)");

EPStatement countStmt = admin.createEPL(

 "select count(*) from MarketDataBean#time(60 sec)");

Note that event pattern expressions can also occur within EPL statements. This is outlined in more

detail in Section 5.4.2, “Pattern-based Event Streams”.

The create methods on EPAdministrator are overloaded and allow an optional statement name

to be passed to the engine. A statement name can be useful for retrieving a statement by name

from the engine at a later time. The engine assigns a statement name if no statement name is

supplied on statement creation.

The createPattern and createEPL methods return EPStatement instances. Statements are

automatically started and active when created. A statement can also be stopped and started again

via the stop and start methods shown in the code snippet below.

countStmt.stop();

countStmt.start();

The create methods on EPAdministrator also accept a user object. The user object is

associated with a statement at time of statement creation and is a single, unnamed field

that is stored with every statement. Applications may put arbitrary objects in this field. Use

Chapter 16. API Reference

522

the getUserObject method on EPStatement to obtain the user object of a statement and

StatementAwareUpdateListener for listeners.

Your application may create new statements or stop and destroy existing statements using any

thread and also within listener or subscriber code. If using POJO events, your application may

not create or manage statements in the event object itself while the same event is currently being

processed by a statement.

16.3.2. Receiving Statement Results

For NEsper .NET also see Section H.14, “.NET API - Receiving Statement Results”.

Esper provides three choices for your application to receive statement results. Your application

can use all three mechanisms alone or in any combination for each statement. The choices are:

Table 16.1. Choices For Receiving Statement Results

Name Methods on

EPStatement

Description

Listener

Callbacks

addListener and

removeListener

Your application provides implementations

of the UpdateListener or the

StatementAwareUpdateListener interface to the

statement. Listeners receive EventBean instances

containing statement results.

The engine continuously indicates results to all

listeners as soon they occur, and following output

rate limiting clauses if specified.

Subscriber

Object

setSubscriber Your application provides a POJO (plain Java

object) that exposes methods to receive statement

results.

The name of the method that a subscriber object

provides to receive results is update, unless your

call to setSubscriber provides another method

name.

The engine continuously indicates results to

the single subscriber as soon they occur, and

following output rate limiting clauses if specified.

This is the fastest method to receive statement

results, as the engine delivers strongly-typed

results directly to your application objects without

the need for building an EventBean result set as in

the Listener Callback choice.

Setting a Subscriber Object

523

Name Methods on

EPStatement

Description

There can be at most 1 Subscriber Object

registered per statement. If you require more than

one listener, use the Listener Callback instead (or

in addition). The Subscriber Object is bound to

the statement with a strongly typed support which

ensure direct delivery of new events without type

conversion. This optimization is made possible

because there can only be 0 or 1 Subscriber

Object per statement.

Pull API safeIterator and

iterator

Your application asks the statement for

results and receives a set of events via

java.util.Iterator<EventBean>.

This is useful if your application does not need

continuous indication of new results in real-time.

Your application may attach one or more listeners, zero or one single subscriber and in addition

use the Pull API on the same statement. There are no limitations to the use of iterator, subscriber

or listener alone or in combination to receive statement results.

The best delivery performance can generally be achieved by attaching a subscriber and by not

attaching listeners. The engine is aware of the listeners and subscriber attached to a statement.

The engine uses this information internally to reduce statement overhead. For example, if

your statement does not have listeners or a subscriber attached, the engine does not need to

continuously generate results for delivery.

If your application attaches both a subscriber and one or more listeners then the subscriber

receives the result first before any of the listeners.

If your application attaches more than one listener then the UpdateListener listeners receive

results first in the order they were added to the statement, and StatementAwareUpdateListener

listeners receive results next in the order they were added to the statement. To change the order

of delivery among listeners your application can add and remove listeners at runtime.

If you have configured outbound threading, it means a thread from the outbound thread pool

delivers results to the subscriber and listeners instead of the processing or event-sending thread.

If outbound threading is turned on, we recommend turning off the engine setting preserving the

order of events delivered to listeners as described in Section 17.4.12.1, “Preserving the order

of events delivered to listeners”. If outbound threading is turned on statement execution is not

blocked for the configured time in the case a subscriber or listener takes too much time.

16.3.3. Setting a Subscriber Object

Chapter 16. API Reference

524

A subscriber object is a direct binding of query results to a Java object. The object, a POJO,

receives statement results via method invocation. The subscriber class does not need to

implement an interface or extend a superclass. Only one subscriber object may be set for a

statement.

Subscriber objects have several advantages over listeners. First, they offer a substantial

performance benefit: Query results are delivered directly to your method(s) through Java virtual

machine method calls, and there is no intermediate representation (EventBean). Second, as

subscribers receive strongly-typed parameters, the subscriber code tends to be simpler.

This chapter describes the requirements towards the methods provided by your subscriber class.

The engine can deliver results to your subscriber in two ways:

1. Each evert in the insert stream results in a method invocation, and each event in the remove

stream results in further method invocations. This is termed row-by-row delivery.

2. A single method invocation that delivers all rows of the insert and remove stream. This is termed

multi-row delivery.

16.3.3.1. Using the EPStatement Parameter

In the case that your subscriber object wishes to receive the EPStatement instance along with

output data, please add EPStatement as the very first parameter of any of the delivery method

footprints that are discussed next.

For example, your statement may be:

select count(*) from OrderEvent

Your subscriber class exposes the method:

public void update(EPStatement statement, long currentCount) {...}

16.3.3.2. Row-By-Row Delivery

Your subscriber class must provide a method by name update to receive insert stream events

row-by-row. The number and types of parameters declared by the update method must match

the number and types of columns as specified in the select clause, in the same order as in the

select clause.

For example, if your statement is:

select orderId, price, count(*) from OrderEvent

Setting a Subscriber Object

525

Then your subscriber update method looks as follows:

public class MySubscriber {

 ...

 public void update(String orderId, double price, long count) {...}

 ...

}

Each method parameter declared by the update method must be assignable from the respective

column type as listed in the select-clause, in the order selected. The assignability rules are:

• Widening of types follows Java standards. For example, if your select clause selects an integer

value, the method parameter for the same column can be typed int, long, float or double (or

any equivalent boxed type).

• Auto-boxing and unboxing follows Java standards. For example, if your select clause selects

an java.lang.Integer value, the method parameter for the same column can be typed int.

Note that if your select clause column may generate null values, an exception may occur at

runtime unboxing the null value.

• Interfaces and super-classes are honored in the test for assignability. Therefore

java.lang.Object can be used to accept any select clause column type

In the case that your subscriber class offers multiple update method footprints, the engine selects

the closest-matching footprint by comparing the output types and method parameter types. The

engine prefers the update method that is an exact match of types, followed by an update method

that requires boxing or unboxing, followed by an update method that requires widening and finally

any other allowable update method.

Within the above criteria, in the case that your subscriber class offers multiple update method

footprints with same method parameter types, the engine prefers the update method that has

EPStatement as the first parameter.

16.3.3.2.1. Wildcards

If your select clause contains one or more wildcards (*), then the equivalent parameter type is

the underlying event type of the stream selected from.

For example, your statement may be:

select *, count(*) from OrderEvent

Then your subscriber update method looks as follows:

public void update(OrderEvent orderEvent, long count) {...}

Chapter 16. API Reference

526

In a join, the wildcard expands to the underlying event type of each stream in the join in the order

the streams occur in the from clause. An example statement for a join is:

select *, count(*) from OrderEvent order, OrderHistory hist

Then your subscriber update method should be:

public void update(OrderEvent orderEvent, OrderHistory orderHistory, long count)

 {...}

The stream wildcard syntax and the stream name itself can also be used:

select hist.*, order from OrderEvent order, OrderHistory hist

The matching update method is:

public void update(OrderHistory orderHistory, OrderEvent orderEvent) {...}

16.3.3.2.2. Row Delivery as Map and Object Array

Alternatively, your update method may simply choose to accept java.util.Map as a

representation for each row. Each column in the select clause is then made an entry in the

resulting Map. The Map keys are the column name if supplied, or the expression string itself for

columns without a name.

The update method for Map delivery is:

public void update(Map row) {...}

The engine also supports delivery of select clause columns as an object array. Each item in the

object array represents a column in the select clause. The update method then looks as follows:

public void update(Object[] row) {...}

Setting a Subscriber Object

527

16.3.3.2.3. Delivery of Remove Stream Events

Your subscriber receives remove stream events if it provides a method named updateRStream.

The method must accept the same number and types of parameters as the update method

(including EPStatement if present).

An example statement:

select orderId, count(*) from OrderEvent#time(20 sec) group by orderId

Then your subscriber update and updateRStream methods should be:

public void update(String, long count) {...}

public void updateRStream(String orderId, long count) {...}

16.3.3.2.4. Delivery of Begin and End Indications

If your subscriber requires a notification for begin and end of event delivery, it can expose methods

by name updateStart and updateEnd.

The updateStart method must take two integer parameters that indicate the number of events

of the insert stream and remove stream to be delivered. The engine invokes the updateStart

method immediately prior to delivering events to the update and updateRStream methods.

The updateEnd method must take no parameters. The engine invokes the updateEnd method

immediately after delivering events to the update and updateRStream methods.

An example set of delivery methods:

// Called by the engine before delivering events to update methods

public void updateStart(int insertStreamLength, int removeStreamLength)

// To deliver insert stream events

public void update(String orderId, long count) {...}

// To deliver remove stream events

public void updateRStream(String orderId, long count) {...}

// Called by the engine after delivering events

public void updateEnd() {...}

16.3.3.3. Multi-Row Delivery

Chapter 16. API Reference

528

In place of row-by-row delivery, your subscriber can receive all events in the insert and remove

stream via a single method invocation. This is applicable when an EPL delivers multiple output

rows for a given input event or time advancing, for example when multiple pattern matches occur

for the same incoming event, for a join producing multiple output rows or with output rate limiting,

for example.

The event delivery follow the scheme as described earlier in Section 16.3.3.2.2, “Row Delivery as

Map and Object Array ”. The subscriber class must provide one of the following methods:

Table 16.2. Update Method for Multi-Row Delivery of Underlying Events

Method Description

update(Object[][] insertStream,

Object[][] removeStream)

The first dimension of each Object array is

the event row, and the second dimension is

the column matching the column order of the

statement select clause

update(Map[] insertStream, Map[]

removeStream)

Each map represents one event, and Map

entries represent columns of the statement

select clause

16.3.3.3.1. Wildcards

If your select clause contains a single wildcard (*) or wildcard stream selector, the subscriber

object may also directly receive arrays of the underlying events. In this case, the subscriber class

should provide a method update(Underlying[] insertStream, Underlying[] removeStream) ,

such that Underlying represents the class of the underlying event.

For example, your statement may be:

select * from OrderEvent#time(30 sec)

Your subscriber class exposes the method:

public void update(OrderEvent[] insertStream, OrderEvent[] removeStream) {...}

16.3.3.4. No-Parameter Update Method

In the case that your subscriber object wishes to receive no data from a statement please follow

the instructions here.

You EPL statement must select a single null value.

For example, your statement may be:

Adding Listeners

529

select null from OrderEvent(price > 100)

Your subscriber class exposes the method:

public void update() {...}

16.3.4. Adding Listeners

For NEsper .NET also see Section H.15, “.NET API - Adding Listeners”.

Your application can subscribe to updates posted by a statement via the addListener and

removeListener methods on EPStatement . Your application must to provide an implementation

of the UpdateListener or the StatementAwareUpdateListener interface to the statement:

UpdateListener myListener = new MyUpdateListener();

countStmt.addListener(myListener);

EPL statements and event patterns publish old data and new data to registered UpdateListener

listeners. New data published by statements is the events representing the new values of derived

data held by the statement. Old data published by statements constists of the events representing

the prior values of derived data held by the statement.

Important

UpdateListener listeners receive multiple result rows in one invocation by

the engine: the new data and old data parameters to your listener are array

parameters. For example, if your application uses one of the batch data windows,

or your application creates a pattern that matches multiple times when a single

event arrives, then the engine indicates such multiple result rows in one invocation

and your new data array carries two or more rows.

A second listener interface is the StatementAwareUpdateListener interface. A

StatementAwareUpdateListener is especially useful for registering the same listener object

with multiple statements, as the listener receives the statement instance and engine instance in

addition to new and old data when the engine indicates new results to a listener.

StatementAwareUpdateListener myListener = new MyStmtAwareUpdateListener();

statement.addListener(myListener);

Chapter 16. API Reference

530

To indicate results the engine invokes this method on StatementAwareUpdateListener listeners:

update(EventBean[] newEvents, EventBean[] oldEvents, EPStatement statement,

EPServiceProvider epServiceProvider)

16.3.4.1. Subscription Snapshot and Atomic Delivery

The addListenerWithReplay method provided by EPStatement makes it possible to send a

snapshot of current statement results to a listener when the listener is added.

When using the addListenerWithReplay method to register a listener, the listener receives

current statement results as the first call to the update method of the listener, passing in

the newEvents parameter the current statement results as an array of zero or more events.

Subsequent calls to the update method of the listener are statement results.

Current statement results are the events returned by the iterator or safeIterator methods.

Delivery is atomic: Events occurring during delivery of current results to the listener are guaranteed

to be delivered in a separate call and not lost. The listener implementation should thus minimize

long-running or blocking operations to reduce lock times held on statement-level resources.

16.3.5. Using Iterators

Subscribing to events posted by a statement is following a push model. The engine pushes

data to listeners when events are received that cause data to change or patterns to match.

Alternatively, you need to know that statements serve up data that your application can obtain via

the safeIterator and iterator methods on EPStatement. This is called the pull API and can

come in handy if your application is not interested in all new updates, and only needs to perform

a frequent or infrequent poll for the latest data.

The safeIterator method on EPStatement returns a concurrency-safe iterator returning current

statement results, even while concurrent threads may send events into the engine for processing.

The engine employs a read-write lock per context partition and obtains a read lock for iteration.

Thus safe iterator guarantees correct results even as events are being processed by other threads

and other context partitions. The cost is that the iterator obtains and holds zero, one or multiple

context partition locks for that statement that must be released via the close method on the

SafeIterator instance.

The iterator method on EPStatement returns a concurrency-unsafe iterator. This iterator is

only useful for applications that are single-threaded, or applications that themselves perform

coordination between the iterating thread and the threads that send events into the engine for

processing. The advantage to this iterator is that it does not hold a lock.

When statements are used with contexts and context partitions, the APIs to identify, filter and

select context partitions for statement iteration are described in Section 16.18, “Context Partition

Selection”.

The next code snippet shows a short example of use of safe iterators:

Using Iterators

531

EPStatement statement = epAdmin.createEPL("select avg(price) as avgPrice from

 MyTick");

// .. send events into the engine

// then use the pull API...

SafeIterator<EventBean> safeIter = statement.safeIterator();

try {

 for (;safeIter.hasNext();) {

 // .. process event ..

 EventBean event = safeIter.next();

 System.out.println("avg:" + event.get("avgPrice");

 }

}

finally {

 safeIter.close(); // Note: safe iterators must be closed

}

This is a short example of use of the regular iterator that is not safe for concurrent event

processing:

double averagePrice = (Double) eplStatement.iterator().next().get("average");

The safeIterator and iterator methods can be used to pull results out of all statements,

including statements that join streams, contain aggregation functions, pattern statements, and

statements that contain a where clause, group by clause, having clause or order by clause.

For statements without an order by clause, the iterator method returns events in the order

maintained by the data window. For statements that contain an order by clause, the iterator

method returns events in the order indicated by the order by clause.

Consider using the on-select clause and a named window if your application requires iterating

over a partial result set or requires indexed access for fast iteration; Note that on-select requires

that you sent a trigger event, which may contain the key values for indexed access.

Esper places the following restrictions on the pull API and usage of the safeIterator and

iterator methods:

1. In multithreaded applications, use the safeIterator method. Note: make sure your application

closes the iterator via the close method when done, otherwise the iterated statement context

partitions stay locked and event processing for statement context partitions does not resume.

2. In multithreaded applications, the iterator method does not hold any locks. The iterator

returned by this method does not make any guarantees towards correctness of results and fail-

behavior, if your application processes events into the engine instance by multiple threads. Use

the safeIterator method for concurrency-safe iteration instead.

3. Since the safeIterator and iterator methods return events to the application immediately,

the iterator does not honor an output rate limiting clause, if present. That is, the iterator returns

Chapter 16. API Reference

532

results as if there is no output-rate clause for the statement in statements without grouping or

aggregation. For statements with grouping or aggregation, the iterator in combintion with an

output clause returns last output group and aggregation results. Use a separate statement and

the insert into clause to control the output rate for iteration, if so required.

4. When iterating a statement that operates on an unbound stream (no data window declared),

please note the following:

• When iterating a statement that groups and aggregates values from an unbound stream and

that specifies output snapshot, the engine retains groups and aggregations for output as

iteration results or upon the output snapshot condition .

• When iterating a statement that groups and aggregates values from an unbound stream and

that does not specify output snapshot, the engine only retains the last aggregation values

and the iterated result contains only the last updated group.

• When iterating a statement that operates on an unbound stream the iterator returns no rows.

This behavior can be changed by specifying either the @IterableUnbound annotation or by

changing the global view resources configuration.

16.3.6. Managing Statements

The EPAdministrator interface provides the facilities for managing statements:

• Use the getStatement method to obtain an existing started or stopped statement by name

• Use the getStatementNames methods to obtain a list of started and stopped statement names

• Use the startAllStatements, stopAllStatements and destroyAllStatements methods to

manage all statements in one operation

16.3.7. Atomic Statement Management

Your application can concurrently send events into the engine while performing statement or

module management. Therefore it is safe to stop and start statements or un-deploy and deploy

modules while sending in events from other threads concurrently.

Your application can use the API described below to obtain a lock and perform statement or

module management as an atomic unit. For example, if your application would like to un-deploy

and re-deploy all statements or modules as a single administrative unit, while at the same time

sending events into the engine from different threads, it can obtain a lock to ensure that no events

are concurrently processed while the statement or module management operations take place.

Note

Deploying or un-deploying a single module is already an atomic operation by

default and does not require taking an explicit lock. Please see Section 18.6, “The

Deployment Administrative Interface” for the deployment API. If your application

would like to deploy multiple modules and/or statements as a unit, please obtain

a lock as discussed below.

Runtime Configuration

533

The below code sample obtains the engine exclusive write lock to perform multiple management

operations as a unit, excluding concurrent processing of events.

epService.getEngineInstanceWideLock().writeLock().lock();

// Start atomic management unit.

// Any events concurrently being processed by other threads must complete before

 the code completes obtaining the lock.

// Any events sent in by other threads will await the release of the lock.

try {

 // Perform operations such as :

 // - start statements, destroy statements, stop statements

 // - un-deploy multiple modules, deploy multiple modules (deployment admin API)

 // There is no need to obtain this lock when deploying or un-deploying a

 single module.

 // The lock is reentrant and can be safely taken multiple times by the same

 thread.

 // Make sure you use "try" and "finally" just like we have it here.

}

finally {

 // Complete atomic management unit.

 // Any events sent in by other threads will now continue processing against

 the changed set of statements.

 epService.getEngineInstanceWideLock().writeLock().unlock();

}

Note

There should always be a finally block in your code to ensure the lock is released

in all cases.

16.3.8. Runtime Configuration

Certain configuration changes are available to perform on an engine instance while in

operation. Such configuration operations are available via the getConfiguration method on

EPAdministrator, which returns a ConfigurationOperations object.

Please consult the JavaDoc of ConfigurationOperations for further information. The section

Section 17.6, “Runtime Configuration” provides a summary of available configurations.

In summary, the configuration operations available on a running engine instance are as follows:

• Add new event types for all event representations, check if an event type exists, update an

existing event type, remove an event type, query a list of types and obtain a type by name.

• Add and remove variables (get and set variable values is done via the runtime API).

Chapter 16. API Reference

534

• Add a variant stream.

• Add a revision event type.

• Add event types for all event classes in a given Java package, using the simple class name

as the event name.

• Add import for user-defined functions.

• Add a plug-in aggregation function, plug-in single row function, plug-in event type, plug-in event

type resolution URIs.

• Control metrics reporting.

• Additional items please see the ConfigurationOperations interface.

For examples of above runtime configuration API functions please consider the Configuration

chapter, which applies to both static configuration and runtime configuration as the

ConfigurationOperations interface is the same.

16.4. The Runtime Interface

The EPRuntime interface is used to send events for processing into an Esper engine, set and get

variable values and execute on-demand queries.

The below code snippet shows how to send a Java object event to the engine. Note that the

sendEvent method is overloaded. As events can take on different representation classes in Java,

the sendEvent takes parameters to reflect the different types of events that can be send into the

engine. The Chapter 2, Event Representations section explains the types of events accepted.

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();

EPRuntime runtime = epService.getEPRuntime();

// Send an example event containing stock market data

runtime.sendEvent(new MarketDataBean('IBM', 75.0));

Tip

Events, in theoretical terms, are observations of a state change that occurred in

the past. Since one cannot change an event that happened in the past, events are

best modelled as immutable objects.

Caution

The engine relies on events that are sent into an engine to not change their state.

Typically, applications create a new event object for every new event, to represent

that new event. Application should not modify an existing event that was sent into

the engine.

Event Sender

535

Important

Another important method in the runtime interface is the route method. This

method is designed for use by UpdateListener and subscriber implementations

as well as engine extensions that need to send events into an engine instance to

avoid the possibility of a stack overflow due to nested calls to sendEvent and to

ensure correct processing of the current and routed event. Note that if outbound-

threading is enabled, listeners and subscribers should use sendEvent and not

route.

16.4.1. Event Sender

The EventSender interface processes event objects that are of a known type. This facility can

reduce the overhead of event object reflection and type lookup as an event sender is always

associated to a single concrete event type.

Use the method getEventSender(String eventTypeName) to obtain an event sender for

processing events of the named type:

EventSender sender = epService.getEPRuntime().getEventSender("MyEvent");

sender.sendEvent(myEvent);

For events backed by a Java class (JavaBean events), the event sender ensures that the event

object equals the underlying class, or implements or extends the underlying class for the given

event type name.

For events backed by a java.util.Map (Map events), the event sender does not perform any

checking other than checking that the event object implements Map.

For events backed by a Object[] (Object-array events), the event sender does not perform any

checking other than checking that the event object implements Object[]. The array elements must

be in the exact same order of properties as declared and array length must always be at least

the number of properties declared.

For events backed by a Apache Avro GenericData.Record, the event sender does not perform

any checking other than checking that the event object is a GenericData.Record. The schema

associated to the record should match the event type's Avro schema.

For events backed by a org.w3c.Node (XML DOM events), the event sender checks that the root

element name equals the root element name for the event type.

A second method to obtain an event sender is the method getEventSender(URI[]), which takes

an array of URIs. This method is for use with plug-in event representations. The event sender

returned by this method processes event objects that are of one of the types of one or more plug-

Chapter 16. API Reference

536

in event representations. Please consult Section 19.8, “Event Type And Event Object” for more

information.

16.4.2. Receiving Unmatched Events

Your application can register an implementation of the UnmatchedListener interface with the

EPRuntime runtime via the setUnmatchedListener method to receive events that were not

matched by any statement.

Events that can be unmatched are all events that your application sends into the runtime via one

of the sendEvent or route methods, or that have been generated via an insert into clause.

For an event to become unmatched by any statement, the event must not match any statement's

event stream filter criteria. Note that the EPL where clause or having clause are not considered

part of the filter criteria for a stream, as explained by example below.

In the following statement a MyEvent event with a 'quantity' property value of 5 or less does

not match this statement's event stream filter criteria. The engine delivers such an event to the

registered UnmatchedListener instance provided no other statement matches on the event:

select * from MyEvent(quantity > 5)

For patterns, if no pattern sub-expression is active for an event type, an event of that type also

counts as unmatched in regards to the pattern statement.

16.5. On-Demand Fire-And-Forget Query Execution

As your application may not require streaming results and may not know each query in advance,

the on-demand query facility provides for ad-hoc execution of an EPL expression.

On-demand queries are not continuous in nature: The query engine executes the query once and

returns all result rows to the application. On-demand query execution is very lightweight as the

engine performs no statement creation and the query leaves no traces within the engine.

Esper provides the facility to explicitly index named windows and tables to speed up on-demand

and continuous queries. Please consult Section 6.9, “Explicitly Indexing Named Windows and

Tables” for more information.

When named windows and tables are used with contexts and context partitions, the APIs to

identify, filter and select context partitions for on-demand queries can be found in Section 16.18,

“Context Partition Selection”.

The EPRuntime interface provides three ways to run on-demand queries:

1. Use the executeQuery method to executes a given on-demand query exactly once, see

Section 16.5.1, “On-Demand Query Single Execution”.

On-Demand Query Single Execution

537

2. Use the prepareQuery method to prepare a given on-demand query such that the same query

can be executed multiple times without repeated parsing, see Section 16.5.2, “On-Demand

Query Prepared Unparameterized Execution”.

3. Use the prepareQueryWithParameters method to prepare a given on-demand query that may

have substitution parameters such that the same query can be parameterized and executed

multiple times without repeated parsing, see Section 16.5.3, “On-Demand Query Prepared

Parameterized Execution”

If your application must execute the same EPL on-demand query multiple times with different

parameters use prepareQueryWithParameters.

If your application must execute the same EPL on-demand query multiple times without use either

prepareQuery or prepareQueryWithParameters and specify no substitution parameters.

By using any of the prepare... methods the engine can compile an EPL query string or object

model once and reuse the object and thereby speed up repeated execution.

The following limitations apply:

• An on-demand EPL expression only evaluates against the named windows and tables that your

application creates. On-demand queries may not specify any other streams or application event

types.

• The following clauses are not allowed in on-demand EPL: insert into and output.

• Views and patterns are not allowed to appear in on-demand queries.

• On-demand EPL may not perform subqueries.

• The previous and prior functions may not be used.

16.5.1. On-Demand Query Single Execution

Use the executeQuery method for executing an on-demand query once. For repeated execution,

please consider any of the prepare... methods instead.

The next program listing runs an on-demand query against a named window MyNamedWindow and

prints a column of each row result of the query:

String query = "select * from MyNamedWindow";

EPOnDemandQueryResult result = epRuntime.executeQuery(query);

for (EventBean row : result.getArray()) {

 System.out.println("name=" + row.get("name"));

}

For executing an on-demand query against a table please put the table name into the from-clause

instead.

Chapter 16. API Reference

538

16.5.2. On-Demand Query Prepared Unparameterized Execution

Prepared on-demand queries are designed for repeated execution and may perform better then

the dynamic single-execution method if running the same query multiple times. For use with

parameter placeholders please see Section 16.5.3, “On-Demand Query Prepared Parameterized

Execution”.

The next code snippet demonstrates prepared on-demand queries without parameter placeholder:

String query = "select * from MyNamedWindow where orderId = '123'"

EPOnDemandPreparedQuery prepared = epRuntime.prepareQuery(query);

EPOnDemandQueryResult result = prepared.execute();

// ...later on execute once more ...

prepared.execute(); // execute a second time

16.5.3. On-Demand Query Prepared Parameterized Execution

You can insert substitution parameters into an on-demand query as a single question mark

character '?', making the substitution parameter addressable by index.

You can also insert substitution parameters using the following syntax, which makes the

substitution parameter addressable by name:

?:name

If substitution parameters do not have a name assigned, the engine assigns the first substitution

parameter an index of 1 and subsequent parameters increment the index by one. Please

see Section 16.13, “Prepared Statement and Substitution Parameters” for additional detail and

examples.

Substitution parameters can be inserted into any EPL construct that takes an expression.

All substitution parameters must be replaced by actual values before an on-demand query with

substitution parameters can be executed. Substitution parameters can be replaced with an actual

value using the setObject method for each index or name. Substitution parameters can be set

to new values and the query executed more than once.

While the setObject method allows substitution parameters to assume any actual value including

application Java objects or enumeration values, the application must provide the correct type of

substitution parameter that matches the requirements of the expression the parameter resides in.

The next program listing runs a prepared and parameterized on-demand query against a named

window MyNamedWindow (this example does not assign names to substitution parameters):

String query = "select * from MyNamedWindow where orderId = ?";

Event and Event Type

539

EPOnDemandPreparedQueryParameterized prepared =

 epRuntime.prepareQueryWithParameters(query);

// Set the required parameter values before each execution

prepared.setObject(1, "123");

result = epRuntime.executeQuery(prepared);

// ...execute a second time with new parameter values...

prepared.setObject(1, "456");

result = epRuntime.executeQuery(prepared);

This second example uses the in operator and has multiple parameters:

String query = "select * from MyNamedWindow where orderId in (?) and price > ?";

EPOnDemandPreparedQueryParameterized prepared =

 epRuntime.prepareQueryWithParameters(query);

prepared.setObject(1, new String[] {"123", "456"});

prepared.setObject(2, 1000.0});

16.6. Event and Event Type

An EventBean object represents a row (event) in your continuous query's result set. Each

EventBean object has an associated EventType object providing event metadata.

An UpdateListener implementation receives one or more EventBean events with each

invocation. Via the iterator method on EPStatement your application can poll or read data out

of statements. Statement iterators also return EventBean instances.

Each statement provides the event type of the events it produces, available via the getEventType

method on EPStatement.

16.6.1. Event Type Metadata

An EventType object encapsulates all the metadata about a certain type of events. As Esper

supports an inheritance hierarchy for event types, it also provides information about super-types

to an event type.

An EventType object provides the following information:

• For each event property, it lists the property name and type as well as flags for indexed or

mapped properties and whether a property is a fragment.

• The direct and indirect super-types to the event type.

• Value getters for property expressions.

• Underlying class of the event representation.

Chapter 16. API Reference

540

For each property of an event type, there is an EventPropertyDescriptor object that describes

the property. The EventPropertyDescriptor contains flags that indicate whether a property is

an indexed (array) or a mapped property and whether access to property values require an integer

index value (indexed properties only) or string key value (mapped properties only). The descriptor

also contains a fragment flag that indicates whether a property value is available as a fragment.

The term fragment means an event property value that is itself an event, or a property value that

can be represented as an event. The getFragmentType on EventType may be used to determine

a fragment's event type in advance.

A fragment event type and thereby fragment events allow navigation over a statement's results

even if the statement result contains nested events or a graph of events. There is no need to use

the Java reflection API to navigate events, since fragments allow the querying of nested event

properties or array values, including nested Java classes.

When using the Map or Object-array event representation, any named Map type or Object-array

type nested within a Map or Object-array as a simple or array property is also available as a

fragment. When using Java objects either directly or within Map or Object-array events, any object

that is neither a primitive or boxed built-in type, and that is not an enumeration and does not

implement the Map interface is also available as a fragment.

The nested, indexed and mapped property syntax can be combined to a property expression that

may query an event property graph. Most of the methods on the EventType interface allow a

property expression to be passed.

Your application may use an EventType object to obtain special getter-objects. A getter-object

is a fast accessor to a property value of an event of a given type. All getter objects implement

the EventPropertyGetter interface. Getter-objects work only for events of the same type or

sub-types as the EventType that provides the EventPropertyGetter. The performance section

provides additional information and samples on using getter-objects.

16.6.2. Event Object

An event object is an EventBean that provides:

• The property value for a property given a property name or property expression that may include

nested, indexed or mapped properties in any combination.

• The event type of the event.

• Access to the underlying event object.

• The EventBean fragment or array of EventBean fragments given a property name or property

expression.

The getFragment method on EventBean and EventPropertyGetter return the fragment

EventBean or array of EventBean, if the property is itself an event or can be represented as an

event. Your application may use EventPropertyDescriptor to determine which properties are

also available as fragments.

Query Example

541

The underlying event object of an EventBean can be obtained via the getUnderlying

method. Please see Chapter 2, Event Representations for more information on different event

representations.

From a threading perspective, it is safe to retain and query EventBean and EventType objects

in multiple threads.

16.6.3. Query Example

Consider a statement that returns the symbol, count of events per symbol and average price per

symbol for tick events. Our sample statement may declare a fully-qualified Java class name as the

event type: org.sample.StockTickEvent. Assume that this class exists and exposes a symbol

property of type String, and a price property of type (Java primitive) double.

select symbol, avg(price) as avgprice, count(*) as mycount

from org.sample.StockTickEvent

group by symbol

The next table summarizes the property names and types as posted by the statement above:

Table 16.3. Properties offered by sample statement aggregating price

Name Type Description Java code snippet

symbol java.lang.String Value of symbol event property
eventBean.get("symbol")

avgprice java.lang.DoubleAverage price per symbol
eventBean.get("avgprice")

mycount java.lang.Long Number of events per symbol
eventBean.get("mycount")

A code snippet out of a possible UpdateListener implementation to this statement may look as

below:

String symbol = (String) newEvents[0].get("symbol");

Double price= (Double) newEvents[0].get("avgprice");

Long count= (Long) newEvents[0].get("mycount");

The engine supplies the boxed java.lang.Double and java.lang.Long types as property values

rather than primitive Java types. This is because aggregated values can return a null value

to indicate that no data is available for aggregation. Also, in a select statement that computes

expressions, the underlying event objects to EventBean instances are either of type Object[]

(object-array) or of type java.util.Map.

Chapter 16. API Reference

542

Use statement.getEventType().getUnderlyingType() to inspect the underlying type for all

events delivered to listeners. Whether the engine delivers Map or Object-array events to listeners

can be specified as follows. If the statement provides the @EventRepresentation(objectarray)

annotation the engine delivers the output events as object array. If the statement provides

the @EventRepresentation(map) annotation the engine delivers output events as a Map. If

neither annotation is provided, the engine delivers the configured default event representation as

discussed in Section 17.4.13.1, “Default Event Representation”.

Consider the next statement that specifies a wildcard selecting the same type of event:

select * from org.sample.StockTickEvent where price > 100

The property names and types provided by an EventBean query result row, as posted by the

statement above are as follows:

Table 16.4. Properties offered by sample wildcard-select statement

Name Type Description Java code snippet

symbol java.lang.String Value of symbol event

property
eventBean.get("symbol")

price double Value of price event property
eventBean.get("price")

As an alternative to querying individual event properties via the get methods, the getUnderlying

method on EventBean returns the underlying object representing the query result. In the

sample statement that features a wildcard-select, the underlying event object is of type

org.sample.StockTickEvent:

StockTickEvent tick = (StockTickEvent) newEvents[0].getUnderlying();

16.6.4. Pattern Example

Composite events are events that aggregate one or more other events. Composite events are

typically created by the engine for statements that join two event streams, and for event patterns

in which the causal events are retained and reported in a composite event. The example below

shows such an event pattern.

// Look for a pattern where BEvent follows AEvent

String pattern = "a=AEvent -> b=BEvent";

EPStatement stmt = epService.getEPAdministrator().createPattern(pattern);

stmt.addListener(testListener);

Pattern Example

543

// Example listener code

public class MyUpdateListener implements UpdateListener {

 public void update(EventBean[] newData, EventBean[] oldData) {

 System.out.println("a event=" + newData[0].get("a"));

 System.out.println("b event=" + newData[0].get("b"));

 }

}

Note that the update method can receive multiple events at once as it accepts an array of

EventBean instances. For example, a time batch window may post multiple events to listeners

representing a batch of events received during a given time period.

Pattern statements can also produce multiple events delivered to update listeners in one

invocation. The pattern statement below, for instance, delivers an event for each A event that

was not followed by a B event with the same id property within 60 seconds of the A event. The

engine may deliver all matching A events as an array of events in a single invocation of the update

method of each listener to the statement:

select * from pattern[

 every a=A -> (timer:interval(60 sec) and not B(id=a.id))]

A code snippet out of a possible UpdateListener implementation to this statement that retrives

the events as fragments may look as below:

EventBean a = (EventBean) newEvents[0].getFragment("a");

// ... or using a nested property expression to get a value out of A event...

double value = (Double) newEvent[0].get("a.value");

Some pattern objects return an array of events. An example is the unbound repeat operator. Here

is a sample pattern that collects all A events until a B event arrives:

select * from pattern [a=A until b=B]

A possible code to retrieve different fragments or property values:

EventBean[] a = (EventBean[]) newEvents[0].getFragment("a");

// ... or using a nested property expression to get a value out of A event...

double value = (Double) newEvent[0].get("a[0].value");

Chapter 16. API Reference

544

16.7. Engine Threading and Concurrency

For NEsper .NET also see Section H.16, “.NET API - Engine Threading and Concurrency”.

Esper is designed from the ground up to operate as a component to multi-threaded, highly-

concurrent applications that require efficient use of Java VM resources. In addition, multi-threaded

execution requires guarantees in predictability of results and deterministic processing. This section

discusses these concerns in detail.

In Esper, an engine instance is a unit of separation. Applications can obtain and discard (initialize)

one or more engine instances within the same Java VM and can provide the same or different

engine configurations to each instance. An engine instance efficiently shares resources between

statements. For example, consider two statements that declare the same data window. The engine

matches up view declarations provided by each statement and can thus provide a single data

window representation shared between the two statements.

Applications can use Esper APIs to concurrently, by multiple threads of execution, perform such

functions as creating and managing statements, or sending events into an engine instance for

processing. Applications can use application-managed threads or thread pools or any set of same

or different threads of execution with any of the public Esper APIs. There are no restrictions

towards threading other than those noted in specific sections of this document.

Esper does not prescribe a specific threading model. Applications using Esper retain full control

over threading, allowing an engine to be easily embedded and used as a component or library in

your favorite Java container or process.

In the default configuration it is up to the application code to use multiple threads for processing

events by the engine, if so desired. All event processing takes places within your application thread

call stack. The exception is timer-based processing if your engine instance relies on the internal

timer (default). If your application relies on external timer events instead of the internal timer then

there need not be any Esper-managed internal threads.

The fact that event processing can take place within your application thread's call stack

makes developing applications with Esper easier: Any common Java integrated development

environment (IDE) can host an Esper engine instance. This allows developers to easily set up test

cases, debug through listener code and inspect input or output events, or trace their call stack.

In the default configuration, each engine instance maintains a single timer thread (internal timer)

providing for time or schedule-based processing within the engine. The default resolution at which

the internal timer operates is 100 milliseconds. The internal timer thread can be disabled and

applications can instead send external time events to an engine instance to perform timer or

scheduled processing at the resolution required by an application.

Each engine instance performs minimal locking to enable high levels of concurrency. An engine

instance locks on a context partition level to protect context partition resources. For stateless

EPL select-statements the engine does not use a context-partition lock and operates lock-free for

the context partition. For stateful statements, the maximum (theoretical) degree of parallelism is

Engine Threading and Concurrency

545

2^31-1 (2,147,483,647) parallel threads working to process a single EPL statement under a hash

segmented context.

You may turn off context partition locking engine-wide (also read the caution notice) as described

in Section 17.4.26.3, “Disable Locking”. You may disable context partition locking for a given

statement by providing the @NoLock annotation as part of your EPL. Note, we provide the @NoLock

annotation for the purpose of identifying locking overhead, or when your application is single-

threaded, or when using an external mechanism for concurrency control or for example with virtual

data windows or plug-in data windows to allow customizing concurrency for a given statement or

named window. Using this annotation may have unpredictable results unless your application is

taking concurrency under consideration.

For an engine instance to produce predictable results from the viewpoint of listeners to statements,

an engine instance by default ensures that it dispatches statement result events to listeners

in the order in which a statement produced result events. Applications that require the highest

possible concurrency and do not require predictable order of delivery of events to listeners, this

feature can be turned off via configuration, see Section 17.4.12.1, “Preserving the order of events

delivered to listeners”. For example, assume thread T1 processes an event applied to statement

S producing output event O1. Assume thread T2 processes another event applied to statement

S and produces output event O2. The engine employs a configurable latch system to ensure

that listeners to statement S receive and may complete processing of O1 before receiving O2.

When using outbound threading (advanced threading options) or changing the configuration this

guarantee is weakened or removed.

In multithreaded environments, when one or more statements make result events available

via the insert into clause to further statements, the engine preserves the order of events

inserted into the generated insert-into stream, allowing statements that consume other statement's

events to behave deterministic. This feature can also be turned off via configuration, see , see

Section 17.4.12.2, “Preserving the order of events for insert-into streams”. For example, assume

thread T1 processes an event applied to statement S and thread T2 processes another event

applied to statement S. Assume statement S inserts into into stream ST. T1 produces an output

event O1 for processing by consumers of ST1 and T2 produces an output event O2 for processing

by consumers of ST. The engine employs a configurable latch system such that O1 is processed

before O2 by consumers of ST. When using route execution threading (advanced threading

options) or changing the configuration this guarantee is weakened or removed.

We generally recommended that listener implementations block minimally or do not block at all.

By implementing listener code as non-blocking code execution threads can often achieve higher

levels of concurrency.

We recommended that, when using a single listener or subscriber instance to receive output from

multiple statements, that the listener or subscriber code is multithread-safe. If your application has

shared state between listener or subscriber instances then such shared state should be thread-

safe.

Chapter 16. API Reference

546

16.7.1. Advanced Threading

In the default configuration the same application thread that invokes any of the sendEvent

methods will process the event fully and also deliver output events to listeners and subscribers.

By default the single internal timer thread based on system time performs time-based processing

and delivery of time-based results.

This default configuration reduces the processing overhead associated with thread context

switching, is lightweight and fast and works well in many environments such as J2EE, server or

client. Latency and throughput requirements are largely use case dependant, and Esper provides

engine-level facilities for controlling concurrency that are described next.

Inbound Threading queues all incoming events: A pool of engine-managed threads performs the

event processing. The application thread that sends an event via any of the sendEvent methods

returns without blocking.

Outbound Threading queues events for delivery to listeners and subscribers, such that slow or

blocking listeners or subscribers do not block event processing.

Timer Execution Threading means time-based event processing is performed by a pool of engine-

managed threads. With this option the internal timer thread (or external timer event) serves only

as a metronome, providing units-of-work to the engine-managed threads in the timer execution

pool, pushing threading to the level of each statement for time-based execution.

Route Execution Threading means that the thread sending in an event via any of the sendEvent

methods (or the inbound threading pooled thread if inbound threading is enabled) only identifies

and pre-processes an event, and a pool of engine-managed threads handles the actual processing

of the event for each statement, pushing threading to the level of each statement for event-arrival-

based execution.

The engine starts engine-managed threads as daemon threads when the engine instance is first

obtained. The engine stops engine-managed threads when the engine instance is destroyed

via the destroy method. When the engine is initialized via the initialize method the existing

engine-managed threads are stopped and new threads are created. When shutting down your

application, use the destroy method to stop engine-managed threads.

Note that the options discussed herein may introduce additional processing overhead into your

system, as each option involves work queue management and thread context switching.

If your use cases require ordered processing of events or do not tolerate disorder, the threading

options described herein may not be the right choice. For enforcing a processing order within a

given criteria, your application must enforce such processing order using Java or .NET code. Esper

will not enforce order of processing if you enable inbound or route threading. Your application code

could, for example, utilize a thread per group of criteria keys, a latch per criteria key, or a queue

per criteria key, or use Java's completion service, all depending on your ordering requirements.

If your use cases require loss-less processing of events, wherein the threading options mean that

events are held in an in-memory queue, the threading options described herein may not be the

right choice.

Advanced Threading

547

Care should be taken to consider arrival rates and queue depth. Threading options utilize unbound

queues or capacity-bound queues with blocking-put, depending on your configuration, and may

therefore introduce an overload or blocking situation to your application. You may use the service

provider interface as outlined below to manage queue sizes, if required, and to help tune the

engine to your application needs. Consider throttling down the event send rate when the API (see

below) indicates that events are getting queued.

All threading options are on the level of an engine. If you require different threading behavior

for certain statements then consider using multiple engine instances, consider using the route

method or consider using application threads instead.

Please consult Section 17.4.12, “Engine Settings related to Concurrency and Threading” for

instructions on how to configure threading options. Threading options take effect at engine

initialization time.

16.7.1.1. Inbound Threading

With inbound threading an engine places inbound events in a queue for processing by one or

more engine-managed threads other than the delivering application threads.

The delivering application thread uses one of the sendEvent methods on EPRuntime to deliver

events or may also use the sendEvent method on a EventSender. The engine receives the event

and places the event into a queue, allowing the delivering thread to continue and not block while

the event is being processed and results are delivered.

Events that are sent into the engine via one of the route methods are not placed into queue but

processed by the same thread invoking the route operation.

16.7.1.2. Outbound Threading

With outbound threading an engine places outbound events in a queue for delivery by one or more

engine-managed threads other than the processing thread originating the result.

With outbound threading your listener or subscriber class receives statement results from one

of the engine-managed threads in the outbound pool of threads. This is useful when you expect

your listener or subscriber code to perform significantly blocking operations and you do not want

to hold up event processing.

Note
If outbound-threading is enabled, listeners and subscribers that send events back

into the engine should use the sendEvent method and not the route method.

16.7.1.3. Timer Execution Threading

With timer execution threading an engine places time-based work units into a queue for processing

by one or more engine-managed threads other than the internal timer thread or the application

thread that sends an external timer event.

Chapter 16. API Reference

548

Using timer execution threading the internal timer thread (or thread delivering an external timer

event) serves to evaluate which time-based work units must be processed. A pool of engine-

managed threads performs the actual processing of time-based work units and thereby offloads

the work from the internal timer thread (or thread delivering an external timer event).

Enable this option as a tuning parameter when your statements utilize time-based patterns or

data windows. Timer execution threading is fine grained and works on the level of a time-based

schedule in combination with a statement.

16.7.1.4. Route Execution Threading

With route execution threading an engine identifies event-processing work units based on the

event and statement combination. It places such work units into a queue for processing by one or

more engine-managed threads other than the thread that originated the event.

While inbound threading works on the level of an event, route execution threading is fine grained

and works on the level of an event in combination with a statement.

16.7.1.5. Threading Service Provider Interface

The service-provider interface EPServiceProviderSPI is an extension API that allows to manage

engine-level queues and thread pools .

The service-provider interface EPServiceProviderSPI is considered an extension API and

subject to change between release versions.

The following code snippet shows how to obtain the BlockingQueue<Runnable> and the

ThreadPoolExecutor for the managing the queue and thread pool responsible for inbound

threading:

EPServiceProviderSPI spi = (EPServiceProviderSPI) epService;

int queueSize = spi.getThreadingService().getInboundQueue().size();

ThreadPoolExecutor threadpool =

 spi.getThreadingService().getInboundThreadPool();

16.7.2. Processing Order

16.7.2.1. Competing Statements

This section discusses the order in which N competing statements that all react to the same

arriving event execute.

The engine, by default, does not guarantee to execute competing statements in any particular

order unless using @Priority. We therefore recommend that an application does not rely on

the order of execution of statements by the engine, since that best shields the behavior of an

application from changes in the order that statements may get created by your application or by

threading configurations that your application may change at will.

Controlling Time-Keeping

549

If your application requires a defined order of execution of competing statements, use the @Priority

EPL syntax to make the order of execution between statements well-defined (requires that you set

the prioritized-execution configuration setting). And the @Drop can make a statement preempt all

other lowered priority ones that then won't get executed for any matching events.

16.7.2.2. Competing Events in a Work Queue

This section discusses the order of event evaluation when multiple events must be processed,

for example when multiple statements use insert-into to generate further events upon arrival of

an event.

The engine processes an arriving event completely before indicating output events to listeners

and subscribers, and before considering output events generated by insert-into or routed events

inserted by listeners or subscribers.

For example, assume three statements (1) select * from MyEvent and (2) insert into ABCStream

select * from MyEvent. (3) select * from ABCStream. When a MyEvent event arrives then the

listeners to statements (1) and (2) execute first (default threading model). Listeners to statement

(3) which receive the inserted-into stream events are always executed after delivery of the

triggering event.

Among all events generated by insert-into of statements and the events routed into the engine

via the route method, all events that insert-into a named window are processed first in the order

generated. All other events are processed thereafter in the order they were generated.

When enabling timer or route execution threading as explained under advanced threading options

then the engine does not make any guarantee to the processing order except that is will prioritize

events inserted into a named window.

16.8. Controlling Time-Keeping

There are two modes for an engine to keep track of time: The internal timer based on JVM

system time (the default), and externally-controlled (aka. event time) time giving your application

full control over the concept of time within an engine or isolated service.

An isolated service is an execution environment separate from the main engine runtime, allowing

full control over the concept of time for a group of statements, as further described in Section 16.9,

“Service Isolation”.

By default the internal timer provides time and evaluates schedules. External clocking i.e. event

time can be used to supply time ticks to the engine instead. The latter is useful for when events

themselves provide the time to advance. External clocking also helps in testing time-based event

sequences or for synchronizing the engine with an external time source.

The internal timer relies on the java.util.concurrent.ScheduledThreadPoolExecutor class

for time tick events. The next section describes timer resolution for the internal timer, by default set

to 100 milliseconds but is configurable via the threading options. When using externally-controlled

time the timer resolution is in your control.

Chapter 16. API Reference

550

To disable the internal timer and use externally-provided time instead, there are two options. The

first option is to use the configuration API at engine initialization time. The second option toggles

on and off the internal timer at runtime, via special timer control events that are sent into the engine

like any other event.

If using a timer execution thread pool as discussed above, the internal timer or external time event

provide the schedule evaluation however do not actually perform the time-based processing. The

time-based processing is performed by the threads in the timer execution thread pool.

Tip

External and internal/system time is the same internally to the engine thus the

engine behaves the same whether using external or internal timer.

This code snippet shows the use of the configuration API to disable the internal timer and thereby

turn on externally-provided time (see the Configuration section for configuration via XML file):

Configuration config = new Configuration();

config.getEngineDefaults().getThreading().setInternalTimerEnabled(false);

EPServiceProvider epService =

 EPServiceProviderManager.getDefaultProvider(config);

After disabling the internal timer, it is wise to set a defined time so that any statements created

thereafter start relative to the time defined. Use the CurrentTimeEvent class to indicate current

time to the engine and to move time forward for the engine (a.k.a application-time model).

This code snippet obtains the current time and sends a timer event in:

long timeInMillis = System.currentTimeMillis();

CurrentTimeEvent timeEvent = new CurrentTimeEvent(timeInMillis);

epService.getEPRuntime().sendEvent(timeEvent);

Alternatively, you can use special timer control events to enable or disable the internal timer. Use

the TimerControlEvent class to control timer operation at runtime.

The next code snippet demonstrates toggling to external timer at runtime, by sending in a

TimerControlEvent event:

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();

EPRuntime runtime = epService.getEPRuntime();

// switch to external clocking

Controlling Time-Keeping

551

runtime.sendEvent(new

 TimerControlEvent(TimerControlEvent.ClockType.CLOCK_EXTERNAL));

Your application sends a CurrentTimeEvent event when it desires to move the time forward.

All aspects of Esper engine time related to EPL statements and patterns are driven by the time

provided by the CurrentTimeEvent that your application sends in.

The next example sequence of instructions sets time to zero, then creates a statement, then

moves time forward to 1 seconds later and then 6 seconds later:

// Set start time at zero.

runtime.sendEvent(new CurrentTimeEvent(0));

// create a statement here

epAdministrator.createEPL("select * from MyEvent output every 5 seconds");

// move time forward 1 second

runtime.sendEvent(new CurrentTimeEvent(1000));

// move time forward 5 seconds

runtime.sendEvent(new CurrentTimeEvent(6000));

When sending external timer events, your application should make sure that long-type time values

are ascending. That is, each long-type value should be either the same value or a larger value

then the prior value provided by a CurrentTimeEvent.

Your application may use the getNextScheduledTime method in EPRuntime to determine the

earliest time a schedule for any statement requires evaluation.

The following code snippet sets the current time, creates a statement and prints the next scheduled

time which is 1 minute later then the current time:

// Set start time to the current time.

runtime.sendEvent(new CurrentTimeEvent(System.currentTimeMillis()));

// Create a statement.

epService.getEPAdministrator().createEPL("select * from

 pattern[timer:interval(1 minute)]");

// Print next schedule time

System.out.println("Next schedule at " + new

 Date(runtime.getNextScheduledTime());

Chapter 16. API Reference

552

16.8.1. Controlling Time Using Time Span Events

With CurrentTimeEvent, as described above, your application can advance engine time to a

given point in time. In addition, the getNextScheduledTime method in EPRuntime returns the next

scheduled time according to started statements. You would typically use CurrentTimeEvent to

advance time at a relatively high resolution.

To advance time for a span of time without sending individual CurrentTimeEvent

events to the engine, the API provides the class CurrentTimeSpanEvent. You may use

CurrentTimeSpanEvent with or without a resolution.

If your application only provides the target end time of time span to CurrentTimeSpanEvent and

no resolution, the engine advances time up to the target time by stepping through all relevant

times according to started statements.

If your application provides the target end time of time span and in addition a long-typed resolution,

the engine advances time up to the target time by incrementing time according to the resolution

(regardless of next scheduled time according to started statements).

Consider the following example:

// Set start time to Jan.1, 2010, 00:00 am for this example

SimpleDateFormat format = new SimpleDateFormat("yyyy MM dd HH:mm:ss SSS");

Date startTime = format.parse("2010 01 01 00:00:00 000");

runtime.sendEvent(new CurrentTimeEvent(startTime.getTime()));

// Create a statement.

EPStatement stmt = epService.getEPAdministrator().createEPL("select

 current_timestamp() as ct " +

 "from pattern[every timer:interval(1 minute)]");

stmt.addListener(...); // add a listener

// Advance time to 10 minutes after start time

runtime.sendEvent(new CurrentTimeSpanEvent(startTime.getTime() + 10*60*1000));

The above example advances time to 10 minutes after the time set using CurrentTimeSpanEvent.

As the example does not pass a resolution, the engine advances time according to statement

schedules. Upon sending the CurrentTimeSpanEvent the listener sees 10 invocations for minute

1 to minute 10.

To advance time according to a given resolution, you may provide the resolution as shown below:

// Advance time to 10 minutes after start time at 100 msec resolution

runtime.sendEvent(new CurrentTimeSpanEvent(startTime.getTime() + 10*60*1000,

 100));

Time Resolution and Time Unit

553

16.8.2. Time Resolution and Time Unit

Time can have a resolution of either milliseconds or microseconds.

The default time resolution is milliseconds. To configure the engine for microsecond resolution,

please see Section 17.4.21.2, “Time Unit”.

Table 16.5. Time Resolution

Millisecond Microsecond

Smallest unit for advancing

time

1 millisecond 1 microsecond

Equivalent

java.util.concurrent.TimeUnit

TimeUnit.MILLISECONDS TimeUnit.MICROSECONDS

Default? Default Requires configuration

change, see

Section 17.4.21.2, “Time Unit”

Long-type engine time

represents

Milliseconds since Epoch Microseconds since Epoch

Example: the date Tue, 01 Jan

1980 00:00:00 GMT

315532800000 315532800000000

Support for Internal System

Time

Yes No, requires external time

(aka. event time) via

CurrentTimeSpanEvent or

CurrentTimeEvent

A few notes on usage of microsecond time unit for time resolution:

• The engine automatically computes time periods into microseconds. For example 1 minute 2

seconds is 62000000 microseconds (62 * 1000000).

• The engine automatically computes time-in-second parameters into microseconds. For example

5.02 seconds is 5020000 microseconds.

• The engine automatically computes ISO schedules, crontabs and hints related to engine time

into microseconds.

• The CurrentTimeSpanEvent or CurrentTimeEvent events must provide microsecond values.

• Date-time methods with long-type input values assume microsecond values.

• Date-time methods or other functions that take millisecond parameters or produce millisecond

values still consume/produce millisecond values, such as the date-time method toMillisec.

• The internal timer must be disabled (setInternalTimerEnabled(false)) and

TimerControlEvent.ClockType.CLOCK_INTERNAL cannot be used.

Chapter 16. API Reference

554

16.8.3. Internal Timer Based on JVM System Time

By default the internal timer is enabled and that tracks VM system time. For many use cases your

application may want to use event time or external time instead, as discussed above.

The internal timer thread, by default, uses the call System.currentTimeMillis() to obtain

system time. Please see the JIRA issue ESPER-191 Support nano/microsecond resolution for

more information on Java system time-call performance, accuracy and drift.

The internal timer thread can be configured to use nano-second time as returned by

System.nanoTime(). If configured for nano-second time, the engine computes an offset of the

nano-second ticks to wall clock time upon startup to present back an accurate millisecond wall

clock time. Please see section Section 17.4.21, “Engine Settings related to Time Source” to

configure the internal timer thread to use System.nanoTime().

The internal timer is based on java.util.concurrent.ScheduledThreadPoolExecutor and

that generally provides high accuracy VM time (java.util.Timer does not support high accuracy

VM time).

16.8.4. Additional Time-Related APIs

Consider using the service-provider interface EPRuntimeSPI EPRuntimeIsolatedSPI. The two

interfaces are service-provider interfaces that expose additional function to manage statement

schedules. However the SPI interfaces should be considered an extension API and are subject

to change between release versions.

Additional engine-internal SPI interfaces can be obtained by downcasting EPServiceProvider to

EPServiceProviderSPI. For example the SchedulingServiceSPI exposes schedule information

per statement (downcast from SchedulingService). Engine-internal SPI are subject to change

between versions.

16.9. Service Isolation

16.9.1. Overview

An isolated service allows an application to control event visibility and the concept of time as

desired on a statement level: Events sent into an isolated service are visible only to those

statements that currently reside in the isolated service and are not visible to statements outside

of that isolated service. Within an isolated service an application can control time independently,

start time at a point in time and advance time at the resolution and pace suitable for the statements

added to that isolated service.

In the default configuration, isolated service is disabled and not available. This is because there

is a small overhead associated with this feature. Please review Section 17.4.26.7, “Allow Isolated

Service Provider” for the configuration setting.

As discussed before, a single Java Virtual Machine may hold multiple Esper engine instances

unique by engine URI. Within an Esper engine instance the default execution environment

Overview

555

for statements is the EPRuntime engine runtime, which coordinates all statement's reaction to

incoming events and to time passing (via internal or external timer).

Subordinate to an Esper engine instance, your application can additionally allocate multiple

isolated services (or execution environments), uniquely identified by a name and represented by

the EPServiceProviderIsolated interface. In the isolated service, time passes only when you

application sends timer events to the EPRuntimeIsolated instance. Only events explicitly sent to

the isolated service are visible to statements added.

Your application can create new statements that start in an isolated service. You can also move

existing statements back and forth between the engine and an isolated service.

Isolation does not apply to variables: Variables are global in nature. Also, as named windows are

globally visibly data windows, consumers to named windows see changes in named windows even

though a consumer or the named window (through the create statement) may be in an isolated

service. Tables are also globally visible.

An isolated service allows an application to:

1. Suspend a statement without loosing its statement state that may have accumulated for the

statement.

2. Control the concept of time separately for a set of statements, for example to simulate, backtest,

adjust arrival order or compute arrival time.

3. Initialize statement state by replaying events, without impacting already running statements, to

catch-up statements from historical events for example.

While a statement resides in an isolated runtime it receives only those events explicitly sent to

the isolated runtime, and performs time-based processing based on the timer events provided to

that isolated runtime.

Use the getEPServiceIsolated method on EPServiceProvider passing a name to obtain an

isolated runtime:

EPServiceProviderIsolated isolatedService =

 epServiceManager.getEPServiceIsolated("name");

Set the start time for your isolated runtime via the CurrentTimeEvent timer event:

// In this example start the time at the system time

long startInMillis = System.currentTimeMillis();

isolatedService.getEPRuntime().sendEvent(new CurrentTimeEvent(startInMillis));

Use the addStatement method on EPAdministratorIsolated to move an existing statement out

of the engine runtime into the isolated runtime:

Chapter 16. API Reference

556

// look up the existing statement

EPStatement stmt =

 epServiceManager.getEPAdministrator().getStatement("MyStmt");

// move it to an isolated service

isolatedService.getEPAdministrator().addStatement(stmt);

To remove the statement from isolation and return the statement back to the engine runtime, use

the removeStatement method on EPAdministratorIsolated:

isolatedService.getEPAdministrator().removeStatement(stmt);

To create a new statement in the isolated service, use the createEPL method on

EPAdministratorIsolated:

isolatedService.getEPAdministrator().createEPL(

 "@Name('MyStmt') select * from Event", null, null);

// the example is passing the statement name in an annotation and no user object

The destroy method on EPServiceProviderIsolated moves all currently-isolated statements

for that isolated service provider back to engine runtime.

When moving a statement between engine runtime and isolated service or back, the algorithm

ensures that events are aged according to the time that passed and time schedules stay intact.

To use isolated services, your configuration must have view sharing disabled as described in

Section 17.4.14.1, “Sharing View Resources between Statements”.

16.9.2. Example: Suspending a Statement

By adding an existing statement to an isolated service, the statement's processing effectively

becomes suspended. Time does not pass for the statement and it will not process events, unless

your application explicitly moves time forward or sends events into the isolated service.

First, let's create a statement and send events:

EPStatement stmt = epServiceManager.getEPAdministrator().createEPL("select *

 from TemperatureEvent#time(30)");

epServiceManager.getEPRuntime().send(new TemperatureEvent(...));

// send some more events over time

The steps to suspend the previously created statement are as follows:

Example: Catching up a Statement from Historical Data

557

EPServiceProviderIsolated isolatedService =

 epServiceManager.getEPServiceIsolated("suspendedStmts");

isolatedService.getEPAdministrator().addStatement(stmt);

To resume the statement, move the statement back to the engine:

isolatedService.getEPAdministrator().removeStatement(stmt);

If the statement employed a time window, the events in the time window did not age. If the

statement employed patterns, the pattern's time-based schedule remains unchanged. This is

because the example did not advance time in the isolated service.

16.9.3. Example: Catching up a Statement from Historical Data

This example creates a statement in the isolated service, replays some events and advances

time, then merges back the statement to the engine to let it participate in incoming events and

engine time processing.

First, allocate an isolated service and explicitly set it to a start time. Assuming that myStartTime

is a long millisecond time value that marks the beginning of the data to replay, the sequence is

as follows:

EPServiceProviderIsolated isolatedService =

 epServiceManager.getEPServiceIsolated("suspendedStmts");

isolatedService.getEPRuntime().sendEvent(new CurrentTimeEvent(myStartTime));

Next, create the statement. The sample statement is a pattern statement looking for temperature

events following each other within 60 seconds:

EPStatement stmt = epAdmin.createEPL(

 "select * from pattern[every a=TemperatureEvent -> b=TemperatureEvent where

 timer:within(60)]");

For each historical event to be played, advance time and send an event. This code snippet

assumes that currentTime is a time greater then myStartTime and reflects the time that the

historical event should be processed at. It also assumes historyEvent is the historical event

object.

isolatedService.getEPRuntime().sendEvent(new CurrentTimeEvent(currentTime));

isolatedService.getEPRuntime().send(historyEvent);

Chapter 16. API Reference

558

// repeat the above advancing time until no more events

Finally, when done replaying events, merge the statement back with the engine:

isolatedService.getEPAdministrator().removeStatement(stmt);

16.9.4. Isolation for Insert-Into

When isolating statements, events that are generated by insert into are visible within the

isolated service that currently holds that insert into statement.

For example, assume the below two statements named A and B:

@Name('A') insert into MyStream select * from MyEvent

@Name('B') select * from MyStream

When adding statement A to an isolated service, and assuming a MyEvent is sent to either the

engine runtime or the isolated service, a listener to statement B does not receive that event.

When adding statement B to an isolated service, and assuming a MyEvent is sent to either the

engine runtime or the isolated service, a listener to statement B does not receive that event.

16.9.5. Isolation for Named Windows and Tables

When isolating named windows or tables, the event visibility of events entering and leaving from

a named window or the rows inserted, changed and removed from tables is not limited to the

isolated service. This is because named windows are global data windows and tables are global

data structures.

For example, assume the below three statements named A, B and C:

@Name('A') create window MyNamedWindow#time(60) as select * from MyEvent

@Name('B') insert into MyNamedWindow select * from MyEvent

@Name('C') select * from MyNamedWindow

When adding statement A to an isolated service, and assuming a MyEvent is sent to either the

engine runtime or the isolated service, a listener to statement A and C does not receive that event.

When adding statement B to an isolated service, and assuming a MyEvent is sent to either the

engine runtime or the isolated service, a listener to statement A and C does not receive that event.

When adding statement C to an isolated service, and assuming a MyEvent is sent to the engine

runtime, a listener to statement A and C does receive that event.

Runtime Considerations

559

16.9.6. Runtime Considerations

Moving statements between an isolated service and the engine is an expensive operation and

should not be performed with high frequency.

When using multiple threads to send events and at the same time moving a statement to an

isolated service, it its undefined whether events will be delivered to a listener of the isolated

statement until all threads completed sending events.

Metrics reporting is not available for statements in an isolated service. Advanced threading options

are also not available in the isolated service, however it is thread-safe to send events including

timer events from multiple threads to the same or different isolated service.

16.10. Exception Handling

You may register one or more exception handlers for the engine to invoke in the case it

encounters an exception processing a continuously-executing statement. By default and without

exception handlers the engine cancels execution of the current EPL statement that encountered

the exception, logs the exception and continues to the next statement, if any. The configuration is

described in Section 17.4.27, “Engine Settings related to Exception Handling”.

If your application registers exception handlers as part of engine configuration, the engine invokes

the exception handlers in the order they are registered passing relevant exception information

such as EPL statement name, expression and the exception itself.

Exception handlers receive any EPL statement unchecked exception such as internal exceptions

or exceptions thrown by plug-in aggregation functions or plug-in views. The engine does not

provide to exception handlers any exceptions thrown by static method invocations for function

calls, method invocations in joins, methods on variables and event classes and listeners or

subscriber exceptions.

An exception handler can itself throw a runtime exception to cancel execution of the current event

against any further statements.

Note

Exceptions are meant to indicate an actual unexpected problem.

We do not recommend explicitly throwing exceptions for the purpose of flow control,

preempting execution or other normal situations.

The engine does not guarantee that throwing an exception has no other side effect

and the engine may not roll back changes that are already made to state.

For on-demand queries the API indicates any exception directly back to the caller without the

exception handlers being invoked, as exception handlers apply to continuous queries only. The

same applies to any API calls other than sendEvent and the EventSender methods.

Chapter 16. API Reference

560

As the configuration section describes, your application registers one or more classes that

implement the ExceptionHandlerFactory interface in the engine configuration. Upon engine

initialization the engine obtains a factory instance from the class name that then provides the

exception handler instance. The exception handler class must implement the ExceptionHandler

interface.

16.11. Condition Handling

You may register one or more condition handlers for the engine to invoke in the case it encounters

certain conditions, as outlined below, when executing a statement. By default and without

condition handlers the engine logs the condition at informational level and continues processing.

The configuration is described in Section 17.4.28, “Engine Settings related to Condition Handling”.

If your application registers condition handlers as part of engine configuration, the engine invokes

the condition handlers in the order they are registered passing relevant condition information such

as EPL statement name, expression and the condition information itself.

Currently the only conditions indicated by this facility are raised by the pattern followed-by

operator, see Section 7.5.8.1, “Limiting Sub-Expression Count” and see Section 7.5.8.2, “Limiting

Engine-wide Sub-Expression Count”.

A condition handler may not itself throw a runtime exception or return any value.

As the configuration section describes, your application registers one or more classes that

implement the ConditionHandlerFactory interface in the engine configuration. Upon engine

initialization the engine obtains a factory instance from the class name that then provides the

condition handler instance. The condition handler class must implement the ConditionHandler

interface.

16.12. Statement Object Model

The statement object model is a set of classes that provide an object-oriented representation

of an EPL or pattern statement. The object model classes are found in package

com.espertech.esper.client.soda. An instance of EPStatementObjectModel represents a

statement's object model.

The statement object model classes are a full and complete specification of a statement. All EPL

and pattern constructs including expressions and sub-queries are available via the statement

object model.

In conjunction with the administrative API, the statement object model provides the means to build,

change or interrogate statements beyond the EPL or pattern syntax string representation. The

object graph of the statement object model is fully navigable for easy querying by code, and is also

serializable allowing applications to persist or transport statements in object form, when required.

The statement object model supports full round-trip from object model to EPL statement string and

back to object model: A statement object model can be rendered into an EPL string representation

Building an Object Model

561

via the toEPL method on EPStatementObjectModel. Further, the administrative API allows to

compile a statement string into an object model representation via the compileEPL method on

EPAdministrator.

The statement object model is fully mutable. Mutating a any list such as returned by

getChildren(), for example, is acceptable and supported.

The create method on EPAdministrator creates and starts a statement as represented by

an object model. In order to obtain an object model from an existing statement, obtain the

statement expression text of the statement via the getText method on EPStatement and use the

compileEPL method to obtain the object model.

The following limitations apply:

• Statement object model classes are not safe for sharing between threads other than for read

access.

• Between versions of Esper, the serialized form of the object model is subject to change. Esper

makes no guarantees that the serialized object model of one version will be fully compatible

with the serialized object model generated by another version of Esper. Please consider this

issue when storing Esper object models in persistent store.

16.12.1. Building an Object Model

A EPStatementObjectModel consists of an object graph representing all possible clauses that

can be part of an EPL statement.

Among all clauses, the SelectClause and FromClause objects are required clauses that must be

present, in order to define what to select and where to select from.

Table 16.6. Required Statement Object Model Instances

Class Description

EPStatementObjectModel All statement clauses for a statement, such as the select-clause

and the from-clause, are specified within the object graph of an

instance of this class

SelectClause A list of the selection properties or expressions, or a wildcard

FromClause A list of one or more streams; A stream can be a filter-based,

a pattern-based or a SQL-based stream; Views are added to

streams to provide data window or other projections

Part of the statement object model package are convenient builder classes that make it easy to

build a new object model or change an existing object model. The SelectClause and FromClause

are such builder classes and provide convenient create methods.

Within the from-clause we have a choice of different streams to select on. The FilterStream

class represents a stream that is filled by events of a certain type and that pass an optional filter

expression.

Chapter 16. API Reference

562

We can use the classes introduced above to create a simple statement object model:

EPStatementObjectModel model = new EPStatementObjectModel();

model.setSelectClause(SelectClause.createWildcard());

model.setFromClause(FromClause.create(FilterStream.create("com.chipmaker.ReadyEvent")));

The model as above is equivalent to the EPL :

select * from com.chipmaker.ReadyEvent

Last, the code snippet below creates a statement from the object model:

EPStatement stmt = epService.getEPAdministrator().create(model);

Notes on usage:

• Variable names can simply be treated as property names.

• When selecting from named windows or tables, the name of the named window or table is the

event type name for use in FilterStream instances or patterns.

• To compile an arbitrary sub-expression text into an Expression object representation,

simply add the expression text to a where clause, compile the EPL string into an object

model via the compileEPL on EPAdministrator, and obtain the compiled where from the

EPStatementObjectModel via the getWhereClause method.

16.12.2. Building Expressions

The EPStatementObjectModel includes an optional where-clause. The where-clause is a filter

expression that the engine applies to events in one or more streams. The key interface for all

expressions is the Expression interface.

The Expressions class provides a convenient way of obtaining Expression instances for all

possible expressions. Please consult the JavaDoc for detailed method information. The next

example discusses sample where-clause expressions.

Use the Expressions class as a service for creating expression instances, and add additional

expressions via the add method that most expressions provide.

In the next example we add a simple where-clause to the EPL as shown earlier:

select * from com.chipmaker.ReadyEvent where line=8

And the code to add a where-clause to the object model is below.

Building a Pattern Statement

563

model.setWhereClause(Expressions.eq("line", 8));

The following example considers a more complex where-clause. Assume we need to build an

expression using logical-and and logical-or:

select * from com.chipmaker.ReadyEvent

where (line=8) or (line=10 and age<5)

The code for building such a where-clause by means of the object model classes is:

model.setWhereClause(Expressions.or()

 .add(Expressions.eq("line", 8))

 .add(Expressions.and()

 .add(Expressions.eq("line", 10))

 .add(Expressions.lt("age", 5))

));

16.12.3. Building a Pattern Statement

The Patterns class is a factory for building pattern expressions. It provides convenient methods

to create all pattern expressions of the pattern language.

Patterns in EPL are seen as a stream of events that consist of patterns matches. The

PatternStream class represents a stream of pattern matches and contains a pattern expression

within.

For instance, consider the following pattern statement.

select * from pattern [every a=MyAEvent and not b=MyBEvent]

The next code snippet outlines how to use the statement object model and specifically the

Patterns class to create a statement object model that is equivalent to the pattern statement

above.

EPStatementObjectModel model = new EPStatementObjectModel();

model.setSelectClause(SelectClause.createWildcard());

PatternExpr pattern = Patterns.and()

 .add(Patterns.everyFilter("MyAEvent", "a"))

 .add(Patterns.notFilter("MyBEvent", "b"));

model.setFromClause(FromClause.create(PatternStream.create(pattern)));

Chapter 16. API Reference

564

16.12.4. Building a Select Statement

In this section we build a complete example statement and include all optional clauses in one EPL

statement, to demonstrate the object model API.

A sample statement:

insert into ReadyStreamAvg(line, avgAge)

select line, avg(age) as avgAge

from com.chipmaker.ReadyEvent(line in (1, 8, 10))#time(10) as RE

where RE.waverId != null

group by line

having avg(age) < 0

output every 10.0 seconds

order by line

Finally, this code snippet builds the above statement from scratch:

EPStatementObjectModel model = new EPStatementObjectModel();

model.setInsertInto(InsertIntoClause.create("ReadyStreamAvg", "line",

 "avgAge"));

model.setSelectClause(SelectClause.create()

 .add("line")

 .add(Expressions.avg("age"), "avgAge"));

Filter filter = Filter.create("com.chipmaker.ReadyEvent", Expressions.in("line",

 1, 8, 10));

model.setFromClause(FromClause.create(

 FilterStream.create(filter, "RE").addView("win", "time", 10)));

model.setWhereClause(Expressions.isNotNull("RE.waverId"));

model.setGroupByClause(GroupByClause.create("line"));

model.setHavingClause(Expressions.lt(Expressions.avg("age"),

 Expressions.constant(0)));

model.setOutputLimitClause(OutputLimitClause.create(OutputLimitSelector.DEFAULT,

 Expressions.timePeriod(null, null, null, 10.0, null)));

model.setOrderByClause(OrderByClause.create("line"));

16.12.5. Building a Create-Variable and On-Set Statement

This sample statement creates a variable:

create variable integer var_output_rate = 10

The code to build the above statement using the object model:

Building Create-Window, On-Delete and On-Select Statements

565

EPStatementObjectModel model = new EPStatementObjectModel();

model.setCreateVariable(CreateVariableClause.create("integer",

 "var_output_rate", 10));

epService.getEPAdministrator().create(model);

A second statement sets the variable to a new value:

on NewValueEvent set var_output_rate = new_rate

The code to build the above statement using the object model:

EPStatementObjectModel model = new EPStatementObjectModel();

model.setOnExpr(OnClause.createOnSet("var_output_rate",

 Expressions.property("new_rate")));

model.setFromClause(FromClause.create(FilterStream.create("NewValueEvent")));

EPStatement stmtSet = epService.getEPAdministrator().create(model);

16.12.6. Building Create-Window, On-Delete and On-Select

Statements

This sample statement creates a named window:

create window OrdersTimeWindow#time(30 sec) as select symbol as sym, volume as

 vol, price from OrderEvent

The is the code that builds the create-window statement as above:

EPStatementObjectModel model = new EPStatementObjectModel();

model.setCreateWindow(CreateWindowClause.create("OrdersTimeWindow").addView("win",

 "time", 30));

model.setSelectClause(SelectClause.create()

 .addWithName("symbol", "sym")

 .addWithName("volume", "vol")

 .add("price"));

model.setFromClause(FromClause.create(FilterStream.create("OrderEvent)));

A second statement deletes from the named window:

on NewOrderEvent as myNewOrders

Chapter 16. API Reference

566

delete from OrdersNamedWindow as myNamedWindow

where myNamedWindow.symbol = myNewOrders.symbol

The object model is built by:

EPStatementObjectModel model = new EPStatementObjectModel();

model.setOnExpr(OnClause.createOnDelete("OrdersNamedWindow", "myNamedWindow"));

model.setFromClause(FromClause.create(FilterStream.create("NewOrderEvent",

 "myNewOrders")));

model.setWhereClause(Expressions.eqProperty("myNamedWindow.symbol",

 "myNewOrders.symbol"));

EPStatement stmtOnDelete = epService.getEPAdministrator().create(model);

A third statement selects from the named window using the non-continuous on-demand selection

via on-select:

on QueryEvent(volume>0) as query

select count(*) from OrdersNamedWindow as win

where win.symbol = query.symbol

The on-select statement is built from scratch via the object model as follows:

EPStatementObjectModel model = new EPStatementObjectModel();

model.setOnExpr(OnClause.createOnSelect("OrdersNamedWindow", "win"));

model.setWhereClause(Expressions.eqProperty("win.symbol", "query.symbol"));

model.setFromClause(FromClause.create(FilterStream.create("QueryEvent",

 "query",

 Expressions.gt("volume", 0))));

model.setSelectClause(SelectClause.create().add(Expressions.countStar()));

EPStatement stmtOnSelect = epService.getEPAdministrator().create(model);

16.13. Prepared Statement and Substitution Parameters

The prepare method that is part of the administrative API pre-compiles an EPL statement and

stores the precompiled statement in an EPPreparedStatement object. This object can then be

used to efficiently start the parameterized statement multiple times.

You can insert substitution parameters as a single question mark character '?', making the

substitution parameter addressable by index.

You can also insert substitution parameters using the following syntax, which makes the

substitution parameter addressable by name:

Prepared Statement and Substitution Parameters

567

?:name

All substitution parameters must either be unnamed (just '?') or named ('?:name'). It is not

possible to mix the two styles.

If not assigning a name to substitution parameters, the engine assigns the first substitution

parameter an index of 1 and subsequent parameters increment the index by one.

If assigning a name to each substitution parameter, the name can include slash (/) characters

and can occur multiple times.

Substitution parameters can be inserted into any EPL construct that takes an expression. They are

therefore valid in any clauses such as the select-clause, from-clause filters, where-clause, group-

by-clause, having-clause or order-by-clause, including view parameters and pattern observers

and guards. Substitution parameters cannot be used where a numeric constant is required rather

than an expression and in SQL statements.

All substitution parameters must be replaced by actual values before a statement with substitution

parameters can be started. Substitution parameters can be set to new values and new statements

can be created from the same EPPreparedStatement object more than once.

If not assigning a name to substitution parameters, replace the substitution parameter with an

actual value using the setObject(int index, Object value) method for each index, starting

from 1.

If assigning a name to each substitution parameter, replace the substitution parameter with an

actual value using the setObject(String name, Object value) method for each name.

While the setObject method allows substitution parameters to assume any actual value including

application Java objects or enumeration values, the application must provide the correct type of

substitution parameter that matches the requirements of the expression the parameter resides in.

In the following example of setting parameters on a prepared statement and starting the prepared

statement, epService represents an engine instance:

String stmt = "select * from com.chipmaker.ReadyEvent(line=?)";

EPPreparedStatement prepared = epService.getEPAdministrator().prepareEPL(stmt);

prepared.setObject(1, 8);

EPStatement statement = epService.getEPAdministrator().create(prepared);

The next example names the substitution parameter:

String stmt = "select * from ReadyEvent(line=?:lines/line1)";

EPPreparedStatement prepared = epService.getEPAdministrator().prepareEPL(stmt);

prepared.setObject("lines/line1", 1);

Chapter 16. API Reference

568

16.14. Engine and Statement Metrics Reporting

The engine can report key processing metrics through the JMX platform mbean server by setting

a single configuration flag described in Section 17.4.22, “Engine Settings related to JMX Metrics”.

For additional detailed reporting and metrics events, please read on.

Metrics reporting is a feature that allows an application to receive ongoing reports about key

engine-level and statement-level metrics. Examples are the number of incoming events, the CPU

time and wall time taken by statement executions or the number of output events per statement.

Metrics reporting is, by default, disabled. To enable reporting, please follow the steps as outlined

in Section 17.4.23, “Engine Settings related to Metrics Reporting”. Metrics reporting must be

enabled at engine initialization time. Reporting intervals can be controlled at runtime via the

ConfigurationOperations interface available from the administrative API.

Your application can receive metrics at configurable intervals via EPL statement. A metric

datapoint is simply a well-defined event. The events are EngineMetric and StatementMetric

and the Java class representing the events can be found in the client API in package

com.espertech.esper.client.metric.

Since metric events are processed by the engine the same as application events, your EPL may

use any construct on such events. For example, your application may select, filter, aggregate

properties, sort or insert into a stream, named window or table all metric events the same as

application events.

This example statement selects all engine metric events:

select * from com.espertech.esper.client.metric.EngineMetric

The next statement selects all statement metric events:

select * from com.espertech.esper.client.metric.StatementMetric

Make sure to have metrics reporting enabled since only then do listeners or subscribers to a

statement such as above receive metric events.

The engine provides metric events after the configured interval of time has passed. By default, only

started statements that have activity within an interval (in the form of event or timer processing)

are reported upon.

The default configuration performs the publishing of metric events in an Esper daemon thread

under the control of the engine instance. Metrics reporting honors externally-supplied time, if using

external timer events.

Engine Metrics

569

Via runtime configuration options provided by ConfigurationOperations, your application may

enable and disable metrics reporting globally, provided that metrics reporting was enabled at

initialization time. Your application may also enable and disable metrics reporting for individual

statements by statement name.

Statement groups is a configuration feature that allows to assign reporting intervals to statements.

Statement groups are described further in the Section 17.4.23, “Engine Settings related to Metrics

Reporting” section. Statement groups cannot be added or removed at runtime.

The following limitations apply:

• If your Java VM version does not report current thread CPU

time (most JVM do), then CPU time is reported as zero

(use ManagementFactory.getThreadMXBean().isCurrentThreadCpuTimeSupported() to

determine if your JVM supports this feature).

Note: In some JVM the accuracy of CPU time returned is very low (in the order of 10 milliseconds

off) which can impact the usefulness of CPU metrics returned. Consider measuring CPU time

in your application thread after sending a number of events in the same thread, external to the

engine as an alternative.

• Your Java VM may not provide high resolution time via System.nanoTime. In such case wall

time may be inaccurate and inprecise.

• CPU time and wall time have nanosecond precision but not necessarily nanosecond accuracy,

please check with your Java VM provider.

• There is a performance cost to collecting and reporting metrics.

• Not all statements may report metrics: The engine performs certain runtime optimizations

sharing resources between similar statements, thereby not reporting on certain statements

unless resource sharing is disabled through configuration.

16.14.1. Engine Metrics

Engine metrics are properties of EngineMetric events:

Table 16.7. EngineMetric Properties

Name Description

engineURI The URI of the engine instance.

timestamp The current engine time.

inputCount Cumulative number of input events since engine initialization time. Input

events are defined as events send in via application threads as well as

insert into events.

inputCountDelta Number of input events since last reporting period.

scheduleDepth Number of outstanding schedules.

Chapter 16. API Reference

570

16.14.2. Statement Metrics

Statement metrics are properties of StatementMetric. The properties are:

Table 16.8. StatementMetric Properties

Name Description

engineURI The URI of the engine instance.

timestamp The current engine time.

statementName Statement name, if provided at time of statement creation, otherwise a

generated name.

cpuTime Statement processing CPU time (system and user) in nanoseconds (if

available by Java VM).

wallTime Statement processing wall time in nanoseconds (based on

System.nanoTime).

numInput Number of input events to the statement.

numOutputIStreamNumber of insert stream rows output to listeners or the subscriber, if any.

numOutputRStreamNumber of remove stream rows output to listeners or the subscriber, if any.

The totals reported are cumulative relative to the last metric report.

16.15. Event Rendering to XML and JSON

Your application may use the built-in XML and JSON formatters to render output events into a

readable textual format, such as for integration or debugging purposes. This section introduces the

utility classes in the client util package for rendering events to strings. Further API information

can be found in the JavaDocs.

The EventRenderer interface accessible from the runtime interface via the getEventRenderer

method provides access to JSON and XML rendering. For repeated rendering of events of

the same event type or subtypes, it is recommended to obtain a JSONEventRenderer or

XMLEventRenderer instance and use the render method provided by the interface. This allows

the renderer implementations to cache event type metadata for fast rendering.

In this example we show how one may obtain a renderer for repeated rendering of events of the

same type, assuming that statement is an instance of EPStatement:

JSONEventRenderer jsonRenderer = epService.getEPRuntime().

 getEventRenderer().getJSONRenderer(statement.getEventType());

Assuming that event is an instance of EventBean, this code snippet renders an event into the

JSON format:

JSON Event Rendering Conventions and Options

571

String jsonEventText = jsonRenderer.render("MyEvent", event);

The XML renderer works the same:

XMLEventRenderer xmlRenderer = epService.getEPRuntime().

 getEventRenderer().getXMLRenderer(statement.getEventType());

...and...

String xmlEventText = xmlRenderer.render("MyEvent", event);

If the event type is not known in advance or if you application does not want to obtain a renderer

instance per event type for fast rendering, your application can use one of the following methods

to render an event to a XML or JSON textual format:

String json = epService.getEPRuntime().getEventRenderer().renderJSON(event);

String xml = epService.getEPRuntime().getEventRenderer().renderXML(event);

Use the JSONRenderingOptions or XMLRenderingOptions classes to control how events are

rendered. To render specific event properties using a custom event property renderer, specify

an EventPropertyRenderer as part of the options that renders event property values to strings.

Please see the JavaDoc documentation for more information.

16.15.1. JSON Event Rendering Conventions and Options

The JSON renderer produces JSON text according to the standard documented at http://

www.json.org.

The renderer formats simple properties as well as nested properties and indexed properties

according to the JSON string encoding, array encoding and nested object encoding requirements.

The renderer does render indexed properties, it does not render indexed properties that require

an index, i.e. if your event representation is backed by POJO objects and your getter method is

getValue(int index), the indexed property values are not part of the JSON text. This is because

the implementation has no way to determine how many index keys there are. A workaround is to

have a method such as Object[] getValue() instead.

The same is true for mapped properties that the renderer also renders. If a property requires a

Map key for access, i.e. your getter method is getValue(String key), such property values are

not part of the result text as there is no way for the implementation to determine the key set.

Chapter 16. API Reference

572

16.15.2. XML Event Rendering Conventions and Options

The XML renderer produces well-formed XML text according to the XML standard.

The renderer can be configured to format simple properties as attributes or as elements. Nested

properties and indexed properties are always represented as XML sub-elements to the root or

parent element.

The root element name provided to the XML renderer must be the element name of the root in

the XML document and may include namespace instructions.

The renderer does render indexed properties, it does not render indexed properties that require

an index, i.e. if your event representation is backed by POJO objects and your getter method is

getValue(int index), the indexed property values are not part of the XML text. This is because

the implementation has no way to determine how many index keys there are. A workaround is to

have a method such as Object[] getValue() instead.

The same is true for mapped properties that the renderer also renders. If a property requires a

Map key for access, i.e. your getter method is getValue(String key), such property values are

not part of the result text as there is no way for the implementation to determine the key set.

16.16. Plug-in Loader

A plug-in loader is for general use with input adapters, output adapters or EPL code deployment

or any other task that can benefits from being part of an Esper configuration file and that follows

engine lifecycle.

A plug-in loader implements the com.espertech.esper.plugin.PluginLoader interface and

can be listed in the configuration.

Each configured plug-in loader follows the engine instance lifecycle: When an engine instance

initializes, it instantiates each PluginLoader implementation class listed in the configuration. The

engine then invokes the lifecycle methods of the PluginLoader implementation class before and

after the engine is fully initialized and before an engine instance is destroyed.

Declare a plug-in loader in your configuration XML as follows:

...

 <plugin-loader name="MyLoader" class-name="org.mypackage.MyLoader">

 <init-arg name="property1" value="val1"/>

 </plugin-loader>

...

Alternatively, add the plug-in loader via the configuration API:

Configuration config = new Configuration();

Interrogating EPL Annotations

573

Properties props = new Properties();

props.put("property1", "value1");

config.addPluginLoader("MyLoader", "org.mypackage.MyLoader", props);

Implement the init method of your PluginLoader implementation to receive initialization

parameters. The engine invokes this method before the engine is fully initialized, therefore your

implementation should not yet rely on the engine instance within the method body:

public class MyPluginLoader implements PluginLoader {

 public void init(String loaderName, Properties properties, EPServiceProviderSPI

 epService) {

 // save the configuration for later, perform checking

 }

 ...

The engine calls the postInitialize method once the engine completed initialization and to

indicate the engine is ready for traffic.

public void postInitialize() {

 // Start the actual interaction with external feeds or the engine here

}

...

The engine calls the destroy method once the engine is destroyed or initialized for a second time.

public void destroy() {

 // Destroy resources allocated as the engine instance is being destroyed

}

To access the plug-in at runtime, the getContext method provides access under the name

plugin-loader/name:

epService.getContext().getEnvironment().get("plugin-loader/MyLoader");

16.17. Interrogating EPL Annotations

As discussed in Section 5.2.7, “Annotation” an EPL annotation is an addition made to information

in an EPL statement. The API and examples to interrogate annotations are described here.

Chapter 16. API Reference

574

You may use the getAnnotations method of EPStatement to obtain annotations specified for an

EPL statement. Or when compiling an EPL expression to a EPStatementObjectModel statement

object model you may also query, change or add annotations.

The following example code demonstrates iterating over an EPStatement statement's annotations

and retrieving values:

String exampleEPL = "@Tag(name='direct-output', value='sink 1') select * from

 RootEvent";

EPStatement stmt = epService.getEPAdministrator().createEPL(exampleEPL);

for (Annotation annotation : stmt.getAnnotations()) {

 if (annotation instanceof Tag) {

 Tag tag = (Tag) annotation;

 System.out.println("Tag name " + tag.name() + " value " + tag.value());

 }

}

The output of the sample code shown above is Tag name direct-output value sink 1.

16.18. Context Partition Selection

This chapter discusses how to select context partitions. Contexts are discussed in Chapter 4,

Context and Context Partitions and the reasons for context partition selection are introduced in

Section 4.9, “Operations on Specific Context Partitions”.

The section is only relevant when you declare a context. It applies to all different types of hash,

partitioned, category, overlapping or other temporal contexts. The section uses a category context

for the purpose of illustration. The API discussed herein is general and handles all different types

of contexts including nested contexts.

Consider a category context that separates bank transactions into small, medium and large:

// declare category context

create context TxnCategoryContext

 group by amount < 100 as small,

 group by amount between 100 and 1000 as medium,

 group by amount > 1000 as large from BankTxn

// retain 1 minute of events of each category separately

context TxnCategoryContext select * from BankTxn#time(1 minute)

In order for your application to iterate one or more specific categories it is necessary to identify

which category, i.e. which context partition, to iterate. Similarly for on-demand queries, to execute

Context Partition Selection

575

on-demand queries against one or more specific categories, it is necessary to identify which

context partition to execute the on-demand query against.

Your application may iterate one or more specific context partitions using either the

iterate or safeIterate method of EPStatement by providing an implementation of the

ContextPartitionSelector interface.

For example, assume your application must obtain all bank transactions for small amounts. It may

use the API to identify the category and iterate the associated context partition:

ContextPartitionSelectorCategory categorySmall = new

 ContextPartitionSelectorCategory() {

 public Set<String> getLabels() {

 return Collections.singleton("small");

 }

 };

Iterator<EventBean> it = stmt.iterator(categorySmall);

Your application may execute on-demand queries against one or more specific context

partitions by using the executeQuery method on EPRuntime or the execute method on

EPOnDemandPreparedQuery and by providing an implementation of ContextPartitionSelector.

On-demand queries execute against named windows and tables, therefore below EPL statement

creates a named window which the engine manages separately for small, medium and large

transactions according to the context declared earlier:

// Named window per category

context TxnCategoryContext create window BankTxnWindow#time(1 min) as BankTxn

The following code demonstrates how to fire an on-demand query against the small and the

medium category:

ContextPartitionSelectorCategory categorySmallMed = new

 ContextPartitionSelectorCategory() {

 public Set<String> getLabels() {

 return new HashSet<String>(Arrays.asList("small", "medium"));

 }

 };

epService.getEPRuntime().executeQuery(

 "select count(*) from BankTxnWindow",

 new ContextPartitionSelector[] {categorySmallMed});

The following limitations apply:

Chapter 16. API Reference

576

• On-demand queries may not join named windows or tables that declare a context.

16.18.1. Selectors

This section summarizes the selector interfaces that are available for use to identify and

interrogate context partitions. Please refer to the JavaDoc documentation for package

com.espertech.esper.client.context and classes therein for additional information.

Use an implementation of ContextPartitionSelectorAll or the

ContextPartitionSelectorAll.INSTANCE object to instruct the engine to consider all context

partitions.

Use an implementation of ContextPartitionSelectorById if your application knows the context

partition ids to query. This selector instructs the engine to consider only those provided context

partitions based on their integer id value. The engine outputs the context partition id in the built-

in property context.id.

Use an implementation of ContextPartitionSelectorFiltered to receive and interrogate

context partitions. Use the filter method that receives a ContextPartitionIdentifier

to return a boolean indicator whether to include the context partition or not. The

ContextPartitionIdentifier provides information about each context partition. Your

application may not retain ContextPartitionIdentifier instances between filter method

invocations as the engine reuses the same instance. This selector is not supported with nested

contexts.

Use an implementation of ContextPartitionSelectorCategory with category contexts.

Use an implementation of ContextPartitionSelectorSegmented with keyed segmented

contexts.

Use an implementation of ContextPartitionSelectorHash with hash segmented contexts.

Use an implementation of ContextPartitionSelectorNested in combination with the selectors

described above with nested contexts.

16.19. Context Partition Administration

This chapter briefly discusses the API to manage context partitions. Contexts are discussed in

Chapter 4, Context and Context Partitions.

The section is only relevant when you declare a context. It applies to all different types of hash,

partitioned, category, overlapping or other temporal contexts.

The administrative API for context partitions is EPContextPartitionAdmin. Use the

getContextPartitionAdmin method of the EPAdministrator interface to obtain said service.

The context partition admin API allows an application to:

• Start, stop and destroy individual context partitions.

Test and Assertion Support

577

• Interrogate the state and identifiers for existing context partitions.

• Determine statements associated to a context and context nesting level.

Stopping individual context partitions is useful to drop state, free memory and suspend a given

context partition without stopping or destroying any associated statements. For example, assume

a keyed segmented context per user id. To suspend and free the memory for a given user id your

application can stop the user id's context partition. The engine does not allocate a context partition

for this user id again, until your application destroys or starts the context partition.

Destroying individual context partitions is useful to drop state, free memory and deregister the

given context partition without stopping or destroying any associated statements. For example,

assume a keyed segmented context per user id. To deregister and free the memory for a given

user id your application can destroy the user id's context partition. The engine can allocate a fresh

context partition for this user id when events for this user id arrive.

Please see the JavaDoc documentation for more information.

16.20. Test and Assertion Support

Esper offers a listener and an assertions class to facilitate automated testing of EPL rules, for

example when using a test framework such as JUnit or TestNG.

Esper does not require any specific test framework. If your application has the JUnit test

framework in classpath Esper uses junit.framework.AssertionFailedError to indicate

assertion errors, so as to integrate with continuous integration tools.

For detailed method-level information, please consult the JavaDoc of the package

com.espertech.esper.client.scopetest.

The class com.espertech.esper.client.scopetest.EPAssertionUtil provides methods to

assert or compare event property values as well as perform various array arthithmatic, sort events

and convert events or iterators to arrays.

The class com.espertech.esper.client.scopetest.SupportUpdateListener provides an

UpdateListener implementation that collects events and returns event data for assertion.

The class com.espertech.esper.client.scopetest.SupportSubscriber provides a

subscriber implementation that collects events and returns event data for assertion.

The SupportSubscriberMRD is a subscriber that accepts events multi-row delivery. The

SupportSubscriber and SupportSubscriberMRD work similar to SupportUpdateListener that

is introduced in more detail below.

16.20.1. EPAssertionUtil Summary

The below table only summarizes the most relevant assertion methods offered by

EPAssertionUtil. Methods provide multiple footprints that are not listed in detail below. Please

consult the JavaDoc for additional method-level information.

Chapter 16. API Reference

578

Table 16.9. Method Summary for EPAssertionUtil

Name Description

assertProps Methods that assert that property values of a single

EventBean, POJO or Map matches compared to

expected values.

assertPropsPerRow Methods that assert that property values of multiple

EventBean, POJOs or Maps match compared to

expected values.

assertPropsPerRowAnyOrder Same as above, but any row may match. Useful for

unordered result sets.

assertEqualsExactOrder Methods that compare arrays, allowing null. as

parameters.

assertEqualsAnyOrder Same as above, but any row may match. Useful for

unordered result sets.

16.20.2. SupportUpdateListener Summary

The below table only summarizes the most relevant methods offered by SupportUpdateListener.

Please consult the JavaDoc for additional information.

Table 16.10. Method Summary for SupportUpdateListener

Name Description

reset Initializes listener clearing current events and

resetting the invoked flag.

getAndClearIsInvoked Returns the "invoked" flag indicating the listener has

been invoked, and clears the flag.

getLastNewData Returns the last events received by the listener.

getAndResetDataListsFlattened Returns all events received by the listener as a pair.

assertOneGetNewAndReset Asserts that exactly one new event was received and

no removed events, returns the event and resets the

listener.

assertOneGetNew Asserts that exactly one new event was received and

returns the event.

16.20.3. Usage Example

The next code block is a short but complete programming example that asserts that the properties

received from output events match expected value.

String epl = "select personName, count(*) as cnt from PersonEvent#length(3) group

 by personName";

OSGi, Class Loader, Class-For-Name

579

EPStatement stmt = epService.getEPAdministrator().createEPL(epl);

SupportUpdateListener listener = new SupportUpdateListener();

stmt.addListener(listener);

epService.getEPRuntime().sendEvent(new PersonEvent("Joe"));

EPAssertionUtil.assertProps(listener.assertOneGetNewAndReset(),

 "personName,cnt".split(","),

 new Object[]{"Joe", 1L});

A few additional examples are shown below:

String[] fields = new String[] {"property"};

EPAssertionUtil.assertPropsPerRow(listener.getAndResetDataListsFlattened(),

 fields,

 new Object[][]{{"E2"}}, new Object[][]{{"E1"}});

EPAssertionUtil.assertPropsPerRow(listener.getAndResetLastNewData(), fields,

 new Object[][]{{"E1"}, {"E2"}, {"E3"}});

assertTrue(listener.getAndClearIsInvoked());

Please refer to the Esper codebase test sources for more examples using the assertion class and

the listener class.

16.21. OSGi, Class Loader, Class-For-Name

Esper's static configuration object (Configuration), in respect to classes, holds the fully-qualified

class name and does not generally hold Class references. This is by design since the configuration

object can be populated from XML.

At engine initialization time, Esper may look up classes using the fully-

qualified class name. If using bean event types, the Class.forName()

call can be avoided by using the runtime configuration API such as

epService.getEPAdministrator().getConfiguration().addEventType(MyEvent.class);.

When creating new EPL statements, Esper may need to look up a class by name and may

need to obtain a class loader for CGLib FastClass creation. For deploying resources using the

deployment admin API, Esper may also use a class loader to find resources as described in

the JavaDoc. Your application has full control over class-for-name and classloader use. OSGi

environments can provide a specific class-for-name and class loader. Please refer to Section 17.3,

“Passing Services or Transient Objects”.

580

Chapter 17.

581

Chapter 17. Configuration
Esper engine configuration is entirely optional. Esper has a very small number of configuration

parameters that can be used to simplify event pattern and EPL statements, and to tune the engine

behavior to specific requirements. The Esper engine works out-of-the-box without configuration.

An application can supply configuration at the time of engine allocation using the Configuration

class, and can also use XML files to hold configuration. Configuration can be changed at

runtime via the ConfigurationOperations interface available from EPAdministrator via the

getConfiguration method.

The difference between using a Configuration object and the ConfigurationOperations

interface is that for the latter, all configuration including event types added through that interface

are considered runtime configurations. This means they will be discarded when calling the

initialize method on an EPServiceProvider instance.

17.1. Programmatic Configuration

An instance of com.espertech.esper.client.Configuration represents all configuration

parameters. The Configuration is used to build an EPServiceProvider, which provides the

administrative and runtime interfaces for an Esper engine instance.

You may obtain a Configuration instance by instantiating it directly and adding or setting values

on it. The Configuration instance is then passed to EPServiceProviderManager to obtain a

configured Esper engine.

Configuration configuration = new Configuration();

configuration.addEventType("PriceLimit", PriceLimit.class.getName());

configuration.addEventType("StockTick", StockTick.class.getName());

configuration.addImport("org.mycompany.mypackage.MyUtility");

configuration.addImport("org.mycompany.util.*");

EPServiceProvider epService = EPServiceProviderManager.getProvider("sample",

 configuration);

Note that Configuration is meant only as an initialization-time object. The Esper engine

represented by an EPServiceProvider does not retain any association back to the

Configuration.

For adding a type at runtime please use either EPL create schema or

epServiceProvider.getEPAdministrator().getConfiguration().addEventType(...).

17.2. Configuration via XML File

An alternative approach to configuration is to specify a configuration in a XML file.

Chapter 17. Configuration

582

The default name for the XML configuration file is esper.cfg.xml. Esper reads this file from the

root of the CLASSPATH as an application resource via the configure method.

Configuration configuration = new Configuration();

configuration.configure();

The Configuration class can read the XML configuration file from other sources as well. The

configure method accepts URL, File and String filename parameters.

Configuration configuration = new Configuration();

configuration.configure("myengine.esper.cfg.xml");

Here is an example configuration file. The schema for the configuration file can be found in the

etc folder and is named esper-configuration-6-0.xsd. It is also available online at http://

www.espertech.com/schema/esper/esper-configuration-majorversion-0.xsd so that IDE

can fetch it automatically. The namespace used is http://www.espertech.com/schema/esper.

<?xml version="1.0" encoding="UTF-8"?>

<esper-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.espertech.com/schema/esper"

 xsi:schemaLocation="

http://www.espertech.com/schema/esper

http://www.espertech.com/schema/esper/esper-configuration-6-0.xsd">

 <event-type name="StockTick"

 class="com.espertech.esper.example.stockticker.event.StockTick"/>

 <event-type name="PriceLimit"

 class="com.espertech.esper.example.stockticker.event.PriceLimit"/>

 <auto-import import-name="org.mycompany.mypackage.MyUtility"/>

 <auto-import import-name="org.mycompany.util.*"/>

</esper-configuration>

The example above is only a subset of the configuration items available. The next chapters outline

the available configuration in greater detail.

17.3. Passing Services or Transient Objects

The Configuration object allows passing application objects such as services or other transient

objects. This information can be used by extensions, listeners or subscribers, for example, to

obtain application objects from the engine. Your application may provide a custom class loader

or class-for-name service.

Use setTransientConfiguration and provide a Map<String, Object> that contains the

application objects. The engine retains and makes available the same Map instance as part of

Service Example

583

ConfigurationOperations that is available as part of the adminstrative interface, and contents

including services can be changed by an application at runtime.

17.3.1. Service Example

Assuming your application has a service myLocalService instance, the example code is:

Configuration configuration = new Configuration();

HashMap<String, Object> transients = new HashMap<String, Object>();

transients.put(SERVICE_NAME, myLocalService); // SERVICE_NAME is a well-known

 string value defined elsewhere

configuration.setTransientConfiguration(transients);

EPServiceProvider epService =

 EPServiceProviderManager.getDefaultProvider(configuration);

A sample listener that receives a service from transient configuation is:

public class MyListener implements StatementAwareUpdateListener {

 public void update(EventBean[] newEvents, EventBean[] oldEvents, EPStatement

 statement, EPServiceProvider epServiceProvider) {

 MyLocalService service = (MyLocalService)

 epServiceProvider.getEPAdministrator().getConfiguration().getTransientConfiguration().get(SERVICE_NAME);

 // use the service here

 }

}

An alternative means to obtain application services is to define a constant variable.

17.3.2. Class-For-Name

By default, when resolving a fully-qualified class name to a Class, the

com.espertech.esper.client.util.ClassForNameProviderDefault uses:

ClassLoader cl = Thread.currentThread().getContextClassLoader();

return Class.forName(className, true, cl);

Your application can implement the

com.espertech.esper.client.util.ClassForNameProvider interface to provide an alternate

implementation.

For example, this provider prevents the System class from being available in EPL:

Chapter 17. Configuration

584

epService.getEPAdministrator().getConfiguration().getTransientConfiguration().put(ClassForNameProvider.NAME,

 new ClassForNameProvider() {

 public Class classForName(String className) throws ClassNotFoundException {

 if (className.equals(System.class.getName())) { // prevent the System

 class from loading

 return null;

 }

 return Class.forName(className, true,

 Thread.currentThread().getContextClassLoader());

 }

});

17.3.3. Class Loader

By default, to obtain a class loader, the

com.espertech.esper.client.util.ClassLoaderProviderDefault uses

Thread.currentThread().getContextClassLoader().

Your application can implement the

com.espertech.esper.client.util.ClassLoaderProvider interface to provide an alternate

implementation.

For example, this provider returns a pre-determined classloader:

ClassLoader classLoader = new CustomClassLoader();

epService.getEPAdministrator().getConfiguration().getTransientConfiguration().put(ClassLoaderProvider.NAME,

 new ClassLoaderProvider() {

 public ClassLoader classloader() {

 return classLoader;

 }

});

17.3.4. Class Loader CGLib FastClass

By default, to obtain a class loader for use with CGLib FastClass code generation,

the com.espertech.esper.client.util.FastClassClassLoaderProviderDefault uses

Thread.currentThread().getContextClassLoader().

Your application can implement the

com.espertech.esper.client.util.FastClassClassLoaderProvider interface to provide an

alternate implementation.

For example, this provider uses the class loader associated to the class:

epService.getEPAdministrator().getConfiguration().getTransientConfiguration().put(FastClassClassLoaderProvider.NAME,

Configuration Items

585

 new FastClassClassLoaderProvider() {

 public ClassLoader classloader(Class clazz) {

 return clazz.getClassLoader();

 }

});

17.4. Configuration Items

17.4.1. Events represented by Java Classes

17.4.1.1. Package of Java Event Classes

Via this configuration an application can make the Java package or packages that contain an

application's Java event classes known to an engine. Thereby an application can simply refer to

event types in statements by using the simple class name of each Java class representing an

event type.

For example, consider an order-taking application that places all event classes in package

com.mycompany.order.event. One Java class representing an event is the class OrderEvent.

The application can simply issue a statement as follows to select OrderEvent events:

select * from OrderEvent

The XML configuration for defining the Java packages that contain Java event classes is:

<event-type-auto-name package-name="com.mycompany.order.event"/>

The same configuration but using the Configuration class:

Configuration config = new Configuration();

config.addEventTypeAutoName("com.mycompany.order.event");

// ... or ...

config.addEventTypeAutoName(MyEvent.getPackage().getName());

17.4.1.2. Event type name to Java class mapping

This configuration item can be used to allow event pattern statements and EPL statements to

use an event type name rather then the fully qualified Java class name. Note that Java Interface

classes and abstract classes are also supported as event types via the fully qualified Java class

name, and an event type name can also be defined for such classes.

Chapter 17. Configuration

586

The example pattern statement below first shows a pattern that uses the name StockTick. The

second pattern statement is equivalent but specifies the fully-qualified Java class name.

every StockTick(symbol='IBM')"

every com.espertech.esper.example.stockticker.event.StockTick(symbol='IBM')

The event type name can be listed in the XML configuration file as shown below. The

Configuration API can also be used to programatically specify an event type name, as shown

in an earlier code snippet.

<event-type name="StockTick"

 class="com.espertech.esper.example.stockticker.event.StockTick"/>

17.4.1.3. Non-JavaBean and Legacy Java Event Classes

Esper can process Java classes that provide event properties through other means then through

JavaBean-style getter methods. It is not necessary that the method and member variable names

in your Java class adhere to the JavaBean convention - any public methods and public member

variables can be exposed as event properties via the below configuration.

A Java class can optionally be configured with an accessor style attribute. This attribute instructs

the engine how it should expose methods and fields for use as event properties in statements.

Table 17.1. Accessor Styles

Style Name Description

javabean As the default setting, the engine exposes an

event property for each public method following the

JavaBean getter-method conventions

public The engine exposes an event property for each public

method and public member variable of the given class

explicit The engine exposes an event property only for

the explicitly configured public methods and public

member variables

For NEsper .NET accessor styles are NATIVE, PUBLIC and EXPLICIT.

Using the public setting for the accessor-style attribute instructs the engine to expose an event

property for each public method and public member variable of a Java class. The engine assigns

event property names of the same name as the name of the method or member variable in the

Java class.

Events represented by Java Classes

587

For example, assuming the class MyLegacyEvent exposes a method named readValue and a

member variable named myField, we can then use properties as shown.

select readValue, myField from MyLegacyEvent

Using the explicit setting for the accessor-style attribute requires that event properties are

declared via configuration. This is outlined in the next chapter.

When configuring an engine instance from a XML configuration file, the XML snippet below

demonstrates the use of the legacy-type element and the accessor-style attribute.

<event-type name="MyLegacyEvent"

 class="com.mycompany.mypackage.MyLegacyEventClass">

 <legacy-type accessor-style="public"/>

</event-type>

When configuring an engine instance via Configuration API, the sample code below shows how

to set the accessor style.

Configuration configuration = new Configuration();

ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();

legacyDef.setAccessorStyle(ConfigurationEventTypeLegacy.AccessorStyle.PUBLIC);

config.addEventType("MyLegacyEvent", MyLegacyEventClass.class.getName(),

 legacyDef);

EPServiceProvider epService = EPServiceProviderManager.getProvider("sample",

 configuration);

17.4.1.4. Specifying Event Properties for Java Classes

Sometimes it may be convenient to use event property names in pattern and EPL statements that

are backed up by a given public method or member variable (field) in a Java class. And it can be

useful to declare multiple event properties that each map to the same method or member variable.

We can configure properties of events via method-property and field-property elements, as

the next example shows.

<event-type name="StockTick"

 class="com.espertech.esper.example.stockticker.event.StockTickEvent">

 <legacy-type accessor-style="javabean" code-generation="enabled">

 <method-property name="price" accessor-method="getCurrentPrice" />

 <field-property name="volume" accessor-field="volumeField" />

 </legacy-type>

Chapter 17. Configuration

588

</event-type>

The XML configuration snippet above declared an event property named price backed by a

getter-method named getCurrentPrice, and a second event property named volume that is

backed by a public member variable named volumeField. Thus the price and volume properties

can be used in a statement:

select avg(price * volume) from StockTick

As with all configuration options, the API can also be used:

Configuration configuration = new Configuration();

ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();

legacyDef.addMethodProperty("price", "getCurrentPrice");

legacyDef.addFieldProperty("volume", "volumeField");

config.addEventType("StockTick", StockTickEvent.class.getName(), legacyDef);

17.4.1.5. Turning off Code Generation

Esper employes the CGLIB library for very fast read access to event property values. For certain

legacy Java classes it may be desirable to disable the use of this library and instead use Java

reflection to obtain event property values from event objects.

In the XML configuration, the optional code-generation attribute in the legacy-type section can

be set to disabled as shown next.

<event-type name="MyLegacyEvent"

 class="com.mycompany.package.MyLegacyEventClass">

 <legacy-type accessor-style="javabean" code-generation="disabled" />

</event-type>

The sample below shows how to configure this option via the API.

Configuration configuration = new Configuration();

ConfigurationEventTypeLegacy legacyDef = new ConfigurationEventTypeLegacy();

legacyDef.setCodeGeneration(ConfigurationEventTypeLegacy.CodeGeneration.DISABLED);

config.addEventType("MyLegacyEvent", MyLegacyEventClass.class.getName(),

 legacyDef);

Events represented by Java Classes

589

17.4.1.6. Case Sensitivity and Property Names

By default the engine resolves Java event properties case sensitive. That is, property names

in statements must match JavaBean-convention property names in name and case. This option

controls case sensitivity per Java class.

In the configuration XML, the optional property-resolution-style attribute in the legacy-type

element can be set to any of these values:

Table 17.2. Property Resolution Case Sensitivity Styles

Style Name Description

case_sensitive (default) As the default setting, the engine matches property

names for the exact name and case only.

case_insensitive Properties are matched if the names are identical. A

case insensitive search is used and will choose the

first property that matches the name exactly or the

first property that matches case insensitively should

no match be found.

distinct_case_insensitive Properties are matched if the names are identical.

A case insensitive search is used and will choose

the first property that matches the name exactly case

insensitively. If more than one 'name' can be mapped

to the property an exception is thrown.

The sample below shows this option in XML configuration, however the setting can also be

changed via API:

<event-type name="MyLegacyEvent"

 class="com.mycompany.package.MyLegacyEventClass">

 <legacy-type property-resolution-style="case_insensitive"/>

</event-type>

17.4.1.7. Factory and Copy Method

The insert into clause and directly instantiate and populate your event object. By default the

engine invokes the default constructor to instantiate an event object. To change this behavior, you

may configure a factory method. The factory method is a method name or a class name plus a

method name (in the format class.method) that returns an instance of the class.

The update clause can change event properties on an event object. For the purpose of maintaining

consistency, the engine may have to copy your event object via serialization (implement the

java.io.Serializable interface). If instead you do not want any copy operations to occur, or

your application needs to control the copy operation, you may configure a copy method. The copy

method is the name of a method on the event object that copies the event object.

Chapter 17. Configuration

590

The sample below shows this option in XML configuration, however the setting can also be

changed via ConfigurationEventTypeLegacy:

<event-type name="MyLegacyEvent"

 class="com.mycompany.package.MyLegacyEventClass">

 <legacy-type factory-

method="com.mycompany.myapp.MySampleEventFactory.createMyLegacyTypeEvent" copy-

method="myCopyMethod"/>

</event-type>

The copy method should be a public method that takes no parameters and returns a new event

object (it may not return this). The copy method may not be a static method and may not take

parameters.

The Beacon data flow operator in connection with the Sun JVM can use

sun.reflect.ReflectionFactory if the class has no default no-argument constructor.

17.4.1.8. Start and End Timestamp

For use with date-time interval methods, for example, you may let the engine know which property

of your class carries the start and end timestamp value.

The sample below shows this option in XML configuration, however the setting can also be

changed via API. The sample sets the name of the property providing the start timestamp to

startts and the name of the property providing the end timestamp endts:

<event-type name="MyLegacyEvent"

 class="com.mycompany.package.MyLegacyEventClass">

 <legacy-type start-timestamp-property-name="startts" end-timestamp-property-

name="endts"/>

</event-type>

17.4.2. Events represented by java.util.Map

The engine can process java.util.Map events via the sendEvent(Map map, String

eventTypeName) method on the EPRuntime interface. Entries in the Map represent event

properties. Please see the Appendix D, Event Representation: java.util.Map Events section for

details on how to use Map events with the engine.

Via configuration you can provide an event type name for Map events for use in statements, and

the event property names and types enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event type named MyMapEvent.

<event-type name="MyMapEvent">

Events represented by java.util.Map

591

 <java-util-map>

 <map-property name="carId" class="int"/>

 <map-property name="carType" class="string"/>

 <map-property name="assembly" class="com.mycompany.Assembly"/>

 </java-util-map>

</event-type>

For NEsper .NET we use util-map instead of java-util-map.

This configuration defines the carId property of MyMapEvent events to be of type int, and the

carType property to be of type java.util.String. The assembly property of the Map event will

contain instances of com.mycompany.Assembly for the engine to query.

The valid types for the class attribute are listed in Section 17.5, “Type Names”. In addition, any

fully-qualified Java class name that can be resolved via Class.forName is allowed.

You can also use the configuration API to configure Map event types, as the short code snippet

below demonstrates:

Map<String, Object> properties = new Map<String, Object>();

properties.put("carId", "int");

properties.put("carType", "string");

properties.put("assembly", Assembly.class.getName());

Configuration configuration = new Configuration();

configuration.addEventType("MyMapEvent", properties);

For strongly-typed nested maps (maps-within-maps), the configuration API method addEventType

can also used to define the nested types. The XML configuration does not provide the capability

to configure nested maps.

Finally, here is a sample EPL statement that uses the configured MyMapEvent map event. This

statement uses the chassisTag and numParts properties of Assembly objects in each map.

select carType, assembly.chassisTag, count(assembly.numParts) from

 MyMapEvent#time(60 sec)

A Map event type may also become a subtype of one or more supertypes that must also be Map

event types. The java-util-map element provides the optional attribute supertype-names that

accepts a comma-separated list of names of Map event types that are supertypes to the type:

<event-type name="AccountUpdate">

<java-util-map supertype-names="BaseUpdate, AccountEvent">

Chapter 17. Configuration

592

...

For initialization time configuration, the addMapSuperType method can be used to add Map

hierarchy information. For runtime configuration, pass the supertype names to the addEventType

method in ConfigurationOperations.

A Map event type may declare a start and end timestamp property name. The XML shown next

instructs the engine that the startts property carries the event start timestamp and the endts

property carries the event end timestamp:

<event-type name="AccountUpdate">

<java-util-map start-timestamp-property-name="startts" end-timestamp-property-

name="endts">

...

For adding a type at runtime please use either EPL create map schema or

epServiceProvider.getEPAdministrator().getConfiguration().addEventType(...).

17.4.3. Events represented by Object[] (Object-array)

The engine can process Object-array (Object[]) events via the sendEvent(Object[] array,

String eventTypeName) method on the EPRuntime interface. Elements in the Object array

represent event properties. Please see the Appendix E, Event Representation: Object-array

(Object[]) Events section for details on how to use Object[] events with the engine.

Via configuration you can provide an event type name for Object[] events for use in statements,

and the event property names and types enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event type named MyObjectArrayEvent.

<event-type name="MyObjectArrayEvent">

 <objectarray>

 <objectarray-property name="carId" class="int"/>

 <objectarray-property name="carType" class="string"/>

 <objectarray-property name="assembly" class="com.mycompany.Assembly"/>

 </objectarray>

</event-type>

This configuration defines the carId property of MyObjectArrayEvent events to be of type int

and in the object array first element ([0]). The carType property to be of type java.util.String

is expected in the second array element ([1]) . The assembly property of the object array event

will contain instances of com.mycompany.Assembly for the engine to query in element two ([2]).

Events represented by Object[] (Object-array)

593

Note that the engine does not verify the length and property values of object array events when

your application sends object-array events into the engine. For the example above, the proper

object array would look as follows: new Object[] {carId, carType, assembly}.

The valid types for the class attribute are listed in Section 17.5, “Type Names”. In addition, any

fully-qualified Java class name that can be resolved via Class.forName is allowed.

You can also use the configuration API to configure Object[] event types, as the short code

snippet below demonstrates:

String[] propertyNames = {"carId", "carType", "assembly"};

Object[] propertyTypes = {int.class, String.class, Assembly.class};

Configuration configuration = new Configuration();

configuration.addEventType("MyObjectArrayEvent", propertyNames, propertyTypes);

Finally, here is a sample EPL statement that uses the configured MyObjectArrayEvent object-

array event. This statement uses the chassisTag and numParts properties of Assembly objects.

select carType, assembly.chassisTag, count(assembly.numParts) from

 MyObjectArrayEvent#time(60 sec)

An Object-array event type may also become a subtype of one supertype that must also be an

Object-array event type. The objectarray element provides the optional attribute supertype-

names that accepts a single name of an Object-array event type that is the supertype to the type:

<event-type name="AccountUpdate">

<objectarray supertype-names="BaseUpdate">

...

An Object-array event type may declare a start and end timestamp property name. The XML

shown next instructs the engine that the startts property carries the event start timestamp and

the endts property carries the event end timestamp:

<event-type name="AccountUpdate">

<objectarray start-timestamp-property-name="startts" end-timestamp-property-

name="endts">

...

For adding a type at runtime please use either EPL create objectarray schema or

epServiceProvider.getEPAdministrator().getConfiguration().addEventType(...).

Chapter 17. Configuration

594

17.4.4. Events represented by Avro GenericData.Record

The engine can process Avro GenericData.Record events via the

sendEventAvro(GenericData.Record event, String eventTypeName) method on the

EPRuntime interface. Please see the Appendix F, Event Representation: Avro Events

(org.apache.avro.generic.GenericData.Record) section for details on how to use Avro events with

the engine.

Via configuration you can provide an event type name for Avro events for use in statements, and

the Avro schema enabling the engine to validate properties in statements.

The below snippet of XML configuration configures an event type named MyAvroEvent.

<event-type name="MyAvroEvent">

 <avro schema-text='{"type":"record","name":"MyAvroEvent","fields":

[{"name":"carId","type":"int"},{"name":"carType","type":

{"type":"string","avro.java.string":"String"}}]}'/>

</event-type>

The sample Avro schema above in pretty-print is:

{

 "type" : "record",

 "name" : "MyAvroEvent",

 "fields" : [{

 "name" : "carId",

 "type" : "int"

 }, {

 "name" : "carType",

 "type" : {

 "type" : "string",

 "avro.java.string" : "String"

 }

 }]

}

This schema defines:

1. A carId property of type int.

2. A carType property of type string. Note: We use the Avro-provided avro.java.string

property to ensure is is a java.lang.String instance and not a java.lang.CharSequence)

instance.

Note that the engine does not verify that Avro events are valid or that they actually match the

schema provided for the Avro event type.

Events represented by org.w3c.dom.Node

595

You can also use the configuration API to configure Avro event types, as the short code snippet

below demonstrates:

Configuration configuration = new Configuration();

ConfigurationEventTypeAvro avroType = new ConfigurationEventTypeAvro();

avroType.setAvroSchema(schema);

configuration.addEventTypeAvro("MyAvroType", avroType);

For adding a type at runtime please use either EPL create avro schema or

epServiceProvider.getEPAdministrator().getConfiguration().addEventTypeAvro(...).

Finally, here is a sample EPL statement that uses the configured MyAvroEvent Avro event:

select carType, count(distinct carId) from MyAvroEvent

An Avro event type may also become a subtype of one supertype that must also be an Avro event

type. The avro element provides the optional attribute supertype-names that accepts a single

name of an Avro event type that is the supertype to the type:

<avro supertype-names="BaseUpdate">

An Avro event type may declare a start and end timestamp property name. The XML shown next

instructs the engine that the startts property carries the event start timestamp and the endts

property carries the event end timestamp:

<avro start-timestamp-property-name="startts" end-timestamp-property-

name="endts" ...>

17.4.5. Events represented by org.w3c.dom.Node

Via this configuration item the Esper engine can natively process org.w3c.dom.Node instances,

i.e. XML document object model (DOM) nodes. Please see the Appendix G, Event Representation:

org.w3c.dom.Node XML Events section for details on how to use Node events with the engine.

Esper allows configuring XPath expressions as event properties. You can specify arbitrary XPath

functions or expressions and provide a property name by which their result values will be available

for use in expressions.

For XML documents that follow a XML schema, Esper can load and interrogate your schema and

validate event property names and types against the schema information.

Chapter 17. Configuration

596

Nested, mapped and indexed event properties are also supported in expressions against

org.w3c.dom.Node events. Thus XML trees can conveniently be interrogated using the existing

event property syntax for querying JavaBean objects, JavaBean object graphs or java.util.Map

events.

In the simplest form, the Esper engine only requires a configuration entry containing the root

element name and the event type name in order to process org.w3c.dom.Node events:

<event-type name="MyXMLNodeEvent">

 <xml-dom root-element-name="myevent" />

</event-type>

You can also use the configuration API to configure XML event types, as the short example below

demonstrates. In fact, all configuration options available through XML configuration can also be

provided via setter methods on the ConfigurationEventTypeXMLDOM class.

Configuration configuration = new Configuration();

ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();

desc.setRootElementName("myevent");

desc.addXPathProperty("name1", "/element/@attribute", XPathConstants.STRING);

desc.addXPathProperty("name2", "/element/subelement", XPathConstants.NUMBER);

configuration.addEventType("MyXMLNodeEvent", desc);

The next example presents configuration options in a sample configuration entry.

<event-type name="AutoIdRFIDEvent">

 <xml-dom root-element-name="Sensor" schema-resource="data/AutoIdPmlCore.xsd"

 default-

namespace="urn:autoid:specification:interchange:PMLCore:xml:schema:1">

 <namespace-prefix prefix="pmlcore"

 namespace="urn:autoid:specification:interchange:PMLCore:xml:schema:1"/>

 <xpath-property property-name="countTags"

 xpath="count(/pmlcore:Sensor/pmlcore:Observation/pmlcore:Tag)"

 type="number"/>

 </xml-dom>

</event-type>

This example configures an event property named countTags whose value is computed by

an XPath expression. The namespace prefixes and default namespace are for use with XPath

expressions and must also be made known to the engine in order for the engine to compile XPath

expressions. Via the schema-resource attribute we instruct the engine to load a schema file. You

may also use schema-text instead to provide the actual text of the schema.

Events represented by org.w3c.dom.Node

597

Here is an example EPL statement using the configured event type named AutoIdRFIDEvent.

select ID, countTags from AutoIdRFIDEvent#time(30 sec)

17.4.5.1. Schema Resource

The schema-resource attribute takes a schema resource URL or classpath-relative filename.

The engine attempts to resolve the schema resource as an URL. If the schema resource

name is not a valid URL, the engine attempts to resolve the resource from classpath via the

ClassLoader.getResource method using the thread context class loader. If the name could not

be resolved, the engine uses the Configuration class classloader. Use the schema-text attribute

instead when it is more practical to provide the actual text of the schema.

By configuring a schema file for the engine to load, the engine performs these additional services:

• Validates the event properties in a statement, ensuring the event property name matches an

attribute or element in the XML

• Determines the type of the event property allowing event properties to be used in type-sensitive

expressions such as expressions involving arithmetic (Note: XPath properties are also typed)

• Matches event property names to either element names or attributes

If no schema resource is specified, none of the event properties specified in statements are

validated at statement creation time and their type defaults to java.lang.String. Also, attributes

are not supported if no schema resource is specified and must thus be declared via XPath

expression.

17.4.5.2. Explicit XPath Property

The xpath-property element adds explicitly-names event properties to the event type that are

computed via an XPath expression. In order for the XPath expression to compile, be sure to specify

the default-namespace attribute and use the namespace-prefix to declare namespace prefixes.

XPath expression properties are strongly typed. The type attribute allows the following values.

These values correspond to those declared by javax.xml.xpath.XPathConstants.

• number (Note: resolves to a double)

• string

• boolean

• node

• nodeset

In case you need your XPath expression to return a type other than the types listed above, an

optional cast-to type can be specified. If specified, the operation firsts obtains the result of the

XPath expression as the defined type (number, string, boolean) and then casts or parses the

Chapter 17. Configuration

598

returned type to the specified cast-to-type. At runtime, a warning message is logged if the XPath

expression returns a result object that cannot be casted or parsed.

The next line shows how to return a long-type property for an XPath expression that returns a

string:

desc.addXPathProperty("name", "/element/sub", XPathConstants.STRING, "long");

The equivalent configuration XML is:

<xpath-property property-name="name" xpath="/element/sub" type="string"

 cast="long"/>

See Section 17.5, “Type Names” for a list of cast-to type names.

17.4.5.3. Absolute or Deep Property Resolution

This setting indicates that when properties are compiled to XPath expressions that the compilation

should generate an absolute XPath expression or a deep (find element) XPath expression.

For example, consider the following statement against an event type that is represented by a XML

DOM document, assuming the event type GetQuote has been configured with the engine as a

XML DOM event type:

select request, request.symbol from GetQuote

By default, the engine compiles the "request" property name to an XPath expression "/GetQuote/

request". It compiles the nested property named "request.symbol" to an XPath expression "/

GetQuote/request/symbol", wherein the root element node is "GetQuote".

By setting absolute property resolution to false, the engine compiles the "request" property name

to an XPath expression "//request". It compiles the nested property named "request.symbol" to

an XPath expression "//request/symbol". This enables these elements to be located anywhere in

the XML document.

The setting is available in XML via the attribute resolve-properties-absolute.

The configuration API provides the above settings as shown here in a sample code:

ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();

desc.setRootElementName("GetQuote");

desc.setDefaultNamespace("http://services.samples/xsd");

desc.setRootElementNamespace("http://services.samples/xsd");

desc.addNamespacePrefix("m0", "http://services.samples/xsd");

Events represented by org.w3c.dom.Node

599

desc.setResolvePropertiesAbsolute(false);

configuration.addEventType("GetQuote", desc);

17.4.5.4. XPath Variable and Function Resolver

If your XPath expressions require variables or functions, your application may provide the class

name of an XPathVariableResolver and XPathFunctionResolver. At type initialization time the

engine instantiates the resolver instances and provides these to the XPathFactory.

This example shows the API to set this configuration.

ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();

desc.setXPathFunctionResolver(MyXPathFunctionResolver.class.getName());

desc.setXPathVariableResolver(MyXPathVariableResolver.class.getName());

17.4.5.5. Auto Fragment

This option is for use when a XSD schema is provided and determines whether the engine

automatically creates an event type when a property expression transposes a property that is a

complex type according to the schema.

An example:

ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();

desc.setAutoFragment(false);

17.4.5.6. XPath Property Expression

By default Esper employs the built-in DOM walker implementation to evaluate XPath expressions,

which is not namespace-aware.

This configuration setting, when set to true, instructs the engine to rewrite property expressions

into XPath.

An example:

ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();

desc.setXPathPropertyExpr(true);

17.4.5.7. Event Sender Setting

By default an EventSender for a given XML event type validates the root element name for which

the type has been declared against the one provided by the org.w3c.Node sent into the engine.

Chapter 17. Configuration

600

This configuration setting, when set to false, instructs an EventSender to not validate.

An example:

ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();

desc.setEventSenderValidatesRoot(false);

17.4.5.8. Start and End Timestamp

You may configure the name of the properties that provides the event start timestamp and the

event end timestamp as part of the configuration.

An example that configures startts as the property name providing the start timestamp and

endts as the property name providing the end timestamp:

ConfigurationEventTypeXMLDOM desc = new ConfigurationEventTypeXMLDOM();

desc.setStartTimestampPropertyName("startts");

desc.setEndTimestampPropertyName("endts");

17.4.6. Events represented by Plug-in Event Representations

As part of the extension API plug-in event representations allows an application to create

new event types and event instances based on information available elsewhere. Please see

Section 19.8, “Event Type And Event Object” for details.

The configuration examples shown next use the configuration API to select settings. All

options are also configurable via XML, please refer to the sample configuration XML in file

esper.sample.cfg.xml.

17.4.6.1. Enabling an Custom Event Representation

Use the method addPlugInEventRepresentation to enable a custom event representation, like

this:

URI rootURI = new URI("type://mycompany/myproject/myname");

config.addPlugInEventRepresentation(rootURI,

 MyEventRepresentation.class.getName(), null);

The type:// part of the URI is an optional convention for the scheme part of an URI.

If your event representation takes initialization parameters, these are passed in as the last

parameter. Initialization parameters can also be stored in the configuration XML, in which case

they are passed as an XML string to the plug-in class.

Class and package imports

601

17.4.6.2. Adding Plug-in Event Types

To register event types that your plug-in event representation creates in advance of creating an

EPL statement (either at runtime or at configuration time), use the method addPlugInEventType:

URI childURI = new URI("type://mycompany/myproject/myname/MyEvent");

configuration.addPlugInEventType("MyEvent", new URI[] {childURI}, null);

Your plug-in event type may take initialization parameters, these are passed in as the last

parameter. Initialization parameters can also be stored in the configuration XML.

17.4.6.3. Setting Resolution URIs

The engine can invoke your plug-in event representation when an EPL statement is created with

an event type name that the engine has not seen before. Plug-in event representations can resolve

such names to an actual event type. In order to do this, you need to supply a list of resolution URIs.

Use the method setPlugInEventTypeNameResolutionURIs, at runtime or at configuration time:

URI childURI = new URI("type://mycompany/myproject/myname");

configuration.setPlugInEventTypeNameResolutionURIs(new URI[] {childURI});

17.4.7. Class and package imports

Esper allows invocations of static Java library functions in expressions, as outlined in Section 10.1,

“Single-row Function Reference”. This configuration item can be set to allow a partial rather than

a fully qualified class name in such invocations. The imports work in the same way as in Java

files, so both packages and classes can be imported.

select Math.max(priceOne, PriceTwo)

// via configuration equivalent to

select java.lang.Math.max(priceOne, priceTwo)

Esper auto-imports the following Java library packages. Any additional imports that are specified

in configuration files or through the API are added to the configuration in addition to the imports

below.

• java.lang.*

• java.math.*

• java.text.*

• java.util.*

In a XML configuration file the auto-import configuration may look as below:

Chapter 17. Configuration

602

<auto-import import-name="com.mycompany.mypackage.*"/>

<auto-import import-name="com.mycompany.myapp.MyUtilityClass"/>

Here is an example of providing imports via the API:

Configuration config = new Configuration();

config.addImport("com.mycompany.mypackage.*"); // package import

config.addImport("com.mycompany.mypackage.MyLib"); // class import

17.4.8. Annotation class and package imports

If your application has certain classes or packages that should only be visible within an @-

annotation, you may add these to the annotation imports list. Such classes are only visible when

used in an annotation and not elsewhere.

In a XML configuration file the auto-import-annotation configuration may look as below:

<auto-import-annotation import-name="com.mycompany.mypackage.myannotations.*"/>

Here is an example of providing annotation-only imports via the API:

Configuration config = new Configuration();

// package import, only visible for annotation use

config.addAnnotationImport("com.mycompany.mypackage.myannotations.*");

17.4.9. Cache Settings for From-Clause Method Invocations

Method invocations are allowed in the from clause in EPL, such that your application may join

event streams to the data returned by a web service, or to data read from a distributed cache or

object-oriented database, or obtain data by other means. A local cache may be placed in front of

such method invocations through the configuration settings described herein.

The LRU cache is described in detail in Section 17.4.11.6.1, “LRU Cache”. The expiry-time cache

documentation can be found in Section 17.4.11.6.2, “Expiry-time Cache”

The next XML snippet is a sample cache configuration that applies to methods provided by

the classes 'MyFromClauseLookupLib' and 'MyFromClauseWebServiceLib'. The XML and API

configuration understand both the fully-qualified Java class name, as well as the simple class

name:

<method-reference class-name="com.mycompany.MyFromClauseLookupLib">

Variables

603

 <expiry-time-cache max-age-seconds="10" purge-interval-seconds="10" ref-

type="weak"/>

</method-reference>

<method-reference class-name="MyFromClauseWebServiceLib">

 <lru-cache size="1000"/>

</method-reference>

17.4.10. Variables

Variables can be created dynamically in EPL via the create variable syntax but can also be

configured at runtime and at configuration time.

A variable is declared by specifying a variable name, the variable type, an optional initialization

value and an optional boolean-type flag indicating whether the variable is a constant (false by

default). The initialization value can be of the same or compatible type as the variable type, or

can also be a String value that, when parsed, is compatible to the type declared for the variable.

Declare each variable a constant to achieve the best performance.

In a XML configuration file the variable configuration may look as below. The Configuration API

can also be used to configure variables.

<variable name="var_threshold" type="long" initialization-value="100"/>

<variable name="var_key" type="string"/>

<variable name="test" type="int" constant="true"/>

Please find the list of valid values for the type attribute in Section 17.5, “Type Names”.

17.4.11. Relational Database Access

For NEsper .NET also see Section H.17, “.NET Configurations - Relational Database Access”.

Esper has the capability to join event streams against historical data sources, such as a relational

database. This section describes the configuration entries that the engine requires to access

data stored in your database. Please see Section 5.13, “Accessing Relational Data via SQL” for

information on the use of EPL queries that include historical data sources.

EPL queries that poll data from a relational database specify the name of the database as part

of the EPL statement. The engine uses the configuration information described here to resolve

the database name in the statement to database settings. The required and optional database

settings are summarized below.

• Database connections can be obtained via JDBC javax.xml.DataSource, via

java.sql.DriverManager and via data source factory. Either one of these methods to obtain

database connections is a required configuration.

Chapter 17. Configuration

604

• Optionally, JDBC connection-level settings such as auto-commit, transaction isolation level,

read-only and the catalog name can be defined.

• Optionally, a connection lifecycle can be set to indicate to the engine whether the engine must

retain connections or must obtain a new connection for each lookup and close the connection

when the lookup is done (pooled).

• Optionally, define a cache policy to allow the engine to retrieve data from a query cache,

reducing the number of query executions.

Some of the settings can have important performance implications that need to be carefully

considered in relationship to your database software, JDBC driver and runtime environment. This

section attempts to outline such implications where appropriate.

The sample XML configuration file in the "etc" folder can be used as a template for configuring

database settings. All settings are also available by means of the configuration API through the

classes Configuration and ConfigurationDBRef.

17.4.11.1. Connections obtained via DataSource

This configuration causes Esper to obtain a database connection from a javax.sql.DataSource

available from your JNDI provider.

The setting is most useful when running within an application server or when a JNDI directory

is otherwise present in your Java VM. If your application environment does not provide an

available DataSource, the next section outlines how to use Apache DBCP as a DataSource

implementation with connection pooling options and outlines how to use a custom factory for

DataSource implementations.

If your DataSource provides connections out of a connection pool, your configuration should set

the collection lifecycle setting to pooled.

The snippet of XML below configures a database named mydb1 to obtain connections

via a javax.sql.DataSource. The datasource-connection element instructs the engine

to obtain new connections to the database mydb1 by performing a lookup via

javax.naming.InitialContext for the given object lookup name. Optional environment

properties for the InitialContext are also shown in the example.

<database-reference name="mydb1">

 <datasource-connection context-lookup-name="java:comp/env/jdbc/mydb">

 <env-property name="java.naming.factory.initial" value

 ="com.myclass.CtxFactory"/>

 <env-property name="java.naming.provider.url" value ="iiop://localhost:1050"/

>

 </datasource-connection>

</database-reference>

To help you better understand how the engine uses this information to obtain connections, we

have included the logic below.

Relational Database Access

605

if (envProperties.size() > 0) {

 initialContext = new InitialContext(envProperties);

}

else {

 initialContext = new InitialContext();

}

DataSource dataSource = (DataSource) initialContext.lookup(lookupName);

Connection connection = dataSource.getConnection();

In order to plug-in your own implementation of the DataSource interface, your application may use

an existing JNDI provider as provided by an application server if running in a J2EE environment.

In case your application does not have an existing JNDI implementation to register

a DataSource to provide connections, you may set the java.naming.factory.initial

property in the configuration to point to your application's own implementation of

the javax.naming.spi.InitialContextFactory interface that can return your application

DataSource though the javax.naming.Context provided by the factory implementation. Please

see Java Naming and Directory Interface (JNDI) API documentation for further information.

17.4.11.2. Connections obtained via DataSource Factory

This section describes how to use Apache Commons Database Connection Pooling (Apache

DBCP) [http://commons.apache.org/dbcp] with Esper. We also explain how to provide a custom

application-specific DataSource factory if not using Apache DBCP.

If your DataSource provides connections out of a connection pool, your configuration should set

the collection lifecycle setting to pooled.

Apache DBCP provides comprehensive means to test for dead connections or grow and

shrik a connection pool. Configuration properties for Apache DBCP can be found at Apache

DBCP configuration [http://commons.apache.org/dbcp/configuration.html]. The listed properties

are passed to Apache DBCP via the properties list provided as part of the Esper configuration.

The snippet of XML below is an example that configures a database named mydb3 to obtain

connections via the pooling DataSource provided by Apache DBCP BasicDataSourceFactory.

The listed properties are passed to DBCP to instruct DBCP how to manage the connection pool.

The settings below initialize the connection pool to 2 connections and provide the validation query

select 1 from dual for DBCP to validate a connection before providing a connection from the

pool to Esper:

<database-reference name="mydb3">

 <!-- For a complete list of properties see Apache DBCP. -->

 <!-- NOTE: "dbcp2" applies to api-2.0 of DBCP, use "dbcp" otherwise. -->

 <datasourcefactory-connection class-

name="org.apache.commons.dbcp2.BasicDataSourceFactory">

http://commons.apache.org/dbcp
http://commons.apache.org/dbcp
http://commons.apache.org/dbcp
http://commons.apache.org/dbcp/configuration.html
http://commons.apache.org/dbcp/configuration.html
http://commons.apache.org/dbcp/configuration.html

Chapter 17. Configuration

606

 <env-property name="username" value ="myusername"/>

 <env-property name="password" value ="mypassword"/>

 <env-property name="driverClassName" value ="com.mysql.jdbc.Driver"/>

 <env-property name="url" value ="jdbc:mysql://localhost/test"/>

 <env-property name="initialSize" value ="2"/>

 <env-property name="validationQuery" value ="select 1 from dual"/>

 </datasourcefactory-connection>

 <connection-lifecycle value="pooled"/>

</database-reference>

The same configuration options provided through the API:

Properties props = new Properties();

props.put("username", "myusername");

props.put("password", "mypassword");

props.put("driverClassName", "com.mysql.jdbc.Driver");

props.put("url", "jdbc:mysql://localhost/test");

props.put("initialSize", 2);

props.put("validationQuery", "select 1 from dual");

ConfigurationDBRef configDB = new ConfigurationDBRef();

// BasicDataSourceFactory is an Apache DBCP import

configDB.setDataSourceFactory(props, BasicDataSourceFactory.class.getName());

configDB.setConnectionLifecycleEnum(ConfigurationDBRef.ConnectionLifecycleEnum.POOLED);

Configuration configuration = new Configuration();;

configuration.addDatabaseReference("mydb3", configDB);

Apache Commons DBCP is a separate download and not provided as part of the Esper

distribution. The Apache Commons DBCP jar file requires the Apache Commons Pool jar file.

Your application can provide its own factory implementation for DataSource instances: Set

the class name to the name of the application class that provides a public static method

named createDataSource which takes a single Properties object as parameter and returns a

DataSource implementation. For example:

configDB.setDataSourceFactory(props, MyOwnDataSourceFactory.class.getName());

...

class MyOwnDataSourceFactory {

 public static DataSource createDataSource(Properties properties) {

 return new MyDataSourceImpl(properties);

 }

}

Relational Database Access

607

17.4.11.3. Connections obtained via DriverManager

The next snippet of XML configures a database named mydb2 to obtain connections via

java.sql.DriverManager. The drivermanager-connection element instructs the engine

to obtain new connections to the database mydb2 by means of Class.forName and

DriverManager.getConnection using the class name, URL and optional username, password

and connection arguments.

<database-reference name="mydb2">

 <drivermanager-connection class-name="my.sql.Driver"

 url="jdbc:mysql://localhost/test?user=root&password=mypassword"

 user="myuser" password="mypassword">

 <connection-arg name="user" value ="myuser"/>

 <connection-arg name="password" value ="mypassword"/>

 <connection-arg name="somearg" value ="someargvalue"/>

 </drivermanager-connection>

</database-reference>

The username and password are shown in multiple places in the XML only as an example. Please

check with your database software on the required information in URL and connection arguments.

17.4.11.4. Connections-level settings

Additional connection-level settings can optionally be provided to the engine which the engine

will apply to new connections. When the engine obtains a new connection, it applies only those

settings to the connection that are explicitly configured. The engine leaves all other connection

settings at default values.

The below XML is a sample of all available configuration settings. Please refer to the Java

API JavaDocs for java.sql.Connection for more information to each option or check the

documentation of your JDBC driver and database software.

<database-reference name="mydb2">

... configure data source or driver manager settings...

 <connection-settings auto-commit="true" catalog="mycatalog"

 read-only="true" transaction-isolation="1" />

</database-reference>

The read-only setting can be used to indicate to your database engine that SQL statements are

read-only. The transaction-isolation and auto-commit help you database software perform

the right level of locking and lock release. Consider setting these values to reduce transactional

overhead in your database queries.

Chapter 17. Configuration

608

17.4.11.5. Connections lifecycle settings

By default the engine retains a separate database connection for each started EPL statement.

However, it is possible to override this behavior and require the engine to obtain a new database

connection for each lookup, and to close that database connection after the lookup is completed.

This often makes sense when you have a large number of EPL statements and require pooling

of connections via a connection pool.

In the pooled setting, the engine obtains a database connection from the data source or

driver manager for every query, and closes the connection when done, returning the database

connection to the pool if using a pooling data source.

In the retain setting, the engine retains a separate dedicated database connection for each

statement and does not close the connection between uses.

The XML for this option is below. The connection lifecycle allows the following values: pooled

and retain.

<database-reference name="mydb2">

... configure data source or driver manager settings...

 <connection-lifecycle value="pooled"/>

</database-reference>

17.4.11.6. Cache settings

Cache settings can dramatically reduce the number of database queries that the engine executes

for EPL statements. If no cache setting is specified, the engine does not cache query results and

executes a separate database query for every event.

Caches store the results of database queries and make these results available to subsequent

queries using the exact same query parameters as the query for which the result was stored. If

your query returns one or more rows, the cache keep the result rows of the query keyed to the

parameters of the query. If your query returns no rows, the cache also keeps the empty result.

Query results are held by a cache until the cache entry is evicted. The strategies available for

evicting cached query results are listed next.

17.4.11.6.1. LRU Cache

The least-recently-used (LRU) cache is configured by a maximum size. The cache discards the

least recently used query results first once the cache reaches the maximum size.

The XML configuration entry for a LRU cache is as below. This entry configures an LRU cache

holding up to 1000 query results.

<database-reference name="mydb">

... configure data source or driver manager settings...

Relational Database Access

609

 <lru-cache size="1000"/>

</database-reference>

17.4.11.6.2. Expiry-time Cache

The expiry time cache is configured by a maximum age in seconds, a purge interval and an optional

reference type. The cache discards (on the get operation) any query results that are older then the

maximum age so that stale data is not used. If the cache is not empty, then every purge interval

number of seconds the engine purges any expired entries from the cache.

The XML configuration entry for an expiry-time cache is as follows. The example configures an

expiry time cache in which prior query results are valid for 60 seconds and which the engine

inspects every 2 minutes to remove query results older then 60 seconds.

<database-reference name="mydb">

... configure data source or driver manager settings...

 <expiry-time-cache max-age-seconds="60" purge-interval-seconds="120" />

</database-reference>

By default, the expiry-time cache is backed by a java.util.WeakHashMap and thus relies on weak

references. That means that cached SQL results can be freed during garbage collection.

Via XML or using the configuration API the type of reference can be configured to not allow entries

to be garbage collected, by setting the ref-type property to hard:

<database-reference name="mydb">

... configure data source or driver manager settings...

 <expiry-time-cache max-age-seconds="60" purge-interval-seconds="120" ref-

type="hard"/>

</database-reference>

The last setting for the cache reference type is soft: This strategy allows the garbage collection

of cache entries only when all other weak references have been collected.

17.4.11.7. Column Change Case

This setting instructs the engine to convert to lower- or uppercase any output column names

returned by your database system. When using Oracle relational database software, for example,

column names can be changed to lowercase via this setting.

A sample XML configuration entry for this setting is:

<column-change-case value="lowercase"/>

Chapter 17. Configuration

610

17.4.11.8. SQL Types Mapping

For NEsper .NET this section is not applicable.

By providing a mapping of SQL types (java.sql.Types) to Java built-in types your code can avoid

using sometimes awkward default database types and can easily change the way Esper returns

Java types for columns returned by a SQL query.

The mapping maps a constant as defined by java.sql.Types to a Java built-in type of any of

the following Java type names: String, BigDecimal, Boolean, Byte, Short, Int, Long,

Float, Double, ByteArray, SqlDate, SqlTime, SqlTimestamp. The Java type names are

not case-sensitive.

A sample XML configuration entry for this setting is shown next. The sample maps Types.NUMERIC

which is a constant value of 2 per JDBC API to the Java int type.

<sql-types-mapping sql-type="2" java-type="int" />

17.4.11.9. Metadata Origin

This setting controls how the engine retrieves SQL statement metadata from JDBC prepared

statements.

Table 17.3. Syntax and results of aggregate functions

Option Description

default By default, the engine detects the driver name and queries prepared

statement metadata if the driver is not an Oracle database driver. For Oracle

drivers, the engine uses lexical analysis of the SQL statement to construct

a sample SQL statement and then fires that statement to retrieve statement

metadata.

metadata The engine always queries prepared statement metadata regardless of the

database driver used.

sample The engine always uses lexical analysis of the SQL statement to construct

a sample SQL statement, and then fires that statement to retrieve statement

metadata.

17.4.12. Engine Settings related to Concurrency and Threading

17.4.12.1. Preserving the order of events delivered to listeners

In multithreaded environments, this setting controls whether dispatches of statement result events

to listeners preserve the ordering in which a statement processes events. By default the engine

guarantees that it delivers a statement's result events to statement listeners in the order in which

Engine Settings related to Concurrency and Threading

611

the result is generated. This behavior can be turned off via configuration as below. This behavior

applies to stateful statements and not to stateless statements as stateless statements execute

lock-free.

The next code snippet shows how to control this feature:

Configuration config = new Configuration();

config.getEngineDefaults().getThreading().setListenerDispatchPreserveOrder(false);

engine = EPServiceProviderManager.getDefaultProvider(config);

And the XML configuration file can also control this feature by adding the following elements:

<engine-settings>

 <defaults>

 <threading>

 <listener-dispatch preserve-order="true" timeout-msec="1000"

 locking="spin"/>

 </threading>

 </defaults>

</engine-settings>

As discussed, by default the engine can temporarily block another processing thread when

delivering result events to listeners in order to preserve the order in which results are delivered

to a given statement. The maximum time the engine blocks a thread can also be configured, and

by default is set to 1 second.

As such delivery locks are typically held for a very short amount of time, the default blocking

technique employs a spin lock (There are two techniques for implementing blocking; having the

operating system suspend the thread until it is awakened later or using spin locks). While spin

locks are CPU-intensive and appear inefficient, a spin lock can be more efficient than suspending

the thread and subsequently waking it up, especially if the lock in question is held for a very short

time. That is because there is significant overhead to suspending and rescheduling a thread.

The locking technique can be changed to use a blocking strategy that suspends the thread, by

means of setting the locking property to 'suspend'.

17.4.12.2. Preserving the order of events for insert-into streams

In multithreaded environments, this setting controls whether statements producing events for

other statements via insert-into preserve the order of delivery within the producing and consuming

statements, allowing statements that consume other statement's events to behave deterministic

in multithreaded applications, if the consuming statement requires such determinism. By default,

the engine makes this guarantee (the setting is on). This behavior applies to stateful statements

and not to stateless statements as stateless statements execute lock-free.

Chapter 17. Configuration

612

Take, for example, an application where a single statement (S1) inserts events into a stream

that another statement (S2) further evaluates. A multithreaded application may have multiple

threads processing events into statement S1. As statement S1 produces events for consumption

by statement S2, such results may need to be delivered in the exact order produced as the

consuming statement may rely on the order received. For example, if the first statement counts

the number of events, the second statement may employ a pattern that inspects counts and thus

expect the counts posted by statement S1 to continuously increase by 1 even though multiple

threads process events.

The engine may need to block a thread such that order of delivery is maintained, and statements

that require order (such as pattern detection, previous and prior functions) receive a deterministic

order of events. The settings available control the blocking technique and parameters. As

described in the section immediately prior, the default blocking technique employs spin locks per

statement inserting events for consumption, as the locks in questions are typically held a very short

time. The 'suspend' blocking technique can be configured and a timeout value can also defined.

The XML configuration file may change settings via the following elements:

<engine-settings>

 <defaults>

 <threading>

 <insert-into-dispatch preserve-order="true" timeout-msec="100"

 locking="spin"/>

 </threading>

 </defaults>

</engine-settings>

17.4.12.3. Preserving the order of named window dispatches to

named window consumer statements

In multithreaded environments, this setting controls whether named windows producing insert

and remove streams for other statements that consume the named window by means of from-

clause preserve the order of delivery within the producing named window and the consuming

statements, allowing statements that consume named window's insert and remove stream events

to behave deterministic in multithreaded applications, if the consuming statement requires such

determinism. By default, the engine makes this guarantee (the setting is on) with spin locking and

Long.MAX_VALUE as millisecond timeout.

Take, for example, an application where a named window (W1) produces inserts and remove

stream events that a statement (S1) consumes. A multithreaded application may have multiple

threads producing insert and remove stream events for consumption by statement S1. Such

results may need to be delivered in the exact order produced by the named window as the

consuming statement may rely on the order received.

The engine may need to block a thread such that order of delivery is maintained, and statements

that require order receive a deterministic order of events. The settings available control the

Engine Settings related to Concurrency and Threading

613

blocking technique and parameters. As described in the section immediately prior, the default

blocking technique employs spin locks per named window producing insert and removed stream

events for consumption, as the locks in questions are typically held a very short time. The 'suspend'

blocking technique can be configured and a timeout value can also defined.

The XML configuration file may change settings via the following elements:

<engine-settings>

 <defaults>

 <threading>

 <named-window-consumer-dispatch preserve-order="true" locking="spin"/>

 </threading>

 </defaults>

</engine-settings>

17.4.12.4. Internal Timer Settings

This option can be used to disable the internal timer thread and such have the application supply

external time events, as well as to set a timer resolution.

The next code snippet shows how to disable the internal timer thread via the configuration API:

Configuration config = new Configuration();

 config.getEngineDefaults().getThreading().setInternalTimerEnabled(false);

This snippet of XML configuration leaves the internal timer enabled (the default) and sets a

resolution of 200 milliseconds (the default is 100 milliseconds):

<engine-settings>

 <defaults>

 <threading>

 <internal-timer enabled="true" msec-resolution="200"/>

 </threading>

 </defaults>

</engine-settings>

We recommend that when disabling the internal timer, applications send an external timer event

setting the start time before creating statements, such that statement start time is well-defined.

17.4.12.5. Advanced Threading Options

The settings described herein are for enabling advanced threading options for inbound, outbound,

timer and route executions.

Chapter 17. Configuration

614

Take the next snippet of XML configuration as an example. It configures all threading options to 2

threads, which may not be suitable to your application, however demonstrates the configuration:

<engine-settings>

 <defaults>

 <threading>

 <threadpool-inbound enabled="true" num-threads="2"/>

 <threadpool-outbound enabled="true" num-threads="2" capacity="1000"/>

 <threadpool-timerexec enabled="true" num-threads="2"/>

 <threadpool-routeexec enabled="true" num-threads="2"/>

 </threading>

 </defaults>

</engine-settings>

By default, queues are unbound and backed by java.util.concurrent.LinkedBlockingQueue.

The optional capacity attribute can be set to instruct the threading option to configure a capacity-

bound queue with a sender-wait (blocking put) policy, backed ArrayBlockingQueue.

This example uses the API for configuring inbound threading :

Configuration config = new Configuration();

config.getEngineDefaults().getThreading().setThreadPoolInbound(true);

config.getEngineDefaults().getThreading().setThreadPoolInboundNumThreads(2);

With a bounded work queue, the queue size and pool size should be tuned together. A large queue

coupled with a small pool can help reduce memory usage, CPU usage, and context switching, at

the cost of potentially constraining throughput.

Note

If outbound-threading is enabled, listeners and subscribers that send events back

into the engine should use the sendEvent method and not the route method.

17.4.12.6. Engine Fair Locking

By default Esper configures the engine-level lock without fair locking. The engine-level lock

coordinates event processing threads (threads that send events) with threads that perform

administrative functions (threads that start or destroy statements, for example). A fair lock is

generally less performing that an unfair lock thus the default configuration is an unfair lock.

If your application is multi-threaded and multiple threads sends events without gaps and if the per-

event processing time is significant, then configuring a fair lock can help prioritize administrative

functions. Administrative functions exclude event-processing threads until the administrative

Engine Settings related to Event Metadata

615

function completed. You may need to set this flag to prevent lock starvation to perform an

administrative function in the face of concurrent event processing. Please consult the Java API

documentation under ReentrantReadWriteLock and Fair Mode for more information.

The XML configuration to enable fair locking, which is disabled by default, is as follows:

<engine-settings>

 <defaults>

 <threading engine-fairlock="true"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getThreading().setEngineFairlock(true);

17.4.13. Engine Settings related to Event Metadata

17.4.13.1. Default Event Representation

The default event representation is the Map event representation.

The default event representation is relevant when your query outputs individual properties to a

listener and it does not specify a specific event representation in an annotation. The default event

representation is also relevant for create schema and create window.

Note that the engine may still use the Map representation for certain types of statements even

when the default event representation is object array.

For example, consider the following query:

select propertyOne, propertyTwo from MyEvent

Listeners to the statement above currently receive a Map-type event. By setting the configuration

flag to object-array or Avro as described herein, listeners to the statement receive an Object-array-

type event or an Avro-type event instead.

The XML snippet below is an example of setting the default event representation to Object-array:

<esper-configuration

 <engine-settings>

 <defaults>

Chapter 17. Configuration

616

 <event-meta>

 <event-representation type="objectarray"/> <!-- use "avro" for Avro -->

 </event-meta>

 </defaults>

 </engine-settings>

</esper-configuration>

The code snippet shown next sets the default event representation to Object-array in the

configuration object:

configuration.getEngineDefaults().getEventMeta().

 setDefaultEventRepresentation(Configuration.EventRepresentation.OBJECTARRAY);

17.4.13.2. Avro Settings

This configuration controls engine settings in respect to Avro.

The enable-avro setting is boolean-typed and is true by default. It controls whether Avro is

enabled or disabled. If disabled the engine disallows registering Avro event types or using an Avro

event representation.

The enable-native-string setting is boolean-typed and is true by default. It controls whether

for String-type values, when the engine generates an Avro schema, such field schema adds the

property avro.java.string of value String.

The enable-schema-default-nonnull setting is boolean-typed and is true by default. It controls

whether the engine assembles non-null Avro schemas (true) or nullable (union) Avro schemas

(false).

The objectvalue-typewidener-factory-class setting is a fully-qualified class name of the

class implementing the

com.espertech.esper.client.hook.ObjectValueTypeWidenerFactory interface and is null

by default. If specified the factory can provide a type widener for widening, coercing or transforming

any object value to a Avro field value.

The type-representation-mapper-class setting is a fully-qualified class name of the class

implementing the com.espertech.esper.client.hook.TypeRepresentationMapper interface

and is null by default. If specified the implementation can provide for a given class the Avro schema

for the field.

The XML snippet below is an example of Avro settings that configures the same as the default

values:

<esper-configuration

 <engine-settings>

Engine Settings related to Event Metadata

617

 <defaults>

 <event-meta>

 <avro-settings enable-avro="true" enable-native-string="true" enable-

schema-default-nonnull="true"

 objectvalue-typewidener-factory-class=""

 type-representation-mapper-class=""/>

 </event-meta>

 </defaults>

 </engine-settings>

</esper-configuration>

The code snippet shown next sets the default event representation to Object-array in the

configuration object:

configuration.getEngineDefaults().getEventMeta().getAvroSettings().setEnableAvro(true);

configuration.getEngineDefaults().getEventMeta().getAvroSettings().setEnableNativeString(true);

configuration.getEngineDefaults().getEventMeta().getAvroSettings().setEnableSchemaDefaultNonNull(true);

configuration.getEngineDefaults().getEventMeta().getAvroSettings().setObjectValueTypeWidenerFactoryClass(null);

configuration.getEngineDefaults().getEventMeta().getAvroSettings().setTypeRepresentationMapperClass(null);

17.4.13.3. Java Class Property Names, Case Sensitivity and

Accessor Style

The engine-wide settings discussed here are used when you want to control case sensitivity

or accessor style for all event classes as a default. The two settings are found under class-

property-resolution under event-meta in the XML configuration.

To control the case sensitivity as discussed in Section 17.4.1.6, “Case Sensitivity and Property

Names”, add the style attribute in the XML configuration to set a default case sensitivity

applicable to all event classes unless specifically overridden by class-specific configuration. The

default case sensitivity is case_sensitive (case sensitivity turned on).

To control the accessor style as discussed in Section 17.4.1.3, “Non-JavaBean and Legacy Java

Event Classes”, add the accessor-style attribute in the XML configuration to set a default

accessor style applicable to all event classes unless specifically overridden by class-specific

configuration. The default accessor style is javabean JavaBean accessor style.

The next code snippet shows how to control this feature via the API:

Configuration config = new Configuration();

config.getEngineDefaults().getEventMeta().setClassPropertyResolutionStyle(

 Configuration.PropertyResolutionStyle.CASE_INSENSITIVE);

config.getEngineDefaults().getEventMeta().setDefaultAccessorStyle(

 ConfigurationEventTypeLegacy.AccessorStyle.PUBLIC);

Chapter 17. Configuration

618

17.4.13.4. Cache Size for Anonymous Event Types

By default the engine maintains a cache of the last 5 recently allocated anonymous event

types. Anonymous event types are unnamed output event types associated to statements. The

anonymous-cache element under the event-meta element in the XML configuration contols the

cache size. The cache size can be set to zero to disable the cache.

The next code snippet shows how to control this setting via the API:

Configuration config = new Configuration();

config.getEngineDefaults().getEventMeta().setAnonymousCacheSize(5);

17.4.14. Engine Settings related to View Resources

17.4.14.1. Sharing View Resources between Statements

As multi-threaded environments are common, the engine by default does not implicitly share data

windows between multiple statements. The share-views setting is thereby false by default.

Note

The preferred means of sharing data windows is by declaring a named window

or table.

By setting share-views to true the engine checks upon statement creation whether it can re-use

an existing statement's data window, under these conditions:

• The statement does not have an associated context declared using context

• The other statement must declare the same event type, filter criteria and data window including

data window parameters.

• The other statement data window must be empty.

Setting share-views to true means that statements can implicitly share locks which can reduce

performance in multi-threaded environments, at the benefit of sharing data window's data

structures, however that does generally not reduce memory use significantly.

The next code snippet outlines the API to turn on view resource sharing between statements:

Configuration config = new Configuration();

config.getEngineDefaults().getViewResources().setShareViews(true);

Engine Settings related to View Resources

619

17.4.14.2. Iterator Behavior For Unbound Streams

By default, when using the iterator API to iterate an EPL statement with an unbound stream the

engine returns an empty iterator.

To have the engine return the last event instead, please use the @IterableUnbound statement

annotation or enable the engine-wide setting as described herein.

A code sample that turns iterable-unbound on is:

Configuration config = new Configuration();

config.getEngineDefaults().getViewResources().setIterableUnbound(true);

17.4.14.3. Configuring Multi-Expiry Policy Defaults

By default, when combining multiple data window views, Esper applies an intersection of the

data windows unless the retain-union keyword is provided which instructs to apply an union.

The setting described herein may be used primarily for backward compatibility to instruct that

intersection should not be the default.

Here is a sample statement that specifies multiple expiry policies:

select * from MyEvent#unique(price)#unique(quantity)

By default Esper applies intersection as described in Section 5.4.4, “Multiple Data Window Views”.

Here is the setting to allow multiple data windows without the intersection default:

Configuration config = new Configuration();

config.getEngineDefaults().getViewResources().setAllowMultipleExpiryPolicies(true);

When setting this option to true, and when using multiple data window views for a given stream,

the behavior is as follows: The top-most data window receives an insert stream of events. It passes

each insert stream event to each further data window view in the chain. Each data window view

may remove events according to its expiry policy. Such remove stream events are only passed to

data window views further in the chain, and are not made available to data window views earlier

in the chain.

It is recommended to leave the default setting at false.

Chapter 17. Configuration

620

17.4.15. Engine Settings related to Logging

17.4.15.1. Execution Path Debug Logging

By default, the engine does not produce debug output for the event processing execution paths

even when Log4j or Logger configurations have been set to output debug level logs. To enable

debug level logging, set this option in the configuration as well as in your Log4j configuration file.

Statement-level processing information can be output via the @Audit annotation, please see

Section 18.3.1, “@Audit Annotation”.

When debug-level logging is enabled by setting the flag as below and by setting DEBUG in the

Log4j configuration file, then the timer processing may produce extensive debug output that you

may not want to have in the log file. The timer-debug setting in the XML or via API as below

disables timer debug output which is enabled by default.

The API to use to enable debug logging and disable timer event output is shown here:

Configuration config = new Configuration();

config.getEngineDefaults().getLogging().setEnableExecutionDebug(true);

config.getEngineDefaults().getLogging().setEnableTimerDebug(false);

Note: this is a configuration option that applies to all engine instances of a given Java module

or VM.

The XML snippet is:

<esper-configuration>

 <engine-settings>

 <defaults>

 <logging>

 <execution-path enabled="true"/>

 <timer-debug enabled="false"/>

 </logging>

 </defaults>

 </engine-settings>

</esper-configuration>

17.4.15.2. Query Plan Logging

By default, the engine does not produce query plan output unless logging at debug-level. To

enable query plan logging, set this option in the configuration. When enabled, the engine reports,

at INFO level, any query plans under the log name com.espertech.esper.queryplan.

Engine Settings related to Logging

621

Query plan logging is applicable to subqueries, joins (any type), named window and table on-

actions (on-select, on-merge, on-insert, on-update, on-select) and fire-and-forget queries. It is not

applicable and will not provide additional information for other types of constructs.

The API to use to enable query plan logging is shown here:

Configuration config = new Configuration();

config.getEngineDefaults().getLogging().setEnableQueryPlan(true);

The XML snippet is:

<esper-configuration>

 <engine-settings>

 <defaults>

 <logging>

 <query-plan enabled="true"/>

 </logging>

 </defaults>

 </engine-settings>

</esper-configuration>

17.4.15.3. JDBC Logging

By default, the engine does not measure JDBC query execution times or report the number of

rows returned from a JDBC query through logging. To enable JDBC logging, set this option in the

configuration. When enabled, the engine reports, at INFO level, any JDBC query performance

and number of rows returned under the log name com.espertech.esper.jdbc.

The API to use to enable JDBC query logging is shown here:

Configuration config = new Configuration();

config.getEngineDefaults().getLogging().setEnableJDBC(true);

The XML snippet is:

<esper-configuration>

 <engine-settings>

 <defaults>

 <logging>

 <jdbc enabled="true"/>

 </logging>

 </defaults>

 </engine-settings>

Chapter 17. Configuration

622

</esper-configuration>

17.4.15.4. Audit Logging

The settings herein control the output format of @Audit logs.

This setting applies to all engine instances in the same JVM. Please also see the API

documentation for information on pattern conversion characters.

Table 17.4. Audit Log Conversion Characters

Character Description

m Audit message.

s Statement name.

u Engine URI.

The API to use to set am audit log format is shown here:

Configuration config = new Configuration();

config.getEngineDefaults().getLogging().setAuditPattern("[%u] [%s] %m");

The XML snippet is:

<esper-configuration>

 <engine-settings>

 <defaults>

 <logging>

 <audit pattern="[%u] [%s]%m"/>

 </logging>

 </defaults>

 </engine-settings>

</esper-configuration>

17.4.16. Engine Settings related to Variables

17.4.16.1. Variable Version Release Interval

This setting controls the length of time that the engine retains variable versions for use by

statements that use variables and that execute, within the same statement for the same event,

longer then the time interval. By default, the engine retains 15 seconds of variable versions.

For statements that use variables and that execute (in response to a single timer or other event)

longer then the time period, the engine returns the current variable version at the time the

Engine Settings related to Patterns

623

statement executes, thereby softening the guarantee of consistency of variable values within the

long-running statement. Please see Section 5.17.3, “Using Variables” for more information.

The XML configuration for this setting is shown below:

<engine-settings>

 <defaults>

 <variables>

 <msec-version-release value="15000"/>

 </variables>

 </defaults>

</engine-settings>

17.4.17. Engine Settings related to Patterns

17.4.17.1. Followed-By Operator Maximum Subexpression Count

You may use this setting to limit the total engine-wide number of pattern sub-expressions that all

followed-by operators may manage. When the limit is reached, a condition is raised by the engine

through the condition callback API.

By default, when the limit is reached, the engine also prevents the start of new pattern sub-

expressions, until pattern sub-expressions end and the limit is no longer reached. By setting the

prevent-start flag to false you can instruct the engine to only raise a condition and continue to

allow the start of new pattern sub-expressions.

The implications of the settings described herein are also detailed in Section 7.5.8.2, “Limiting

Engine-wide Sub-Expression Count”.

A sample XML configuration for this setting is shown below:

<engine-settings>

 <defaults>

 <patterns>

 <max-subexpression value="100" prevent-start="false"/>

 </patterns>

 </defaults>

</engine-settings>

The limit can be changed and disabled or enabled at runtime via the runtime configuration API.

Pass a null value as the limit to disable limit checking.

A sample code snippet that sets a new limit is:

Chapter 17. Configuration

624

epService.getEPAdministrator().getConfiguration().setPatternMaxSubexpressions(100L);

17.4.18. Engine Settings related to Match-Recognize

17.4.18.1. Maximum State Count

You may use this setting to limit the total engine-wide number of states that all match-recognize

constructs may manage. When the limit is reached, a condition is raised by the engine through

the condition callback API.

By default, when the limit is reached, the engine also prevents the allocation of new states, until

states get removed and the limit is no longer reached. By setting the prevent-start flag to false

you can instruct the engine to only raise a condition and continue to allow the allocation of new

states.

The implications of the settings described herein are also detailed in Section 8.11, “Limiting

Engine-wide State Count”.

A sample XML configuration for this setting is shown below:

<engine-settings>

 <defaults>

 <match-recognize>

 <max-state value="100" prevent-start="false"/>

 </match-recognize>

 </defaults>

</engine-settings>

The limit can be changed and disabled or enabled at runtime via the runtime configuration API.

Pass a null value as the limit to disable limit checking.

A sample code snippet that sets a new limit is:

epService.getEPAdministrator().getConfiguration().setMatchRecognizeMaxStates(100L);

17.4.19. Engine Settings related to Scripts

You may configure a default script dialect as described herein. The default script dialect is js

which stands for JavaScript, since most JVM ship with an integrated JavaScript engine.

A sample XML configuration for this setting is shown below:

<engine-settings>

Engine Settings related to Stream Selection

625

<defaults>

 <scripts default-dialect="js"/>

</defaults>

</engine-settings>

A sample code snippet that sets a new script dialect is:

config.getEngineDefaults().getScripts().setDefaultDialect("js");

17.4.20. Engine Settings related to Stream Selection

17.4.20.1. Default Statement Stream Selection

Statements can produce both insert stream (new data) and remove stream (old data) results.

Remember that insert stream refers to arriving events and new aggregation values, while remove

stream refers to events leaving data windows and prior aggregation values. By default, the engine

delivers only the insert stream to listeners and observers of a statement.

There are keywords in the select clause that instruct the engine to not generate insert stream

and/or remove stream results if your application does not need either one of the streams. These

keywords are the istream, rstream and the irstream keywords.

By default, the engine only generates insert stream results equivalent to using the optional

istream keyword in the select clause. If you application requires insert and remove stream

results for many statements, your application can add the irstream keyword to the select clause

of each statement, or you can set a new default stream selector via this setting.

The XML configuration for this setting is shown below:

<engine-settings>

 <defaults>

 <stream-selection>

 <stream-selector value="irstream" />

 </stream-selection>

 </defaults>

</engine-settings>

The equivalent code snippet using the configuration API is here:

Configuration config = new Configuration();

config.getEngineDefaults().getStreamSelection()

 .setDefaultStreamSelector(StreamSelector.RSTREAM_ISTREAM_BOTH);

Chapter 17. Configuration

626

17.4.21. Engine Settings related to Time Source

17.4.21.1. Default Time Source

This setting only applies if internal timer events control engine time (default). If external timer

events provide engine clocking, the setting does not apply.

By default, the internal timer uses the call System.currentTimeMillis() to determine engine

time in milliseconds. Via this setting the internal timer can be instructed to use System.nanoTime()

instead. Please see Section 16.8.2, “Time Resolution and Time Unit” for more information.

Note: This is a Java VM global setting. If running multiple engine instances in a Java VM, the timer

setting is global and applies to all engine instances in the same Java VM, for performance reasons.

A sample XML configuration for this setting is shown below, whereas the sample setting sets the

time source to the nanosecond time provider:

<engine-settings>

 <defaults>

 <time-source>

 <time-source-type value="nano" />

 </time-source>

 </defaults>

</engine-settings>

The equivalent code snippet using the configuration API is here:

Configuration config = new Configuration();

config.getEngineDefaults().getTimeSource().

 setTimeSourceType(ConfigurationEngineDefaults.TimeSourceType.NANO);

17.4.21.2. Time Unit

The default time unit of time resolution is milliseconds. Your application may set the time resolution

to microseconds instead.

A sample XML configuration for millisecond time resolution is:

<engine-settings>

 <defaults>

 <time-source>

 <time-unit value="milliseconds"/>

 </time-source>

 </defaults>

Engine Settings related to JMX Metrics

627

</engine-settings>

The equivalent code snippet using the configuration API is here:

Configuration config = new Configuration();

config.getEngineDefaults().getTimeSource().setTimeUnit(TimeUnit.MILLISECONDS);

17.4.22. Engine Settings related to JMX Metrics

Please set the flag as described herein to have the engine report key counters and other

processing information through the JMX mbean platform server. By default JMX is not enabled.

For NEsper .NET this section does not apply and there is currently no equivalent.

A sample XML configuration is shown below:

<engine-settings>

 <defaults>

 <metrics-reporting jmx-engine-metrics="true"/>

 </defaults>

</engine-settings>

A sample code snippet to set this configuration via the API follows:

configuration.getEngineDefaults().getMetricsReporting().setJmxEngineMetrics(true);

17.4.23. Engine Settings related to Metrics Reporting

This section explains how to enable and configure metrics reporting, which is by default disabled.

Please see Section 16.14, “Engine and Statement Metrics Reporting” for more information on the

metrics data reported to your application.

The flag that enables metrics reporting is global to a Java virtual machine. If metrics reporting is

enabled, the overhead incurred for reporting metrics is carried by all engine instances per Java

VM.

Metrics reporting occurs by an engine-controlled separate daemon thread that each engine

instance starts at engine initialization time, if metrics reporting and threading is enabled (threading

enabled is the default).

Engine and statement metric intervals are in milliseconds. A negative or zero millisecond interval

value may be provided to disable reporting.

Chapter 17. Configuration

628

To control statement metric reporting for individual statements or groups of statements, the engine

provides a facility that groups statements by statement name. Each such statement group may

have different reporting intervals configured, and intervals can be changed at runtime through

runtime configuration. A statement group is assigned a group name at configuration time to identify

the group.

Metrics reporting configuration is part of the engine default settings. All configuration options are

also available via the Configuration API.

A sample XML configuration is shown below:

<engine-settings>

 <defaults>

 <metrics-reporting enabled="true" engine-interval="1000" statement-

interval="1000"

 threading="true"/>

 </defaults>

</engine-settings>

The engine-interval setting (defaults to 10 seconds) determines the frequency in milliseconds

at which the engine reports engine metrics, in this example every 1 second. The statement-

interval is for statement metrics. The threading flag is true by default since reporting takes

place by a dedicated engine thread and can be set to false to use the external or internal timer

thread instead.

The next example XML declares a statement group: The statements that have statement names

that fall within the group follow a different reporting frequency:

<metrics-reporting enabled="true" statement-interval="0">

 <stmtgroup name="MyStmtGroup" interval="2000" default-include="true" num-

stmts="100"

 report-inactive="true">

 <exclude-regex>.*test.*</exclude-regex>

 </stmtgroup>

</metrics-reporting>

The above example configuration sets the statement-interval to zero to disable reporting for all

statements. It defines a statement group by name MyStmtGroup and specifies a 2-second interval.

The example sets the default-include flag to true (by default false) to include all statements in

the statement group. The example also sets report-inactive to true (by default false) to report

inactive statements.

The exclude-regex element may be used to specify a regular expression that serves to exclude

statements from the group. Any statement whose statement name matches the exclude regular

Engine Settings related to Language and Locale

629

expression is not included in the group. In the above example, all statements with the characters

'test' inside their statement name are excluded from the group.

Any statement not belonging to any of the statement groups follow the configured statement

interval.

There are additional elements available to include and exclude statements: include-regex,

include-like and exclude-like. The latter two apply SQL-like matching. All patterns are case-

sensitive.

Here is a further example of a possible statement group definition, which includes statements

whose statement name have the characters @REPORT or @STREAM, and excludes statements whose

statement name have the characters @IGNORE or @METRICS inside.

<metrics-reporting enabled="true">

 <stmtgroup name="MyStmtGroup" interval="1000">

 <include-like>%@REPORT%</include-like>

 <include-regex>.*@STREAM.*</include-like>

 <exclude-like>%@IGNORE%</exclude-like>

 <exclude-regex>.*@METRICS.*</exclude-regex>

 </stmtgroup>

</metrics-reporting>

17.4.24. Engine Settings related to Language and Locale

Locale-dependence in Esper can be present in the sort order of string values by the order by

clause and by the sort view.

By default, Esper sorts string values using the compare method that is not locale dependent. To

enable local dependent sorting you must set the configuration flag as described below.

The XML configuration sets the locale dependent sorting as shown below:

<engine-settings>

 <defaults>

 <language sort-using-collator="true"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getLanguage().setSortUsingCollator(true);

Chapter 17. Configuration

630

17.4.25. Engine Settings related to Expression Evaluation

17.4.25.1. Integer Division and Division by Zero

By default Esper returns double-typed values for divisions regardless of operand types. Division

by zero returns positive or negative double infinity.

To have Esper use Java-standard integer division instead, use this setting as described here. In

Java integer division, when dividing integer types, the result is an integer type. This means that if

you divide an integer unevenly by another integer, it returns the whole number part of the result,

does not perform any rounding and the fraction part is dropped. If Java-standard integer division

is enabled, when dividing an integer numerator by an integer denominator, the result is an integer

number. Thus the expression 1 / 4 results in an integer zero. Your EPL must then convert at

least one of the numbers to a double value before the division, for example by specifying 1.0 /

4 or by using cast(myint, double).

When using Java integer division, division by zero for integer-typed operands always returns null.

However division by zero for double-type operands still returns positive or negative double infinity.

To also return null upon division by zero for double-type operands, set the flag to true as below

(default is false).

The XML configuration is as follows:

<engine-settings>

 <defaults>

 <expression integer-division="false" division-by-zero-is-null="false"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getExpression().setIntegerDivision(true);

config.getEngineDefaults().getExpression().setDivisionByZeroReturnsNull(true);

17.4.25.2. Subselect Evaluation Order

By default Esper updates sub-selects with new events before evaluating the enclosing statement.

This is relevant for statements that look for the same event in both the from clause and subselects.

To have Esper evaluate the enclosing clauses before updating the subselect in a subselect

expression, set the flag as indicated herein.

The XML configuration as below sets the same as the default value:

Engine Settings related to Expression Evaluation

631

<engine-settings>

 <defaults>

 <expression self-subselect-preeval="true"/>

 </defaults>

</engine-settings>

Here is a sample statement that utilitzes a sub-select against the same-events:

select * from MyEvent where prop not in (select prop from

 MyEvent#unique(otherProp))

By default the subselect data window updates first before the where clause is evaluated, thereby

above statement never returns results.

Changing the setting described here causes the where clause to evaluate before the subselect

data window updates, thereby the statement does post results.

17.4.25.3. User-Defined Function or Static Method Cache

By default Esper caches the result of an user-defined function if the parameter set to that function

is empty or all parameters are constant values. Results of custom plug-in single-row functions

are not cached according to the default configuration, unless the single-row function is explicitly

configured with value cache enabled.

To have Esper evaluate the user-defined function regardless of constant parameters, set the flag

to false as indicated herein.

The XML configuration as below sets the same as the default value:

<engine-settings>

 <defaults>

 <expression udf-cache="true"/>

 </defaults>

</engine-settings>

17.4.25.4. Extended Built-in Aggregation Functions

By default Esper provides a number of additional aggregation functions over the SQL standards.

To have Esper only allow the standard SQL aggregation functions and not the additional ones,

disable the setting as described here.

The XML configuration as below sets the same as the default value:

Chapter 17. Configuration

632

<engine-settings>

 <defaults>

 <expression extend-agg="true"/>

 </defaults>

</engine-settings>

17.4.25.5. Duck Typing

By default Esper validates method references when using the dot operator syntax at time of

statement creation. With duck typing, the engine resolves method references at runtime.

The XML configuration as below sets the same as the default value:

<engine-settings>

 <defaults>

 <expression ducktyping="false"/>

 </defaults>

</engine-settings>

17.4.25.6. Math Context

By default, when computing the average of BigDecimal values, the engine does not pass a

java.math.MathContext. Use the setting herein to specify a default math context.

The below XML configuration sets precision to 2 and rounding mode ceiling:

<engine-settings>

 <defaults>

 <expression math-context="precision=2 roundingMode=CEILING"/>

 </defaults>

</engine-settings>

An example API configuration is shown next:

config.getEngineDefaults().getExpression().setMathContext(...);

17.4.25.7. Time Zone

By default, when performing calendar operations, the engine uses the default time zone obtained

by java.util.TimeZone.getDefault(). Use the setting herein to specify a time zone other then

the default time zone.

Engine Settings related to Execution of Statements

633

The below XML configuration sets a time zone 'GMT-4:00':

<engine-settings>

 <defaults>

 <expression time-zone="GMT-4:00"/>

 </defaults>

</engine-settings>

An example API configuration is shown next:

config.getEngineDefaults().getExpression().setTimeZone(TimeZone.getTimeZone("GMT-4:00"));

17.4.26. Engine Settings related to Execution of Statements

17.4.26.1. Prioritized Execution

By default Esper ignores @Priority and @Drop annotations and executes unprioritized, that is the

engine does not attempt to interpret assigned priorities and reorder executions based on priority.

Use this setting if your application requires prioritized execution.

By setting this configuration, the engine executes statements, when an event or schedule matches

multiple statements, according to the assigned priority, starting from the highest priority value.

See built-in EPL annotations in Section 5.2.7.7, “@Priority”.

By enabling this setting view sharing between statements as described in Section 17.4.14.1,

“Sharing View Resources between Statements” is disabled.

The XML configuration to enable the flag, which is disabled by default, is as follows:

<engine-settings>

 <defaults>

 <execution prioritized="true"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getExecution().setPrioritized(true);

Chapter 17. Configuration

634

17.4.26.2. Context Partition Fair Locking

By default Esper configures context partition locks without fair locking. If your application is multi-

threaded and performs very frequent reads via iterator or fire-and-forget queries, you may need to

set this flag to prevent lock starvation in the face of concurrent reads and writes. Please consult the

Java API documentation under ReentrantReadWriteLock and Fair Mode for more information.

The XML configuration to enable fair locking, which is disabled by default, is as follows:

<engine-settings>

 <defaults>

 <execution fairlock="true"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getExecution().setFairlock(true);

17.4.26.3. Disable Locking

By default Esper configures context partition locks as required after analyzing your EPL

statements. You may disable context partition locks engine-wide using the setting described here.

Use the @NoLock annotation instead to disable locking for a given statement or named window

only.

CAUTION: We provide this setting for the purpose of identifying locking overhead, or when your

application is single-threaded, or when using an external mechanism for concurrency control.

Setting disable-locking to true may have unpredictable results unless your application is taking

concurrency under consideration.

The XML configuration to disable context level locking is as follows:

<engine-settings>

 <defaults>

 <execution disable-locking="true"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

Engine Settings related to Execution of Statements

635

config.getEngineDefaults().getExecution().setDisableLocking(true);

17.4.26.4. Threading Profile

This setting is for performance tuning when using a large number of threads, such as 100 or more

threads.

The configuration provides a setting that instructs the engine to reduce the use of thread-local

variables. As the engine may use thread-local variables to reduce temporary object allocation, it

can potentially use too much memory when a large number of threads are used with the engine.

By setting the threading profile to large, the engine will allocate temporary objects instead of using

thread-local variables for certain logic. Currently this setting applies exclusively to patterns and

their filter expressions.

The XML configuration to set a large threading profile is as follows:

<engine-settings>

 <defaults>

 <execution threading-profile="large"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getExecution().setThreadingProfile(

 ConfigurationEngineDefaults.ThreadingProfile.LARGE);

17.4.26.5. Filter Service Profile

This setting is for performance tuning of filter service which handles matching incoming events

to context partitions and statements.

In the default configuration termed readmostly, filter service locking is coarse-grained assuming a

large number of reads and comparatively few writes. "Reads" are evaluations of events, while with

"writes" we mean filter service changes such as new statements, a new pattern subexpression

becoming active or a pattern subexpression being deactivated.

Set the configuration to readwrite if you have multiple threads and your statements very

frequently add and remove filters using pattern subexpressions, for example. This setting instructs

the engine to maintain fine-grained locks instead generally allowing for higher concurrency but

possibly incurring additional overhead.

The XML configuration to set a new filter service profile is as follows:

Chapter 17. Configuration

636

<engine-settings>

 <defaults>

 <execution filter-server-profile="readwrite"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getExecution().

 setFilterServiceProfile(ConfigurationEngineDefaults.FilterServiceProfile.READWRITE);

17.4.26.6. Filter Service Max Filter Width

This setting is for performance tuning of filter expression analysis and breakdown.

In the default configuration the setting is 16, which means that the filter expression analyzer can at

most create 16 path expressions from a given filter expression. If the number of path expressions

is over 16, the expression will instead be evaluated as non-path and not be subject to to be entered

into filter indexes.

On the level of an EPL statement, this setting can be controlled by providing a hint. For example:

// The engine optimizes the filter expression to become:

// "a=1, c=1" or "b=1, c=1" or "a=1, d=1" or "b=1, d=1".

// This enables filter index sharing between filter expressions.

select * from Event((a=1 or b=1) and (c=1 or d=1))

// The engine does not optimize filter expressions

@Hint('MAX_FILTER_WIDTH=0') select * from Event((a=1 or b=1) and (c=1 or d=1))

The XML configuration to sets a new engine-wide value:

<engine-settings>

 <defaults>

 <execution filter-service-max-filter-width="100"/>

 </defaults>

</engine-settings>

Engine Settings related to Execution of Statements

637

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getExecution().

 setFilterServiceMaxFilterWidth(16);

17.4.26.7. Allow Isolated Service Provider

By default isolated service provider is disabled to reduce engine overhead. Before using isolated

service providers you must enable as described herein.

The XML configuration to enable isolated service providers is as follows:

<engine-settings>

 <defaults>

 <execution allow-isolated-service="true"/>

 </defaults>

</engine-settings>

The API to change the setting:

Configuration config = new Configuration();

config.getEngineDefaults().getExecution().setAllowIsolatedService(true);

17.4.26.8. Declared Expression Value Cache Size

In the default configuration the setting is 1, which means that for each declared expression the

engine retains a cache of only the last computed value, for use for the duration of an evaluation

of an event or time against a context partition. You may set the value to zero to disable caching.

You may set the value to N to instruct the engine to retain a cache of the last N computed values.

This setting is not applicable to stateful declared expressions such as declared expressions with

aggregation functions, for example.

The XML configuration to sets the same value as the default:

<engine-settings>

 <defaults>

 <execution declared-expr-value-cache-size="1"/>

 </defaults>

</engine-settings>

The API to change the setting:

Chapter 17. Configuration

638

Configuration config = new Configuration();

config.getEngineDefaults().getExecution().

 setDeclaredExprValueCacheSize(1);

17.4.27. Engine Settings related to Exception Handling

Use the settings as described here to register an exception handler factory class that provides

an exception handler. The engine invokes exception handlers in the order they are listed

to handle a continues-query unchecked exception, as further described in Section 16.10,

“Exception Handling”. Please provide the full-qualified class name of each class that implements

the com.espertech.esper.client.hook.ExceptionHandlerFactory interface in the engine

defaults configuration as below.

By default, during a module undeploy when the engine encounters a runtime exception for any of

the statements it logs such exceptions as warnings. You can set the undeploy-rethrow-policy

flag to rethrow_first instead have the engine rethrow the first runtime exception.

The XML configuration is as follows:

<engine-settings>

 <defaults>

 <exceptionHandling undeploy-rethrow-policy="warn">

 <handlerFactory class="my.company.cep.MyCEPEngineExceptionHandlerFactory"/>

 </exceptionHandling>

 </defaults>

</engine-settings>

The API calls to register an exception handler factory are as follows:

Configuration config = new Configuration();

config.getEngineDefaults().getExceptionHandling().addClass(MyCEPEngineExceptionHandlerFactory.class);

config.getEngineDefaults().getExceptionHandling().setUndeployRethrowPolicy(ConfigurationEngineDefaults.ExceptionHandling.UndeployRethrowPolicy.RETHROW_FIRST);

17.4.28. Engine Settings related to Condition Handling

Use the settings as described here to register a condition handler factory class that provides a

condition handler. The engine invokes condition handlers in the order they are listed to indicate

conditions, which is the term used for notification when certain predefined limits are reached, as

further described in Section 16.11, “Condition Handling”.

Please provide the full-qualified class name of each class that implements the

com.espertech.esper.client.hook.ConditionHandlerFactory interface in the engine

defaults configuration as below.

Revision Event Type

639

The XML configuration is as follows:

<engine-settings>

 <defaults>

 <conditionHandling>

 <handlerFactory class="my.company.cep.MyCEPEngineConditionHandlerFactory"/>

 </conditionHandling>

 </defaults>

</engine-settings>

The API calls to register a condition handler factory are as follows:

Configuration config = new Configuration();

config.getEngineDefaults().getConditionHandling().addClass(MyCEPEngineConditionHandlerFactory.class);

17.4.29. Revision Event Type

Revision event types reflect a versioning relationship between events of same or different event

types. Please refer to Section 2.8, “Updating, Merging and Versioning Events” and Section 6.11,

“Versioning and Revision Event Type Use with Named Windows”.

The configuration consists of the following:

• An name of an event type whose events are base events.

• Zero, one or more names of event types whose events are delta events.

• One or more property names that supply the key values that tie base and delta events to existing

revision events. Properties must exist on the event type as simple properties. Nested, indexed

or mapped properties are not allowed.

• Optionally, a strategy for overlaying or merging properties. The default strategy is Overlay

Declared as described below.

The XML configuration for this setting is shown below:

<revision-event-type name="UserProfileRevisions">

 <base-event-type name="ProfileCreation"/>

 <delta-event-type name="ProfileUpdate"/>

 <key-property name="userid"/>

</revision-event-type>

If configuring via runtime or initialization-time API, this code snippet explains how:

Configuration config = new Configuration();

ConfigurationRevisionEventType configRev = new ConfigurationRevisionEventType();

Chapter 17. Configuration

640

configRev.setNameBaseEventType("ProfileCreation");

configRev.addNameDeltaEventType("ProfileUpdate");

configRev.setKeyPropertyNames(new String[] {"userid"});

config.addRevisionEventType("UserProfileRevisions", configRev);

As the configuration provides names of base and delta event types, such names must be

configured for JavaBean, Map or XML events as the previous sections outline.

The next table outlines the available strategies:

Table 17.5. Property Revision Strategies

Name Description

Overlay Declared

(default)

A fast strategy for revising events that groups properties provided by base

and delta events and overlays contributed properties to compute a revision.

For use when there is a limited number of combinations of properties that

change on an event, and such combinations are known in advance.

The properties available on the output revision events are all properties of

the base event type. Delta event types do not add any additional properties

that are not present on the base event type.

Any null values or non-existing property on a delta (or base) event results in

a null values for the same property on the output revision event.

Merge Declared A strategy for revising events by merging properties provided by base and

delta events, considering null values and non-existing (dynamic) properties

as well.

For use when there is a limited number of combinations of properties that

change on an event, and such combinations are known in advance.

The properties available on the output revision events are all properties of

the base event type plus all additional properties that any of the delta event

types provide.

Any null values or non-existing property on a delta (or base) event results in

a null values for the same property on the output revision event.

Merge Non-null A strategy for revising events by merging properties provided by base and

delta events, considering only non-null values.

For use when there is an unlimited number of combinations of properties that

change on an event, or combinations are not known in advance.

The properties available on the output revision events are all properties of

the base event type plus all additional properties that any of the delta event

types provide.

Variant Stream

641

Name Description

Null values returned by delta (or base) event properties provide no value to

output revision events, i.e. null values are not merged.

Merge Exists A strategy for revising events by merging properties provided by base and

delta events, considering only values supplied by event properties that exist.

For use when there is an unlimited number of combinations of properties that

change on an event, or combinations are not known in advance.

The properties available on the output revision events are all properties of

the base event type plus all additional properties that any of the delta event

types provide.

All properties are treated as dynamic properties: If an event property does

not exist on a delta event (or base) event the property provides no value to

output revision events, i.e. non-existing property values are not merged.

17.4.30. Variant Stream

A variant stream is a predefined stream into which events of multiple disparate event types can

be inserted, and which can be selected from in patterns and the from clause.

The name of the variant stream and, optionally, the type of events that the stream may accept,

are part of the stream definition. By default, the variant stream accepts only the predefined event

types. The engine validates your insert into clause which inserts into the variant stream against

the predefined types.

A variant stream can be set to accept any type of event, in which case all properties of the variant

stream are effectively dynamic properties. Set the type variance flag to ANY to indicate the

variant stream accepts any type of event.

The following XML configuration defines a variant stream by name OrderStream that carries only

PartsOrder and ServiceOrder events:

<variant-stream name="OrderStream">

 <variant-event-type name="PartsOrder"/>

 <variant-event-type name="ServiceOrder"/>

</variant-stream>

This code snippet sets up a variant stream by name OutgoingEvent:

Configuration config = new Configuration();

ConfigurationVariantStream variant = new ConfigurationVariantStream();

variant.setTypeVariance(ConfigurationVariantStream.TypeVariance.ANY);

Chapter 17. Configuration

642

config.addVariantStream("OutgoingEvent", variant);

If specifying variant event type names, make sure such names have been configured for

JavaBean, Map or XML events.

17.5. Type Names

Certain configuration values accept type names. Type names can occur in the configuration of

variable types, Map-event property types as well as XPath cast types, for example. Types names

are not case-sensitive.

The table below outlines all possible type names:

Table 17.6. Variable Type Names

Type Name Type

string, varchar, varchar2 or

java.lang.String

A string value

int, integer or java.lang.Integer An integer value

long or java.lang.Long A long value

bool, boolean or java.lang.Boolean A boolean value

double or java.lang.Double A double value

float or java.lang.Float A float value

short or java.lang.Short A short value

char, character or

java.lang.Character

A character value

byte or java.lang.Byte A byte value

17.6. Runtime Configuration

Certain configuration changes are available to perform on an engine instance while in

operation. Such configuration operations are available via the getConfiguration method on

EPAdministrator, which returns an ConfigurationOperations object. Please consult the

JavaDoc documentation for more detail.

17.7. Logging Configuration

For NEsper .NET also see Section H.18, “.NET Configurations - Logging Configuration”.

Esper logs all messages to SLF4J under an appropriate log level. To output log messages you

can add Log4j and SLF4J-Log4j (1.2) to classpath and configure Log4j as below.

Esper's only direct dependency for logging is the SLF4J interfaces (slf4j-api-x.y.z.jar).

Please see the SLF4J documentation on redirecting logs to other logging frameworks.

Log4j Logging Configuration

643

Statement-level processing information can be output, please see Section 18.3.1, “@Audit

Annotation”.

For performance reasons, Esper does not log any debug-level or informational-level messages

for event execution unless explicitly configured via Section 17.4.15.1, “Execution Path Debug

Logging”.

A callback API for receiving certain critical engine reports is available as described in

Section 16.10, “Exception Handling”.

More information on configuring engine-level settings for logging are at Section 17.4.15, “Engine

Settings related to Logging”.

The next table explains the log levels:

Table 17.7. Log Levels

Log Level Use

Debug Displays detailed engine-internal information that may not be

easy to understand for application developers but are useful for

engine support.

Info Used for a few critical engine-level log messages.

Warn Certain important warning or informational messages are

displayed under the warning level.

Error Exceptions reported within the engine or by plug-in components

are reported under the error level. When users enter invalid EPL

statements such validation errors are not reported as error logs

and are indicated via API exception instead.

17.7.1. Log4j Logging Configuration

Log4j is the default logging component. Please find additional information for Log4j configuration

and extension in http://logging.apache.org/log4j.

The easiest way to configure Log4j is by providing a Log4J configuration file, similar to the

log4j.xml file shipped in the etc folder of the distribution.

Add the log4j.configuration system property to the java command line and provide the file

name of the Log4j configuration file, making sure your classpath also includes the directory of

the file:

java -Dlog4j.configuration=log4j.xml ...

http://logging.apache.org/log4j

644

Chapter 18.

645

Chapter 18. Development Lifecycle
This chapter presents information related to the development lifecycle for developing an event

processing application with EPL. It includes information on authoring, testing, debugging,

packaging and deploying.

18.1. Authoring

Enterprise Edition includes authoring tools for EPL statements and modules by providing form-

based dialogs, templates, an expression builder, simulation tool and other tools. Enterprise Edition

also supports hot deployment and packaging options for EPL and related code.

EPL statements can be organized into modules as described below. Any text editor can edit EPL

statement and module text. A text editor or IDE that highlights SQL syntax or keywords works.

For authoring configuration files please consult the XSD schema files as provided with the

distribution.

For information on authoring event classes or event definitions in general please see Chapter 2,

Event Representations or Section 5.15, “Declaring an Event Type: Create Schema”.

18.2. Testing

We recommend testing EPL statements using a test framework such as JUnit or TestNG. Please

consult the Esper test suite for extensive examples, which can be downloaded from the distribution

site.

Esper's API provides test framework classes to simplify automated testing of EPL statements.

Please see Section 16.20, “Test and Assertion Support” for more information.

We recommend performing latency and throughput tests early in the development lifecycle. Please

consider the performance tips in Chapter 22, Performance for optimal performance.

Consider engine and statement metrics reporting for identifying slow-performing statements, for

example. See Section 16.14, “Engine and Statement Metrics Reporting”.

18.3. Debugging

Enterprise Edition includes a debugger for EPL statement execution.

One important tool for debugging without Enterprise Edition is the parameterized @Audit

annotation. This annotation allows to output, on statement-level, detailed information about many

aspects of statement processing.

Another tool for logging engine-level detail is Section 17.4.15.1, “Execution Path Debug Logging”.

Chapter 18. Development Lifecycle

646

Please see Section 17.7, “Logging Configuration” for information on configuring logging in general.

18.3.1. @Audit Annotation

Use the @Audit annotation to have the engine output detailed information about

statement processing. The engine reports, at INFO level, the information under log name

com.espertech.esper.audit. You may define an output format for audit information via

configuration.

You may provide a comma-separated list of category names to @Audit to output information

related to specific categories only. The table below lists all available categories. If no parameter

is provided, the engine outputs information for all categories. Category names are not case-

sensitive.

For the next statement the engine produces detailed processing information (all categories) for

the statement:

@Name('All Order Events') @Audit select * from OrderEvent

For the next statement the engine provides information about new events and also about event

property values (2 categories are listed):

@Name('All Order Events') @Audit('stream,property') select price from OrderEvent

Here is a more complete example that uses the API to create the schema, create above statement

and send an event:

epService.getEPAdministrator().createEPL("create schema OrderEvent(price

 double)");

String epl = "@Name('All-Order-Events') @Audit('stream,property') select price

 from OrderEvent";

epService.getEPAdministrator().createEPL(epl).addListener(listener);

epService.getEPRuntime().sendEvent(Collections.singletonMap("price", 100d),

 "OrderEvent");

The output is similar to the following:

INFO [audit] Statement All-Order-Events stream OrderEvent inserted {price=100.0}

INFO [audit] Statement All-Order-Events property price value 100.0

Packaging and Deploying Overview

647

Table 18.1. @Audit Categories

Category Description

ContextPartition Each context partition allocation and de-allocation (only for statements that

declare a context).

Dataflow-Source Each data flow source operator providing an event.

Dataflow-Op Each data flow operator processing an event.

Dataflow-

Transition

Each data flow instance state transition.

Exprdef Each expression declaration name and return value.

Expression Each top-level expression and its return value.

Expression-

nested

Each expression including child or nested expressions and their return value.

Insert Each event inserted via insert-into.

Pattern Each pattern sub-expression and its change in truth-value.

Pattern-

instances

Each pattern sub-expression and its count of active instances.

Property Each property name and the event's property value.

Schedule Each schedule modification and trigger received by a statement.

Stream Each new event received by a statement.

View Each view name and its insert and remove stream.

Note that the engine only evaluates select-clause expressions if either a listener or subscriber is

attached to the statement or if used with insert-into.

18.4. Packaging and Deploying Overview

Please consider Esper Enterprise Edition as a target deployment platform. Esper alone does not

ship with a server as it is designed as a core CEP engine.

For un-deploying, deploying or re-deploying single or multiple statements or modules as an atomic

management unit please see Section 16.3.7, “Atomic Statement Management”.

To support packaging and deploying event-driven applications, Esper offers infrastructure as

outlined herein:

• EPL modules to build a cohesive, easily-externalizable deployment unit out of related

statements as described in Section 18.5, “EPL Modules”.

• The deployment administrative interface is described in Section 18.6, “The Deployment

Administrative Interface”.

• Instructions and code for use when the deployment target is a J2EE web application server or

servlet runtime, please see Section 18.7, “J2EE Packaging and Deployment”.

Chapter 18. Development Lifecycle

648

18.5. EPL Modules

An EPL module file is a plain text file in which EPL statements appear separated by the semicolon

(;) character. It bundles EPL statements with optional deployment instructions. A service provider

instance keeps track of the known and/or deployed EPL modules and makes it easy to add,

remove, deploy and un-deploy EPL modules.

The synopsis of an EPL module file is:

[module module_name;]

[uses module_name; | import import_name;] [uses module_name; |

 import import_name;] [...]

[epl_statement;] [epl_statement;] [...]

Use the module keyword followed a module_name identifier or a package (identifiers separated

by dots) to declare the name of the module. The module name declaration must be at the

beginning of the file, comments and whitespace excluded. The module name serves to check

uses-dependences of other modules.

If a module file requires certain constructs that may be shared by other module files, such as

named windows, tables, variables, event types, variant streams or inserted-into streams required

by statements, a module file may specify zero to many dependent modules with the uses keyword.

At deployment time the engine checks the uses-dependencies and ensures that a module of that

name is already deployed or will be deployed as part of the deployments. The deployment API

supports ordering modules according to their uses-relationship.

If the EPL statements in the module require Java classes such as for underlying events or user-

defined functions, use the import keyword followed by the fully-qualified class name or package

name in the format package.*. The uses and import keywords are optional and must occur after

the module declaration.

Following the optional deployment instructions are any number of epl_statement EPL statements

that are separated by semicolon (;).

The following is a sample EPL module file explained in detail thereafter:

// Declare the name for the module

module org.myorganization.switchmonitor;

// Declare other module(s) that this module depends on

uses org.myorganization.common;

// Import any Java/.NET classes in an application package

import org.myorganization.events.*;

// Declare an event type based on a Java class in the package that was imported

 as above

The Deployment Administrative Interface

649

create schema MySwitchEvent as MySwitchEventPOJO;

// Sample statement

@Name('Off-On-Detector')

insert into MyOffOnStream

select * from pattern[every-distinct(id) a=MySwitchEvent(status='off')

 -> b=MySwitchEvent(id=a.id, status='on')];

// Sample statement

@Name('Count-Switched-On')

@Description('Count per switch id of the number of Off-to-On switches in the

 last 1 hour')

select id, count(*) from MyOffOnStream#time(1 hour) group by id;

The example above declares a module name of org.myorganization.switchmonitor. As

defined by the uses keyword, it ensures that the org.myorganization.common module is already

deployed. The example demonstrates the import keyword to make a package name known to

the engine for resolving POJO class names, as the example assumes that MySwitchEventPOJO

is a POJO event class. In addition the example module contains two statements separated by

semicolon characters.

Your application code may, after deployment, look up a statement and attach listeners as shown

here:

epService.getEPAdministrator().getStatement("Count-Switched-

On").addListener(...);

18.6. The Deployment Administrative Interface

The com.espertech.esper.client.deploy.EPDeploymentAdmin service available from the

EPAdministrator interface by method getDeploymentAdmin provides the functionality available

to manage packaging and deployment. Please consult the JavaDoc documentation for more

information.

The deployment API allows to read resources and parse text strings to obtain an object

representation of the EPL module, the Module. A Module object can also be simply constructed.

After your application obtains a Module instance it may either use deploy to deploy the module

directly, starting all statements of the module. Alternatively your application may add a module,

making it known without starting statements for later deployment. In each case the module is

assigned a deployment id, which acts as a unique primary key for all known modules. Your

application may assign its own deployment id or may have the engine generate a deployment id

(two footprints for add and deploy methods).

A module may be in two states: un-deployed or deployed. When calling add to add a module, it

starts life in the un-deployed state. When calling deploy to deploy a module, it starts life in the

Chapter 18. Development Lifecycle

650

deployed state. A module may be transitioned by providing the deployment id and by calling the

deploy or undeploy methods.

Your code can remove a module in un-deployed state using the remove method or the

undeployRemove method. If the module is in deployed state, use undeployRemove to un-deploy

and remove the module.

The DeploymentOptions instance that can be passed to the deploy method when validating or

deploying modules controls validation, fail-fast, rollback and the isolated service provider, if any,

for the deployment. Also use DeploymentOptions to set a user object per statement and to set

a statement name per statement.

Deployment and un-deployment operations are, by default, atomic operations: Events that

come in during deployment or un-deployment are processed after deployment or un-deployment

completed. Using DeploymentOptions you may provide a strategy for obtaining and releasing

the engine-wide lock. Please also see Section 16.3.7, “Atomic Statement Management” for more

information.

We also provide additional sample code to read and deploy modules as part of the J2EE

considerations below.

18.6.1. Reading Module Content

Read and parse module files via the EPDeploymentAdmin interface read and parse methods,

which returns a Module instance to represent the module information.

This code snippet demonstrates reading and parsing a module given a file name:

EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();

EPDeploymentAdmin deployAdmin =

 epService.getEPAdministrator().getDeploymentAdmin();

Module module = deployAdmin.read(new File("switchmonitor.epl"));

The service provides additional read and parse methods to read from a URL, classpath, input

stream or string.

18.6.2. Ordering Multiple Modules

Since modules may have inter-dependencies as discussed under the uses declaration, the

deployment interface provides the getDeploymentOrder method to order a collection of modules

before deployment.

Assuming your application reads multiple modules into a mymodules module list, this code snippet

orders the modules for deployment and validates dependency declarations for each module:

List<Module> mymodules = ... read modules...;

Deploying and Un-deploying

651

DeploymentOrder order = deployAdmin.getDeploymentOrder(mymodules, new

 DeploymentOrderOptions());

18.6.3. Deploying and Un-deploying

The deployment interface returns a deployment id for each module made known by adding a

module or by deploying a module. To un-deploy the module your application must provide the

deployment id. Your application can assign its own deployment id or obtain the module name from

the Module and use that as the deployment id.

The undeploy operation removes all named windows, tables, variables, event types or any other

information associated to the statements within the module to be un-deployed.

The next code snippet deploys modules, starting each modulle's EPL statements:

for (Module mymodule : order.getOrdered()) {

 DeploymentResult deployResult = deployAdmin.deploy(mymodule, new

 DeploymentOptions());

}

Un-deploying a module destroys all started statements associated to the module.

To un-deploy and at the same time remove the module from the list of known modules use the

undeployRemove method and pass the deployment id:

deployAdmin.undeployRemove(deployResult.getDeploymentId());

18.6.4. Listing Deployments

The deployment interface returns all module information that allows your application to determine

which modules are known and their current state.

To obtain a list of all known modules or information for a specific module, the calls are:

DeploymentInformation[] info = deployAdmin.getDeploymentInformation();

// Given a deployment id, return the deployment information

DeploymentInformation infoModule = deployAdmin.getDeploymen(deploymentId);

18.6.5. State Transitioning a Module

The following sample code adds a module, transitions the module to deployed, then un-deploys

and removes the module entirely;

Chapter 18. Development Lifecycle

652

// This sample uses the parse method to obtain a module

Module module = deployAdmin.parse("create schema MySchema (col1 int)";

// Make the module know; It now shows up in un-deployed state

String moduleDeploymentId = deployAdmin.add(module);

// Start all statements, passing a null options object for default options

deployAdmin.deploy(moduleDeploymentId, null);

// Un-deploy module, destroying all statements

deployAdmin.undeploy(moduleDeploymentId);

// Remove module; It will no longer be known

deployAdmin.remove(moduleDeploymentId);

18.6.6. Best Practices

Use the @Name annotation to assign a name to each statement that your application would like

to attach a listener or subscriber, or look up the statement for iteration or management by the

administrative API.

Use the create schema syntax and the import keyword to define event types. When sharing

event types, named windows or variables between modules use the uses keyword to declare a

separate module that holds the shared definitions.

To validate whether a set of statements is complete and can start without issues, set the following

flags on a DeploymentOptions instance passed to the deploy method as the code snippet below

shows:

DeploymentOptions options = new DeploymentOptions();

options.setIsolatedServiceProvider("validation"); // we isolate any statements

options.setValidateOnly(true); // validate leaving no started statements

options.setFailFast(false); // do not fail on first error

epService.getEPAdministrator().getDeploymentAdmin()

 .deploy(module, options);

18.7. J2EE Packaging and Deployment

Esper can well be deployed as part of a J2EE web or enterprise application archive to a web

application server. When designing for deployment into a J2EE web application server, please

consider the items discussed here.

We provide a sample servlet context listener in this section that uses the deployment API to deploy

and un-deploy modules as part of the servlet lifecycle.

J2EE Deployment Considerations

653

The distribution provides a message-driven bean (MDB) example that you may find useful.

Esper does not have a dependency on any J2EE or Servlet APIs to allow the engine to run in

any environment or container.

18.7.1. J2EE Deployment Considerations

As multiple web applications deployed to a J2EE web application server typically have a

separate classloader per application, you should consider whether engine instances need

to be shared between applications or can remain separate engine instances. Consider

the EPServiceProviderManager a Singleton. When deploying multiple web applications,

your J2EE container classloader may provide a separate instance of the Singleton

EPServiceProviderManager to each web application resulting in multiple independent engine

instances.

To share EPServiceProvider instances between web applications, one approach is to

add the Esper jar files to the system classpath. A second approach can be to have

multiple web applications share the same servet context and have your application place the

EPServiceProvider instance into a servlet context attribute for sharing. Architecturally you may

also consider a single archived application (such as an message-driven bean) that all your web

applications communicate to via the JMS broker provided by your application server or an external

JMS broker.

As per J2EE standards there are restrictions in regards to starting new threads in J2EE application

code. Esper adheres to these restrictions: It allows to be driven entirely by external events. To

remove all Esper threads, set the internal timer off and leave the advanced threading options

turned off. To provide timer events when the internal timer is turned off, you should check with

your J2EE application container for support of the Java system timer or for support of batch or

work loading to send timer events to an engine instance.

As per J2EE standards there are restrictions in regards to input and output by J2EE application

code. Esper adheres to these restrictions: By itself it does not start socket listeners or performs

any file IO.

18.7.2. Servlet Context Listener

When deploying a J2EE archive that contains EPL modules files we provide sample code to read

and deploy EPL modules files packaged with the enterprise or web application archive when the

servlet initializes. The sample un-deploys EPL modules when the servlet context gets destroyed.

A sample web.xml configuration extract is:

<?xml version="1.0" encoding="UTF-8"?>

<web-app>

 <listener>

 <listener-class>SampleServletListener</listener-class>

 </listener>

 <context-param>

Chapter 18. Development Lifecycle

654

 <param-name>eplmodules</param-name>

 <param-value>switchmonitor.epl</param-value>

</context-param>

</web-app>

A servet listener that deploys EPL module files packaged into the archive on context initialization

and that un-deploys when the application server destroys the context is shown here:

public class SampleServletListener implements ServletContextListener {

 private List<String> deploymentIds = new ArrayList<String>();

 public void contextInitialized(ServletContextEvent servletContextEvent) {

 try {

 EPServiceProvider epServiceProvider =

 EPServiceProviderManager.getDefaultProvider();

 String modulesList =

 servletContextEvent.getServletContext().getInitParameter("eplmodules");

 List<Module> modules = new ArrayList<Module>();

 if (modulesList != null) {

 String[] split = modulesList.split(",");

 for (int i = 0; i < split.length; i++) {

 String resourceName = split[i].trim();

 if (resourceName.length() == 0) {

 continue;

 }

 String realPath =

 servletContextEvent.getServletContext().getRealPath(resourceName);

 Module module = epServiceProvider.getEPAdministrator()

 .getDeploymentAdmin().read(new File(realPath));

 modules.add(module);

 }

 }

 // Determine deployment order

 DeploymentOrder order = epServiceProvider.getEPAdministrator()

 .getDeploymentAdmin().getDeploymentOrder(modules, null);

 // Deploy

 for (Module module : order.getOrdered()) {

 DeploymentResult result = epServiceProvider.getEPAdministrator()

 .getDeploymentAdmin().deploy(module, new DeploymentOptions());

 deploymentIds.add(result.getDeploymentId());

 }

 }

 catch (Exception ex) {

 ex.printStackTrace();

Monitoring and JMX

655

 }

 }

 public void contextDestroyed(ServletContextEvent servletContextEvent) {

 EPServiceProvider epServiceProvider =

 EPServiceProviderManager.getDefaultProvider();

 for (String deploymentId : deploymentIds) {

 epServiceProvider.getEPAdministrator().getDeploymentAdmin().undeployRemove(deploymentId);

 }

 }

}

18.8. Monitoring and JMX

The engine can report key processing metrics through the JMX platform mbean server by setting

a single configuration flag described in Section 17.4.22, “Engine Settings related to JMX Metrics”.

Engine and statement-level metrics reporting is described in Section 16.14, “Engine and

Statement Metrics Reporting”.

656

Chapter 19.

657

Chapter 19. Integration and

Extension

19.1. Overview

This chapter summarizes integration and describes in detail each of the extension APIs that allow

integrating external data and/or extend engine functionality.

For information on calling external services via instance method invocation, for instance

to integrate with dependency injection frameworks such as Spring or Guice, please see

Section 5.17.5, “Class and Event-Type Variables”.

For information on input and output adapters that connect to an event transport and perform

event transformation for incoming and outgoing on-the-wire event data, for use with streaming

data, please see the EsperIO reference documentation. The data flow instances as described in

Chapter 15, EPL Reference: Data Flow are an easy way to plug in operators that perform input

and output. Data flows allow providing parameters and managing individual flows independent

of engine lifecycle. Also consider using the Plug-in Loader API for creating a new adapter that

starts or stops as part of the CEP engine initialization and destroy lifecycle, see Section 16.16,

“Plug-in Loader”.

To join data that resides in a relational database and that is accessible via JDBC driver and SQL

statement the engine offers a syntax for using SQL within EPL, see Section 5.13, “Accessing

Relational Data via SQL”. A relational database input and output adapter for streaming input from

and output to a relational database also exists (EsperIO).

To join data that resides in a non-relational store the engine offers a two means: First, the virtual

data window, as described below, for transparently integrating the external store as a named

window. The second mechanism is a special join syntax based on static method invocation, see

Section 5.14, “Accessing Non-Relational Data via Method, Script or UDF Invocation”.

Tip

The best way to test that your extension code works correctly is to write unit

tests against an EPL statement that utilizes the extension code. Samples can be

obtained from Esper regression test code base.

Note

For all extension code and similar to listeners and subscribers, to send events

into the engine from extension code the route method should be used (and

Chapter 19. Integration and E...

658

not sendEvent) to avoid the possibility of stack overflow due to event-callback

looping and ensure correct processing of the current and routed event. Note that

if outbound-threading is enabled, listeners and subscribers should use sendEvent

and not route.

Note

For all extension code it is not safe to administrate the engine within the extension

code. For example, it is not safe to implement a data window view that creates a

new statement or destroys an existing statement.

19.2. Virtual Data Window

Use a virtual data window if you have a (large) external data store that you want to access as

a named window. The access is transparent: There is no need to use special syntax or join

syntax. All regular queries including subqueries, joins, on-merge, on-select, on-insert, on-delete,

on-update and fire-and-forget are supported with virtual data windows.

There is no need to keep any data or events in memory with virtual data windows. The only

requirement for virtual data windows is that all data rows returned are EventBean instances.

When implementing a virtual data window it is not necessary to send any events into the engine

or to use insert-into. The event content is simply assumed to exist and accessible to the engine

via the API implementation you provide.

The distribution ships with a sample virtual data window in the examples folder under the name

virtualdw. The code snippets below are extracts from the example.

We use the term store here to mean a source set of data that is managed by the virtual data

window. We use the term store row or just row to mean a single data item provided by the store. We

use the term lookup to mean a read operation against the store returning zero, one or many rows.

Virtual data windows allow high-performance low-latency lookup by exposing all relevant EPL

query access path information. This makes it possible for the virtual data window to choose the

desired access method into its store.

The following steps are required to develop and use a virtual data window:

1. Implement the interface com.espertech.esper.client.hook.VirtualDataWindowFactory.

2. Implement the interface com.espertech.esper.client.hook.VirtualDataWindow.

3. Implement the interface com.espertech.esper.client.hook.VirtualDataWindowLookup.

4. Register the factory class in the engine configuration.

Once you have completed above steps, the virtual data window is ready to use in EPL statements.

How to Use

659

From a threading perspective, virtual data window implementation classes must be thread-safe if

objects are shared between multiple named windows. If no objects are shared between multiple

different named windows, thereby each object is only used for the same named window and other

named windows receive a separate instance, it is no necessary that the implementation classes

are thread-safe.

19.2.1. How to Use

Your application must first register the virtual data window factory as part of engine configuration:

Configuration config = new Configuration();

config.addPlugInVirtualDataWindow("sample", "samplevdw",

 SampleVirtualDataWindowFactory.class.getName());

Your application may then create a named window backed by a virtual data window.

For example, assume that the SampleEvent event type is declared as follows:

create schema SampleEvent as (key1 string, key2 string, value1 int, value2 double)

The next EPL statement creates a named window MySampleWindow that provides SampleEvent

events and is backed by a virtual data window provided by SampleVirtualDataWindowFactory

as configured above:

create window MySampleWindow.sample:samplevdw() as SampleEvent

You may then access the named window, same as any other named window, for example by

subquery, join, on-action, fire-and-forget query or by consuming its insert and remove stream.

While this example uses Map-type events, the example code is the same for POJO or other events.

Your application may obtain a reference to the virtual data window from the engine context.

This code snippet looks up the virtual data window by the named window name:

try {

 return (VirtualDataWindow) epService.getContext().lookup("/virtualdw/

MySampleWindow");

}

catch (NamingException e) {

 throw new RuntimeException("Failed to look up virtual data window, is it

 created yet?");

}

Chapter 19. Integration and E...

660

19.2.1.1. Query Access Path

When you application registers a subquery, join or on-action query or executes a fire-and-forget

query against a virtual data window the engine interacts with the virtual data window. The

interaction is a two-step process.

At time of EPL statement creation (once), the engine analyzes the EPL where-clause, if present.

It then compiles a list of hash-index and binary tree (btree, i.e. sorted) index properties. It passes

the property names that are queried as well as the operators (i.e. =, >, range etc.) to the virtual

data window. The virtual data window returns a lookup strategy object to the engine.

At time of EPL statement execution (repeatedly as triggered) , the engine uses that lookup strategy

object to execute a lookup. It passes to the lookup all actual key values (hash, btree including

ranges) to make fast and efficient lookup achievable.

To explain in detail, assume that your application creates an EPL statement with a subquery as

follows:

select (select * from MySampleWindow where key1 = 'A1') from OtherEvent

At the time of creation of the EPL query above the engine analyzes the EPL query. It determines

that the subquery queries a virtual data window. It determines from the where-clause that the

lookup uses property key1 and hash-equals semantics. The engine then provides this information

as part of VirtualDataWindowLookupContext passed to the getLookup method. Your application

may inspect hash and btree properties and may determine the appropriate store access method

to use.

The hash and btree property lookup information is for informational purposes, to enable fast

and performant queries that returns the smallest number of rows possible. Your implementation

classes may use some or none of the information provided and may also instead return some or

perhaps even all rows, as is practical to your implementation. The where-clause still remains in

effect and gets evaluated on all rows that are returned by the lookup strategy.

Following the above example, the sub-query executes once when a OtherEvent event arrives. At

time of execution the engine delivers the string value A1 to the VirtualDataWindowLookup lookup

implementation provided by your application. The lookup object queries the store and returns store

rows as EventBean instances.

As a second example, consider an EPL join statement as follows:

select * from MySampleWindow, MyTriggerEvent where key1 = trigger1 and key2 =

 trigger2

The engine analyzes the query and passes to the virtual data window the information that

the lookup occurs on properties key1 and key2 under hash-equals semantics. When a

Implementing the Factory

661

MyTriggerEvent arrives, it passes the actual value of the trigger1 and trigger2 properties of

the current MyTriggerEvent to the lookup.

As a last example, consider an EPL fire-and-forget statement as follows:

select * from MySampleWindow key1 = 'A2' and value1 between 0 and 1000

The engine analyzes the query and passes to the virtual data window the lookup information.

The lookup occurs on property key1 under hash-equals semantics and on property value1 under

btree-open-range semantics. When you application executes the fire-and-forget query the engine

passes A2 and the range endpoints 0 and 1000 to the lookup.

For more information, please consult the JavaDoc API

documentation for class com.espertech.esper.client.hook.VirtualDataWindow,

VirtualDataWindowLookupContext or VirtualDataWindowLookupFieldDesc.

19.2.2. Implementing the Factory

For each named window that refers to the virtual data window, the engine instantiates one instance

of the factory.

A virtual data window factory class is responsible for the following functions:

• Implement the initialize method that accepts a virtual data window factory context object

as a parameter.

• Implement the create method that accepts a virtual data window context object as a parameter

and returns a VirtualDataWindow implementation.

• Implement the destroyAllContextPartitions method that gets called once when the named

window is stopped or destroyed.

The engine instantiates a VirtualDataWindowFactory instance for each named window created

via create window. The engine invokes the initialize method once in respect to the named

window being created passing a VirtualDataWindowFactoryContext context object.

If not using contexts, the engine calls the create method once after calling the initialize

method. If using contexts, the engine calls the create method every time it allocates a context

partition. If using contexts and your virtual data window implementation operates thread-safe,

you may return the same virtual data window implementation object for each context partition. If

using contexts and your implementation object is not thread safe, return a separate thread-safe

implementation object for each context partition.

The engine invokes the destroyAllContextPartitions once when the named window is

stopped or destroyed. If not using contexts, the engine calls the destroy method of the virtual

data window implementation object before calling the destroyAllContextPartitions method

Chapter 19. Integration and E...

662

on the factory object. If using contexts, the engine calls the destroy method on each instance

associates to a context partition at the time when the associated context partition terminates.

The sample code shown here can be found among the examples in the distribution under

virtualdw:

public class SampleVirtualDataWindowFactory implements VirtualDataWindowFactory

 {

 public void initialize(VirtualDataWindowFactoryContext factoryContext) {

 // Can add initialization logic here.

 }

 public VirtualDataWindow create(VirtualDataWindowContext context) {

 // This example allocates a new virtual data window (one per context partitions

 if using contexts).

 // For sharing the virtual data window instance between context partitions,

 return the same reference.

 return new SampleVirtualDataWindow(context);

 }

 public void destroyAllContextPartitions() {

 // Release shared resources here

 }

}

Your factory class must implement the create method which receives a

VirtualDataWindowContext object. This method is called once for each EPL that creates a virtual

data window (see example create window above).

The VirtualDataWindowContext provides to your application:

String namedWindowName; // Name of named window being created.

Object[] parameters; // Any optional parameters provided as part of create-

window.

EventType eventType; // The event type of events.

EventBeanFactory eventFactory; // A factory for creating EventBean instances

 from store rows.

VirtualDataWindowOutStream outputStream; // For stream output to consuming

 statements.

AgentInstanceContext agentInstanceContext; // Other EPL statement information

 in statement context.

When using contexts you can decide whether your factory returns a new virtual data window for

each context partition or returns the same virtual data window instance for all context partitions.

Implementing the Virtual Data Window

663

Your extension code may refer to the named window name to identify the named window and

may refer to the agent instance context that holds the agent instance id which is the id of the

context partition.

19.2.3. Implementing the Virtual Data Window

A virtual data window implementation is responsible for the following functions:

• Accept the lookup context object as a parameter and return the VirtualDataWindowLookup

implementation.

• Optionally, post insert and remove stream data.

• Implement the destroy method, which the engine calls for each context partition when the

named window is stopped or destroyed, or once when a context partition is ended/terminated.

The sample code shown here can be found among the examples in the distribution under

virtualdw.

The implementation class must implement the VirtualDataWindow interface like so:

public class SampleVirtualDataWindow implements VirtualDataWindow {

 private final VirtualDataWindowContext context;

 public SampleVirtualDataWindow(VirtualDataWindowContext context) {

 this.context = context;

 } ...

When the engine compiles an EPL statement and detects a virtual data window, the

engine invokes the getLookup method indicating hash and btree access path information

by passing a VirtualDataWindowLookupContext context. The lookup method must return a

VirtualDataWindowLookup implementation that the EPL statement uses for all lookups until the

EPL statement is stopped or destroyed.

The sample implementation does not use the hash and btree access path information and simply

returns a lookup object:

public VirtualDataWindowLookup getLookup(VirtualDataWindowLookupContext desc) {

 // Place any code that interrogates the hash-index and btree-index fields here.

 // Return the lookup strategy.

 return new SampleVirtualDataWindowLookup(context);

}

Chapter 19. Integration and E...

664

If your virtual data window returns null instead of a lookup object, the EPL query creation fails and

throws an EPStatementException.

The engine calls the update method when data changes because of on-merge, on-delete, on-

update or insert-into. For example, if you have an on-merge statement that is triggered and that

updates the virtual data window, the newData parameter receives the new (updated) event and

the oldData parameters receives the event prior to the update. Your code may use these events

to update the store or delete from the store, if needed.

If your application plans to consume data from the virtual data window, for example via select *

from MySampleWindow, then the code must implement the update method to forward insert and

remove stream events, as shown below, to receive the events in consuming statements. To post

insert and remove stream data, use the VirtualDataWindowOutStream provided by the context

object as follows.

public void update(EventBean[] newData, EventBean[] oldData) {

 // This sample simply posts into the insert and remove stream what is received.

 context.getOutputStream().update(newData, oldData);

}

Your application should not use VirtualDataWindowOutStream to post new events that originate

from the store. The object is intended for use with on-action EPL statements. Use insert-into

instead for any new events that originate from the store.

19.2.4. Implementing the Lookup

A lookup implementation is responsible for the following functions:

• Accept the lookup values as a parameter and return a set of EventBean instances.

The sample code shown here can be found among the examples in the distribution under

virtualdw.

The implementation class must implement the VirtualDataWindowLookup interface:

public class SampleVirtualDataWindowLookup implements VirtualDataWindowLookup {

 private final VirtualDataWindowContext context;

 public SampleVirtualDataWindowLookup(VirtualDataWindowContext context) {

 this.context = context;

 } ...

Single-Row Function

665

When an EPL query fires, the engine invokes the lookup and provides the actual lookup values.

The lookup values are provided in the same exact order as the access path information that the

engine provided when obtaining the lookup.

Each store row must be wrapped as an EventBean instance. The context object provides an

EventBeanFactory implementation returned by getEventFactory() that can be used to wrap

rows.

The sample implementation does not use the lookup values and simply returns a hardcoded

sample event:

public Set<EventBean> lookup(Object[] lookupValues) {

 // Add code to interogate lookup values here.

 // Create sample event.

 // This example uses Map events; Other underlying events such as POJO are

 exactly the same code.

 Map<String, Object> eventData = new HashMap<String, Object>();

 eventData.put("key1", "sample1");

 eventData.put("key2", "sample2");

 eventData.put("value1", 100);

 eventData.put("value2", 1.5d);

 EventBean event = context.getEventFactory().wrap(eventData);

 return Collections.singleton(event);

}

The lookupValues object array represents all actual joined property values or expression results

if you where-clause criteria are expressions. The code may use these keys to for efficient store

access.

When a key value is a range, the key value is an instance of VirtualDataWindowKeyRange.

19.3. Single-Row Function

Single-row functions return a single value. They are not expected to aggregate rows but instead

should be stateless functions. These functions can appear in any expressions and can be passed

any number of parameters.

The following steps are required to develop and use a custom single-row function with Esper.

1. Implement a class providing one or more public static methods accepting the number and type

of parameters as required.

2. Register the single-row function class and method name with the engine by supplying a function

name, via the engine configuration file or the configuration API.

You may not override a built-in function with a single-row function provided by you. The single-

row function you register must have a different name then any of the built-in functions.

Chapter 19. Integration and E...

666

An example single-row function can also be found in the examples under the runtime configuration

example.

19.3.1. Implementing a Single-Row Function

Single-row function classes have no further requirement then provide a public static method.

The following sample single-row function simply computes a percentage value based on two

number values.

This sample class provides a public static method by name computePercent to return a

percentage value:

public class MyUtilityClass {

 public static double computePercent(double amount, double total) {

 return amount / total * 100;

 }

}

19.3.2. Configuring the Single-Row Function Name

The class name of the class, the method name and the function name of the new single-row

function must be added to the engine configuration via the configuration API or using the XML

configuration file. The configuration shown below is XML however the same options are available

through the runtime and static configuration API:

<esper-configuration

 <plugin-singlerow-function name="percent"

 function-class="mycompany.MyUtilityClass" function-method="computePercent" /

>

</esper-configuration>

Note that the function name and method name need not be the same.

The new single-row function is now ready to use in a statement:

select percent(fulfilled,total) from MyEvent

When selecting from a single stream, you may also pass wildcard to the single-row function and

the function receives the underlying event:

select percent(*) from MyEvent

Value Cache

667

If the single-row function returns an object that provides further functions, you may chain function

calls.

The following demonstrates a chained single-row function. The example assumes that a single-

row function by name calculator returns an object that provides the add function which accepts

two parameters:

select calculator().add(5, amount) from MyEvent

19.3.3. Value Cache

When a single-row function receives parameters that are all constant values or expressions that

themselves receive only constant values, Esper can pre-evaluate the result of the single-row

function at time of statement creation. By default, Esper does not pre-evaluate the single-row

function unless you configure the value cache as enabled.

The following configuration XML enables the value cache for the single-row function:

<esper-configuration

 <plugin-singlerow-function name="getDate"

 function-class="mycompany.DateUtil" function-method="parseDate"

 value-cache="enabled" />

</esper-configuration>

When the single-row function receives constants as parameters, the engine computes the result

once and returns the cached result for each evaluation:

select getDate('2002-05-30T9:00:00.000') from MyEvent

19.3.4. Single-Row Functions in Filter Predicate Expressions

Your EPL may use plug-in single row functions among the predicate expressions as part of the

filters in a stream or pattern.

For example, the EPL below uses the function computeHash as part of a predicate expression:

select * from MyEvent(computeHash(field) = 100)

When you have many EPL statements or many context partitions that refer to the same function,

event type and parameters in a predicate expression, the engine may optimize evaluation: The

function gets evaluated only once per event.

Chapter 19. Integration and E...

668

While the optimization is enabled by default for all plug-in single row functions, you can also disable

the optimization for a specific single-row function. By disabling the optimization for a single-row

function the engine may use less memory to identify reusable function footprints but may cause

the engine to evaluate each function more frequently then necessary.

The following configuration XML disables the filter optimization for a single-row function (by default

it is enabled):

<esper-configuration

 <plugin-singlerow-function name="computeHash"

 function-class="mycompany.HashUtil" function-method="computeHash"

 filter-optimizable="disabled" />

</esper-configuration>

19.3.5. Single-Row Functions Taking Events as Parameters

Esper allows parameters to a single-row function to be events. In this case, declare the method

parameter type to either take EventBean, Collection<EventBean> or the underlying class as a

parameter.

Sample method footprints are:

public static double doCompute(EventBean eventBean) {...}

public static boolean doCheck(MyEvent myEvent, String text) {...}

public static String doSearch(Collection<EventBean> events) {...}

To pass the event, specify the stream alias, or wildcard (*) or the tag name when used in a pattern.

The EPL below shows example uses:

select * from MyEvent(doCompute(me) = 100) as me

select * from MyEvent where doCompute(*) = 100

select * from pattern[a=MyEvent -> MyEvent(doCheck(a, 'sometext'))]

select * from MyEvent#time(1 min) having doCompute(last(*))]

Single-Row Functions Returning Events

669

select * from MyEvent#time(1 min) having doSearch(window(*))]

Declare the method parameter as Collection<EventBean> if the method expects an expression

result that returns multiple events.

Declare the method parameter as EventBean if the method expects an expression result that

returns a single event.

19.3.6. Single-Row Functions Returning Events

A single-row function may return events. Please declare your single-row function method to return

Collection<EventBean> or EventBean[] and configure the event type name.

For example, assuming there is an MyItem event type such as created via create schema

MyItem(id string):

public static EventBean[] myItemProducer(String string,

 EPLMethodInvocationContext context) {

 String[] split = string.split(",");

 EventBean[] events = new EventBean[split.length];

 for (int i = 0; i < split.length; i++) {

 events[i] =

 context.getEventBeanService().adapterForMap(Collections.singletonMap("id",

 split[i]), "MyItem");

 }

 return events;

}

The sample EPL queries items filtering those items that have a given value for the id field:

select myItemProducer(ordertext).where(v => v.id in ('id1', 'id3')) as c0 from

 Order

This sample code register the myItemProducer function as a single-row function with an event

type name:

ConfigurationPlugInSingleRowFunction entry = new

 ConfigurationPlugInSingleRowFunction();

entry.setName("myItemProducer");

entry.setFunctionClassName(...);

entry.setFunctionMethodName(...);

entry.setEventTypeName("MyItem");

Chapter 19. Integration and E...

670

epService.getEPAdministrator().getConfiguration().addPlugInSingleRowFunction(entry);

If your single row function returns EventBean[] and is used with enumeration methods the

configuration must provide an event type name.

19.3.7. Receiving a Context Object

Esper can pass an object containing contextual information such as statement name, function

name, engine URI and context partition id to your method. The container for this information

is EPLMethodInvocationContext in package com.espertech.esper.client.hook. Please

declare your method to take EPLMethodInvocationContext as the last parameter. The engine

then passes the information along.

A sample method footprint and EPL are shown below:

public static double computeSomething(double number, EPLMethodInvocationContext

 context) {...}

select computeSomething(10) from MyEvent

19.3.8. Exception Handling

By default the engine logs any exceptions thrown by the single row function and returns a null

value. To have exceptions be re-thrown instead, which makes exceptions visible to any registered

exception handler, please configure as discussed herein.

Set the rethrow-exceptions flag in the XML configuration or the rethrowExceptions flag in the

API when registering the single row function to have the engine re-throw any exceptions that the

single row function may throw.

19.4. Derived-value and Data Window View

Views in Esper are used to derive information from an event stream, and to represent data

windows onto an event stream. This chapter describes how to plug-in a new, custom view.

The following steps are required to develop and use a custom view with Esper.

1. Implement a view factory class. View factories are classes that accept and check view

parameters and instantiate the appropriate view class.

2. Implement a view class. A view class commonly represents a data window or derives new

information from a stream.

3. Configure the view factory class supplying a view namespace and name in the engine

configuration file.

Implementing a View Factory

671

The example view factory and view class that are used in this chapter can be found in the

examples source folder in the OHLC (open-high-low-close) example. The class names are

OHLCBarPlugInViewFactory and OHLCBarPlugInView.

Views can make use of the following engine services available via StatementServiceContext:

• The SchedulingService interface allows views to schedule timer callbacks to a view

• The EventAdapterService interface allows views to create new event types and event

instances of a given type.

• The StatementStopService interface allows view to register a callback that the engine invokes

to indicate that the view's statement has been stopped

Section 19.4.3, “View Contract” outlines the requirements for correct behavior of a your custom

view within the engine.

Note that custom views may use engine services and APIs that can be subject to change between

major releases. The engine services discussed above and view APIs are considered part of the

engine internal public API and are stable. Any changes to such APIs are disclosed through the

release change logs and history. Please also consider contributing your custom view to the Esper

project team by submitting the view code through the mailing list or via a JIRA issue.

19.4.1. Implementing a View Factory

A view factory class is responsible for the following functions:

• Accept zero, one or more view parameters. View parameters are themselves expressions. The

view factory must validate and evaluate these expressions.

• Instantiate the actual view class.

• Provide information about the event type of events posted by the view.

View factory classes simply subclass com.espertech.esper.view.ViewFactorySupport:

public class OHLCBarPlugInViewFactory extends ViewFactorySupport { ...

Your view factory class must implement the setViewParameters method to accept and parse view

parameters. The next code snippet shows an implementation of this method. The code checks

the number of parameters and retains the parameters passed to the method:

public class OHLCBarPlugInViewFactory extends ViewFactorySupport {

 private ViewFactoryContext viewFactoryContext;

 private List<ExprNode> viewParameters;

 private ExprNode timestampExpression;

 private ExprNode valueExpression;

 public void setViewParameters(ViewFactoryContext viewFactoryContext,

 List<ExprNode> viewParameters) throws ViewParameterException {

Chapter 19. Integration and E...

672

 this.viewFactoryContext = viewFactoryContext;

 if (viewParameters.size() != 2) {

 throw new ViewParameterException(

 "View requires a two parameters: " +

 "the expression returning timestamps and the expression supplying

 OHLC data points");

 }

 this.viewParameters = viewParameters;

 }

 ...

After the engine supplied view parameters to the factory, the engine will ask the view to attach

to its parent view and validate any parameter expressions against the parent view's event type.

If the view will be generating events of a different type then the events generated by the parent

view, then the view factory can create the new event type in this method:

public void attach(EventType parentEventType,

 StatementContext statementContext,

 ViewFactory optionalParentFactory,

 List<ViewFactory> parentViewFactories) throws ViewParameterException {

 ExprNode[] validatedNodes = ViewFactorySupport.validate("OHLC view",

 parentEventType, statementContext, viewParameters, false);

 timestampExpression = validatedNodes[0];

 valueExpression = validatedNodes[1];

 if ((timestampExpression.getExprEvaluator().getType() != long.class) &&

 (timestampExpression.getExprEvaluator().getType() != Long.class)) {

 throw new ViewParameterException(

 "View requires long-typed timestamp values in parameter 1");

 }

 if ((valueExpression.getExprEvaluator().getType() != double.class) &&

 (valueExpression.getExprEvaluator().getType() != Double.class)) {

 throw new ViewParameterException(

 "View requires double-typed values for in parameter 2");

 }

}

Finally, the engine asks the view factory to create a view instance, and asks for the type of event

generated by the view:

public View makeView(AgentInstanceViewFactoryChainContext

 agentInstanceViewFactoryContext) {

Implementing a View

673

 return new OHLCBarPlugInView(agentInstanceViewFactoryContext,

 timestampExpression, valueExpression);

}

public EventType getEventType() {

 return

 OHLCBarPlugInView.getEventType(viewFactoryContext.getEventAdapterService());

}

19.4.2. Implementing a View

A view class is responsible for:

• The setParent method informs the view of the parent view's event type

• The update method receives insert streams and remove stream events from its parent view

• The iterator method supplies an (optional) iterator to allow an application to pull or request

results from an EPStatement

• The cloneView method must make a configured copy of the view to enable the view to work in

a grouping context together with a std:groupwin parent view

View classes simply subclass com.espertech.esper.view.ViewSupport:

public class MyTrendSpotterView extends ViewSupport { ...

Your view's update method will be processing incoming (insert stream) and outgoing (remove

stream) events posted by the parent view (if any), as well as providing incoming and outgoing

events to child views. The convention required of your update method implementation is that the

view releases any insert stream events (EventBean object references) which the view generates

as reference-equal remove stream events (EventBean object references) at a later time.

The view implementation must call the updateChildren method to post outgoing insert and

remove stream events. Similar to the update method, the updateChildren method takes insert

and remove stream events as parameters.

A sample update method implementation is provided in the OHLC example.

19.4.3. View Contract

The update method must adhere to the following conventions, to prevent memory leaks and to

enable correct behavior within the engine:

• A view implementation that posts events to the insert stream must post unique EventBean object

references as insert stream events, and cannot post the same EventBean object reference

Chapter 19. Integration and E...

674

multiple times. The underlying event to the EventBean object reference can be the same object

reference, however the EventBean object reference posted by the view into the insert stream

must be a new instance for each insert stream event.

• If the custom view posts a continuous insert stream, then the views must also post a continuous

remove stream (second parameter to the updateChildren method). If the view does not post

remove stream events, it assumes unbound keep-all semantics.

• EventBean events posted as remove stream events must be the same object reference as the

EventBean events posted as insert stream by the view. Thus remove stream events posted

by the view (the EventBean instances, does not affect the underlying representation) must be

reference-equal to insert stream events posted by the view as part of an earlier invocation of

the update method, or the same invocation of the update method.

• EventBean events represent a unique observation. The values of the observation can be the

same, thus the underlying representation of an EventBean event can be reused, however event

property values must be kept immutable and not be subject to change.

• Array elements of the insert and remove stream events must not carry null values. Array size

must match the number of EventBean instances posted. It is recommended to use a null value

for no insert or remove stream events rather then an empty zero-size array.

Your view implementation can register a callback indicating when a statement using the view,

or a context partition using the view, is stopped or terminated. Your view code must implement,

or provide an implementation, of the com.espertech.esper.util.StopCallback interface.

Register the stop callback in order for the engine to invoke the callback:

agentInstanceContext.getTerminationCallbacks().add(this);

Please refer to the sample views for a code sample on how to implement iterator and cloneView

methods.

In terms of multiple threads accessing view state, there is no need for your custom view factory

or view implementation to perform any synchronization to protect internal state. The iterator of

the custom view implementation does also not need to be thread-safe. The engine ensures the

custom view executes in the context of a single thread at a time. If your view uses shared external

state, such external state must be still considered for synchronization when using multiple threads.

19.4.4. Configuring View Namespace and Name

The view factory class name as well as the view namespace and name for the new view must

be added to the engine configuration via the configuration API or using the XML configuration

file. The configuration shown below is XML however the same options are available through the

configuration API:

<esper-configuration

 <plugin-view namespace="custom" name="ohlc"

Requirement for Data Window Views

675

 factory-class="com.espertech.esper.example.ohlc.OHLCBarPlugInViewFactory" /

>

</esper-configuration>

The new view is now ready to use in a statement:

select * from StockTick.custom:ohlc(timestamp, price)

Note that the view must implement additional interfaces if it acts as a data window view, or works

in a grouping context, as discussed in detail below.

19.4.5. Requirement for Data Window Views

Your custom view may represent an expiry policy and may retain events and thus act as a data

window view. In order to allow the engine to validate that your view can be used with named

windows, which allow only data window views, this section documents any additional requirement

that your classes must fulfill.

Your view factory class must implement the

com.espertech.esper.view.DataWindowViewFactory interface. This marker interface (no

methods required) indicates that your view factory provides only data window views.

Your view class must implement the com.espertech.esper.view.DataWindowView interface.

This interface indicates that your view is a data window view and therefore eligible to be used

in any construct that requires a data window view. The DataWindowView interface extends

the ViewDataVisitable interface. Please provide an empty implementation method for the

visitView method as required by ViewDataVisitable (the default behavior is sufficient).

19.4.6. Requirement for Derived-Value Views

Your custom view may compute derived information from the arriving stream, instead of retaining

events, and thus act as a derived-value view.

Your view class should implement the com.espertech.esper.view.DerivedValueView

interface. This marker interface indicates that your view is a derived-value view, affecting correct

behavior of the view when used in joins.

19.4.7. Requirement for Grouped Views

Grouped views are views that operate under the std:groupwin view. When operating under one

or more std:groupwin views, the engine instantiates a single view instance when the statement

starts, and a new view instance per group criteria dynamically as new group criteria become

known.

The next statement shows EPL for using a view instance per grouping criteria:

Chapter 19. Integration and E...

676

select * from StockTick#groupwin(symbol).custom:trendspotter(price)

Your view must implement the com.espertech.esper.view.CloneableView interface to indicate

your view may create new views. This code snippet shows a sample implementation of the

cloneView method required by the interface:

public View cloneView() {

 return new MyPlugInView(...); // pass any parameters along

}

19.5. Aggregation Function

Aggregation functions are stateful functions that aggregate events, event property values or

expression results. Examples for built-in aggregation functions are count(*), sum(price *

volume), window(*) or maxby(volume).

Esper allows two different ways for your application to provide aggregation functions. We use

the name aggregation single-function and aggregation multi-function for the two independent

extension APIs for aggregation functions.

The aggregation single-function API is simple to use however it imposes certain restrictions on

how expressions that contain aggregation functions share state and are evaluated.

The aggregation multi-function API is more powerful and provides control over how expressions

that contain aggregation functions share state and are evaluated.

The next table compares the two aggregation function extension API's:

Table 19.1. Aggregation Function Extension API's

Single-Function Multi-Function

Return Value Can only return a single value

or object. Cannot return an

EventBean event, collection of

EventBean events or collection

or array of values for use

with enumeration methods, for

example.

Can return an EventBean event, a

collection of EventBean events or

a collection or array of objects for

use with enumeration methods or

to access event properties.

Complexity of API Simple (consists of 2 interfaces). More complex (consists of 6

interfaces).

State Sharing State and parameter evaluation

shared if multiple aggregation

State and parameter evaluation

sharable when multiple

Aggregation Single-Function Development

677

Single-Function Multi-Function

functions of the same name in

the same statement (and context

partition) take the exact same

parameter expressions.

aggregation functions of a related

name (related thru configuration)

for the same statement (and

context partition) exist, according

to a sharing-key provided by your

API implementation.

Function Name Each aggregation function

expression receives its own

factory object.

Multiple related aggregation

function expressions share a

single factory object.

Distinct Keyword Handled by the engine

transparently.

Indicated to the API

implementation only.

The following sections discuss developing an aggregation single-function first, followed by the

subject of developing an aggregation multi-function.

Note

The aggregation multi-function API is a powerful and lower-level API to extend

the engine. Any classes that are not part of the client, plugin or agg.access

package are subject to change between minor and major releases of the engine.

19.5.1. Aggregation Single-Function Development

This section describes the aggregation single-function extension API for providing aggregation

functions.

The following steps are required to develop and use a custom aggregation single-function with

Esper.

1. Implement an aggregation function factory by implementing the interface

com.espertech.esper.client.hook.AggregationFunctionFactory.

2. Implement an aggregation function by implementing the interface

com.espertech.esper.epl.agg.aggregator.AggregationMethod.

3. Register the aggregation single-function factory class with the engine by supplying a function

name, via the engine configuration file or the runtime and static configuration API.

The optional keyword distinct ensures that only distinct (unique) values are aggregated and

duplicate values are ignored by the aggregation function. Custom plug-in aggregation single-

functions do not need to implement the logic to handle distinct values. This is because when

the engine encounters the distinct keyword, it eliminates any non-distinct values before passing

the value for aggregation to the custom aggregation single-function.

Chapter 19. Integration and E...

678

Custom aggregation functions can also be passed multiple parameters, as further described in

Section 19.5.1.4, “Aggregation Single-Function: Accepting Multiple Parameters”. In the example

below the aggregation function accepts a single parameter.

The code for the example aggregation function as shown in this chapter can be found in the

runtime configuration example in the package com.espertech.esper.example.runtimeconfig

by the name MyConcatAggregationFunction. The sample function simply concatenates string-

type values.

19.5.1.1. Implementing an Aggregation Single-Function Factory

An aggregation function factory class is responsible for the following functions:

• Implement a setFunctionName method that receives the function name assigned to this

instance.

• Implement a validate method that validates the value type of the data points that the function

must process.

• Implement a getValueType method that returns the type of the aggregation value generated by

the aggregation function instances. For example, the built-in count aggregation function returns

Long.class as it generates long -typed values.

• Implement a newAggregator method that instantiates and returns an aggregation function

instance.

Aggregation function classes implement the interface

com.espertech.esper.client.hook.AggregationFunctionFactory:

public class MyConcatAggregationFunctionFactory implements

 AggregationFunctionFactory { ...

The engine generally constructs one instance of the aggregation function factory class for each

time the function is listed in an EPL statement, however the engine may decide to reduce the

number of aggregation class instances if it finds equivalent aggregations.

The aggregation function factory instance receives the aggregation function name via set

setFunctionName method.

The sample concatenation function factory provides an empty setFunctionName method:

public void setFunctionName(String functionName) {

 // no action taken

}

An aggregation function factory must provide an implementation of the validate method that

is passed a AggregationValidationContext validation context object. Within the validation

Aggregation Single-Function Development

679

context you find the result type of each of the parameters expressions to the aggregation function

as well as information about constant values and data window use. Please see the JavaDoc API

documentation for a comprehensive list of validation context information.

Since the example concatenation function requires string types, it implements a type check:

public void validate(AggregationValidationContext validationContext) {

 if ((validationContext.getParameterTypes().length != 1) ||

 (validationContext.getParameterTypes()[0] != String.class)) {

 throw new IllegalArgumentException("Concat aggregation requires a single

 parameter of type String");

 }

}

In order for the engine to validate the type returned by the aggregation function against the types

expected by enclosing expressions, the getValueType must return the result type of any values

produced by the aggregation function:

public Class getValueType() {

 return String.class;

}

Finally the factory implementation must provide a newAggregator method that returns instances

of AggregationMethod. The engine invokes this method for each new aggregation state to be

allocated.

public AggregationMethod newAggregator() {

 return new MyConcatAggregationFunction();

}

19.5.1.2. Implementing an Aggregation Single-Function

An aggregation function class is responsible for the following functions:

• Implement an enter method that the engine invokes to add a data point into the aggregation,

when an event enters a data window

• Implement a leave method that the engine invokes to remove a data point from the aggregation,

when an event leaves a data window

• Implement a getValue method that returns the current value of the aggregation.

• Implement a clear method that resets the current value.

Aggregation function classes implement the interface AggregationMethod:

Chapter 19. Integration and E...

680

public class MyConcatAggregationFunction implements AggregationMethod { ...

The class that provides the aggregation and implements AggregationMethod does not have to

be threadsafe.

The constructor initializes the aggregation function:

public class MyConcatAggregationFunction implements AggregationMethod {

 private final static char DELIMITER = ' ';

 private StringBuilder builder;

 private String delimiter;

 public MyConcatAggregationFunction() {

 builder = new StringBuilder();

 delimiter = "";

 }

 ...

The enter method adds a datapoint to the current aggregation value. The example enter method

shown below adds a delimiter and the string value to a string buffer:

public void enter(Object value) {

 if (value != null) {

 builder.append(delimiter);

 builder.append(value.toString());

 delimiter = String.valueOf(DELIMITER);

 }

}

Conversly, the leave method removes a datapoint from the current aggregation value. The

example leave method removes from the string buffer:

public void leave(Object value) {

 if (value != null) {

 builder.delete(0, value.toString().length() + 1);

 }

}

Finally, the engine obtains the current aggregation value by means of the getValue method:

public Object getValue() {

Aggregation Single-Function Development

681

 return builder.toString();

}

For on-demand queries the aggregation function must support resetting its value to empty or start

values. Implement the clear function to reset the value as shown below:

public void clear() {

 builder = new StringBuilder();

 delimiter = "";

}

19.5.1.3. Configuring the Aggregation Single-Function Name

The aggregation function class name as well as the function name for the new aggregation function

must be added to the engine configuration via the configuration API or using the XML configuration

file. The configuration shown below is XML however the same options are available through the

configuration API:

<esper-configuration

 <plugin-aggregation-function name="concat"

 factory-

class="com.espertech.esper.example.runtimeconfig.MyConcatAggregationFunctionFactory" /

>

</esper-configuration>

The new aggregation function is now ready to use in a statement:

select concat(symbol) from StockTick#length(3)

19.5.1.4. Aggregation Single-Function: Accepting Multiple

Parameters

Your plug-in aggregation function may accept multiple parameters, simply by casting the Object

parameter of the enter and leave method to Object[].

For instance, assume an aggregation function rangeCount that counts all values that fall into a

range of values. The EPL that calls this function and provides a lower and upper bounds of 1

and 10 is:

select rangeCount(1, 10, myValue) from MyEvent

Chapter 19. Integration and E...

682

The enter method of the plug-in aggregation function may look as follows:

public void enter(Object value) {

 Object[] params = (Object[]) value;

 int lower = (Integer) params[0];

 int upper = (Integer) params[1];

 int val = (Integer) params[2];

 if ((val >= lower) && (val <= upper)) {

 count++;

 }

}

Your plug-in aggregation function may want to validate parameter types or may want to know

which parameters are constant-value expressions. Constant-value expressions are evaluated

only once by the engine and could therefore be cached by your aggregation function

for performance reasons. The engine provides constant-value information as part of the

AggregationValidationContext passed to the validate method.

19.5.1.5. Aggregation Single-Function: The Filter Parameter

When an EPL statement provides the filter named parameter the value of the filter expression

is a boolean-type value that the engine determines and provides to your enter method as the

last value in the parameter array.

For instance, assume an aggregation function concat that receives a word value and that has a

filter expression as parameters:

select concat(word, filter: word not like '%jim%') from MyWordEvent

The enter method of the plug-in aggregation function may look as follows:

public void enter(Object value) {

 Object[] arr = (Object[]) value;

 Boolean pass = (Boolean) arr[1];

 if (pass != null && pass) {

 buffer.append(arr[0].toString());

 }

}

Your code can obtain the actual filter expression from the AggregationValidationContext

that is passed to the validate method and that returns the named parameters via

getNamedParameters.

Aggregation Multi-Function Development

683

19.5.1.6. Aggregation Single-Function: Dot-Operator Use

When the custom aggregation function returns an object as a return value, the EPL can use

parenthesis and the dot-operator to invoke methods on the return value.

The following example assumes that the myAggregation custom aggregation function returns an

object that has getValueOne and getValueTwo methods:

select (myAggregation(myValue)).getValueOne(),

 (myAggregation(myValue)).getValueTwo() from MyEvent

Since the above EPL aggregates the same value, the engine internally uses a single aggregation

to represent the current value of myAggregation (and not two instances of the aggregation, even

though myAggregation is listed twice).

19.5.2. Aggregation Multi-Function Development

This section introduces the aggregation multi-function API. Please refer to the JavaDoc for more

complete class and method-level documentation.

Among the Esper examples we provide an example use of the aggregation multi-function API in

the example by name Cycle-Detect. Cycle-Detect takes incoming transaction events that have

from-account and to-account fields. The example detects a cycle in the transactions between

accounts in order to detect a possible transaction fraud. Please note that the graph and cycle

detection logic of the example is not part of Esper: The example utilizes the jgrapht library.

In the Cycle-Detect example, the vertices of a graph are the account numbers. For example the

account numbers Acct-1, Acct-2 and Acct-3. In the graph the edges are transaction events that

identify a from-account and a to-account. An example edge is {from:Acct-1, to:Acct-2}. An

example cycle is therefore in the three transactions {from:Acct-1, to:Acct-2}, {from:Acct-2,

to:Acct-3} and {from:Acct-3, to:Acct-1}.

The code for the example aggregation multi-function as shown in this chapter can be found in

the Cycle-Detect example in the package com.espertech.esper.example.cycledetect. The

example provides two aggregation functions named cycledetected and cycleoutput:

1. The cycledetected function returns a boolean value whether a graph cycle is found or not.

2. The cycleoutput function outputs the vertices (account numbers) that are part of the graph

cycle.

In the Cycle-Detect example, the following statement utilizes the two functions cycledetected

and cycleoutput that share the same graph state to detect a cycle among the last 1000 events:

@Name('CycleDetector') select cycleoutput() as cyclevertices

Chapter 19. Integration and E...

684

from TransactionEvent#length(1000)

having cycledetected(fromAcct, toAcct)

If instead the goal is to run graph cycle detection every 1 second (and not upon arrival of a new

event), this sample EPL statement uses a pattern to trigger cycle detection:

@Name('CycleDetector')

select (select cycleoutput(fromAcct, toAcct) from TransactionEvent#length(1000))

 as cyclevertices

from pattern [every timer:interval(1)]

The following steps are required to develop and use a custom aggregation multi-function with

Esper.

1. Implement an aggregation multi-function factory by implementing the interface

com.espertech.esper.plugin.PlugInAggregationMultiFunctionFactory.

2. Implement one or more handlers for aggregation functions by implementing the interface

com.espertech.esper.plugin.PlugInAggregationMultiFunctionHandler.

3. Implement an aggregation state key by implementing the interface

com.espertech.esper.epl.agg.access.AggregationStateKey.

4. Implement an aggregation state factory by implementing the interface

com.espertech.esper.plugin.PlugInAggregationMultiFunctionStateFactory.

5. Implement an aggregation state holder by implementing the interface

com.espertech.esper.epl.agg.access.AggregationState.

6. Implement a state accessor by implementing the interface

com.espertech.esper.epl.agg.access.AggregationAccessor.

7. Register the aggregation multi-function factory class with the engine by supplying one or more

function names, via the engine configuration file or the runtime and static configuration API.

19.5.2.1. Implementing an Aggregation Multi-Function Factory

An aggregation multi-function factory class is responsible for the following functions:

• Implement the addAggregationFunction method that receives an invocation for each

aggregation function declared in the statement that matches any of the function names provided

at configuration time.

• Implement the validateGetHandler method that receives an invocation for each aggregation

function to be validated in the statement that matches any of the function names provided at

configuration time.

Aggregation multi-function factory classes implement the interface

com.espertech.esper.plugin.PlugInAggregationMultiFunctionFactory:

Aggregation Multi-Function Development

685

public class CycleDetectorAggregationFactory implements

 PlugInAggregationMultiFunctionFactory { ...

The engine constructs a single instance of the aggregation multi-function factory class that is

shared for all aggregation function expressions in a statement that have one of the function names

provided in the configuration object.

The engine invokes the addAggregationFunction method at the time it parses an EPL statement

or compiles a statement object model (SODA API). The method receives a declaration-time

context object that provides the function name as well as additional information.

The sample Cycle-Detect factory class provides an empty addAggregationFunction method:

public void

 addAggregationFunction(PlugInAggregationMultiFunctionDeclarationContext

 declarationContext) {

 // no action taken

}

The engine invokes the validateGetHandler method at the time of expression validation. It

passes a PlugInAggregationMultiFunctionValidationContext validation context object that

contains actual parameters expressions. Please see the JavaDoc API documentation for a

comprehensive list of validation context information.

The validateGetHandler method must return a handler object the implements the

PlugInAggregationMultiFunctionHandler interface. Return a handler object for each

aggregation function expression according to the aggregation function name and its parameters

that are provided in the validation context.

The example cycledetect function takes two parameters that provide the cycle edge (from-

account and to-account):

public PlugInAggregationMultiFunctionHandler

 validateGetHandler(PlugInAggregationMultiFunctionValidationContext

 validationContext) {

 if (validationContext.getParameterExpressions().length == 2) {

 fromExpression = validationContext.getParameterExpressions()

[0].getExprEvaluator();

 toExpression = validationContext.getParameterExpressions()

[1].getExprEvaluator();

 }

 return new CycleDetectorAggregationHandler(this, validationContext);

}

Chapter 19. Integration and E...

686

19.5.2.2. Implementing an Aggregation Multi-Function Handler

An aggregation multi-function handler class must implement the

PlugInAggregationMultiFunctionHandler interface and is responsible for the following

functions:

• Implement the getAccessor method that returns a reader object for the aggregation state.

• Implement the getReturnType method that returns information about the type of return values

provided by the accessor reader object.

• Implement the getAggregationStateUniqueKey method that provides a key object used by

the engine to determine which aggregation functions share state.

• Implement the getStateFactory method that returns a state factory object that the engine

invokes, when required, to instantiate aggregation state holders.

Typically your API returns a handler instance for each aggregation function in an EPL statement

expression.

In the Cycle-Detect example, the class CycleDetectorAggregationHandler is the handler for

all aggregation functions.

public class CycleDetectorAggregationHandler implements

 PlugInAggregationMultiFunctionHandler { ...

The getAccessor methods return a reader object according to whether the aggregation function

name is cycledetected or cycleoutput:

public AggregationAccessor getAccessor() {

 if

 (validationContext.getFunctionName().toLowerCase().equals(CycleDetectorConstant.CYCLEOUTPUT_NAME))

 {

 return new CycleDetectorAggregationAccessorOutput();

 }

 return new CycleDetectorAggregationAccessorDetect();

}

The getReturnType method provided by the handler instructs the engine

about the return type of each aggregation accessor. The class

com.espertech.esper.client.util.ExpressionReturnType holds return type information.

In the Cycle-Detect example the cycledetected function returns a single boolean value. The

cycleoutput returns a collection of vertices:

public ExpressionReturnType getReturnType() {

Aggregation Multi-Function Development

687

 if

 (validationContext.getFunctionName().toLowerCase().equals(CycleDetectorConstant.CYCLEOUTPUT_NAME))

 {

 return

 ExpressionReturnType.collectionOfSingleValue(factory.getFromExpression().getType());

 }

 return ExpressionReturnType.singleValue(Boolean.class) ;

}

The engine invokes the getAggregationStateUniqueKey method to determine whether multiple

aggregation function expressions in the same statement can share the same aggregation state

or should receive different aggregation state instances.

The getAggregationStateUniqueKey method must return an instance of

AggregationStateKey. The engine uses equals-semantics (the hashCode and equals methods)

to determine whether multiple aggregation function share the state object. If the key object

returned for each aggregation function by the handler is an equal key object then the engine

shares aggregation state between such aggregation functions for the same statement and context

partition.

In the Cycle-Detect example the state is shared, which it achieves by simply returning the same

key instance:

private static final AggregationStateKey CYCLE_KEY = new AggregationStateKey()

 {};

public AggregationStateKey getAggregationStateUniqueKey() {

 return CYCLE_KEY; // Share the same aggregation state instance

}

The engine invokes the getStateFactory method to obtain an instance of

PlugInAggregationMultiFunctionStateFactory. The state factory is responsible to

instantiating separate aggregation state instances. If you statement does not have a group by

clause, the engine obtains a single aggregation state from the state factory. If your statement

has a group by clause, the engine obtains an aggregation state instance for each group when

it encounters a new group.

In the Cycle-Detect example the method passes the expression evaluators providing the from-

account and to-account expressions to the state factory:

public PlugInAggregationMultiFunctionStateFactory getStateFactory() {

 return new CycleDetectorAggregationStateFactory(factory.getFromExpression(),

 factory.getToExpression());

}

Chapter 19. Integration and E...

688

19.5.2.3. Implementing an Aggregation Multi-Function State Factory

An aggregation multi-function state factory class must implement the

PlugInAggregationMultiFunctionStateFactory interface and is responsible for the following

functions:

• Implement the makeAggregationState method that returns an aggregation state holder.

The engine invokes the makeAggregationState method to obtain a new aggregation state

instance before applying aggregation state. If using group by in your statement, the engine

invokes the makeAggregationState method to obtain a state holder for each group.

In the Cycle-Detect example, the class CycleDetectorAggregationStateFactory is the state

factory for all aggregation functions:

public class CycleDetectorAggregationStateFactory implements

 PlugInAggregationMultiFunctionStateFactory {

 private final ExprEvaluator fromEvaluator;

 private final ExprEvaluator toEvaluator;

 public CycleDetectorAggregationStateFactory(ExprEvaluator fromEvaluator,

 ExprEvaluator toEvaluator) {

 this.fromEvaluator = fromEvaluator;

 this.toEvaluator = toEvaluator;

 }

 public AggregationState

 makeAggregationState(PlugInAggregationMultiFunctionStateContext stateContext)

 {

 return new CycleDetectorAggregationState(this);

 }

 public ExprEvaluator getFromEvaluator() {

 return fromEvaluator;

 }

 public ExprEvaluator getToEvaluator() {

 return toEvaluator;

 }

}

19.5.2.4. Implementing an Aggregation Multi-Function State

An aggregation multi-function state class must implement the AggregationState interface and

is responsible for the following functions:

• Implement the applyEnter method that enters events, event properties or computed values.

Aggregation Multi-Function Development

689

• Optionally implement the applyLeave method that can remove events or computed values.

• Implement the clear method to clear state.

In the Cycle-Detect example, the class CycleDetectorAggregationState is the state for all

aggregation functions. Please review the example for more information.

19.5.2.5. Implementing an Aggregation Multi-Function Accessor

An aggregation multi-function accessor class must implement the AggregationAccessor

interface and is responsible for the following functions:

• Implement the Object getValue(AggregationState state) method that returns a result

object for the aggregation state.

• Implement the Collection<EventBean> getEnumerableEvents(AggregationState state)

method that returns a collection of events for enumeration, if applicable (or null).

• Implement the EventBean getEnumerableEvent(AggregationState state) method that

returns an event, if applicable (or null).

In the Cycle-Detect example, the class CycleDetectorAggregationAccessorDetect

returns state for the cycledetected aggregation function and the

CycleDetectorAggregationAccessorOutput returns the state for the cycleoutput aggregation

function.

19.5.2.6. Configuring the Aggregation Multi-Function Name

An aggregation multi-function configuration can receive one or multiple function names. You must

also set a factory class name.

The sample XML snippet below configures an aggregation multi-function that is associated with

the function names func1 and func2.

<esper-configuration

 <plugin-aggregation-multifunction

 function-names="cycledetected,cycleoutput" // a comma-separated list

 of function name

 factory-

class="com.espertech.esper.example.cycledetect.CycleDetectorAggregationFactory"/

>

</esper-configuration>

The next example uses the runtime configuration API to register the same:

String[] functionNames = new String[] {"cycledetected", "cycleoutput"};

ConfigurationPlugInAggregationMultiFunction config = new

 ConfigurationPlugInAggregationMultiFunction(functionNames,

 CycleDetectorAggregationFactory.class.getName());

Chapter 19. Integration and E...

690

engine.getEPAdministrator().getConfiguration().addPlugInAggregationMultiFunction(config);

19.5.2.7. Aggregation Multi-Function Thread Safety

The engine shares an AggregationAccessor instance between threads. The accessor should

be designed stateless and should not use any locking of any kind in the AggregationAccessor

implementation unless your implementation uses other state. Since the engine passes an

aggregation state instance to the accessor it is thread-safe as long as it relies only on the

aggregation state passed to it.

The engine does not share an AggregationState instance between threads. There is no need

to use locking of any kind in the AggregationState implementation unless your implementation

uses other state.

19.5.2.8. Aggregation Multi-Function Use With Tables

Tables allow columns to hold aggregation state including the state for multi-function aggregations.

This section provides API pointers.

When an EPL statement accesses a table column that declares aggregation state of a multi-

function aggregation, the PlugInAggregationMultiFunctionValidationContext contains an

optionalTableColumnAccessed field that provides information about the table column.

To find out the statement type, such as to determine

whether the current statement is a create-table statement, use

context.getValidationContext().getExprEvaluatorContext().getStatementType().

To find out whether the statement aggregates into a table, use

context.getValidationContext().getIntoTableName() that returns the table name or null if

not aggregating into a table.

The engine uses AggregationStateKey to determine whether an aggregation function listed with

into table is compatible with the aggregation type that a table column declares. The equals

method of the object must return true for compatible and false for incompatible.

19.5.2.9. Aggregation Multi-Function Use Filter Expression

The filter expression is passed to you in

PlugInAggregationMultiFunctionValidationContext as part of getNamedParameters

under the name filter. When use with tables the filter expression is part of

PlugInAggregationMultiFunctionAgentContext.

Your application must invoke the filter expression as the engine does not evaluate the filter

expression for you. For example:

ExprEvaluator filterEval =

 validationContext.getNamedParameters().get("filter").get(0).getExprEvaluator();

Pattern Guard

691

public void applyEnter(EventBean[] eventsPerStream, ExprEvaluatorContext

 exprEvaluatorContext) {

 Boolean pass = (Boolean) filterEval.evaluate(eventsPerStream, true,

 exprEvaluatorContext); // note: pass "false" for applyLeave

 if (pass != null && pass) {

 Object value = valueEval.evaluate(eventsPerStream, true,

 exprEvaluatorContext); // note: pass "false" for applyLeave

 // do something

 }

}

19.6. Pattern Guard

Pattern guards are pattern objects that control the lifecycle of the guarded sub-expression, and

can filter the events fired by the subexpression.

The following steps are required to develop and use a custom guard object with Esper.

1. Implement a guard factory class, responsible for creating guard object instances.

2. Implement a guard class.

3. Register the guard factory class with the engine by supplying a namespace and name, via the

engine configuration file or the configuration API.

The code for the example guard object as shown in this chapter can be found in the

test source folder in the package com.espertech.esper.regression.client by the name

MyCountToPatternGuardFactory. The sample guard discussed here counts the number of

events occurring up to a maximum number of events, and end the sub-expression when that

maximum is reached.

19.6.1. Implementing a Guard Factory

A guard factory class is responsible for the following functions:

• Implement a setGuardParameters method that takes guard parameters, which are themselves

expressions.

• Implement a makeGuard method that constructs a new guard instance.

Guard factory classes subclass

com.espertech.esper.pattern.guard.GuardFactorySupport:

public class MyCountToPatternGuardFactory extends GuardFactorySupport { ...

The engine constructs one instance of the guard factory class for each time the guard is listed

in a statement.

Chapter 19. Integration and E...

692

The guard factory class implements the setGuardParameters method that is passed the

parameters to the guard as supplied by the statement. It verifies the guard parameters, similar to

the code snippet shown next. Our example counter guard takes a single numeric parameter:

public void setGuardParameters(List<ExprNode> guardParameters,

 MatchedEventConvertor convertor) throws GuardParameterException {

 String message = "Count-to guard takes a single integer-value expression

 as parameter";

 if (guardParameters.size() != 1) {

 throw new GuardParameterException(message);

 }

 if (guardParameters.get(0).getExprEvaluator().getType() != Integer.class) {

 throw new GuardParameterException(message);

 }

 this.numCountToExpr = guardParameters.get(0);

 this.convertor = convertor;

}

The makeGuard method is called by the engine to create a new guard instance. The example

makeGuard method shown below passes the maximum count of events to the guard instance.

It also passes a Quitable implementation to the guard instance. The guard uses Quitable to

indicate that the sub-expression contained within must stop (quit) listening for events.

public Guard makeGuard(PatternAgentInstanceContext context,

 MatchedEventMap beginState,

 Quitable quitable,

 Object stateNodeId,

 Object guardState) {

 Object parameter = PatternExpressionUtil.evaluate("Count-to guard",

 beginState, numCountToExpr, convertor);

 if (parameter == null) {

 throw new EPException("Count-to guard parameter evaluated to a null

 value");

 }

 Integer numCountTo = (Integer) parameter;

 return new MyCountToPatternGuard(numCountTo, quitable);

}

19.6.2. Implementing a Guard Class

A guard class has the following responsibilities:

Configuring Guard Namespace and Name

693

• Provides a startGuard method that initalizes the guard.

• Provides a stopGuard method that stops the guard, called by the engine when the whole pattern

is stopped, or the sub-expression containing the guard is stopped.

• Provides an inspect method that the pattern engine invokes to determine if the guard lets

matching events pass for further evaluation by the containing expression.

Guard classes subclass com.espertech.esper.pattern.guard.GuardSupport as shown here:

public abstract class GuardSupport implements Guard { ...

The engine invokes the guard factory class to construct an instance of the guard class for each

new sub-expression instance within a statement.

A guard class must provide an implementation of the startGuard method that the pattern engine

invokes to start a guard instance. In our example, the method resets the guard's counter to zero:

public void startGuard() {

 counter = 0;

}

The pattern engine invokes the inspect method for each time the sub-expression indicates a new

event result. Our example guard needs to count the number of events matched, and quit if the

maximum number is reached:

public boolean inspect(MatchedEventMap matchEvent) {

 counter++;

 if (counter > numCountTo) {

 quitable.guardQuit();

 return false;

 }

 return true;

}

The inspect method returns true for events that pass the guard, and false for events that should

not pass the guard.

19.6.3. Configuring Guard Namespace and Name

The guard factory class name as well as the namespace and name for the new guard must

be added to the engine configuration via the configuration API or using the XML configuration

file. The configuration shown below is XML however the same options are available through the

configuration API:

Chapter 19. Integration and E...

694

<esper-configuration

 <plugin-pattern-guard namespace="myplugin" name="count_to"

 factory-

class="com.espertech.esper.regression.client.MyCountToPatternGuardFactory"/>

</esper-configuration>

The new guard is now ready to use in a statement. The next pattern statement detects the first

10 MyEvent events:

select * from pattern [(every MyEvent) where myplugin:count_to(10)]

Note that the every keyword was placed within parentheses to ensure the guard controls the

repeated matching of events.

19.7. Pattern Observer

Pattern observers are pattern objects that are executed as part of a pattern expression and

can observe events or test conditions. Examples for built-in observers are timer:at and

timer:interval. Some suggested uses of observer objects are:

• Implement custom scheduling logic using the engine's own scheduling and timer services

• Test conditions related to prior events matching an expression

The following steps are required to develop and use a custom observer object within pattern

statements:

1. Implement an observer factory class, responsible for creating observer object instances.

2. Implement an observer class.

3. Register an observer factory class with the engine by supplying a namespace and name, via

the engine configuration file or the configuration API.

The code for the example observer object as shown in this chapter can be found in

the test source folder in package com.espertech.esper.regression.client by the name

MyFileExistsObserver. The sample observer discussed here very simply checks if a file exists,

using the filename supplied by the pattern statement, and via the java.io.File class.

19.7.1. Implementing an Observer Factory

An observer factory class is responsible for the following functions:

• Implement a setObserverParameters method that takes observer parameters, which are

themselves expressions.

Implementing an Observer Factory

695

• Implement a makeObserver method that constructs a new observer instance.

Observer factory classes subclass

com.espertech.esper.pattern.observer.ObserverFactorySupport:

public class MyFileExistsObserverFactory extends ObserverFactorySupport { ...

The engine constructs one instance of the observer factory class for each time the observer is

listed in a statement.

The observer factory class implements the setObserverParameters method that is passed the

parameters to the observer as supplied by the statement. It verifies the observer parameters,

similar to the code snippet shown next. Our example file-exists observer takes a single string

parameter:

public void setObserverParameters(List<ExprNode> expressionParameters,

 MatchedEventConvertor convertor, ExprValidationContext validationContext)

 throws ObserverParameterException {

 String message = "File exists observer takes a single string filename

 parameter";

 if (expressionParameters.size() != 1) {

 throw new ObserverParameterException(message);

 }

 if (!(expressionParameters.get(0).getExprEvaluator().getType() ==

 String.class)) {

 throw new ObserverParameterException(message);

 }

 this.filenameExpression = expressionParameters.get(0);

 this.convertor = convertor;

}

The pattern engine calls the makeObserver method to create a new observer instance. The

example makeObserver method shown below passes parameters to the observer instance:

public EventObserver makeObserver(PatternAgentInstanceContext context,

 MatchedEventMap beginState,

 ObserverEventEvaluator observerEventEvaluator,

 Object stateNodeId,

 Object observerState) {

 Object filename = PatternExpressionUtil.evaluate("File-exists observer ",

 beginState, filenameExpression, convertor);

 if (filename == null) {

 throw new EPException("Filename evaluated to null");

 }

Chapter 19. Integration and E...

696

 return new MyFileExistsObserver(beginState, observerEventEvaluator,

 filename.toString());

}

The ObserverEventEvaluator parameter allows an observer to indicate events, and to indicate

change of truth value to permanently false. Use this interface to indicate when your observer has

received or witnessed an event, or changed it's truth value to true or permanently false.

The MatchedEventMap parameter provides a Map of all matching events for the expression prior

to the observer's start. For example, consider a pattern as below:

a=MyEvent -> myplugin:my_observer(...)

The above pattern tagged the MyEvent instance with the tag "a". The pattern engine starts

an instance of my_observer when it receives the first MyEvent. The observer can query the

MatchedEventMap using "a" as a key and obtain the tagged event.

19.7.2. Implementing an Observer Class

An observer class has the following responsibilities:

• Provides a startObserve method that starts the observer.

• Provides a stopObserve method that stops the observer, called by the engine when the whole

pattern is stopped, or the sub-expression containing the observer is stopped.

Observer classes subclass com.espertech.esper.pattern.observer.ObserverSupport as

shown here:

public class MyFileExistsObserver implements EventObserver { ...

The engine invokes the observer factory class to construct an instance of the observer class for

each new sub-expression instance within a statement.

An observer class must provide an implementation of the startObserve method that the pattern

engine invokes to start an observer instance. In our example, the observer checks for the presence

of a file and indicates the truth value to the remainder of the expression:

public void startObserve() {

 File file = new File(filename);

 if (file.exists()) {

 observerEventEvaluator.observerEvaluateTrue(beginState);

 }

Configuring Observer Namespace and Name

697

 else {

 observerEventEvaluator.observerEvaluateFalse();

 }

}

Note the observer passes the ObserverEventEvaluator an instance of MatchedEventMap. The

observer can also create one or more new events and pass these events through the Map to the

remaining expressions in the pattern.

19.7.3. Configuring Observer Namespace and Name

The observer factory class name as well as the namespace and name for the new observer must

be added to the engine configuration via the configuration API or using the XML configuration

file. The configuration shown below is XML however the same options are available through the

configuration API:

<esper-configuration

 <plugin-pattern-observer namespace="myplugin" name="file_exists"

 factory-

class="com.espertech.esper.regression.client.MyFileExistsObserverFactory" />

</esper-configuration>

The new observer is now ready to use in a statement. The next pattern statement checks every

10 seconds if the given file exists, and indicates to the listener when the file is found.

select * from pattern [every timer:interval(10 sec) ->

 myplugin:file_exists("myfile.txt")]

19.8. Event Type And Event Object

Creating a plug-in event representation can be useful under any of these conditions:

• Your application has existing Java classes that carry event metadata and event property values

and your application does not want to (or cannot) extract or transform such event metadata and

event data into one of the built-in event representations (POJO Java objects, Map or XML DOM).

• Your application wants to provide a faster or short-cut access path to event data, for example

to access XML event data through a Streaming API for XML (StAX).

• Your application must perform a network lookup or other dynamic resolution of event type and

events.

Note that the classes to plug-in custom event representations are held stable between minor

releases, but can be subject to change between major releases.

Chapter 19. Integration and E...

698

Currently, EsperIO provides the following additional event representations:

• Apache Axiom provides access to XML event data on top of the fast Streaming API for XML

(StAX).

The source code is available for these and they are therefore excellent examples for how to

implement a plug-in event representation. Please see the EsperIO documentation for usage

details.

19.8.1. How It Works

Your application provides a plug-in event representation as an implementation of

the com.espertech.esper.plugin.PlugInEventRepresentation interface. It registers the

implementation class in the Configuration and at the same time provides a unique URI. This

URI is called the root event representation URI. An example value for a root URI is type://xml/

apacheaxiom/OMNode.

One can register multiple plug-in event representations. Each representation has a root URI. The

root URI serves to divide the overall space of different event representations and plays a role in

resolving event types and event objects.

There are two situations in an Esper engine instance asks an event representation for an event

type:

1. When an application registers a new event type using the method addPlugInEventType on

ConfigurationOperations, either at runtime or at configuration time.

2. When an EPL statement is created with a new event type name (a name not

seen before) and the URIs for resolving such names are set beforehand via

setPlugInEventTypeNameResolutionURIs on ConfigurationOperations.

The implementation of the PlugInEventRepresentation interface must provide implementations

for two key interfaces: com.espertech.esper.client.EventType and EventBean. It must also

implement several other related interfaces as described below.

The EventType methods provide event metadata including property names and property types.

They also provide instances of EventPropertyGetter for retrieving event property values. Each

instance of EventType represents a distinct type of event.

The EventBean implementation is the event itself and encapsulates the underlying event object.

19.8.2. Steps

Follow the steps outlined below to process event objects for your event types:

1. Implement the EventType, EventPropertyGetter and EventBean interfaces.

URI-based Resolution

699

2. Implement the PlugInEventRepresentation interface, the PlugInEventTypeHandler and

PlugInEventBeanFactory interfaces, then add the PlugInEventRepresentation class name

to configuration.

3. Register plug-in event types, and/or set the event type name resolution URIs, via configuration.

4. Obtain an EventSender from EPRuntime via the getEventSender(URI[]) method and use

that to send in your event objects.

Please consult the JavaDoc for further information on each of the interfaces and their respective

methods. The Apache Axiom event representation is an example implementation that can be

found in the EsperIO packages.

19.8.3. URI-based Resolution

Assume you have registered event representations using the following URIs:

1. type://myFormat/myProject/myName

2. type://myFormat/myProject

3. type://myFormat/myOtherProject

When providing an array of child URIs for resolution, the engine compares each child URI to each

of the event representation root URIs, in the order provided. Any event representation root URIs

that spans the child URI space becomes a candidate event representation. If multiple root URIs

match, the order is defined by the more specific root URI first, to the least specific root URI last.

During event type resolution and event sender resolution you provide a child URI.

Assuming the child URI provided is type://myFormat/myProject/myName/myEvent?

param1=abc¶m2=true. In this example both root URIs #1 (the more specific) and #1 (the less

specific) match, while root URI #3 is not a match. Thus at the time of type resolution the engine

invokes the acceptType method on event presentation for URI #1 first (the more specific), before

asking #2 (the less specific) to resolve the type.

The EventSender returned by the getEventSender(URI[]) method follows the same scheme.

The event sender instance asks each matching event representation for each URI to resolve

the event object in the order of most specific to least specific root URI, and the first event

representation to return an instance of EventBean ends the resolution process for event objects.

The type:// part of the URI is an optional convention for the scheme part of an URI that your

application may follow. URIs can also be simple names and can include parameters, as the Java

software JavaDoc documents for class java.net.URI.

19.8.4. Example

This section implements a minimal sample plug-in event representation. For the sake of keeping

the example easy to understand, the event representation is rather straightforward: an event is a

java.util.Properties object that consists of key-values pairs of type string.

Chapter 19. Integration and E...

700

The code shown next does not document method footprints. Please consult the JavaDoc API

documentation for method details.

19.8.4.1. Sample Event Type

First, the sample shows how to implement the EventType interface. The event type provides

information about property names and types, as well as supertypes of the event type.

Our EventType takes a set of valid property names:

public class MyPlugInPropertiesEventType implements EventType {

 private final Set<String> properties;

 public MyPlugInPropertiesEventType(Set<String> properties) {

 this.properties = properties;

 }

 public Class getPropertyType(String property) {

 if (!isProperty(property)) {

 return null;

 }

 return String.class;

 }

 public Class getUnderlyingType() {

 return Properties.class;

 }

 //... further methods below

}

An EventType is responsible for providing implementations of EventPropertyGetter to query

actual events. The getter simply queries the Properties object underlying each event:

 public EventPropertyGetter getGetter(String property) {

 final String propertyName = property;

 return new EventPropertyGetter() {

 public Object get(EventBean eventBean) throws PropertyAccessException {

 MyPlugInPropertiesEventBean propBean = (MyPlugInPropertiesEventBean)

 eventBean;

 return propBean.getProperties().getProperty(propertyName);

 }

 public boolean isExistsProperty(EventBean eventBean) {

 MyPlugInPropertiesEventBean propBean = (MyPlugInPropertiesEventBean)

 eventBean;

Example

701

 return propBean.getProperties().getProperty(propertyName) != null;

 }

 public Object getFragment(EventBean eventBean) {

 return null; // The property is not a fragment

 }

 };

 }

Our sample EventType does not have supertypes. Supertypes represent an extends-relationship

between event types, and subtypes are expected to exhibit the same event property names and

types as each of their supertypes combined:

 public EventType[] getSuperTypes() {

 return null; // no supertype for this example

 }

 public Iterator<EventType> getDeepSuperTypes() {

 return null;

 }

 public String getName() {

 return name;

 }

 public EventPropertyDescriptor[] getPropertyDescriptors() {

 Collection<EventPropertyDescriptor> descriptorColl = descriptors.values();

 return descriptorColl.toArray(new

 EventPropertyDescriptor[descriptors.size()]);

 }

 public EventPropertyDescriptor getPropertyDescriptor(String propertyName) {

 return descriptors.get(propertyName);

 }

 public FragmentEventType getFragmentType(String property) {

 return null; // sample does not provide any fragments

 }

The example event type as above does not provide fragments, which are properties of the event

that can themselves be represented as an event, to keep the example simple.

19.8.4.2. Sample Event Bean

Each EventBean instance represents an event. The interface is straightforward to implement. In

this example an event is backed by a Properties object:

Chapter 19. Integration and E...

702

public class MyPlugInPropertiesEventBean implements EventBean {

 private final MyPlugInPropertiesEventType eventType;

 private final Properties properties;

 public MyPlugInPropertiesEventBean(MyPlugInPropertiesEventType eventType,

 Properties properties) {

 this.eventType = eventType;

 this.properties = properties;

 }

 public EventType getEventType() {

 return eventType;

 }

 public Object get(String property) throws PropertyAccessException {

 EventPropertyGetter getter = eventType.getGetter(property);

 return getter.get(this);

 }

 public Object getFragment(String property) {

 EventPropertyGetter getter = eventType.getGetter(property);

 if (getter != null) {

 return getter.getFragment(this);

 }

 return null;

 }

 public Object getUnderlying() {

 return properties;

 }

 protected Properties getProperties() {

 return properties;

 }

}

19.8.4.3. Sample Event Representation

A PlugInEventRepresentation serves to create EventType and EventBean instances through

its related interfaces.

The sample event representation creates MyPlugInPropertiesEventType and

MyPlugInPropertiesEventBean instances. The PlugInEventTypeHandler returns the

EventType instance and an EventSender instance.

Our sample event representation accepts all requests for event types by returning boolean true

on the acceptType method. When asked for the PlugInEventTypeHandler, it constructs a new

Example

703

EventType. The list of property names for the new type is passed as an initialization value provided

through the configuration API or XML, as a comma-separated list of property names:

public class MyPlugInEventRepresentation implements PlugInEventRepresentation {

 private List<MyPlugInPropertiesEventType> types;

 public void init(PlugInEventRepresentationContext context) {

 types = new ArrayList<MyPlugInPropertiesEventType>();

 }

 public boolean acceptsType(PlugInEventTypeHandlerContext context) {

 return true;

 }

 public PlugInEventTypeHandler getTypeHandler(PlugInEventTypeHandlerContext

 eventTypeContext) {

 String proplist = (String) eventTypeContext.getTypeInitializer();

 String[] propertyList = proplist.split(",");

 Set<String> typeProps = new HashSet<String>(Arrays.asList(propertyList));

 MyPlugInPropertiesEventType eventType = new

 MyPlugInPropertiesEventType(typeProps);

 types.add(eventType);

 return new MyPlugInPropertiesEventTypeHandler(eventType);

 }

 // ... more methods below

}

The PlugInEventTypeHandler simply returns the EventType as well as an implementation of

EventSender for processing same-type events:

public class MyPlugInPropertiesEventTypeHandler implements

 PlugInEventTypeHandler {

 private final MyPlugInPropertiesEventType eventType;

 public MyPlugInPropertiesEventTypeHandler(MyPlugInPropertiesEventType

 eventType) {

 this.eventType = eventType;

 }

 public EventSender getSender(EPRuntimeEventSender runtimeEventSender) {

 return new MyPlugInPropertiesEventSender(eventType, runtimeEventSender);

 }

Chapter 19. Integration and E...

704

 public EventType getType() {

 return eventType;

 }

}

The EventSender returned by PlugInEventTypeHandler is expected process events of the same

type or any subtype:

public class MyPlugInPropertiesEventSender implements EventSender {

 private final MyPlugInPropertiesEventType type;

 private final EPRuntimeEventSender runtimeSender;

 public MyPlugInPropertiesEventSender(MyPlugInPropertiesEventType type,

 EPRuntimeEventSender runtimeSender) {

 this.type = type;

 this.runtimeSender = runtimeSender;

 }

 public void sendEvent(Object event) {

 if (!(event instanceof Properties)) {

 throw new EPException("Sender expects a properties event");

 }

 EventBean eventBean = new MyPlugInPropertiesEventBean(type, (Properties)

 event);

 runtimeSender.processWrappedEvent(eventBean);

 }

}

19.8.4.4. Sample Event Bean Factory

The plug-in event representation may optionally provide an implementation of

PlugInEventBeanFactory. A PlugInEventBeanFactory may inspect event objects and assign

an event type dynamically based on resolution URIs and event properties.

Our sample event representation accepts all URIs and returns a

MyPlugInPropertiesBeanFactory:

public class MyPlugInEventRepresentation implements PlugInEventRepresentation {

 // ... methods as seen earlier

 public boolean acceptsEventBeanResolution(

 PlugInEventBeanReflectorContext eventBeanContext) {

 return true;

 }

Example

705

 public PlugInEventBeanFactory getEventBeanFactory(

 PlugInEventBeanReflectorContext eventBeanContext) {

 return new MyPlugInPropertiesBeanFactory(types);

 }

}

Last, the sample MyPlugInPropertiesBeanFactory implements the PlugInEventBeanFactory

interface. It inspects incoming events and determines an event type based on whether all

properties for that event type are present:

public class MyPlugInPropertiesBeanFactory implements PlugInEventBeanFactory {

 private final List<MyPlugInPropertiesEventType> knownTypes;

 public MyPlugInPropertiesBeanFactory(List<MyPlugInPropertiesEventType> types)

 {

 knownTypes = types;

 }

 public EventBean create(Object event, URI resolutionURI) {

 Properties properties = (Properties) event;

 // use the known types to determine the type of the object

 for (MyPlugInPropertiesEventType type : knownTypes) {

 // if there is one property the event does not contain, then its not

 the right type

 boolean hasAllProperties = true;

 for (String prop : type.getPropertyNames()) {

 if (!properties.containsKey(prop)) {

 hasAllProperties = false;

 break;

 }

 }

 if (hasAllProperties) {

 return new MyPlugInPropertiesEventBean(type, properties);

 }

 }

 return null; // none match, unknown event

 }

}

706

Chapter 20.

707

Chapter 20. Script Support

20.1. Overview

Esper allows the use scripting languages within EPL. You may use scripts for imperative

programming to execute certain code as part of EPL processing by the engine.

The syntax and examples outlined below discuss how to declare a script that is visible to the same

EPL statement that listed the script.

For declaring scripts that are visible across multiple EPL statements i.e. globally visible scripts

please consult Section 5.18.3, “Global Scripts” that explains the create expression clause.

Any scripting language that supports JSR 223 and also the MVEL scripting language can be

specified in EPL. This section provides MVEL and JavaScript examples.

For more information on the MVEL scripting language and its syntax, please refer to the MVEL

documentation. MVEL is an expression language that has a natural syntax for Java-based

applications and compiles to provide fast execution times. To use MVEL with Esper, please make

sure to add the MVEL jar file to the application classpath.

For more information on JSR 223 scripting languages, please refer to external resources. As

JSR 223 defines a standard API for script engines, your application may use any script engine

that implements the API. Current JVM versions ship with a JavaScript script engine. Other script

engines such as Groovy, Ruby and Python scripts can be used as implementations of JSR 223.

As an alternative to a script consider providing a custom single row function as described in

Section 19.3, “Single-Row Function”

20.2. Syntax

The syntax for scripts is:

expression [return_type] [@type(eventtype_name)] [dialect_identifier:]

 script_name [(parameters)] [script_body]

Use the expression keyword to declare a script.

The return_type is optional. If the script declaration provides a return type the engine can perform

strong type checking: Any expressions that invoke the script and use the return value are

aware of the return type. If no return type is provided the engine assumes the script returns

java.lang.Object.

If the return type of the script is EventBean[] you must provide the @type(name) annotation after

the return type to name the event type of events returned by the script. The @type is allowed only

when the return type is EventBean instances.

Chapter 20. Script Support

708

The dialect_identifier is optional and identifies the scripting language. Use mvel for MVEL , js

for JavaScript and python for Python and similar for other JSR 223 scripting languages. If no

dialect identifier is specified, the default dialect that is configured applies, which is js unless your

application changes the default configuration.

It follows the script name. You may use the same script name multiple times and thus overload

providing multiple signatures under the same script name. The combination of script name and

number of parameters must be unique however.

If you have script parameters, specify the parameter names for the script as a comma-separated

list of identifiers in parenthesis. It is not necessary to list parameter types.

The script body is the actual MVEL or JavaScript or other scripting language script and is placed

in square brackets: [... script body ...].

20.3. Examples

The next example shows an EPL statement that calls a JavaScript script which computes the

Fibonacci total for a given number:

expression double js:fib(num) [

fib(num);

function fib(n) {

 if(n <= 1)

 return n;

 return fib(n-1) + fib(n-2);

}

]

select fib(intPrimitive) from SupportBean;

The expression keyword is followed by the return type (double), the dialect (js) and the script

name (fib) that declares a single parameter (num). The JavaScript code that computes the

Fibonacci total is between square brackets [].

The following example shows an EPL statement that calls a MVEL script which outputs all the

different colors that are listed in the colors property of each ColorEvent:

expression mvel:printColors(colors) [

String c = null;

for (c : colors) {

 System.out.println(c);

}

]

select printColors(colors) from ColorEvent;

Built-In EPL Script Attributes

709

This example instead uses JavaScript to print colors and passes the event itself as a script

parameter (this example is for Java 8 and Nashorn):

expression js:printColors(colorEvent) [

 print(java.util.Arrays.toString(colorEvent.getColors()));

]

select printColors(colorEvent) from ColorEvent as colorEvent

The next example creates a globally-visible script that returns ItemEvent events, assuming that

the ItemEvent event type is an event type defined by create schema ItemEvent(id string):

create expression EventBean[] @type(ItemEvent) js:myScriptReturnsEvents() [

myScriptReturnsEvents();

function myScriptReturnsEvents() {

 var EventBeanArray = Java.type(\"com.espertech.esper.client.EventBean[]\");

 var events = new EventBeanArray(1);

 events[0] =

 epl.getEventBeanService().adapterForMap(java.util.Collections.singletonMap(\"id

\", \"id1\"), \"ItemEvent\");

 return events;

}

// sample EPL:

// select myScriptReturnsEvents().where(v => v.id in ('id1', 'id3')) from

 MyEvent]

20.4. Built-In EPL Script Attributes

The engine provides a built-in script object under the variable name epl to all scripts. Your scripts

may use this script object to share and retain state by setting and reading script attributes. The

engine maintains a separate script object per context partition or per statement if not declaring a

context. Therefore script attributes are not shared between statements, however multiple scripts

executed by the same context partition receive the same script object.

The epl script object implements the interface

com.espertech.esper.client.hook.EPLScriptContext. Please see the JavaDoc for services

provided by EPLScriptContext.

For script state management, the EPLScriptContext interface has two methods: The void

setScriptAttribute(String attribute, Object value) method to set an attribute value and

the Object getScriptAttribute(String attribute) method to read an attribute value.

The next example demonstrates the use of the epl script object. It outputs a flag value true

when an RFID event matched because the location is A, and outputs a flag value false when an

Chapter 20. Script Support

710

RFID event matched because the location is B. The example works the same for either MVEL or

JavaScript dialects: You may simple replace the js dialect with mvel.

expression boolean js:setFlag(name, value, returnValue) [

 if (returnValue) epl.setScriptAttribute(name, value);

 returnValue;

]

expression js:getFlag(name) [

 epl.getScriptAttribute(name);

]

select getFlag('locA') as flag from RFIDEvent(zone = 'Z1' and

 (setFlag('locA', true, location = 'A') or setFlag('locA', false, location =

 'B')))

The example above utilizes two scripts: The setFlag script receives an attribute name, attribute

value and a return value. The script sets the script attribute only when the return value is true. The

getFlag script simply returns the script attribute value.

20.5. Performance Notes

Upon EPL statement compilation, the engine resolves script parameter types and performs script

compilation. At runtime the engine evaluates the script in its compiled form.

As the engine cannot inspect scripts if is not possible for the engine to perform query planning or

many optimizations based on the information in scripts. It is thus recommended to structure EPL

such that basic filter and join expressions are EPL expressions and not script expressions.

20.6. Additional Notes

Your EPL may declare a return type for the script. If no return type is declared and when using

the MVEL dialect, the engine will infer the return type from the MVEL expression analysis result.

If the return type is not provided and cannot be inferred or the dialect is not MVEL, the return

type is Object.

If the EPL declares a numeric return type then engine performs coercion of the numeric result to

the return type that is specified.

In the case that the EPL declares a return type that does not match the type of the actual script

return value, the engine does not check return value type.

Chapter 21.

711

Chapter 21. Examples, Tutorials,

Case Studies

21.1. Examples Overview

This chapter outlines the examples that come with Esper in the examples folder of the distribution.

Each sample is in a separate folder that contains all files needed by the example, excluding jar

files.

Here is an overview over the examples in alphabetical order:

Table 21.1. Examples

Name Description

Section 21.3, “AutoID

RFID Reader”

An array of RFID readers sense RFID tags as pallets are coming

within the range of one of the readers.

Shows the use of an XSD schema and XML event representation. A

single statement shows a rolling time window, a where-clause filter

on a nested property and a group-by.

Section 21.6, “Market

Data Feed Monitor”

Processes a raw market data feed and reports throughput statistics

and detects when the data rate of a feed falls off unexpectedly.

Demonstrates a batch time window and a rolling time window with a

having-clause. Multi-threaded example with a configurable number

of threads and a simulator for generating feed data.

Section 21.12,

“MatchMaker”

In the MatchMaker example every mobile user has an X and Y

location and the task of the event patterns created by this example

is to detect mobile users that are within proximity given a certain

range, and for which certain properties match preferences.

Dynamically creates and removes event patterns that use range

matching based on mobile user events received.

Section 21.13, “Named

Window Query”

A mini-benchmark that handles temperature sensor events. The

sample creates a named window and fills it with a large number of

events. It then executes a large number of pre-defined queries as

well as fire-and-forget queries and reports times.

Study this example if you are interested in named windows, Map

event type representation, fire-and-forget queries as well as pre-

defined queries via on-select, and the performance aspects.

Chapter 21. Examples, Tutoria...

712

Name Description

Section 21.14, “Sample

Virtual Data Window”

This example demonstrates the use of virtual data window to expose

a (large) external data store, without any need to keep events in

memory, and without sacrificing query performance.

Section 21.15, “Sample

Cycle Detection”

This example showcases the aggregation multi-function extension

API for use with a cycle-detection problem detecting cycles in

transactions between accounts.

Section 21.7, “OHLC

Plug-in View”

A plug-in custom view addressing a problem in the financial space:

Computes open-high-low-close bars for minute-intervals of events

that may arrive late, based on each event's timestamp.

A custom plug-in view based on the extension API can be a

convenient and reusable way to express a domain-specific analysis

problem as a unit, and this example includes the code for the OHLC

view factory and view as well as simulator to test the view.

Section 22.3, “Using the

performance kit”

A benchmark that is further described in the performance section of

this document under performance kit.

Section 21.16, “Quality of

Service”

This example develops some code for measuring quality-of-service

levels such as for a service-level agreement (SLA).

This example combines patterns with select-statements, shows the

use of the timer 'at' operator and followed-by operator ->, and

uses the iterator API to poll for current results.

Section 21.10, “Assets

Moving Across Zones -

An RFID Example”

An example out of the RFID domain processes location report

events. The example includes a simple Swing-based GUI for

visualization allows moving tags from zone to zone visually. It also

a contains comprehensive simulator to generate data for a large

number of asset groups and their tracking.

The example hooks up statements that aggregate and detect

patterns in the aggregated data to determine when an asset group

constraint is violated.

Section 21.4, “Runtime

Configuration”

Example code to demonstrate various key runtime configuration

options such as adding event types on-the-fly, adding new variables,

adding plug-in single-row and aggregation functions and adding

variant streams and revision type definition.

Section 21.5, “JMS

Server Shell and Client”

The server shell is a Java Messaging Service (JMS) -based server

and client that send and listens to messages on a JMS destination.

It also demonstrates a simple Java Management Extension (JMX)

MBean for remote statement management.

Running the Examples

713

Name Description

A single EPL statement computes an average duration for each IP

address on a rolling time window and outputs a snapshot every 2

seconds.

Section 21.11,

“StockTicker”

An example from the financial domain that features event patterns

to filter stock tick events based on price and symbol. The example

is designed to provide a high volume of events and includes

multithreaded unit test code as well as a simulting data generator.

Perhaps this is a good example to learn the API and get started

with event patterns. The example dynamically creates and removes

event patterns based on price limit events received.

Section 21.9, “Self-

Service Terminal”

A J2EE-based self-service terminal managing system in an airport

that gets a lot of events from connected terminals.

Contains a message-driven bean (EJB-MDB) for use in a J2EE

container, a client and a simulator, as well as EPL statements for

detecting various conditions. A version that runs outside of a J2EE

container is also available.

Section 21.17, “Trivia

Geeks Club”

Trivia Geeks Club demonstrates EPL for a scoring system

computing scores in a trivia game.

21.2. Running the Examples

In order to compile and run the samples please follow the below instructions:

1. Make sure Java 1.6 or greater is installed and the JAVA_HOME environment variable is set.

2. Open a console window and change directory to examples/example_name/etc.

3. Run "setenv.bat" (Windows) or "setenv.sh" (Unix) to verify your environment settings.

4. Run "compile.bat" (Windows) or "compile.sh" (Unix) to compile an example.

5. Now you are ready to run an example. Some examples require mandatory parameters that are

also described in the file "readme.txt" in the "etc" folder.

6. Modify the logger logging level in the "log4j.xml" configuration file changing DEBUG to INFO

on a class or package level to control the volume of text output.

Each example also provides Eclipse project .classpath and .project files. The Eclipse projects

expect an esper_runtime user library that includes the runtime dependencies.

JUnit tests exist for the example code. The JUnit test source code for the examples can be found

in each example's src/test folder. To build and run the example JUnit tests, use the Maven 2

goal test.

Chapter 21. Examples, Tutoria...

714

21.3. AutoID RFID Reader

In this example an array of RFID readers sense RFID tags as pallets are coming within the range

of one of the readers. A reader generates XML documents with observation information such as

reader sensor ID, observation time and tags observed. A statement computes the total number

of tags per reader sensor ID within the last 60 seconds.

This example demonstrates how XML documents unmarshalled to org.w3c.dom.Node DOM

document nodes can natively be processed by the engine without requiring Java object event

representations. The example uses an XPath expression for an event property counting the

number of tags observed by a sensor. The XML documents follow the AutoID (http://

www.autoid.org/) organization standard.

The classes for this example can be found in package com.espertech.esper.example.autoid.

As events are XML documents with no Java object representation, the example does not have

event classes.

A simulator that can be run from the command line is also available for this example. The simulator

generates a number of XML documents as specified by a command line argument and prints out

the totals per sensor. Run "run_autoid.bat" (Windows) or "run_autoid.sh" (Unix) to start the AutoID

simulator. Please see the readme file in the same folder for build instructions and command line

parameters.

The code snippet below shows the simple statement to compute the

total number of tags per sensor. The statement is created by class

com.espertech.esper.example.autoid.RFIDTagsPerSensorStmt.

select ID as sensorId, sum(countTags) as numTagsPerSensor

from AutoIdRFIDExample#time(60 seconds)

where Observation[0].Command = 'READ_PALLET_TAGS_ONLY'

group by ID

21.4. Runtime Configuration

This example demonstrates various key runtime configuration options such as adding event types

on-the-fly, adding new variables, adding plug-in single-row and aggregation functions and adding

variant streams and revision type definition.

The classes for this example live in package com.espertech.esper.example.runtimeconfig.

21.5. JMS Server Shell and Client

21.5.1. Overview

The server shell is a Java Messaging Service (JMS) -based server that listens to messages on

a JMS destination, and sends the received events into Esper. The example also demonstrates a

JMS Messages as Events

715

Java Management Extension (JMX) MBean that allows remote dynamic statement management.

This server has been designed to run with either Tibco (TM) Enterprise Messaging System (Tibco

EMS), or with Apache ActiveMQ, controlled by a properties file.

The server shell has been created as an alternative to the EsperIO Spring JMSTemplate adapter.

The server shell is a low-latency processor for byte messages. It employs JMS listeners to process

message in multiple threads, this model reduces thread context switching for many JMS providers.

The server is configurable and has been tested with two JMS providers. It consists of only 10

classes and is thus easy to understand.

The server shell sample comes with a client (server shell client) that sends events into the JMS-

based server, and that also creates a statement on the server remotely through a JMX MBean

proxy class.

The server shell classes for this example live in package

com.espertech.esper.example.servershell. Configure the server to point to your JMS

provider by changing the properties in the file servershell_config.properties in the

etc folder. Make sure your JMS provider (ActiveMQ or Tibco EMS) is running, then run

"run_servershell.bat" (Windows) or "run_servershell.sh" (Unix) to start the JMS server.

Start the server shell process first before starting the client, since the client also demonstrates

remote statement management through JMX by attaching to the server process.

The client classes to the server shell can be found in package

com.espertech.esper.example.servershellclient. The client shares the same

configuration file as the server shell. Run "run_servershellclient.bat" (Windows) or

"run_servershellclient.sh" (Unix) to start the JMS producer client that includes a JMX client as well.

21.5.2. JMS Messages as Events

The server shell starts a configurable number of JMS MessageListener instances that listen to a

given JMS destination. The listeners expect a BytesMessage that contain a String payload. The

payload consists of an IP address and a double-typed duration value separated by a comma.

Each listener extracts the payload of a message, constructs an event object and sends the event

into the shared Esper engine instance.

At startup time, the server creates a single EPL statement with the Esper engine that prints out the

average duration per IP address for the last 10 seconds of events, and that specifies an output rate

of 2 seconds. By running the server and then the client, you can see the output of the averages

every 2 seconds.

The server shell client acts as a JMS producer that sends 1000 events with random IP addresses

and durations.

Chapter 21. Examples, Tutoria...

716

21.5.3. JMX for Remote Dynamic Statement Management

The server shell is also a JMX server providing an RMI-based connector. The server shell exposes

a JMX MBean that allows remote statement management. The JMX MBean allows to create a

statement remotely, attach a listener to the statement and destroy a statement remotely.

The server shell client, upon startup, obtains a remote instance of the management MBean

exposed by the server shell. It creates a statement through the MBean that filters out all durations

greater then the value 9.9. After sending 1000 events, the client then destroys the statement

remotely on the server.

21.6. Market Data Feed Monitor

This example processes a raw market data feed. It reports throughput statistics and detects when

the data rate of a feed falls off unexpectedly. A rate fall-off may mean that the data is stale and

we want to alert when there is a possible problem with the feed.

The classes for this example live in package com.espertech.esper.example.marketdatafeed.

Run "run_mktdatafeed.bat" (Windows) or "run_mktdatafeed.sh" (Unix) in the examples/etc folder

to start the market data feed simulator.

21.6.1. Input Events

The input stream consists of 1 event stream that contains 2 simulated market data feeds. Each

individual event in the stream indicates the feed that supplies the market data, the security symbol

and some pricing information:

String symbol;

FeedEnum feed;

double bidPrice;

double askPrice;

21.6.2. Computing Rates Per Feed

For the throughput statistics and to detect rapid fall-off we calculate a ticks per second rate for

each market data feed.

We can use an EPL statement that specifies a view onto the market data event stream that

batches together 1 second of events. We specify the feed and a count of events per feed as

output values. To make this data available for further processing, we insert output events into the

TicksPerSecond event stream:

insert into TicksPerSecond

select feed, count(*) as cnt

Detecting a Fall-off

717

 from MarketDataEvent#time_batch(1 second)

 group by feed

21.6.3. Detecting a Fall-off

We define a rapid fall-off by alerting when the number of ticks per second for any second falls

below 75% of the average number of ticks per second over the last 10 seconds.

We can compute the average number of ticks per second over the last 10 seconds simply by using

the TicksPerSecond events computed by the prior statement and averaging the last 10 seconds.

Next, we compare the current rate with the moving average and filter out any rates that fall below

75% of the average:

select feed, avg(cnt) as avgCnt, cnt as feedCnt

 from TicksPerSecond#time(10 seconds)

 group by feed

having cnt < avg(cnt) * 0.75

21.6.4. Event generator

The simulator generates market data events for 2 feeds, feed A and feed B. The first parameter

to the simulator is a number of threads. Each thread sends events for each feed in an endless

loop. Note that as the Java VM garbage collection kicks in, the example generates rate drop-offs

during such pauses.

The second parameter is a rate drop probability parameter specifies the probability in percent that

the simulator drops the rate for a randomly chosen feed to 60% of the target rate for that second.

Thus rate fall-off alerts can be generated.

The third parameter defines the number of seconds to run the example.

21.7. OHLC Plug-in View

This example contains a fully-functional custom view based on the extension API that computes

OHLC open-high-low-close bars for events that provide a long-typed timestamp and a double-

typed value.

OHLC bar is a problem out of the financial domain. The "Open" refers to the first datapoint and

the "Close" to the last datapoint in an interval. The "High" refers to the maximum and the "Low" to

the minimum value during each interval. The term "bar" is used to describe each interval results

of these 4 values.

The example provides an OHLC view that is hardcoded to 1-minute bars. It considers the

timestamp value carried by each event, and not the system time. The cutoff time after which an

event is no longer considered for a bar is hardcoded to 5 seconds.

Chapter 21. Examples, Tutoria...

718

The view assumes that events arrive in timestamp order: Each event's timestamp value is equal

to or higher then the timestamp value provided by the prior event.

The view may also be used together with std:groupwin to group per criteria, such as symbol. In

this case the assumption of timestamp order applies per symbol.

The view gracefully handles no-event and late-event scenarios. Interval boundaries are defined

by system time, thus event timestamp and system time must roughly be in-sync, unless using

external timer events.

21.8. Transaction 3-Event Challenge

The classes for this example live in package com.espertech.esper.example.transaction. Run

"run_txnsim.bat" (Windows) or "run_txnsim.sh" (Unix) to start the transaction simulator. Please

see the readme file in the same folder for build instructions and command line parameters.

21.8.1. The Events

The use case involves tracking three components of a transaction. It‘s important that we use at

least three components, since some engines have different performance or coding for only two

events per transaction. Each component comes to the engine as an event with the following fields:

• Transaction ID

• Time stamp

In addition, we have the following extra fields:

In event A:

• Customer ID

In event C:

• Supplier ID (the ID of the supplier that the order was filled through)

21.8.2. Combined event

We need to take in events A, B and C and produce a single, combined event with the following

fields:

• Transaction ID

• Customer ID

• Time stamp from event A

Real time summary data

719

• Time stamp from event B

• Time stamp from event C

What we‘re doing here is matching the transaction IDs on each event, to form an aggregate event.

If all these events were in a relational database, this could be done as a simple SQL join… except

that with 10,000 events per second, you will need some serious database hardware to do it.

21.8.3. Real time summary data

Further, we need to produce the following:

• Min,Max,Average total latency from the events (difference in time between A and C) over the

past 30 minutes.

• Min,Max,Average latency grouped by (a) customer ID and (b) supplier ID. In other words,

metrics on the the latency of the orders coming from each customer and going to each supplier.

• Min,Max,Average latency between events A/B (time stamp of B minus A) and B/C (time stamp

of C minus B).

21.8.4. Find problems

We need to detect a transaction that did not make it through all three events. In other words, a

transaction with events A or B, but not C. Note that, in this case, what we care about is event C.

The lack of events A or B could indicate a failure in the event transport and should be ignored.

Although the lack of an event C could also be a transport failure, it merits looking into.

21.8.5. Event generator

To make testing easier, standard and to demonstrate how the example works, the example is

including an event generator. The generator generates events for a given number of transactions,

using the following rules:

• One in 5,000 transactions will skip event A

• One in 1,000 transactions will skip event B

• One in 10,000 transactions will skip event C.

• Transaction identifiers are randomly generated

• Customer and supplier identifiers are randomly chosen from two lists

• The time stamp on each event is based on the system time. Between events A and B as well

as B and C, between 0 and 999 is added to the time. So, we have an expected time difference

of around 500 milliseconds between each event

• Events are randomly shuffled as described below

To make things harder, we don‘t want transaction events coming in order. This code ensures that

they come completely out of order. To do this, we fill in a bucket with events and, when the bucket

is full, we shuffle it. The buckets are sized so that some transactions‘ events will be split between

Chapter 21. Examples, Tutoria...

720

buckets. So, you have a fairly randomized flow of events, representing the worst case from a big,

distributed infrastructure.

The generator lets you change the size of the bucket (small, medium, large, larger, largerer).

The larger the bucket size, the more events potentially come in between two events in a given

transaction and so, the more the performance characteristics like buffers, hashes/indexes and

other structures are put to the test as the bucket size increases.

21.9. Self-Service Terminal

The example is about a J2EE-based self-service terminal managing system in an airport that gets

a lot of events from connected terminals. The event rate is around 500 events per second. Some

events indicate abnormal situations such as 'paper low' or 'terminal out of order'. Other events

observe activity as customers use a terminal to check in and print boarding tickets.

21.9.1. Events

Each self-service terminal can publish any of the 6 events below.

• Checkin - Indicates a customer started a check-in dialog

• Cancelled - Indicates a customer cancelled a check-in dialog

• Completed - Indicates a customer completed a check-in dialog

• OutOfOrder - Indicates the terminal detected a hardware problem

• LowPaper - Indicates the terminal is low on paper

• Status - Indicates terminal status, published every 1 minute regardless of activity as a terminal

heartbeat

All events provide information about the terminal that published the event, and a timestamp. The

terminal information is held in a property named "term" and provides a terminal id. Since all events

carry similar information, we model each event as a subtype to a base class BaseTerminalEvent,

which will provide the terminal information that all events share. This enables us to treat all terminal

events polymorphically, that is we can treat derived event types just like their parent event types.

This helps simplify our queries.

All terminals publish Status events every 1 minute. In normal cases, the Status events indicate

that a terminal is alive and online. The absence of status events may indicate that a terminal went

offline for some reason and that may need to be investigated.

21.9.2. Detecting Customer Check-in Issues

A customer may be in the middle of a check-in when the terminal detects a hardware problem

or when the network goes down. In that situation we want to alert a team member to help the

customer. When the terminal detects a problem, it issues an OutOfOrder event. A pattern can

find situations where the terminal indicates out-of-order and the customer is in the middle of the

check-in process:

Absence of Status Events

721

select * from pattern [every a=Checkin ->

 (OutOfOrder(term.id=a.term.id) and not

 (Cancelled(term.id=a.term.id) or Completed(term.id=a.term.id)))]

21.9.3. Absence of Status Events

Since Status events arrive in regular intervals of 60 seconds, we can make us of temporal

pattern matching using timer to find events that didn't arrive. We can use the every operator and

timer:interval() to repeat an action every 60 seconds. Then we combine this with a not operator to

check for absence of Status events. A 65 second interval during which we look for Status events

allows 5 seconds to account for a possible delay in transmission or processing:

select 'terminal 1 is offline' from pattern

 [every timer:interval(60 sec) -> (timer:interval(65 sec) and not Status(term.id

 = 'T1'))]

output first every 5 minutes

21.9.4. Activity Summary Data

By presenting statistical information about terminal activity to our staff in real-time we enable them

to monitor the system and spot problems. The next example query simply gives us a count per

event type every 1 minute. We could further use this data, available through the CountPerType

event stream, to join and compare against a recorded usage pattern, or to just summarize activity

in real-time.

insert into CountPerType

select type, count(*) as countPerType

from BaseTerminalEvent#time(10 minutes)

group by type

output all every 1 minutes

21.9.5. Sample Application for J2EE Application Server

The example code in the distribution package implements a message-driven enterprise java

bean (MDB EJB). We used an MDB as a convenient place for processing incoming events via a

JMS message queue or topic. The example uses 2 JMS queues: One queue to receive events

published by terminals, and a second queue to indicate situations detected via EPL statement

and listener back to a receiving process.

This example has been packaged for deployment into a JBoss Java application server (see http://

www.jboss.org) with default deployment configuration. JBoss is an open-source application server

available under LGPL license. Of course the choice of application server does not indicate a

Chapter 21. Examples, Tutoria...

722

requirement or preference for the use of Esper in a J2EE container. Other quality J2EE application

servers are available and perhaps more suitable to run this example or a similar application.

The complete example code can be found in the "examples/terminalsvc" folder of the distribution.

The standalone version that does not require a J2EE container is in "examples/terminalsvc-jse".

21.9.5.1. Running the Example

The pre-build EAR file contains the MDB for deployment to a JBoss application server with default

deployment options. The JBoss default configuration provides 2 queues that this example utilizes:

queue/A and queue/B. The queue/B is used to send events into the MDB, while queue/A is used

to indicate back the any data received by listeners to EPL statements.

The application can be deployed by copying the ear file in the "examples/terminalsvc/terminalsvc-

ear" folder to your JBoss deployment directory located under the JBoss home directory under

"standalone/deployments".

The example contains an event simulator and an event receiver that can be invoked from the

command line. See the folder "examples/terminalsvc/etc" folder readme file and start scripts for

Windows and Unix, and the documentation set for further information on the simulator.

21.9.5.2. Building the Example

This example requires Maven 2 to build. To build the example, change directory to the folder

"examples/terminalsvc" and type "mvn package". The instructions have been tested with JBoss

AS 7.1.1 and Maven 3.0.4.

The Maven build packages the EAR file for deployment to a JBoss application server with default

deployment options.

21.9.5.3. Running the Event Simulator and Receiver

The example also contains an event simulator that generates meaningful events. The

simulator can be run from the directory "examples/terminalsvc/etc" via the command

"run_terminalsvc_sender.bat" (Windows) and "run_terminalsvc_sender.sh" (Linux). The event

simulator generates a batch of at least 200 events every 1 second. Randomly, with a chance of

1 in 10 for each batch of events, the simulator generates either an OutOfOrder or a LowPaper

event for a random terminal. Each batch the simulator generates 100 random terminal ids and

generates a Checkin event for each. It then generates either a Cancelled or a Completed event

for each. With a chance of 1 in 1000, it generates an OutOfOrder event instead of the Cancelled

or Completed event for a terminal.

The event receiver listens to the MDB-outcoming queue for alerts and prints these out to

console. The receiver can be run from the directory "examples/terminalsvc/etc" via the command

"run_terminalsvc_receiver.bat" (Windows) and "run_terminalsvc_receiver.sh" (Linux). Before

running please copy the jboss-client.jar file from your JBoss AS installation bin directory to

the "terminalsvc/lib" folder.

Assets Moving Across Zones - An RFID Example

723

The receiver and sender code use "guest" as user and "pass" as password. Add the "guest" user

using the Jboss "add-user" script and assign the role "guest". Your JBoss server may need to start

with "-c standalone-full.xml" to have the messaging subsystem available.

Add queue configurations to the messaging subsystem configuration as follows:

<jms-queue name="queue_a">

 <entry name="queue_a"/>

 <entry name="java:jboss/exported/jms/queue/queue_a"/>

</jms-queue>

<jms-queue name="queue_b">

 <entry name="queue_b"/>

 <entry name="java:jboss/exported/jms/queue/queue_b"/>

</jms-queue>

Disable persistence in the messaging subsystem for this example so we are not running out of

disk space:

<persistence-enabled>false</persistence-enabled>

21.10. Assets Moving Across Zones - An RFID Example

This example out of the RFID domain processes location report events. Each location report event

indicates an asset id and the current zone of the asset. The example solves the problem that when

a given set of assets is not moving together from zone to zone, then an alert must be fired.

Each asset group is tracked by 2 statements. The two statements to track a single asset group

consisting of assets identified by asset ids {1, 2, 3} are as follows:

insert into CountZone_G1

select 1 as groupId, zone, count(*) as cnt

from LocationReport(assetId in 1, 2, 3)#unique(assetId)

group by zone

select Part.zone from pattern [

 every Part=CountZone_G1(cnt in (1,2)) ->

 (timer:interval(10 sec) and not CountZone_G1(zone=Part.zone, cnt in (0,3)))]

The classes for this example can be found in package com.espertech.esper.example.rfid.

This example provides a Swing-based GUI that can be run from the command line. The GUI allows

drag-and-drop of three RFID tags that form one asset group from zone to zone. Each time you

move an asset across the screen the example sends an event into the engine indicating the asset

Chapter 21. Examples, Tutoria...

724

id and current zone. The example detects if within 10 seconds the three assets do not join each

other within the same zone, but stay split across zones. Run "run_rfid_swing.bat" (Windows) or

"run_rfid_swing.sh" (Unix) to start the example's Swing GUI.

The example also provides a simulator that can be run from the command line. The simulator

generates a number of asset groups as specified by a command line argument and starts a number

of threads as specified by a command line argument to send location report events into the engine.

Run "run_rfid_sim.bat" (Windows) or "run_rfid_sim.sh" (Unix) to start the RFID location report

event simulator. Please see the readme file in the same folder for build instructions and command

line parameters.

21.11. StockTicker

The StockTicker example comes from the stock trading domain. The example creates event

patterns to filter stock tick events based on price and symbol. When a stock tick event is

encountered that falls outside the lower or upper price limit, the example simply displays that stock

tick event. The price range itself is dynamically created and changed. This is accomplished by an

event patterns that searches for another event class, the price limit event.

The classes com.espertech.esper.example.stockticker.event.StockTick and

PriceLimit represent our events. The event patterns are created by the class

com.espertech.esper.example.stockticker.monitor.StockTickerMonitor.

Summary:

• Good example to learn the API and get started with event patterns

• Dynamically creates and removes event patterns based on price limit events received

• Simple, highly-performant filter expressions for event properties in the stock tick event such as

symbol and price

21.12. MatchMaker

In the MatchMaker example every mobile user has an X and Y location, a set of properties (gender,

hair color, age range) and a set of preferences (one for each property) to match. The task of the

event patterns created by this example is to detect mobile users that are within proximity given a

certain range, and for which the properties match preferences.

The event class representing mobile users is

com.espertech.esper.example.matchmaker.event.MobileUserBean. The

com.espertech.esper.example.matchmaker.monitor.MatchMakingMonitor class contains

the patterns for detecing matches.

Summary:

• Dynamically creates and removes event patterns based on mobile user events received

• Uses range matching for X and Y properties of mobile user events

Named Window Query

725

21.13. Named Window Query

This example handles very minimal temperature sensor events which are represented by

java.util.Map. It creates a named window and fills it with a large number of events. It then

executes a large number of pre-defined queries via on-select as well as performs a large number

of fire-and-forget queries against the named window, and reports execution times.

21.14. Sample Virtual Data Window

Virtual data windows are an extension API used to integrate external stores and expose the data

therein as a named window.

See the virtualdw folder for example code, compile and run scripts.

21.15. Sample Cycle Detection

The example is also discussed in the section on extension APIs specifically the aggregation

multi-function development. The example uses the jgrapht library for a cycle-detection problem

detecting cycles in transactions between accounts.

See the examples/cycledetect folder for example code, compile and run scripts.

21.16. Quality of Service

This example develops some code for measuring quality-of-service levels such as for a service-

level agreement (SLA). A SLA is a contract between 2 parties that defines service constraints

such as maximum latency for service operations or error rates.

The example measures and monitors operation latency and error counts per customer and

operation. When one of our operations oversteps these constraints, we want to be alerted right

away. Additionally, we would like to have some monitoring in place that checks the health of our

service and provides some information on how the operations are used.

Some of the constraints we need to check are:

• That the latency (time to finish) of some of the operations is always less then X seconds.

• That the latency average is always less then Y seconds over Z operation invocations.

The com.espertech.esper.example.qos_sla.events.OperationMeasurement event class

with its latency and status properties is the main event used for the SLA analysis. The other event

LatencyLimit serves to set latency limits on the fly.

The com.espertech.esper.example.qos_sla.monitor.AverageLatencyMonitor creates an

EPL statement that computes latency statistics per customer and operation for the last 100

events. The DynaLatencySpikeMonitor uses an event pattern to listen to spikes in latency

with dynamically set limits. The ErrorRateMonitor uses the timer 'at' operator in an event

Chapter 21. Examples, Tutoria...

726

pattern that wakes up periodically and polls the error rate within the last 10 minutes. The

ServiceHealthMonitor simply alerts when 3 errors occur, and the SpikeAndErrorMonitor alerts

when a fixed latency is overstepped or an error status is reported.

Summary:

• This example combines event patterns with EPL statements for event stream analysis.

• Shows the use of the timer 'at' operator and followed-by operator -> in event patterns.

• Outlines basic EPL statements.

• Shows how to pull data out of EPL statements rather then subscribing to events a statement

publishes.

21.17. Trivia Geeks Club

This example was developed for the DEBS 2011 conference and demonstrates how scoring rules

for a trivia game can be implemented in EPL.

The EPL module that implements all scoring rules is located in the etc folder in file trivia.epl.

The EPL is all required to run the solution without any custom functions required.

The trivia geeks club rules (the requirements) are provided in the etc folder in file

trivia_scoring_requirements.htm.

The implementation we provide tests the questions, answers and scoring according to the data

provided in trivia_test_questions_small.htm and trivia_test_questions_large.htm.

Chapter 22.

727

Chapter 22. Performance
Esper has been highly optimized to handle very high throughput streams with very little latency

between event receipt and output result posting. It is also possible to use Esper on a soft-real-

time or hard-real-time JVM to maximize predictability even further.

This section describes performance best practices and explains how to assess Esper performance

by using our provided performance kit.

22.1. Performance Results

For a complete understanding of those results, consult the next sections.

Esper exceeds over 500 000 event/s on a dual CPU 2GHz Intel based hardware,

with engine latency below 3 microseconds average (below 10us with more than

99% predictability) on a VWAP benchmark with 1000 statements registered in the

 system

- this tops at 70 Mbit/s at 85% CPU usage.

Esper also demonstrates linear scalability from 100 000 to 500 000 event/s on this

hardware, with consistent results accross different statements.

Other tests demonstrate equivalent performance results

(straight through processing, match all, match none, no statement registered,

VWAP with time based window or length based windows).

Tests on a laptop demonstrated about 5x time less performance - that is

between 70 000 event/s and 200 000 event/s - which still gives room for easy

testing on small configuration.

22.2. Performance Tips

22.2.1. Understand how to tune your Java virtual machine

Esper runs on a JVM and you need to be familiar with JVM tuning. Key parameters to consider

include minimum and maximum heap memory and nursery heap sizes. Statements with time-

based or length-based data windows can consume large amounts of memory as their size or

length can be large.

For time-based data windows, one needs to be aware that the memory consumed depends on the

actual event stream input throughput. Event pattern instances also consume memory, especially

when using the "every" keyword in patterns to repeat pattern sub-expressions - which again will

depend on the actual event stream input throughput.

Chapter 22. Performance

728

22.2.2. Input and Output Bottlenecks

Your application receives output events from Esper statements through the UpdateListener

interface or via the strongly-typed subscriber POJO object. Such output events are delivered by

the application or timer thread(s) that sends an input event into the engine instance.

The processing of output events that your listener or subscriber performs temporarily blocks

the thread until the processing completes, and may thus reduce throughput. It can therefore be

beneficial for your application to process output events asynchronously and not block the Esper

engine while an output event is being processed by your listener, especially if your listener code

performs blocking IO operations.

For example, your application may want to send output events to a JMS destination or write output

event data to a relational database. For optimal throughput, consider performing such blocking

operations in a separate thread.

Additionally, when reading input events from a store or network in a performance test, you may find

that Esper processes events faster then you are able to feed events into Esper. In such case you

may want to consider an in-memory driver for use in performance testing. Also consider decoupling

your read operation from the event processing operation (sendEvent method) by having multiple

readers or by pre-fetching your data from the store.

22.2.3. Theading

We recommend using multiple threads to send events into Esper. We provide a test class below.

Our test class does not use a blocking queue and thread pool so as to avoid a point of contention.

A sample code for testing performance with multiple threads is provided:

public class SampleClassThreading {

 public static void main(String[] args) throws InterruptedException {

 int numEvents = 1000000;

 int numThreads = 3;

 Configuration config = new Configuration();

 config.getEngineDefaults().getThreading()

 .setListenerDispatchPreserveOrder(false);

 config.getEngineDefaults().getThreading()

 .setInternalTimerEnabled(false); // remove thread that handles

 time advancing

 EPServiceProvider engine = EPServiceProviderManager

 .getDefaultProvider(config);

 engine.getEPAdministrator().getConfiguration().addEventType(MyEvent.class);

 engine.getEPAdministrator().createEPL(

Theading

729

 "create context MyContext coalesce by consistent_hash_crc32(id) " +

 "from MyEvent granularity 64 preallocate");

 String epl = "context MyContext select count(*) from MyEvent group by id";

 EPStatement stmt = engine.getEPAdministrator().createEPL(epl);

 stmt.setSubscriber(new MySubscriber());

 Thread[] threads = new Thread[numThreads];

 CountDownLatch latch = new CountDownLatch(numThreads);

 int eventsPerThreads = numEvents / numThreads;

 for (int i = 0; i < numThreads; i++) {

 threads[i] = new Thread(

 new MyRunnable(latch, eventsPerThreads, engine.getEPRuntime()));

 }

 long startTime = System.currentTimeMillis();

 for (int i = 0; i < numThreads; i++) {

 threads[i].start();

 }

 latch.await(10, TimeUnit.MINUTES);

 if (latch.getCount() > 0) {

 throw new RuntimeException("Failed to complete in 10 minute");

 }

 long delta = System.currentTimeMillis() - startTime;

 System.out.println("Took " + delta + " millis");

 }

 public static class MySubscriber {

 public void update(Object[] args) {

 }

 }

 public static class MyRunnable implements Runnable {

 private final CountDownLatch latch;

 private final int numEvents;

 private final EPRuntime runtime;

 public MyRunnable(CountDownLatch latch, int numEvents, EPRuntime runtime) {

 this.latch = latch;

 this.numEvents = numEvents;

 this.runtime = runtime;

 }

 public void run() {

 Random r = new Random();

 for (int i = 0; i < numEvents; i++) {

 runtime.sendEvent(new MyEvent(r.nextInt(512)));

 }

 latch.countDown();

Chapter 22. Performance

730

 }

 }

 public static class MyEvent {

 private final int id;

 public MyEvent(int id) {

 this.id = id;

 }

 public int getId() {

 return id;

 }

 }

}

We recommend using Java threads as above, or a blocking queue and thread pool with

sendEvent() or alternatively we recommend configuring inbound threading if your application

does not already employ threading. Esper provides the configuration option to use engine-level

queues and threadpools for inbound, outbound and internal executions. See Section 16.7.1,

“Advanced Threading” for more information.

We recommend the outbound threading if your listeners are blocking. For outbound threading also

see the section below on tuning and disabling listener delivery guarantees.

If enabling advanced threading options keep in mind that the engine will maintain a queue and

thread pool. There is additional overhead associated with entering work units into the queue,

maintaining the queue and the hand-off between threads. The Java blocking queues are not

necessarily fast on all JVM. It is not necessarily true that your application will perform better with

any of the advanced threading options.

We found scalability better on Linux systems and running Java with -server and pinning threads

to exclusive CPUs and after making sure CPUs are available on your system.

We recommend looking at LMAX Disruptor, an inter-thread messaging library, for setting up

processing stages. Disruptor, however, is reportedly less suitable for setting up a worker pool.

22.2.3.1. Thead Pool Pattern

The sample code below may help you get started setting up a thread pool of workers with back

pressure and consideration for IO threads and clean shutdown.

The sample code starts by setting up a thread factory:

private static class EngineThreadFactory implements ThreadFactory {

 private AtomicInteger id = new AtomicInteger(0);

 public Thread newThread(Runnable r) {

Theading

731

 Thread t = new Thread(r, "Event Engine Thread #" + id.incrementAndGet());

 t.setDaemon(true);

 t.setPriority(Thread.NORM_PRIORITY);

 return t;

 }

}

The sample uses a fixed-size array blocking queue. To handle the situation where the queue is full

and accepts no more messages, we use a rejection handler that counts the number of rejections

and retries:

private class EngineRejectionHandler implements RejectedExecutionHandler {

 private volatile long spinCount = 0;

 public long getSpinCount() {

 return spinCount;

 }

 public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {

 ++spinCount;

 try {

 boolean isAccepted = false;

 while (!isAccepted) {

 isAccepted = executorQueue.offer(r, 120, TimeUnit.MICROSECONDS);

 }

 }

 catch (InterruptedException e) {

 log.warn("could not queue work entry");

 }

 }

}

The Runnable that submits an event for processing could look like this:

class Holder implements Runnable {

 public void run() {

 // do any stuff needed to "prepare" event which doesn't involve IO

 esperService.sendEvent(lm);

 }

}

Initialize the queue and worker pool as follows:

Chapter 22. Performance

732

 private final static int CAPACITY = 10000;

 private final static int THREAD_COUNT = 4;

 private static EPRuntime esperService;

 private ThreadFactory threadFactory = new EngineThreadFactory();

 private EngineRejectionHandler rejectionHandler = new EngineRejectionHandler();

 private BlockingQueue<Runnable> executorQueue;

 private ThreadPoolExecutor executor;

 public void start() {

 executorQueue = new ArrayBlockingQueue<Runnable>(CAPACITY);

 executor = new ThreadPoolExecutor(THREAD_COUNT, THREAD_COUNT, 0,

 TimeUnit.SECONDS,

 executorQueue, threadFactory, rejectionHandler);

 executor.allowCoreThreadTimeOut(false);

 while (executor.getPoolSize() < executor.getCorePoolSize()) {

 executor.prestartCoreThread();

 }

 }

To shut down cleanly, and before destroying the Esper engine instance, the sample code is:

 executor.shutdown();

 while (!executor.isTerminated()) {

 Thread.sleep(100);

 }

The next sample code goes into the IO or input thread(s) such as NIO mapped file, file channel,

socket channel, or zmq / nanomsg etc., and submits a work unit to the queue:

 while (programAlive) {

 // deserialize event to POJO, Map, Array, etc.,

 // pass along an event type name when needed

 executor.execute(new Holder(myeventobject));

 }

You could periodically dump the spinCount variable to get an idea of queue depth. You can

tune the size of the Executor's pool, and the size of the TimeUnit's of sleep used inside the

rejectedExecution method, until you get 1) stable performance at highest level (determined by

optimal number of threads in pool, 2) avoid wasting CPU in IO thread(s) (determined by optimal

sleeping time between each attempt to re-queue rejected events to the thread pool).

Select the underlying event rather than individual fields

733

22.2.4. Select the underlying event rather than individual fields

By selecting the underlying event in the select-clause we can reduce load on the engine, since

the engine does not need to generate a new output event for each input event.

For example, the following statement returns the underlying event to update listeners:

// Better performance

select * from RFIDEvent

In comparison, the next statement selects individual properties. This statement requires the engine

to generate an output event that contains exactly the required properties:

// Less good performance

select assetId, zone, xlocation, ylocation from RFIDEvent

22.2.5. Prefer stream-level filtering over where-clause filtering

Esper stream-level filtering is very well optimized, while filtering via the where-clause post any

data windows is not optimized.

The same is true for named windows. If your application is only interested in a subset of named

window data and such filters are not correlated to arriving events, place the filters into parenthesis

after the named window name.

22.2.5.1. Examples without named windows

Consider the example below, which performs stream-level filtering:

// Better performance : stream-level filtering

select * from MarketData(ticker = 'GOOG')

The example below is the equivalent (same semantics) statement and performs post-data-window

filtering without a data window. The engine does not optimize statements that filter in the where-

clause for the reason that data window views are generally present.

// Less good performance : post-data-window filtering

select * from Market where ticker = 'GOOG'

Thus this optimization technique applies to statements without any data window.

Chapter 22. Performance

734

When a data window is used, the semantics change. Let's look at an example to better understand

the difference: In the next statement only GOOG market events enter the length window:

select avg(price) from MarketData(ticker = 'GOOG')#length(100)

The above statement computes the average price of GOOG market data events for the last 100

GOOG market data events.

Compare the filter position to a filter in the where clause. The following statement is NOT

equivalent as all events enter the data window (not just GOOG events):

select avg(price) from Market#length(100) where ticker = 'GOOG'

The statement above computes the average price of all market data events for the last 100 market

data events, and outputs results only for GOOG.

22.2.5.2. Examples using named windows

The next two example EPL queries put the account number filter criteria directly into parenthesis

following the named window name:

// Better performance : stream-level filtering

select * from WithdrawalNamedWindow(accountNumber = '123')

// Better performance : example with subquery

select *, (select * from LoginSucceededWindow(accountNumber = '123'))

from WithdrawalNamedWindow(accountNumber = '123')

22.2.5.3. Common computations in where-clauses

If you have a number of queries performing a given computation on incoming events, consider

moving the computation from the where-clause to a plug-in user-defined function that is listed

as part of stream-level filter criteria. The engine optimizes evaluation of user-defined functions in

filters such that an incoming event can undergo the computation just once even in the presence

of N queries.

// Prefer stream-level filtering with a user-defined function

select * from MarketData(vstCompare(*))

Reduce the use of arithmetic in expressions

735

// Less preferable when there are N similar queries:

// Move the computation in the where-clause to the "vstCompare" function.

select * from MarketData where (VST * RT) – (VST / RT) > 1

22.2.6. Reduce the use of arithmetic in expressions

Esper does not yet attempt to pre-evaluate arithmetic expressions that produce constant results.

Therefore, a filter expression as below is optimized:

// Better performance : no arithmetic

select * from MarketData(price>40)

While the engine cannot currently optimize this expression:

// Less good performance : with arithmetic

select * from MarketData(price+10>50)

22.2.7. Remove Unneccessary Constructs

If your statement uses order by to order output events, consider removing order by unless your

application does indeed require the events it receives to be ordered.

If your statement specifies group by but does not use aggregation functions, consider removing

group by.

If your statement specifies group by but the filter criteria only allows one group, consider removing

group by:

// Prefer:

select * from MarketData(symbol = 'GE') having sum(price) > 1000

// Don't use this since the filter specifies a single symbol:

select * from MarketData(symbol = 'GE') group by symbol having sum(price) > 1000

If your statement specifies the grouped data window std:groupwin but the window being grouped

retains the same set of events regardless of grouping, remove std:groupwin:

// Prefer:

create window MarketDataWindow#keepall as MarketDataEventType

Chapter 22. Performance

736

// Don't use this, since keeping all events

// or keeping all events per symbol is the same thing:

create window MarketDataWindow#groupwin(symbol)#keepall as MarketDataEventType

// Don't use this, since keeping the last 1-minute of events

// or keeping 1-minute of events per symbol is the same thing:

create window MarketDataWindow#groupwin(symbol)#time(1 min) as

 MarketDataEventType

It is not necessary to specify a data window for each stream.

// Prefer:

select * from MarketDataWindow

// Don't have a data window if just listening to events, prefer the above

select * from MarketDataWindow#lastevent

If your statement specifies unique data window but the filter criteria only allows one unique criteria,

consider removing the unique data window:

// Prefer:

select * from MarketDataWindow(symbol = 'GE')#lastevent

// Don't have a unique-key data window if your filter specifies a single value

select * from MarketDataWindow(symbol = 'GE')#unique(symbol)

22.2.8. End Pattern Sub-Expressions

In patterns, the every keyword in conjunction with followed by (->) starts a new sub-expression

per match.

For example, the following pattern starts a sub-expression looking for a B event for every A event

that arrives.

every A -> B

Determine under what conditions a subexpression should end so the engine can stop looking for

a B event. Here are a few generic examples:

every A -> (B and not C)

every A -> B where timer:within(1 sec)

Consider using EventPropertyGetter for fast access to event properties

737

22.2.9. Consider using EventPropertyGetter for fast access to

event properties

The EventPropertyGetter interface is useful for obtaining an event property value without property

name table lookup given an EventBean instance that is of the same event type that the property

getter was obtained from.

When compiling a statement, the EPStatement instance lets us know the EventType via the

getEventType() method. From the EventType we can obtain EventPropertyGetter instances for

named event properties.

To demonstrate, consider the following simple statement:

select symbol, avg(price) from Market group by symbol

After compiling the statement, obtain the EventType and pass the type to the listener:

EPStatement stmt = epService.getEPAdministrator().createEPL(stmtText);

MyGetterUpdateListener listener = new

 MyGetterUpdateListener(stmt.getEventType());

The listener can use the type to obtain fast getters for property values of events for the same type:

public class MyGetterUpdateListener implements StatementAwareUpdateListener {

 private final EventPropertyGetter symbolGetter;

 private final EventPropertyGetter avgPriceGetter;

 public MyGetterUpdateListener(EventType eventType) {

 symbolGetter = eventType.getGetter("symbol");

 avgPriceGetter = eventType.getGetter("avg(price)");

 }

Last, the update method can invoke the getters to obtain event property values:

 public void update(EventBean[] eventBeans, EventBean[] oldBeans, EPStatement

 epStatement, EPServiceProvider epServiceProvider) {

 String symbol = (String) symbolGetter.get(eventBeans[0]);

 long volume = (Long) volumeGetter.get(eventBeans[0]);

 // some more logic here

 }

Chapter 22. Performance

738

22.2.10. Consider casting the underlying event

When an application requires the value of most or all event properties, it can often be best to

simply select the underlying event via wildcard and cast the received events.

Let's look at the sample statement:

select * from MarketData(symbol regexp 'E[a-z]')

An update listener to the statement may want to cast the received events to the expected

underlying event class:

 public void update(EventBean[] eventBeans, EventBean[] eventBeans) {

 MarketData md = (MarketData) eventBeans[0].getUnderlying();

 // some more logic here

 }

22.2.11. Turn off logging and audit

Since Esper 1.10, even if you don't have a log4j configuration file in place, Esper will make sure

to minimize execution path logging overhead. For prior versions, and to reduce logging overhead

overall, we recommend the "WARN" log level or the "INFO" log level.

Please see the log4j configuration file in "etc/infoonly_log4j.xml" for example log4j settings.

Esper provides the @Audit annotation for statements. For performance testing and production

deployment, we recommend removing @Audit.

22.2.12. Tune or disable delivery order guarantees

If your application is not a multithreaded application, or you application is not sensitive to the order

of delivery of result events to your application listeners, then consider disabling the delivery order

guarantees the engine makes towards ordered delivery of results to listeners:

Configuration config = new Configuration();

config.getEngineDefaults().getThreading().setListenerDispatchPreserveOrder(false);

If your application is not a multithreaded application, or your application uses the insert into

clause to make results of one statement available for further consuming statements but does not

require ordered delivery of results from producing statements to consuming statements, you may

disable delivery order guarantees between statements:

Configuration config = new Configuration();

Use a Subscriber Object to Receive Events

739

config.getEngineDefaults().getThreading().setInsertIntoDispatchPreserveOrder(false);

If your application declares only stateless EPL statements then the settings described herein are

not relevant.

Additional configuration options are available and described in the configuration section that

specify timeout values and spin or thread context switching.

Esper logging will log the following informational message when guaranteed delivery order to

listeners is enabled and spin lock times exceed the default or configured timeout : Spin wait

timeout exceeded in listener dispatch. The respective message for delivery from insert

into statements to consuming statements is Spin wait timeout exceeded in insert-into

dispatch.

If your application sees messages that spin lock times are exceeded, your application has several

options: First, disabling preserve order is an option. Second, ensure your listener does not

perform (long-running) blocking operations before returning, for example by performing output

event processing in a separate thread. Third, change the timeout value to a larger number to block

longer without logging the message.

22.2.13. Use a Subscriber Object to Receive Events

The subscriber object is a technique to receive result data that has performance advantages over

the UpdateListener interface. Please refer to Section 16.3.3, “Setting a Subscriber Object”.

22.2.14. Consider Data Flows

Data flows offer a high-performance means to execute EPL select statements and use other built-

in data flow operators. The data flow Emitter operator allows sending underlying event objects

directly into a data flow. Thereby the engine does not need to wrap each underlying event into a

EventBean instance and the engine does not need to match events to statements. Instead, the

underling event directly applies to only that data flow instance that your application submits the

event to, and no other continuous query statements or data flows see the same event.

Data flows are described in Chapter 15, EPL Reference: Data Flow.

22.2.15. High-Arrival-Rate Streams and Single Statements

A context partition is associated with certain context partition state that consists of current

aggregation values, partial pattern matches, data windows or other view state depending on

whether your statement uses such constructs. When an engine receives events it updates context

partition state under locking such that context partition state remains consistent under concurrent

multi-threaded access.

For high-volume streams, the locking required to protected context partition state may slow down

or introduce blocking for very high arrival rates of events that apply to the very same context

partition and its state.

Chapter 22. Performance

740

Your first choice should be to utilize a context that allows for multiple context partitions, such as the

hash segmented context. The hash segmented context usually performs better compared to the

keyed segmented context since in the keyed segmented context the engine must check whether

a partition exists or must be created for a given key.

Your second choice is to split the statement into multiple statements that each perform part of the

intended function or that each look for a certain subset of the high-arrival-rate stream. There is

very little cost in terms of memory or CPU resources per statement, the engine can handle larger

number of statements usually as efficiently as single statements.

For example, consider the following statement:

// less effective in a highly threaded environment

select venue, ccyPair, side, sum(qty)

from CumulativePrice

where side='O'

group by venue, ccyPair, side

The engine protects state of each context partition by a separate lock for each context partition,

as discussed in the API section. In highly threaded applications threads may block on a specific

context partition. You would therefore want to use multiple context partitions.

Consider creating either a hash segmented context or a keyed segmented context. In the

hash segmented context incoming data is simply assigned to one of the buckets using a small

computation. In the keyed segmented context the engine must check keys to see if a partition

already exists or whether a new partition must be allocated. We'll discuss both below. For both

types of context, since locking is on the level of context partition, the locks taken by the engine

are very fine grained allowing for highly concurrent processing.

This sample EPL declares a hash segmented context. In a hash segmented context the engine

can pre-allocate context partitions and therefore does not need to check whether a partition exists

already. In a hash segmented context the engine simply assigns events to context partitions based

on result of a hash function and modulo operation.

create context MyContext coalesce by consistent_hash_crc32(venue) from

 CumulativePrice(side='O') granularity 16 preallocate

This sample EPL declares a keyed segmented context. The keyed segmented context instructs

the engine to employ a context partition per venue, ccyPair, side key combination. The engine

must check for each event whether a partition exists for that combination of venue, ccyPair and

side:

Subqueries versus Joins And Where-clause And Data Windows

741

create context MyContext partition by venue, ccyPair, side from

 CumulativePrice(side='O')

After declaring the context using create context, make sure all your statements, including those

statements that create named windows and tables, specify that context. This is done by prefixing

each statement with context context_name

The new statement that refers to the context as created above is below. Note the context

MyContext which tells the engine that this statement executes context partitioned. This must be

provided otherwise the statement does not execute context partitioned.

context MyContext select venue, ccyPair, side, sum(qty) from CumulativePrice

For testing purposes or if your application controls concurrency, you may disable context partition

locking, see Section 17.4.26.3, “Disable Locking”.

22.2.16. Subqueries versus Joins And Where-clause And Data

Windows

When joining streams the engine builds a product of the joined data windows based on the

where clause. It analyzes the where clause at time of statement compilation and builds the

appropriate indexes and query strategy. Avoid using expressions in the join where clause that

require evaluation, such as user-defined functions or arithmatic expressions.

When joining streams and not providing a where clause, consider using the std:unique data

window or std:lastevent data window to join only the last event or the last event per unique

key(s) of each stream.

The sample query below can produce up to 5,000 rows when both data windows are filled and

an event arrives for either stream:

// Avoid joins between streams with data windows without where-clause

select * from StreamA#length(100), StreamB#length(50)

Consider using a subquery, consider using separate statements with insert-into and consider

providing a where clause to limit the product of rows.

Below examples show different approaches, that are not semantically equivalent, assuming that

an MyEvent is defined with the properties symbol and value:

// Replace the following statement as it may not perform well

Chapter 22. Performance

742

select a.symbol, avg(a.value), avg(b.value)

from MyEvent#length(100) a, MyEvent#length(50) b

// Join with where-clause

select a.symbol, avg(a.value), avg(b.value)

from MyEvent#length(100) a, MyEvent#length(50) b

where a.symbol = b.symbol

// Unidirectional join with where-clause

select a.symbol, avg(b.value)

from MyEvent unidirectional, MyEvent#length(50) b

where a.symbol = b.symbol

// Subquery

select

 (select avg(value) from MyEvent#length(100)) as avgA,

 (select avg(value) from MyEvent#length(50)) as avgB,

 a.symbol

from MyEvent

// Since streams cost almost nothing, use insert-into to populate and a

 unidirectional join

insert into StreamAvgA select symbol, avg(value) as avgA from MyEvent#length(100)

insert into StreamAvgB select symbol, avg(value) as avgB from MyEvent#length(50)

select a.symbol, avgA, avgB from StreamAvgA unidirectional,

 StreamAvgB#unique(symbol) b

where a.symbol = b.symbol

A join is multidirectionally evaluated: When an event of any of the streams participating in the join

arrive, the join gets evaluated, unless using the unidirectional keyword. Consider using a subquery

instead when evaluation only needs to take place when a certain event arrives:

// Rewrite this join since we don't need to join when a LoginSucceededWindow

 arrives

// Also rewrite because the account number always is the value 123.

select * from LoginSucceededWindow as l, WithdrawalWindow as w

where w.accountNumber = '123' and w.accountNumber = l.accountNumber

// Rewritten as a subquery,

select *, (select * from LoginSucceededWindow where accountNumber=’123’)

from WithdrawalWindow(accountNumber=’123’) as w

22.2.17. Patterns and Pattern Sub-Expression Instances

The every and repeat operators in patterns control the number of sub-expressions that are active.

Each sub-expression can consume memory as it may retain, depending on the use of tags in the

Patterns and Pattern Sub-Expression Instances

743

pattern, the matching events. A large number of active sub-expressions can reduce performance

or lead to out-of-memory errors.

During the design of the pattern statement consider the use of timer:within to reduce the amount

of time a sub-expression lives, or consider the not operator to end a sub-expression.

The examples herein assume an AEvent and a BEvent event type that have an id property that

may correlate between arriving events of the two event types.

In the following sample pattern the engine starts, for each arriving AEvent, a new pattern sub-

expression looking for a matching BEvent. Since the AEvent is tagged with a the engine retains

each AEvent until a match is found for delivery to listeners or subscribers:

every a=AEvent -> b=BEvent(b.id = a.id)

One way to end a sub-expression is to attach a time how long it may be active.

The next statement ends sub-expressions looking for a matching BEvent 10 seconds after arrival

of the AEvent event that started the sub-expression:

every a=AEvent -> (b=BEvent(b.id = a.id) where timer:within(10 sec))

A second way to end a sub-expression is to use the not operator. You can use the not operator

together with the and operator to end a sub-expression when a certain event arrives.

The next statement ends sub-expressions looking for a matching BEvent when, in the order of

arrival, the next BEvent that arrives after the AEvent event that started the sub-expression does

not match the id of the AEvent:

every a=AEvent -> (b=BEvent(b.id = a.id) and not BEvent(b.id != a.id))

The every-distinct operator can be used to keep one sub-expression alive per one or more

keys. The next pattern demonstrates an alternative to every-distinct. It ends sub-expressions

looking for a matching BEvent when an AEvent arrives that matches the id of the AEvent that

started the sub-expression:

every a=AEvent -> (b=BEvent(b.id = a.id) and not AEvent(b.id = a.id))

Chapter 22. Performance

744

22.2.18. Pattern Sub-Expression Instance Versus Data Window

Use

For some use cases you can either specify one or more data windows as the solution, or you can

specify a pattern that also solves your use case.

For patterns, you should understand that the engine employs a dynamic state machine. For data

windows, the engine employs a delta network and collections. Generally you may find patterns

that require a large number of sub-expression instances to consume more memory and more

CPU then data windows.

For example, consider the following EPL statement that filters out duplicate transaction ids that

occur within 20 seconds of each other:

select * from TxnEvent#firstunique(transactionId)#time(20 sec)

You could also address this solution using a pattern:

select * from pattern [every-distinct(a.transactionId) a=TxnEvent where

 timer:within(20 sec)]

If you have a fairly large number of different transaction ids to track, you may find the pattern

to perform less well then the data window solution as the pattern asks the engine to manage a

pattern sub-expression per transaction id. The data window solution asks the engine to manage

expiry, which can give better performance in many cases.

Similar to this, it is generally preferable to use EPL join syntax over a pattern that cardinally detects

relationships i.e. pattern [every-distinct(...) ... -> every-distinct(...) ...]. Join

query planning is a powerful Esper feature that implements fast relational joins.

22.2.19. The Keep-All Data Window

The std:keepall data window is a data window that retains all arriving events. The data window

can be useful during the development phase and to implement a custom expiry policy using on-

delete and named windows. Care should be taken to timely remove from the keep-all data window

however. Use on-select or on-demand queries to count the number of rows currently held by a

named window with keep-all expiry policy.

22.2.20. Statement Design for Reduced Memory Consumption -

Diagnosing OutOfMemoryError

This section describes common sources of out-of-memory problems.

Performance, JVM, OS and hardware

745

If using the keep-all data window please consider the information above. If using pattern

statements please consider pattern sub-expression instantiation and lifetime as discussed prior

to this section.

When using the group-by clause or std:groupwin grouped data windows please consider the

hints as described below. Make sure your grouping criteria are fields that don't have an unlimited

number of possible values or specify hints otherwise.

The std:unique unique data window can also be a source for error. If your uniqueness criteria

include a field which is never unique the memory use of the data window can grow, unless your

application deletes events.

When using the every-distinct pattern construct parameterized by distinct value expressions

that generate an unlimited number of distinct values, consider specifying a time period as part of

the parameters to indicate to the pattern engine how long a distinct value should be considered.

In a match-recognize pattern consider limiting the number of optional events if optional events

are part of the data reported in the measures clause. Also when using the partition clause, if your

partitioning criteria include a field which is never unique the memory use of the match-recognize

pattern engine can grow.

A further source of memory use is when your application creates new statements but fails to

destroy created statements when they are no longer needed.

In your application design you may also want to be conscious when the application listener or

subscriber objects retain output data.

An engine instance, uniquely identified by an engine URI is a relatively heavyweight object.

Optimally your application allocates only one or a few engine instances per JVM. A statement

instance is associated to one engine instance, is uniquely identified by a statement name and

is a medium weight object. We have seen applications allocate 100,000 statements easily. A

statement's context partition instance is associated to one statement, is uniquely identified by a

context partition id and is a light weight object. We have seen applications allocate 5000 context

partitions for 100 statements easily, i.e. 5,000,000 context partitions. An aggregation row, data

window row, pattern etc. is associated to a statement context partition and is a very lightweight

object itself.

The prev, prevwindow and prevtail functions access a data window directly. The engine

does not need to maintain a separate data structure and grouping is based on the use of the

std:groupwin grouped data window. Compare this to the use of event aggregation functions such

as first, window and last which group according to the group by clause. If your statement

utilizes both together consider reformulating to use prev instead.

22.2.21. Performance, JVM, OS and hardware

Performance will also depend on your JVM (Sun HotSpot, BEA JRockit, IBM J9), your operating

system and your hardware. A JVM performance index such as specJBB at spec.org [http://

www.spec.org] can be used. For memory intensive statement, you may want to consider 64bit

http://www.spec.org
http://www.spec.org
http://www.spec.org

Chapter 22. Performance

746

architecture that can address more than 2GB or 3GB of memory, although a 64bit JVM usually

comes with a slow performance penalty due to more complex pointer address management.

The choice of JVM, OS and hardware depends on a number of factors and therefore a definite

suggestion is hard to make. The choice depends on the number of statements, and number of

threads. A larger number of threads would benefit of more CPU and cores. If you have very low

latency requirements, you should consider getting more GHz per core, and possibly soft real-time

JVM to enforce GC determinism at the JVM level, or even consider dedicated hardware such as

Azul. If your statements utilize large data windows, more RAM and heap space will be utilized

hence you should clearly plan and account for that and possibly consider 64bit architectures or

consider EsperHA [http://www.espertech.com/products/].

The number and type of statements is a factor that cannot be generically accounted for. The

benchmark kit can help test out some requirements and establish baselines, and for more complex

use cases a simulation or proof of concept would certainly works best. EsperTech' experts [http://

www.espertech.com/support/services.php] can be available to help write interfaces in a consulting

relationship.

22.2.22. Consider using Hints

The @Hint annotation provides a single keyword or a comma-separated list of keywords that

provide instructions to the engine towards statement execution that affect runtime performance

and memory-use of statements. Also see Section 5.2.7.9, “@Hint”.

The query planning in general is described in Section 22.2.32, “Notes on Query Planning”.

The hint for influencing query planning expression analysis is described at Section 22.2.33, “Query

Planning Expression Analysis Hints”.

The hint for influencing query planning index choice is described at Section 22.2.34, “Query

Planning Index Hints”.

Further hints, also related to query planning, for use with joins, outer joins, unidirectional joins,

relational and non-relational joins are described in Section 5.12.6, “Hints Related to Joins”.

The hint for use with group by to specify how state for groups is reclaimed is described in

Section 5.6.2.1, “Hints Pertaining to Group-By” and Section 14.4.2, “Grouped Data Window

(groupwin or std:groupwin)”.

The hint for use with group by to specify aggregation state reclaim for unbound streams and

timestamp groups is described in Section 5.6.2.1, “Hints Pertaining to Group-By”.

The hint for use with match_recognize to specify iterate-only is described in Section 8.4.7,

“Eliminating Duplicate Matches”.

To tune subquery performance when your subquery selects from a named window, consider the

hints discussed in Section 5.11.8, “Hints Related to Subqueries”.

The @NoLock hint to remove context partition locking (also read caution note) is described at

Section 16.7, “Engine Threading and Concurrency”.

http://www.espertech.com/products/
http://www.espertech.com/products/
http://www.espertech.com/support/services.php
http://www.espertech.com/support/services.php
http://www.espertech.com/support/services.php

Optimizing Stream Filter Expressions

747

The hint to control expansion of filter expressions, further described at Section 17.4.26.6, “Filter

Service Max Filter Width”.

22.2.23. Optimizing Stream Filter Expressions

Assume your EPL statement invokes a static method in the stream filter as the below statement

shows as an example:

select * from MyEvent(MyHelperLibrary.filter(field1, field2, field3,

 field4*field5))

As a result of starting above statement, the engine must evaluate each MyEvent event invoking

the MyHelperLibrary.filter method and passing certain event properties. The same applies

to pattern filters that specify functions to evaluate.

If possible, consider moving some of the checking performed by the function back into the filter

or consider splitting the function into a two parts separated by and conjunction. In general for

all expressions, the engine evaluates expressions left of the and first and can skip evaluation of

the further expressions in the conjunction in the case when the first expression returns false. In

addition the engine can build a filter index for fields provided in stream or pattern filters.

For example, the below statement could be faster to evaluate:

select * from MyEvent(field1="value" and

 MyHelperLibrary.filter(field1, field2, field3, field4*field5))

22.2.24. Statement and Engine Metric Reporting

You can use statement and engine metric reporting as described in Section 16.14, “Engine and

Statement Metrics Reporting” to monitor performance or identify slow statements.

22.2.25. Expression Evaluation Order and Early Exit

The term "early exit" or "short-circuit evaluation" refers to when the engine can evaluate an

expression without a complete evaluation of all sub-expressions.

Consider an expression such as follows:

where expr1 and expr2 and expr3

If expr1 is false the engine does not need to evaluate expr2 and expr3. Therefore when using the

AND logical operator consider reordering expressions placing the most-selective expression first

and less selective expressions thereafter.

Chapter 22. Performance

748

The same is true for the OR logical operator: If expr1 is true the engine does not need to evaluate

expr2 and expr3. Therefore when using the OR logical operator consider reordering expressions

placing the least-selective expression first and more selective expressions thereafter.

The order of expressions (here: expr1, expr2 and expr3) does not make a difference for the join

and subquery query planner.

Note that the engine does not guarantee short-circuit evaluation in all cases. The engine may

rewrite the where-clause or filter conditions into another order of evaluation so that it can perform

index lookups.

22.2.26. Large Number of Threads

When using a large number of threads with the engine, such as more then 100 threads, we

provide a setting in the configuration that instructs the engine to reduce the use of thread-local

variables. Please see Section 17.4.26, “Engine Settings related to Execution of Statements” for

more information.

22.2.27. Filter Evaluation Tuning

We offer a switch for tuning evaluation of incoming events against filters. Please see

Section 17.4.26, “Engine Settings related to Execution of Statements” for more information.

22.2.28. Context Partition Related Information

As the engine locks on the level of context partition, high concurrency under threading can be

achieved by using context partitions.

Generally context partitions require more memory then the more fine-grained grouping that can

be achieved by group by or std:groupwin.

22.2.29. Prefer Constant Variables over Non-Constant Variables

The create-variable syntax as well as the APIs can identify a variable as a constant value. When

a variable's value is not intended to change it is best to declare the variable as constant.

For example, consider the following two EPL statements that each declares a variable. The

first statement declares a constant variable and the second statement declares a non-constant

variable:

// declare a constant variable

create constant variable CONST_DEPARTMENT = 'PURCHASING'

// declare a non-constant variable

create variable VAR_DEPARTMENT = 'SALES'

Prefer Object-array Events

749

When your application creates a statement that has filters for events according to variable values,

the engine internally inspects such expressions and performs filter optimizations for constant

variables that are more effective in evaluation.

For example, consider the following two EPL statements that each look for events related to

persons that belong to a given department:

// perfer the constant

select * from PersonEvent(department=CONST_DEPARTMENT)

// less efficient

select * from PersonEvent(department=VAR_DEPARTMENT)

The engine can more efficiently evaluate the expression using a variable declared as constant.

The same observation can be made for subquery and join query planning.

22.2.30. Prefer Object-array Events

Object-array events offer the best read access performance for access to event property values.

In addition, object-array events use much less memory then Map-type events. They also offer the

best write access performance.

A comparison of different event representations is in Section 2.5, “Comparing Event

Representations”.

First, we recommend that your application sends object-array events into the engine, instead of

Map-type events. See Appendix E, Event Representation: Object-array (Object[]) Events for more

information.

Second, we recommend that your application sets the engine-wide configuration of the

default event representation to object array, as described in Section 17.4.13.1, “Default

Event Representation”. Alternatively you can use the @EventRepresentation(objectarray)

annotation with individual statements.

22.2.31. Composite or Compound Keys

If your uniqueness, grouping, sorting or partitioning keys are composite keys or compound keys,

this section may apply. A composite key is a key that consists of 2 or more properties or

expressions.

In the example below the firstName and lastName expressions are part of a composite key:

... group by firstName, lastName

..#unique(firstName, lastName)...

Chapter 22. Performance

750

...order by firstName, lastName

Note
The example above is not a comprehensive discussion where composite or

compound keys may be used in EPL. Other places where composite keys may

apply are patterns, partitioned contexts and grouped data windows (we may have

missed one).

You application could change the EPL to instead refer to a single value fullName:

... group by fullName

..#unique(fullName)...

...order by fullName

The advantage in using a single expression as the uniqueness, grouping and sorting key is that

the engine does not need to compute multiple expressions and retain a separate data structure

in memory that represents the composite key, resulting in reduced memory use and increased

throughput.

22.2.32. Notes on Query Planning

Query planning takes place for subqueries, joins (any type), named window and table on-actions

(on-select, on-merge, on-insert, on-update, on-select) and fire-and-forget queries. Query planning

affects query execution speed. Enable query plan logging to output query plan information.

For query planning, the engine draws information from:

1. The where-clauses, if any are specified. Where-clauses correlate streams, patterns, named

windows, tables etc. with more streams, patterns, tables and named windows and are thus the

main source of information for query planning.

2. The data window(s) declared on streams and named windows. The std:unique and the

std:firstunique data window instruct the engine to retain the last event per unique criteria.

3. For named windows and tables, the explicit indexes created via create unique index or

create index.

4. For named windows (and not tables), the previously created implicit indexes. The engine can

create implicit indexes automatically if explicit indexes do not match correlation requirements.

5. Any hints specified for the statement in question and including hints specified during the creation

of named windows with create window.

The engine prefers unique indexes over non-unique indexes.

Query Planning Expression Analysis Hints

751

The engine prefers hash-based lookups (equals) and combination hash-btree lookups (equals

and relational-operator or range) over btree lookups (relational-operator or range) over in-keyword

(single and multi-index) lookup plans. This behavior can be controlled by hints that we discuss

next.

22.2.33. Query Planning Expression Analysis Hints

The expression analysis hints impact query planning for any statement and fire-and-forget query

that performs a join or subquery. They also impact named window and table on-action statements.

This hint instructs the engine which expressions, operators or streams should be excluded and

therefore not considered for query planning. The hint applies to the where-clause and, for outer

joins, to the on-clause when present.

The hint takes a single expression as its sole parameter, which is placed in parenthesis. The

expression must return a boolean value.

When the provided expression returns true for a given combination, that combination will not

be considered for the query plan. A combination consists of a from-stream (name or number),

a to-stream (name or number), an operator (i.e. equals, relational, in-keyword) and a set of

expressions.

Table 22.1. Built-in Properties of the Expression Analysis Hint

Name Type Description

exprs string-array

(String[])

Expression texts with minified whitespace.

from_streamname string The stream name of the stream providing lookup values

as provided by the as keyword.

from_streamnum int The integer ordinal number of the stream providing

lookup values as listed in the from-clause.

opname string The operator name. Valid values are equals, relop

(relational operators and ranges) and inkw (in-keyword).

to_streamname string The stream name of the stream providing indexable

values as provided by the as keyword.

to_streamnum int The integer ordinal number of the stream providing

indexable values as listed in the from-clause.

Consider two event types A and B. Event type A has a property aprop and event type B has a

property bprop. Let's assume A and B are related by aprop and bprop.

An inner join of all A and B events might look like this:

select * from A#keepall as a, B#keepall as b where aprop = bprop

Chapter 22. Performance

752

In the default query plan, when an A event comes in, the engine obtains the value of aprop and

performs an index lookup against bprop values to obtain matching B events. Vice versa, when a

B event comes in, the engine obtains the value of bprop and performs an index lookup against

aprop values to obtain matching A events.

The engine evaluates the hint expression for each combination. The table below outlines the two

rows provided to the hint expression:

Table 22.2. Built-in Properties of the Expression Analysis Hint

exprs from_streamnamefrom_streamnumopname to_streamnameto_streamnum

["aprop", "bprop"] a 0 equals b 1

["bprop", "aprop"] b 1 equals a 0

The following EPL statement with hint causes the analyzer to exclude all combinations since the

expression passed in always returns true, in effect causing the query planner to always execute

the statement as a full table scan.

@hint('exclude_plan(true)')

select * from A#keepall as a, B#keepall as b where aprop = bprop

This hint instructs the engine to ignore all equals-operators for query planning:

@hint('exclude_plan(opname="equals")') select

The next hint instructs the engine to ignore the equals-operator for the direction of lookup from

A to B:

@hint('exclude_plan(opname="equals" and from_streamname="a")') select

Conversely, this hint instructs the engine to ignore the equals-operator for the direction of lookup

from B to A:

@hint('exclude_plan(opname="equals" and from_streamname="b")') select

Use the exprs array of expression texts to exclude specific expressions:

@hint('exclude_plan(exprs[0]="aprop")') select

Query Planning Index Hints

753

For subqueries the stream number zero is the subquery from-clause itself and 1 to N are the

enclosing statement's from-clause streams. For named window and table on-action statements

the stream number zero is the named window or table and stream number 1 refers to the triggering

pattern or event.

To specify multiple expressions, please specify multiple hints. The engine excludes a specific

combination when any of the hint expressions returns true.

To inspect values passed to the hint expression, please enable query plan logging. To inspect

expression evaluation, please use @Audit.

22.2.34. Query Planning Index Hints

Currently index hints are only supported for the following types of statements:

1. Named window and table on-action statements (on-select, on-merge, on-insert, on-update, on-

select).

2. Statements that have subselects against named windows that have index sharing enabled (the

default is disabled).

3. Statements that have subselects against tables.

4. Fire-and-forget queries.

For the above statements, you may dictate to the engine which explicit index (created via create

index syntax) to use.

Specify the name of the explicit index in parentheses following @Hint and the index literal.

The following example instructs the engine to use the UserProfileIndex if possible:

@Hint('index(UserProfileIndex)')

Add the literal bust to instruct the engine to use the index, or if the engine cannot use the index

fail query planning with an exception and therefore fail statement creation.

The following example instructs the engine to use the UserProfileIndex if possible or fail with

an exception if the index cannot be used:

@Hint('index(UserProfileIndex, bust)')

Multiple indexes can be listed separated by comma (,).

The next example instructs the engine to consider the UserProfileIndex and the SessionIndex

or fail with an exception if either index cannot be used:

Chapter 22. Performance

754

@Hint('index(UserProfileIndex, SessionIndex, bust)')

The literal explicit can be added to instruct the engine to use only explicitly created indexes.

The final example instructs the engine to consider any explicitly create index or fail with an

exception if any of the explicitly created indexes cannot be used:

@Hint('index(explicit, bust)')

22.2.35. Measuring Throughput

We recommend using System.nanoTime() to measure elapsed time when processing a batch

of, for example, 1000 events.

Note that System.nanoTime() provides nanosecond precision, but not necessarily nanosecond

resolution.

Therefore don't try to measure the time spent by the engine processing a single

event: The resolution of System.nanoTime() is not sufficient. Also, there are reports that

System.nanoTime() can be actually go "backwards" and may not always behave as expected

under threading. Please check your JVM platform documentation.

In the default configuration, the best way to measure performance is to take nano time, send a

large number of events, for example 10.000 events, and take nano time again reporting on the

difference between the two numbers.

If your configuration has inbound threading or other threading options set, you should either

monitor the queue depth to determine performance, or disable threading options when measuring

performance, or have your application use multiple threads to send events instead.

22.2.36. Do not create the same or similar EPL Statement X

times

It is vastly more efficient to create an EPL statement once and attach multiple listeners, then to

create the same EPL statement X times.

It is vastly more efficient to use context declarations to factor out commonalities between EPL

statements then creating X similar EPL statements.

Esper is optimized for low-latency and high-throughput execution. In order to accomplish that each

EPL statement must be analyzed and planned and certain information within each EPL statement

must be shared within the engine so that it can remove duplication of processing and thus the

engine can achieve low-latency and high-throughput. The tradeoff is that the engine must, for

each EPL statement, perform some upfront analysis.

Do not create the same or similar EPL Statement X times

755

Since your goal will be to make all test code as realistic, real-world and production-like as possible,

we recommend against production code or test code creating the same or similar EPL statement

multiple times. Instead consider creating the same EPL statement once and attaching multiple

listeners. Certain important optimizations that the engine can perform when EPL statements

realistically differ, may not take place. The engine also does not try to detect duplicate EPL

statements, since that can easily be done by your application using public APIs.

Let's assume your test statement computes an aggregation over a 1-minute time window, for

example select symbol, count(*) from StockTick#time(1 min) group by symbol. If your

code creates the same statement 100 times, and depending on engine configuration, the code

instructs the engine to track 100 logically independent time windows and to track aggregations

for each group 100 times. Obviously, this is not a good use of EPL and the design of your EPL

statements and code may not be optimal.

Consider the world of relational databases. Your code could attach to a relational database, create

the same table with a different name 100 times, and populate each of the 100 different tables

with the same row data. A relational database administrator would probably recommend against

creating 100 identical tables holding the same row data.

EPL allows you the freedom to design your EPL in a way that reuses state and processing. For

example, your EPL design could utilize a named window instead of allocating 100 independent

time window. Since named windows are shared, the engine only needs to track one time window

instead of 100. And your EPL design could use an EPL table to maintain aggregations once and

in a central place, so that tracking counts per symbol is done once instead of 100 times.

Context declarations can be an efficient way to take commonalities between statements (things

that are similar between multiple statements) and factor them out into a context declaration.

Instead of creating X similar statements, declare a context and attach one statement to the context,

thus having X context partitions. This reduces the analysis that the engine must perform for

each statement since now the engine only needs to analyze the context declaration and the EPL

statement. Your application can send start and stop events to control which context partitions exist

and what events each context partition analyzes.

For example, assume we need to create 100000 similar EPL statements that all filter GeoEvent

events:

create schema GeoEvent(id string, value int, marker string)

@name('statment-1) select * from GeoEvent(id = '0001', value between 10 and 20,

 marker in ('a', 'b'))

@name('statment-N) select * from GeoEvent(id = '0002', value between 20 and 30,

 marker in ('c', 'd'))

Chapter 22. Performance

756

If your application creates 100k statements as above, the engine must analyze each statement

separately, determine filter criteria and the engine must enter each set of filter criteria into a shared

filter index tree. Remember that the engine can process incoming events very fast, with low latency

and high throughput, even for 100k statements. However analysis of 100k individual statements

does take CPU time.

In this example, the EPL statements have similar filters: id = an_id, value between start_range

and end_range and marker in (markers). We could say that statements are similar and look like:

select * from GeoEvent(id=an_id, value between start_range and end_range, marker

 in (markers))

The an_id, start_range, end_range and markers are essential parameters to an instance of the

filtering EPL statement. Instances of EPL statements are context partitions. Declare a context to

refactor and change our design so the common filters are in one place. This apprach just requires

two statements: the context declaration and the statement with the filters. We also declare two

event types: one to allocate new context partitions and one to terminate context partitions.

Start by creating an event type that controls which instances of the filtering EPL statement (the

context partitions) are active:

create schema InitEvent(id string, startRange int, endRange int, markers

 string[])

Next, create an event type that controls when a context partition terminates:

create schema TermEvent(id string)

The context declaration tells the engine that when an InitEvent arrives we want have a new

instance that is parameterized by the InitEvent properties:

create context GeoEventFilterContext

 initiated by InitEvent as initevent

 terminated by by TermEvent(id=initevent.id)

Define the statement that filters:

context GeoEventFilterContext select * from GeoEvent(id = context.initevent.id,

 value between context.initevent.startRange and context.initevent.endRange,

 marker in (context.initevent.markers))

Comparing Single-Threaded and Multi-Threaded Performance

757

Your application can now send InitEvent instances, for example (notation from the online EPL

tool):

InitEvent={id='0001', startRange=10, endRange=20, markers={'a', 'b'}}

InitEvent={id='0002', startRange=20, endRange=30, markers={'c', 'd'}}

When the engine receives an InitEvent instance, it can simply take the id, startRange,

endRange and markers values and instantiate the EPL filter statement (aka. allocate a new context

partition) and start looking for matching GeoEvent events.

To stop looking for a given id, send a TermEvent, like so:

TermEvent={id='0001'}

22.2.37. Comparing Single-Threaded and Multi-Threaded

Performance

The Java Virtual Machine optimizes locks such that the time to obtain a read lock, for example,

differs widely between single-threaded and multi-threaded applications. We compared code that

obtains an unfair ReentrantReadWriteLock read lock 100 million times, without any writer. We

measured 3 seconds for a single-threaded application and 15 seconds for an application with 2

threads. It can therefore not be expected that scaling from single-threaded to 2 threads will always

double performance. There is a base cost for multiple threads to coordinate.

22.2.38. Incremental Versus Recomputed Aggregation for

Named Window Events

Whether aggregations of named window rows are computed incrementally or are recomputed

from scratch depends on the type of query.

When the engine computes aggregation values incrementally, meaning it continuously updates

the aggregation value as events enter and leave a named window, it means that the engine

internally subscribes to named window updates and applies these updates as they occur. For

some applications this is the desired behavior.

For some applications re-computing aggregation values from scratch when a certain condition

occurs, for example when a triggering event arrives or time passes, is beneficial. Re-computing

an aggregation can be less expensive if the number of rows to consider is small and/or when the

triggering event or time condition triggers infrequently.

The next paragraph assumes that a named window has been created to hold some historical

financial data per symbol and minute:

Chapter 22. Performance

758

create window HistoricalWindow#keepall as (symbol string, int minute, double

 price)

insert into HistoricalWindow select symbol, minute, price from HistoricalTick

For statements that simply select from a named window (excludes on-select) the engine computes

aggregation values incrementally, continuously updating the aggregation, as events enter and

leave the named window.

For example, the below statement updates the total price incrementally as events enter and

leave the named window. If events in the named window already exist at the time the statement

gets created, the total price gets pre-computed once when the statement gets created and

incrementally updated when events enter and leave the named window:

select sum(price) from HistoricalWindow(symbol='GE')

The same is true for uncorrelated subqueries. For statements that sub-select from a named

window, the engine computes aggregation values incrementally, continuously updating the

aggregation, as events enter and leave the named window. This is only true for uncorrelated

subqueries that don't have a where-clause.

For example, the below statement updates the total price incrementally as events enter and

leave the named window. If events in the named window already exist at the time the statement

gets created, the total price gets pre-computed once when the statement gets created and

incrementally updated when events enter and leave the named window:

// Output GE symbol total price, incrementally computed

// Outputs every 15 minutes on the hour.

select (sum(price) from HistoricalWindow(symbol='GE'))

from pattern [every timer:at(0, 15, 30, 45), *, *, *, *, 0)]

If instead your application uses on-select or a correlated subquery, the engine recomputes

aggregation values from scratch every time the triggering event fires.

For example, the below statement does not incrementally compute the total price (use a plain

select or subselect as above instead). Instead the engine computes the total price from scratch

based on the where-clause and matching rows:

// Output GE symbol total price (recomputed from scratch) every 15 minutes on

 the hour

When Does Memory Get Released

759

on pattern [every timer:at(0, 15, 30, 45), *, *, *, *, 0)]

select sum(price) from HistoricalWindow where symbol='GE'

Unidirectional joins against named windows also do not incrementally compute aggregation

values.

Joins and outer joins, that are not unidirectional, compute aggregation values incrementally.

22.2.39. When Does Memory Get Released

Java Virtual Machines (JVMs) release memory only when a garbage collection occurs. Depending

on your JVM settings a garbage collection can occur frequently or infrequently and may consider

all or only parts of heap memory.

Esper is optimized towards latency and throughput. Esper does not force garbage collection or

interfere with garbage collection. For performance-sensitive code areas, Esper utilizes thread-

local buffers such as arrays or ringbuffers that can retain small amounts of recently processed

state. Esper does not try to clean such buffers after every event for performance reasons. It

does clean such buffers when destroying the engine and stopping or destroying statements. It is

therefore normal to see a small non-increasing amount of memory to be retained after processing

events that the garbage collector may not free immediately.

22.2.40. Measure throughput of non-matches as well as

matches

When an event comes in and the event does not match any query or pattern, the engine can

discard that event since the event is a non-match. When measuring throughput, we suggest

including non-matching events. The fact that the engine can discard non-matching events

extremely fast is an important aspect of processing.

Many use cases look for a needle-in-a-haystack situation or rarely occurring pattern. For example,

a use case looking for security breaches may analyze 10 million events and find only a single

situation consisting, for example, of 5 correlated events of the 10 million input events. We'd

recommend your benchmark to closely mimic or to play back production data and watch the

expected ratio of input and output events. Reducing the number of output events generally

increases performance.

For example, assume you have 10 queries:

select * from pattern[A -> B(id = 1)];

select * from pattern[A -> B(id = 2)];

.....

select * from pattern[A -> B(id = 10)];

Chapter 22. Performance

760

The above patterns each match once when an A event comes in followed by a B event with a

given id between 1 and 10.

We recommend to measure throughput by sending in B events that have a value of minus one

(-1) for id, for example, to determine how fast such events are discarded.

22.3. Using the performance kit

22.3.1. How to use the performance kit

The benchmark application is basically an Esper event server build with Esper that listens to

remote clients over TCP. Remote clients send MarketData(ticker, price, volume) streams to the

event server. The Esper event server is started with 1000 statements of one single kind (unless

otherwise written), with one statement per ticker symbol, unless the statement kind does not

depend on the symbol. The statement prototype is provided along the results with a '$' instead of

the actual ticker symbol value. The Esper event server is entirely multithreaded and can leverage

the full power of 32bit or 64bit underlying hardware multi-processor multi-core architecture.

The kit also prints out when starting up the event size and the theoretical maximal throughput

you can get on a 100 Mbit/s and 1 Gbit/s network. Keep in mind a 100 Mbit/s network will be

overloaded at about 400 000 event/s when using our kit despite the small size of events.

Results are posted on our Wiki page at Performance Wiki [http://www.espertech.com/esper].

Reported results do not represent best ever obtained results. Reported results may help you better

compare Esper to other solutions (for latency, throughput and CPU utilization) and also assess

your target hardware and JVMs.

The Esper event server, client and statement prototypes are provided in the source repository

esper/trunk/examples/benchmark/. Refer to http://www.espertech.com/esper for source

access.

If you use the kit you should:

1. Choose the statement you want to benchmark, add it to etc/statements.properties under

your own KEY and use the -mode KEY when you start the Esper event server.

2. Prepare your runServer.sh/runServer.cmd and runClient.sh/runclient.cmd scripts. You'll need

to drop required jar libraries in lib/ , make sure the classpath is configured in those script to

include build and etc . The required libraries are Esper (any compatible version, we have

tested started with Esper 1.7.0) and its dependencies as in the sample below (with Esper 2.1) :

classpath on Unix/Linux (on one single line)

etc:build:lib/esper-6.1.0.jar:lib/slf4j-api-1.7.21.jar:lib/slf4j-

log4j12-1.7.21.jar:lib/cglib-nodep-3.2.4.jar

 :lib/antlr-runtime-4.5.3.jar:lib/log4j-1.2.17.jar

@rem classpath on Windows (on one single line)

etc;build;lib\esper-6.1.0.jar;lib\slf4j-log4j12-1.7.21.jar;lib\slf4j-

api-1.7.21.jar;lib\cglib-nodep-3.2.4.jar

http://www.espertech.com/esper
http://www.espertech.com/esper
http://www.espertech.com/esper

How to use the performance kit

761

 ;lib\antlr-runtime-4.5.3.jar;lib\log4j-1.2.17.jar

Note that ./etc and ./build have to be in the classpath. At that stage you should also start

to set min and max JVM heap. A good start is 1GB as in -Xms1g -Xmx1g

3. Write the statement you want to benchmark given that client will send a stream

MarketData(String ticker, int volume, double price), add it to etc/statements.properties

under your own KEY and use the -mode KEY when you start the Esper event server. Use '$'

in the statement to create a prototype. For every symbol, a statement will get registered with

all '$' replaced by the actual symbol value (f.e. 'GOOG')

4. Ensure client and server are using the same -Desper.benchmark.symbol=1000 value. This

sets the number of symbol to use (thus may set the number of statement if you are using a

statement prototype, and governs how MarketData event are represented over the network.

Basically all events will have the same size over the network to ensure predictability and will

be ranging between S0AA and S999A if you use 1000 as a value here (prefix with S and padded

with A up to a fixed length string. Volume and price attributes will be randomized.

5. By default the benchmark registers a subscriber to the statement(s). Use -

Desper.benchmark.ul to use an UpdateListener instead. Note that the subscriber

contains suitable update(..) methods for the default proposed statement in the etc/

statements.properties file but might not be suitable if you change statements due to the

strong binding with statement results. Refer to Section 16.3.2, “Receiving Statement Results”.

6. Establish a performance baseline in simulation mode (without clients). Use the -rate 1x5000

option to simulate one client (one thread) sending 5000 evt/s. You can ramp up both the number

of client simulated thread and their emission rate to maximize CPU utilization. The right number

should mimic the client emission rate you will use in the client/server benchmark and should

thus be consistent with what your client machine and network will be able to send. On small

hardware, having a lot of thread with slow rate will not help getting high throughput in this

simulation mode.

7. Do performance runs with client/server mode. Remove the -rate NxM option from the runServer

script or Ant task. Start the server with -help to display the possible server options (listen port,

statistics, fan out options etc). On the remote machine, start one or more client. Use -help to

display the possible client options (remote port, host, emission rate). The client will output the

actual number of event it is sending to the server. If the server gets overloaded (or if you turned

on -queue options on the server) the client will likely not be able to reach its target rate.

Usually you will get better performance by using server side -queue -1 option so as to have

each client connection handled by a single thread pipeline. If you change to 0 or more, there

will be intermediate structures to pass the event stream in an asynchronous fashion. This will

increase context switching, although if you are using many clients, or are using the -sleep xxx

(xxx in milliseconds) to simulate a listener delay you may get better performance.

The most important server side option is -stat xxx (xxx in seconds) to print out throughput

and latency statistics aggregated over the last xxx seconds (and reset every time). It will

Chapter 22. Performance

762

produce both internal Esper latency (in nanosecond) and also end to end latency (in millisecond,

including network time). If you are measuring end to end latency you should make sure your

server and client machine(s) are having the same time with f.e. ntpd with a good enough

precision. The stat format is like:

---Stats - engine (unit: ns)

 Avg: 2528 #4101107

 0 < 5000: 97.01% 97.01% #3978672

 5000 < 10000: 2.60% 99.62% #106669

 10000 < 15000: 0.35% 99.97% #14337

 15000 < 20000: 0.02% 99.99% #971

 20000 < 25000: 0.00% 99.99% #177

 25000 < 50000: 0.00% 100.00% #89

 50000 < 100000: 0.00% 100.00% #41

 100000 < 500000: 0.00% 100.00% #120

 500000 < 1000000: 0.00% 100.00% #2

 1000000 < 2500000: 0.00% 100.00% #7

 2500000 < 5000000: 0.00% 100.00% #5

 5000000 < more: 0.00% 100.00% #18

---Stats - endToEnd (unit: ms)

 Avg: -2704829444341073400 #4101609

 0 < 1: 75.01% 75.01% #3076609

 1 < 5: 0.00% 75.01% #0

 5 < 10: 0.00% 75.01% #0

 10 < 50: 0.00% 75.01% #0

 50 < 100: 0.00% 75.01% #0

 100 < 250: 0.00% 75.01% #0

 250 < 500: 0.00% 75.01% #0

 500 < 1000: 0.00% 75.01% #0

 1000 < more: 24.99% 100.00% #1025000

Throughput 412503 (active 0 pending 0 cnx 4)

This one reads as:

"Throughput is 412 503 event/s with 4 client connected. No -queue options

was used thus no event is pending at the time the statistics are printed.

Esper latency average is at 2528 ns (that is 2.5 us) for 4 101 107 events

(which means we have 10 seconds stats here). Less than 10us latency

was achieved for 106 669 events that is 99.62%. Latency between 5us

and 10us was achieved for those 2.60% of all the events in the interval."

"End to end latency was ... in this case likely due to client clock difference

we ended up with unusable end to end statistics."

Consider the second output paragraph on end-to-end latency:

How we use the performance kit

763

---Stats - endToEnd (unit: ms)

 Avg: 15 #863396

 0 < 1: 0.75% 0.75% #6434

 1 < 5: 0.99% 1.74% #8552

 5 < 10: 2.12% 3.85% #18269

 10 < 50: 91.27% 95.13% #788062

 50 < 100: 0.10% 95.32% #827

 100 < 250: 4.36% 99.58% #37634

 250 < 500: 0.42% 100.00% #3618

 500 < 1000: 0.00% 100.00% #0

 1000 < more: 0.00% 100.00% #0

This would read:

"End to end latency average is at 15 milliseconds for the 863 396 events

considered for this statistic report. 95.13% ie 788 062 events were handled

(end to end) below 50ms, and 91.27% were handled between 10ms and 50ms."

22.3.2. How we use the performance kit

We use the performance kit to track performance progress across Esper versions, as well as to

implement optimizations.

764

Chapter 23.

765

Chapter 23. References

23.1. Reference List

• Luckham, David. 2002. The Power of Events. Addison-Wesley.

• The Stanford Rapide (TM) Project. http://pavg.stanford.edu/rapide.

• Arasu, Arvind, et.al.. 2004. Linear Road: A Stream Data

Management Benchmark, Stanford University http://www.cs.brown.edu/research/aurora/

Linear_Road_Benchmark_Homepage.html.

766

767

Appendix A. Output Reference and

Samples
This section specifies the output of a subset of EPL continuous queries, for two purposes: First, to

help application developers understand streaming engine output in response to incoming events

and in response to time passing. Second, to document and standardize output for EPL queries

in a testable and trackable fashion.

The section focuses on a subset of features, namely the time window, aggregation, grouping,

and output rate limiting. The section does not currently provide examples for many of the other

language features, thus there is no example for other data windows (the time window is used

here), joins, sub-selects or named windows etc.

Rather then just describe syntax and output, this section provides detailed examples for each of

the types of queries presented. The input for each type of query is always the same set of events,

and the same timing. Each event has three properties: symbol, volume and price. The property

types are string, long and double, respectively.

The chapters are organized by the type of query: The presence or absence of aggregation

functions, as well as the presence or absence of a group by clause change statement output as

described in Section 3.7.2, “Output for Aggregation and Group-By”.

You will notice that some queries utilize the order by clause for sorting output. The reason is that

when multiple output rows are produced at once, the output can be easier to read if it is sorted.

With output rate limiting, the engine invokes your listener even if there are no results to indicate

when the output condition has been reached. Such is indicated as (empty result) in the output

result columns.

The output columns show both insert and remove stream events. Insert stream events are

delivered as an array of EventBean instances to listeners in the newData parameter, while remove

stream events are delivered to the oldData parameter of listeners. Delivery to observers follows

similar rules.

A.1. Introduction and Sample Data

For the purpose of illustration and documentation, the example data set demonstrates input and

remove streams based on a time window of a 5.5 second interval. The statement utilizing the time

window could look as follows:

select symbol, volume, price from MarketData#time(5.5 sec)

We have picked a time window to demonstrate the output for events entering and leaving a data

window with an expiration policy. The time window provides a simple expiration policy based on

Appendix A. Output Reference ...

768

time: if an event resides in the time window more then 5.5 seconds, the engine expires the event

from the time window.

The input events and their timing are below. The table should be read, starting from top, as "The

time starts at 0.2 seconds. Event E1 arrives at 0.2 seconds with properties [S1, 100, 25]. At 0.8

second event E2 arrives with properties [S2, 5000, 9.0]" and so on.

 Input

 Time Symbol Volume Price

 0.2

 S1 100 25.0 Event E1 arrives

 0.8

 S2 5000 9.0 Event E2 arrives

 1.0

 1.2

 1.5

 S1 150 24.0 Event E3 arrives

 S3 10000 1.0 Event E4 arrives

 2.0

 2.1

 S1 155 26.0 Event E5 arrives

 2.2

 2.5

 3.0

 3.2

 3.5

 S3 11000 2.0 Event E6 arrives

 4.0

 4.2

 4.3

 S1 150 22.0 Event E7 arrives

 4.9

 S3 11500 3.0 Event E8 arrives

 5.0

 5.2

 5.7 Event E1 leaves the time window

 5.9

 S3 10500 1.0 Event E9 arrives

 6.0

 6.2

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

Output for Un-aggregated and Un-grouped Queries

769

The event data set assumes a time window of 5.5 seconds. Thus at time 5.7 seconds the first

arriving event (E1) leaves the time window.

The data set as above shows times between 0.2 seconds and 7.2 seconds. Only a couple of time

points have been picked for the table to keep the set of time points constant between statements,

and thus make the test data and output easier to understand.

A.2. Output for Un-aggregated and Un-grouped Queries

This chapter provides sample output for queries that do not have aggregation functions and do

not have a group by clause.

A.2.1. No Output Rate Limiting

Without an output clause, the engine dispatches to listeners as soon as events arrive, or as soon

as time passes such that events leave data windows.

The statement for this sample reads:

select irstream symbol, volume, price from MarketData#time(5.5 sec)

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 100, 25.0]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [MSFT, 5000, 9.0]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 150, 24.0]

 YAH 10000 1.0 Event E4 arrives

 [YAH, 10000, 1.0]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 [IBM, 155, 26.0]

 2.2

 2.5

Appendix A. Output Reference ...

770

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 11000, 2.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 150, 22.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 [YAH, 11500, 3.0]

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 100, 25.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [YAH, 10500, 1.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, 5000, 9.0]

 7.0 Event E3 and E4 leave the time window

 [IBM, 150, 24.0]

 [YAH, 10000, 1.0]

 7.2

A.2.2. Output Rate Limiting - Default

With an output clause, the engine dispatches to listeners when the output condition occurs. Here,

the output condition is a 1-second time interval. The engine thus outputs every 1 second, starting

from the first event, even if there are no new events or no expiring events to output.

The default (no keyword) and the ALL keyword result in the same output.

The statement for this sample reads:

select irstream symbol, volume, price from MarketData#time(5.5 sec)

output every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

Output Rate Limiting - Default

771

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 150, 24.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 26.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 11000, 2.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 150, 22.0]

 [YAH, 11500, 3.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [YAH, 10500, 1.0] [IBM, 100, 25.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [MSFT, 5000, 9.0]

 [IBM, 150, 24.0]

Appendix A. Output Reference ...

772

 [YAH, 10000, 1.0]

A.2.3. Output Rate Limiting - Last

Using the LAST keyword in the output clause, the engine dispatches to listeners only the last

event of each insert and remove stream.

The statement for this sample reads:

select irstream symbol, volume, price from MarketData#time(5.5 sec)

output last every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [MSFT, 5000, 9.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 155, 26.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 11000, 2.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

Output Rate Limiting - First

773

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [YAH, 11500, 3.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [YAH, 10500, 1.0] [IBM, 100, 25.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [YAH, 10000, 1.0]

A.2.4. Output Rate Limiting - First

Using the FIRST keyword in the output clause, the engine dispatches to listeners only the first

event of each insert or remove stream, and does not output further events until the output condition

is reached.

The statement for this sample reads:

select irstream symbol, volume, price from MarketData#time(5.5 sec)

output first every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 100, 25.0]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 150, 24.0]

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

Appendix A. Output Reference ...

774

 IBM 155 26.0 Event E5 arrives

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 11000, 2.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 150, 22.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 100, 25.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, 5000, 9.0]

 7.0 Event E3 and E4 leave the time window

 7.2

A.2.5. Output Rate Limiting - Snapshot

Using the SNAPSHOT keyword in the output clause, the engine posts data window contents when

the output condition is reached.

The statement for this sample reads:

select irstream symbol, volume, price from MarketData#time(5.5 sec)

output snapshot every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

Output Rate Limiting - Snapshot

775

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 [IBM, 150, 24.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 26.0]

 2.5

 3.0

 3.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 [IBM, 150, 24.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 26.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 [IBM, 150, 24.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 26.0]

 [YAH, 11000, 2.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 [IBM, 150, 24.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 26.0]

 [YAH, 11000, 2.0]

Appendix A. Output Reference ...

776

 [IBM, 150, 22.0]

 [YAH, 11500, 3.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [MSFT, 5000, 9.0]

 [IBM, 150, 24.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 26.0]

 [YAH, 11000, 2.0]

 [IBM, 150, 22.0]

 [YAH, 11500, 3.0]

 [YAH, 10500, 1.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 155, 26.0]

 [YAH, 11000, 2.0]

 [IBM, 150, 22.0]

 [YAH, 11500, 3.0]

 [YAH, 10500, 1.0]

A.3. Output for Fully-aggregated and Un-grouped

Queries

This chapter provides sample output for queries that have aggregation functions, and that do not

have a group by clause, and in which all event properties are under aggregation.

A.3.1. No Output Rate Limiting

The statement for this sample reads:

select irstream sum(price) from MarketData#time(5.5 sec)

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

No Output Rate Limiting

777

 [25.0] [null]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [34.0] [25.0]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [58.0] [34.0]

 YAH 10000 1.0 Event E4 arrives

 [59.0] [58.0]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 [85.0] [59.0]

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [87.0] [85.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [109.0] [87.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 [112.0] [109.0]

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [87.0] [112.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [88.0] [87.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [79.0] [88.0]

 7.0 Event E3 and E4 leave the time window

 [54.0] [79.0]

 7.2

Appendix A. Output Reference ...

778

A.3.2. Output Rate Limiting - Default

Output occurs when the output condition is reached after each 1-second time interval. For each

event arriving, the new aggregation value is output as part of the insert stream. As part of the

remove stream, the prior aggregation value is output. This is useful for getting a delta-change for

each event or group. If there is a having clause, the filter expression applies to each row.

Here also the default (no keyword) and the ALL keyword result in the same output.

The statement for this sample reads:

select irstream sum(price) from MarketData#time(5.5 sec)

output every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [25.0] [null]

 [34.0] [25.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [58.0] [34.0]

 [59.0] [58.0]

 [85.0] [59.0]

 2.5

 3.0

 3.2

 [85.0] [85.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

Output Rate Limiting - Last

779

 [87.0] [85.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [109.0] [87.0]

 [112.0] [109.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [87.0] [112.0]

 [88.0] [87.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [79.0] [88.0]

 [54.0] [79.0]

A.3.3. Output Rate Limiting - Last

With the LAST keyword, the insert stream carries one event that holds the last aggregation value,

and the remove stream carries the prior aggregation value.

The statement for this sample reads:

select irstream sum(price) from MarketData#time(5.5 sec)

output last every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [34.0] [null]

Appendix A. Output Reference ...

780

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [85.0] [34.0]

 2.5

 3.0

 3.2

 [85.0] [85.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [87.0] [85.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [112.0] [87.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [88.0] [112.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [54.0] [88.0]

A.3.4. Output Rate Limiting - First

The statement for this sample reads:

select irstream sum(price) from MarketData#time(5.5 sec)

output first every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

Output Rate Limiting - Snapshot

781

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [25.0] [null]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [58.0] [34.0]

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [87.0] [85.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [109.0] [87.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [87.0] [112.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [79.0] [88.0]

 7.0 Event E3 and E4 leave the time window

 7.2

A.3.5. Output Rate Limiting - Snapshot

The statement for this sample reads:

Appendix A. Output Reference ...

782

select irstream sum(price) from MarketData#time(5.5 sec)

output snapshot every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [34.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [85.0]

 2.5

 3.0

 3.2

 [85.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [87.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [112.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [88.0]

Output for Aggregated and Un-grouped Queries

783

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [54.0]

A.4. Output for Aggregated and Un-grouped Queries

This chapter provides sample output for queries that have aggregation functions, and that do not

have a group by clause, and in which there are event properties that are not under aggregation.

A.4.1. No Output Rate Limiting

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 25.0]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [MSFT, 34.0]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 58.0]

 YAH 10000 1.0 Event E4 arrives

 [YAH, 59.0]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 [IBM, 85.0]

 2.2

 2.5

 3.0

 3.2

 3.5

Appendix A. Output Reference ...

784

 YAH 11000 2.0 Event E6 arrives

 [YAH, 87.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 109.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 [YAH, 112.0]

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 87.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [YAH, 88.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, 79.0]

 7.0 Event E3 and E4 leave the time window

 [IBM, 54.0]

 [YAH, 54.0]

 7.2

A.4.2. Output Rate Limiting - Default

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

output every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

Output Rate Limiting - Last

785

 [IBM, 25.0]

 [MSFT, 34.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 58.0]

 [YAH, 59.0]

 [IBM, 85.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 87.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 109.0]

 [YAH, 112.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [YAH, 88.0] [IBM, 87.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [MSFT, 79.0]

 [IBM, 54.0]

 [YAH, 54.0]

A.4.3. Output Rate Limiting - Last

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

Appendix A. Output Reference ...

786

output last every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [MSFT, 34.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 85.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 87.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [YAH, 112.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [YAH, 88.0] [IBM, 87.0]

 6.3 Event E2 leaves the time window

Output Rate Limiting - First

787

 7.0 Event E3 and E4 leave the time window

 7.2

 [YAH, 54.0]

A.4.4. Output Rate Limiting - First

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

output first every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 25.0]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 58.0]

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 87.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 109.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

Appendix A. Output Reference ...

788

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 87.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, 79.0]

 7.0 Event E3 and E4 leave the time window

 7.2

A.4.5. Output Rate Limiting - Snapshot

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

output snapshot every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 34.0]

 [MSFT, 34.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 85.0]

 [MSFT, 85.0]

 [IBM, 85.0]

 [YAH, 85.0]

Output Rate Limiting - Snapshot

789

 [IBM, 85.0]

 2.5

 3.0

 3.2

 [IBM, 85.0]

 [MSFT, 85.0]

 [IBM, 85.0]

 [YAH, 85.0]

 [IBM, 85.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [IBM, 87.0]

 [MSFT, 87.0]

 [IBM, 87.0]

 [YAH, 87.0]

 [IBM, 87.0]

 [YAH, 87.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 112.0]

 [MSFT, 112.0]

 [IBM, 112.0]

 [YAH, 112.0]

 [IBM, 112.0]

 [YAH, 112.0]

 [IBM, 112.0]

 [YAH, 112.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [MSFT, 88.0]

 [IBM, 88.0]

 [YAH, 88.0]

 [IBM, 88.0]

 [YAH, 88.0]

 [IBM, 88.0]

 [YAH, 88.0]

 [YAH, 88.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

Appendix A. Output Reference ...

790

 [IBM, 54.0]

 [YAH, 54.0]

 [IBM, 54.0]

 [YAH, 54.0]

 [YAH, 54.0]

A.5. Output for Fully-aggregated and Grouped Queries

This chapter provides sample output for queries that have aggregation functions, and that have a

group by clause, and in which all event properties are under aggregation or appear in the group

by clause.

A.5.1. No Output Rate Limiting

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

group by symbol

order by symbol

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 25.0] [IBM, null]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [MSFT, 9.0] [MSFT, null]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 49.0] [IBM, 25.0]

 YAH 10000 1.0 Event E4 arrives

 [YAH, 1.0] [YAH, null]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 [IBM, 75.0] [IBM, 49.0]

 2.2

Output Rate Limiting - Default

791

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 3.0] [YAH, 1.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 97.0] [IBM, 75.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 [YAH, 6.0] [YAH, 3.0]

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 72.0] [IBM, 97.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [YAH, 7.0] [YAH, 6.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, null] [MSFT, 9.0]

 7.0 Event E3 and E4 leave the time window

 [IBM, 48.0] [IBM, 72.0]

 [YAH, 6.0] [YAH, 7.0]

 7.2

A.5.2. Output Rate Limiting - Default

The default (no keyword) and the ALL keyword do not result in the same output. The default

generates an output row per input event, while the ALL keyword generates a row for all groups.

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

group by symbol

output every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

Appendix A. Output Reference ...

792

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 25.0] [IBM, null]

 [MSFT, 9.0] [MSFT, null]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 49.0] [IBM, 25.0]

 [YAH, 1.0] [YAH, null]

 [IBM, 75.0] [IBM, 49.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 3.0] [YAH, 1.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 97.0] [IBM, 75.0]

 [YAH, 6.0] [YAH, 3.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [IBM, 72.0] [IBM, 97.0]

 [YAH, 7.0] [YAH, 6.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [MSFT, null] [MSFT, 9.0]

Output Rate Limiting - All

793

 [YAH, 6.0] [YAH, 7.0]

 [IBM, 48.0] [IBM, 72.0]

A.5.3. Output Rate Limiting - All

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

group by symbol

output all every 1 seconds

order by symbol

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 25.0] [IBM, null]

 [MSFT, 9.0] [MSFT, null]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 75.0] [IBM, 25.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 1.0] [YAH, null]

 2.5

 3.0

 3.2

 [IBM, 75.0] [IBM, 75.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 1.0] [YAH, 1.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

Appendix A. Output Reference ...

794

 4.2

 [IBM, 75.0] [IBM, 75.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 3.0] [YAH, 1.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 97.0] [IBM, 75.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 6.0] [YAH, 3.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [IBM, 72.0] [IBM, 97.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 7.0] [YAH, 6.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 48.0] [IBM, 72.0]

 [MSFT, null] [MSFT, 9.0]

 [YAH, 6.0] [YAH, 7.0]

A.5.4. Output Rate Limiting - Last

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

group by symbol

output last every 1 seconds

order by symbol

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

Output Rate Limiting - Last

795

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 25.0] [IBM, null]

 [MSFT, 9.0] [MSFT, null]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 75.0] [IBM, 25.0]

 [YAH, 1.0] [YAH, null]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 3.0] [YAH, 1.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 97.0] [IBM, 75.0]

 [YAH, 6.0] [YAH, 3.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [IBM, 72.0] [IBM, 97.0]

 [YAH, 7.0] [YAH, 6.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 48.0] [IBM, 72.0]

 [MSFT, null] [MSFT, 9.0]

 [YAH, 6.0] [YAH, 7.0]

Appendix A. Output Reference ...

796

A.5.5. Output Rate Limiting - First

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

group by symbol

output first every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 25.0] [IBM, null]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [MSFT, 9.0] [MSFT, null]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 49.0] [IBM, 25.0]

 YAH 10000 1.0 Event E4 arrives

 [YAH, 1.0] [YAH, null]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 3.0] [YAH, 1.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 97.0] [IBM, 75.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

Output Rate Limiting - Snapshot

797

 [YAH, 6.0] [YAH, 3.0]

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 72.0] [IBM, 97.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [YAH, 7.0] [YAH, 6.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, null] [MSFT, 9.0]

 7.0 Event E3 and E4 leave the time window

 [IBM, 48.0] [IBM, 72.0]

 [YAH, 6.0] [YAH, 7.0]

 7.2

A.5.6. Output Rate Limiting - Snapshot

The statement for this sample reads:

select irstream symbol, sum(price) from MarketData#time(5.5 sec)

group by symbol

output snapshot every 1 seconds

order by symbol

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 25.0]

 [MSFT, 9.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

Appendix A. Output Reference ...

798

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 75.0]

 [MSFT, 9.0]

 [YAH, 1.0]

 2.5

 3.0

 3.2

 [IBM, 75.0]

 [MSFT, 9.0]

 [YAH, 1.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [IBM, 75.0]

 [MSFT, 9.0]

 [YAH, 3.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 97.0]

 [MSFT, 9.0]

 [YAH, 6.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [IBM, 72.0]

 [MSFT, 9.0]

 [YAH, 7.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 48.0]

 [YAH, 6.0]

A.6. Output for Aggregated and Grouped Queries

This chapter provides sample output for queries that have aggregation functions, and that have a

group by clause, and in which some event properties are not under aggregation.

No Output Rate Limiting

799

A.6.1. No Output Rate Limiting

The statement for this sample reads:

select irstream symbol, volume, sum(price) from MarketData#time(5.5 sec) group

 by symbol

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 100, 25.0]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [MSFT, 5000, 9.0]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 150, 49.0]

 YAH 10000 1.0 Event E4 arrives

 [YAH, 10000, 1.0]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 [IBM, 155, 75.0]

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 11000, 3.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 150, 97.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 [YAH, 11500, 6.0]

Appendix A. Output Reference ...

800

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 100, 72.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [YAH, 10500, 7.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, 5000, null]

 7.0 Event E3 and E4 leave the time window

 [IBM, 150, 48.0]

 [YAH, 10000, 6.0]

 7.2

A.6.2. Output Rate Limiting - Default

The default (no keyword) and the ALL keyword do not result in the same output. The default

generates an output row per input event, while the ALL keyword generates a row for all groups

based on the last new event for each group.

The statement for this sample reads:

select irstream symbol, volume, sum(price) from MarketData#time(5.5 sec)

group by symbol

output every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

Output Rate Limiting - All

801

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 150, 49.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 75.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 11000, 3.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 150, 97.0]

 [YAH, 11500, 6.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [YAH, 10500, 7.0] [IBM, 100, 72.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [MSFT, 5000, null]

 [IBM, 150, 48.0]

 [YAH, 10000, 6.0]

A.6.3. Output Rate Limiting - All

The statement for this sample reads:

select irstream symbol, volume, sum(price) from MarketData#time(5.5 sec)

group by symbol

output all every 1 seconds

order by symbol

Appendix A. Output Reference ...

802

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 150, 49.0]

 [IBM, 155, 75.0]

 [MSFT, 5000, 9.0]

 [YAH, 10000, 1.0]

 2.5

 3.0

 3.2

 [IBM, 155, 75.0]

 [MSFT, 5000, 9.0]

 [YAH, 10000, 1.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [IBM, 155, 75.0]

 [MSFT, 5000, 9.0]

 [YAH, 11000, 3.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 150, 97.0]

 [MSFT, 5000, 9.0]

 [YAH, 11500, 6.0]

Output Rate Limiting - Last

803

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [IBM, 150, 72.0] [IBM, 100, 72.0]

 [MSFT, 5000, 9.0]

 [YAH, 10500, 7.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 150, 48.0] [IBM, 150, 48.0]

 [MSFT, 5000, null] [MSFT, 5000, null]

 [YAH, 10500, 6.0] [YAH, 10000, 6.0]

A.6.4. Output Rate Limiting - Last

The statement for this sample reads:

select irstream symbol, volume, sum(price) from MarketData#time(5.5 sec)

group by symbol

output last every 1 seconds

order by symbol

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

Appendix A. Output Reference ...

804

 [IBM, 155, 75.0]

 [YAH, 10000, 1.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 11000, 3.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 150, 97.0]

 [YAH, 11500, 6.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [YAH, 10500, 7.0] [IBM, 100, 72.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 150, 48.0]

 [MSFT, 5000, null]

 [YAH, 10000, 6.0]

A.6.5. Output Rate Limiting - First

The statement for this sample reads:

select irstream symbol, volume, sum(price) from MarketData#time(5.5 sec)

group by symbol

output first every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

Output Rate Limiting - First

805

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 100, 25.0]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [MSFT, 5000, 9.0]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 150, 49.0]

 YAH 10000 1.0 Event E4 arrives

 [YAH, 10000, 1.0]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 11000, 3.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 150, 97.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 [YAH, 11500, 6.0]

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 100, 72.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [YAH, 10500, 7.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, 5000, null]

 7.0 Event E3 and E4 leave the time window

 [IBM, 150, 48.0]

 [YAH, 10000, 6.0]

 7.2

Appendix A. Output Reference ...

806

A.6.6. Output Rate Limiting - Snapshot

The statement for this sample reads:

select irstream symbol, volume, sum(price) from MarketData#time(5.5 sec)

group by symbol

output snapshot every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 100, 25.0]

 [MSFT, 5000, 9.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 100, 75.0]

 [MSFT, 5000, 9.0]

 [IBM, 150, 75.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 75.0]

 2.5

 3.0

 3.2

 [IBM, 100, 75.0]

 [MSFT, 5000, 9.0]

 [IBM, 150, 75.0]

 [YAH, 10000, 1.0]

 [IBM, 155, 75.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

Output Rate Limiting - Snapshot

807

 4.2

 [IBM, 100, 75.0]

 [MSFT, 5000, 9.0]

 [IBM, 150, 75.0]

 [YAH, 10000, 3.0]

 [IBM, 155, 75.0]

 [YAH, 11000, 3.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 100, 97.0]

 [MSFT, 5000, 9.0]

 [IBM, 150, 97.0]

 [YAH, 10000, 6.0]

 [IBM, 155, 97.0]

 [YAH, 11000, 6.0]

 [IBM, 150, 97.0]

 [YAH, 11500, 6.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [MSFT, 5000, 9.0]

 [IBM, 150, 72.0]

 [YAH, 10000, 7.0]

 [IBM, 155, 72.0]

 [YAH, 11000, 7.0]

 [IBM, 150, 72.0]

 [YAH, 11500, 7.0]

 [YAH, 10500, 7.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 155, 48.0]

 [YAH, 11000, 6.0]

 [IBM, 150, 48.0]

 [YAH, 11500, 6.0]

 [YAH, 10500, 6.0]

Appendix A. Output Reference ...

808

A.7. Output for Fully-Aggregated, Grouped Queries

With Rollup

This chapter provides sample output for queries that have aggregation functions, and that have a

group by clause, and in which all event properties are under aggregation or appear in the group

by clause, and the group by clause has a rollup, cube or grouping sets keyword(s) instructing

the engine to perform multi-level aggregation.

A.7.1. No Output Rate Limiting

The statement for this sample reads:

select irstream symbol, volume, sum(price)

from MarketData#time(5.5 sec)

group by rollup(symbol)

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 25.0] [IBM, null]

 [null, 25.0] [null, null]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [MSFT, 9.0] [MSFT, null]

 [null, 34.0] [null, 25.0]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 49.0] [IBM, 25.0]

 [null, 58.0] [null, 34.0]

 YAH 10000 1.0 Event E4 arrives

 [YAH, 1.0] [YAH, null]

 [null, 59.0] [null, 58.0]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 [IBM, 75.0] [IBM, 49.0]

 [null, 85.0] [null, 59.0]

Output Rate Limiting - Default

809

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 3.0] [YAH, 1.0]

 [null, 87.0] [null, 85.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 97.0] [IBM, 75.0]

 [null, 109.0] [null, 87.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 [YAH, 6.0] [YAH, 3.0]

 [null, 112.0] [null, 109.0]

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 72.0] [IBM, 97.0]

 [null, 87.0] [null, 112.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [YAH, 7.0] [YAH, 6.0]

 [null, 88.0] [null, 87.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, null] [MSFT, 9.0]

 [null, 79.0] [null, 88.0]

 7.0 Event E3 and E4 leave the time window

 [IBM, 48.0] [IBM, 72.0]

 [YAH, 6.0] [YAH, 7.0]

 [null, 54.0] [null, 79.0]

 7.2

A.7.2. Output Rate Limiting - Default

The statement for this sample reads:

select irstream symbol, volume, sum(price)

from MarketData#time(5.5 sec)

group by rollup(symbol)

output every 1 seconds

Appendix A. Output Reference ...

810

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 25.0] [IBM, null]

 [null, 25.0] [null, null]

 [MSFT, 9.0] [MSFT, null]

 [null, 34.0] [null, 25.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 49.0] [IBM, 25.0]

 [null, 58.0] [null, 34.0]

 [YAH, 1.0] [YAH, null]

 [null, 59.0] [null, 58.0]

 [IBM, 75.0] [IBM, 49.0]

 [null, 85.0] [null, 59.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [YAH, 3.0] [YAH, 1.0]

 [null, 87.0] [null, 85.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 97.0] [IBM, 75.0]

 [null, 109.0] [null, 87.0]

Output Rate Limiting - All

811

 [YAH, 6.0] [YAH, 3.0]

 [null, 112.0] [null, 109.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [IBM, 72.0] [IBM, 97.0]

 [null, 87.0] [null, 112.0]

 [YAH, 7.0] [YAH, 6.0]

 [null, 88.0] [null, 87.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [MSFT, null] [MSFT, 9.0]

 [null, 79.0] [null, 88.0]

 [IBM, 48.0] [IBM, 72.0]

 [YAH, 6.0] [YAH, 7.0]

 [null, 54.0] [null, 79.0]

A.7.3. Output Rate Limiting - All

The statement for this sample reads:

select irstream symbol, volume, sum(price)

from MarketData#time(5.5 sec)

group by rollup(symbol)

output all every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 25.0] [IBM, null]

 [MSFT, 9.0] [MSFT, null]

 [null, 34.0] [null, null]

 1.5

Appendix A. Output Reference ...

812

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 75.0] [IBM, 25.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 1.0] [YAH, null]

 [null, 85.0] [null, 34.0]

 2.5

 3.0

 3.2

 [IBM, 75.0] [IBM, 75.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 1.0] [YAH, 1.0]

 [null, 85.0] [null, 85.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

 [IBM, 75.0] [IBM, 75.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 3.0] [YAH, 1.0]

 [null, 87.0] [null, 85.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 97.0] [IBM, 75.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 6.0] [YAH, 3.0]

 [null, 112.0] [null, 87.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [IBM, 72.0] [IBM, 97.0]

 [MSFT, 9.0] [MSFT, 9.0]

 [YAH, 7.0] [YAH, 6.0]

 [null, 88.0] [null, 112.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 48.0] [IBM, 72.0]

 [MSFT, null] [MSFT, 9.0]

Output Rate Limiting - Last

813

 [YAH, 6.0] [YAH, 7.0]

 [null, 54.0] [null, 88.0]

A.7.4. Output Rate Limiting - Last

The statement for this sample reads:

select irstream symbol, volume, sum(price)

from MarketData#time(5.5 sec)

group by rollup(symbol)

output last every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 25.0] [IBM, null]

 [MSFT, 9.0] [MSFT, null]

 [null, 34.0] [null, null]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 75.0] [IBM, 25.0]

 [YAH, 1.0] [YAH, null]

 [null, 85.0] [null, 34.0]

 2.5

 3.0

 3.2

 (empty result) (empty result)

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

 4.2

Appendix A. Output Reference ...

814

 [YAH, 3.0] [YAH, 1.0]

 [null, 87.0] [null, 85.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 97.0] [IBM, 75.0]

 [YAH, 6.0] [YAH, 3.0]

 [null, 112.0] [null, 87.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [IBM, 72.0] [IBM, 97.0]

 [YAH, 7.0] [YAH, 6.0]

 [null, 88.0] [null, 112.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [MSFT, null] [MSFT, 9.0]

 [IBM, 48.0] [IBM, 72.0]

 [YAH, 6.0] [YAH, 7.0]

 [null, 54.0] [null, 88.0]

A.7.5. Output Rate Limiting - First

The statement for this sample reads:

select irstream symbol, volume, sum(price)

from MarketData#time(5.5 sec)

group by rollup(symbol)

output first every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 [IBM, 25.0] [IBM, null]

Output Rate Limiting - First

815

 [null, 25.0] [null, null]

 0.8

 MSFT 5000 9.0 Event E2 arrives

 [MSFT, 9.0] [MSFT, null]

 1.0

 1.2

 1.5

 IBM 150 24.0 Event E3 arrives

 [IBM, 49.0] [IBM, 25.0]

 [null, 58.0] [null, 34.0]

 YAH 10000 1.0 Event E4 arrives

 [YAH, 1.0] [YAH, null]

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 2.5

 3.0

 3.2

 3.5

 YAH 11000 2.0 Event E6 arrives

 [YAH, 3.0] [YAH, 1.0]

 [null, 87.0] [null, 85.0]

 4.0

 4.2

 4.3

 IBM 150 22.0 Event E7 arrives

 [IBM, 97.0] [IBM, 75.0]

 4.9

 YAH 11500 3.0 Event E8 arrives

 [YAH, 6.0] [YAH, 3.0]

 [null, 112.0] [null, 109.0]

 5.0

 5.2

 5.7 Event E1 leaves the time window

 [IBM, 72.0] [IBM, 97.0]

 5.9

 YAH 10500 1.0 Event E9 arrives

 [YAH, 7.0] [YAH, 6.0]

 [null, 88.0] [null, 87.0]

 6.0

 6.2

 6.3 Event E2 leaves the time window

 [MSFT, null] [MSFT, 9.0]

 7.0 Event E3 and E4 leave the time window

 [IBM, 48.0] [IBM, 72.0]

 [YAH, 6.0] [YAH, 7.0]

 [null, 54.0] [null, 79.0]

Appendix A. Output Reference ...

816

A.7.6. Output Rate Limiting - Snapshot

The statement for this sample reads:

select irstream symbol, volume, sum(price)

from MarketData#time(5.5 sec)

group by rollup(symbol)

output snapshot every 1 seconds

The output is as follows:

 Input Output

 Insert Stream Remove Stream

 Time Symbol Volume Price

 0.2

 IBM 100 25.0 Event E1 arrives

 0.8

 MSFT 5000 9.0 Event E2 arrives

 1.0

 1.2

 [IBM, 25.0]

 [MSFT, 9.0]

 [null, 34.0]

 1.5

 IBM 150 24.0 Event E3 arrives

 YAH 10000 1.0 Event E4 arrives

 2.0

 2.1

 IBM 155 26.0 Event E5 arrives

 2.2

 [IBM, 75.0]

 [MSFT, 9.0]

 [YAH, 1.0]

 [null, 85.0]

 2.5

 3.0

 3.2

 [IBM, 75.0]

 [MSFT, 9.0]

 [YAH, 1.0]

 [null, 85.0]

 3.5

 YAH 11000 2.0 Event E6 arrives

 4.0

Output Rate Limiting - Snapshot

817

 4.2

 [IBM, 75.0]

 [MSFT, 9.0]

 [YAH, 3.0]

 [null, 87.0]

 4.3

 IBM 150 22.0 Event E7 arrives

 4.9

 YAH 11500 3.0 Event E8 arrives

 5.0

 5.2

 [IBM, 97.0]

 [MSFT, 9.0]

 [YAH, 6.0]

 [null, 112.0]

 5.7 Event E1 leaves the time window

 5.9

 YAH 10500 1.0 Event E9 arrives

 6.0

 6.2

 [MSFT, 9.0]

 [IBM, 72.0]

 [YAH, 7.0]

 [null, 88.0]

 6.3 Event E2 leaves the time window

 7.0 Event E3 and E4 leave the time window

 7.2

 [IBM, 48.0]

 [YAH, 6.0]

 [null, 54.0]

818

819

Appendix B. Reserved Keywords
The words in the following table are explicitly reserved in EPL, however certain keywords are

allowed as event property names in expressions and as column names in the rename syntax of

the select clause.

Most of the words in the table are forbidden by standard SQL as well. A few are reserved because

EPL needs them.

Names of built-in functions and certain auxiliary keywords are permitted as identifiers for use either

as event property names in expressions and for the column rename syntax. The second column

in the table below indicates which keywords are acceptable. For example, count is acceptable.

An example of permitted use is:

select last, count(*) as count from MyEvent

This example shows an incorrect use of a reserved keyword:

// incorrect

select insert from MyEvent

The table of explicitly reserved keywords and permitted keywords:

Table B.1. Reserved Keywords

Keyword Property Name and Rename Syntax

after -

all -

and -

as -

at yes

asc -

avedev yes

avg yes

between -

by -

case -

cast yes

Appendix B. Reserved Keywords

820

Keyword Property Name and Rename Syntax

coalesce yes

context -

count yes

create -

current_timestamp -

cube -

dataflow -

day -

days -

delete -

define yes

desc -

distinct -

else -

end -

escape yes

events yes

every yes

exists -

expression -

false yes

first yes

for yes

from -

full yes

group -

grouping -

grouping_id -

having -

hour -

hours -

in -

initiated -

inner -

821

Keyword Property Name and Rename Syntax

insert -

instanceof yes

into -

irstream -

is -

istream -

join yes

last yes

lastweekday yes

left yes

limit -

like -

max yes

match_recognize -

matched -

matches -

median yes

measures yes

merge -

metadatasql yes

min yes

minute yes

minutes yes

microsecond yes

microseconds yes

millisecond yes

milliseconds yes

msec yes

new -

not -

null -

offset -

on -

or -

Appendix B. Reserved Keywords

822

Keyword Property Name and Rename Syntax

order -

outer yes

output -

partition -

pattern yes

prev yes

prior yes

regexp -

retain-union yes

retain-intersection yes

right yes

rollup yes

rstream -

sec -

second -

seconds -

select -

set -

sets -

some -

snapshot yes

sql yes

start -

stddev yes

sum yes

terminated -

then -

true -

unidirectional yes

until yes

update -

usec yes

using yes

variable yes

823

Keyword Property Name and Rename Syntax

values yes

weekday yes

when -

where -

while -

window yes

824

825

Appendix C. Event Representation:

Plain-Old Java Object Events
This section provides information for using Plain-Old or Bean Java Objects to represent events.

For NEsper .NET also see Section H.7, “.NET Object Events”.

C.1. Overview

Plain-old Java object events are object instances that expose event properties through

JavaBeans-style getter methods. Events classes or interfaces do not have to be fully compliant to

the JavaBean specification; however for the Esper engine to obtain event properties, the required

JavaBean getter methods must be present or an accessor-style and accessor-methods may be

defined via configuration.

Esper supports JavaBeans-style event classes that extend a superclass or implement one or more

interfaces. Also, Esper event pattern and EPL statements can refer to Java interface classes and

abstract classes.

Classes that represent events should be made immutable. As events are recordings of a state

change or action that occurred in the past, the relevant event properties should not be changeable.

However this is not a hard requirement and the Esper engine accepts events that are mutable

as well.

The hashCode and equals methods do not need to be implemented. The implementation of these

methods by a Java event class does not affect the behavior of the engine in any way.

Please see Chapter 17, Configuration on options for naming event types represented by Java

object event classes. Java classes that do not follow JavaBean conventions, such as legacy

Java classes that expose public fields, or methods not following naming conventions, require

additional configuration. Via configuration it is also possible to control case sensitivity in property

name resolution. The relevant section in the chapter on configuration is Section 17.4.1.3, “Non-

JavaBean and Legacy Java Event Classes”.

C.2. Java Object Event Properties

As outlined earlier, the different property types are supported by the standard JavaBeans

specification, and some of which are uniquely supported by Esper:

• Simple properties have a single value that may be retrieved. The underlying property type might

be a Java language primitive (such as int, a simple object (such as a java.lang.String), or a

more complex object whose class is defined either by the Java language, by the application, or

by a class library included with the application.

• Indexed - An indexed property stores an ordered collection of objects (all of the same type) that

can be individually accessed by an integer-valued, non-negative index (or subscript).

Appendix C. Event Representat...

826

• Mapped - As an extension to standard JavaBeans APIs, Esper considers any property that

accepts a String-valued key a mapped property.

• Nested - A nested property is a property that lives within another Java object which itself is a

property of an event.

Assume there is an NewEmployeeEvent event class as shown below. The mapped and indexed

properties in this example return Java objects but could also return Java language primitive types

(such as int or String). The Address object and Employee can themselves have properties that

are nested within them, such as a street name in the Address object or a name of the employee

in the Employee object.

public class NewEmployeeEvent {

 public String getFirstName();

 public Address getAddress(String type);

 public Employee getSubordinate(int index);

 public Employee[] getAllSubordinates();

}

Simple event properties require a getter-method that returns the property value. In this example,

the getFirstName getter method returns the firstName event property of type String.

Indexed event properties require either one of the following getter-methods. A method that takes

an integer-type key value and returns the property value, such as the getSubordinate method,

or a method that returns an array-type, or a class that implements Iterable. An example is the

getAllSubordinates getter method, which returns an array of Employee but could also return

an Iterable. In an EPL or event pattern statement, indexed properties are accessed via the

property[index] syntax.

Mapped event properties require a getter-method that takes a String-typed key value and returns

the property value, such as the getAddress method. In an EPL or event pattern statement,

mapped properties are accessed via the property('key') syntax.

Nested event properties require a getter-method that returns the nesting object. The getAddress

and getSubordinate methods are mapped and indexed properties that return a nesting

object. In an EPL or event pattern statement, nested properties are accessed via the

property.nestedProperty syntax.

All event pattern and EPL statements allow the use of indexed, mapped and nested properties (or

a combination of these) anywhere where one or more event property names are expected. The

below example shows different combinations of indexed, mapped and nested properties in filters

of event pattern expressions (each line is a separate EPL statement):

every NewEmployeeEvent(firstName='myName')

every NewEmployeeEvent(address('home').streetName='Park Avenue')

every NewEmployeeEvent(subordinate[0].name='anotherName')

Property Names

827

every NewEmployeeEvent(allSubordinates[1].name='thatName')

every NewEmployeeEvent(subordinate[0].address('home').streetName='Water

 Street')

Similarly, the syntax can be used in EPL statements in all places where an event property name

is expected, such as in select lists, where-clauses or join criteria.

select firstName, address('work'), subordinate[0].name, subordinate[1].name

from NewEmployeeEvent(address('work').streetName = 'Park Ave')

C.3. Property Names

Property names follows Java standards: the class java.beans.Introspector and method

getBeanInfo returns the property names as derived from the name of getter methods. In addition,

Esper configuration provides a flag to turn off case-sensitive property names. A sample list of

getter methods and property names is:

Table C.1. JavaBeans-style Getter Methods and Property Names

Method Property Name Example

getPrice() price
select price from MyEvent

getNAME() NAME
select NAME from MyEvent

getItemDesc() itemDesc
select itemDesc from MyEvent

getQ() q
select q from MyEvent

getQN() QN
select QN from MyEvent

getqn() qn
select qn from MyEvent

gets() s
select s from MyEvent

C.4. Parameterized Types

When your getter methods or accessor fields return a parameterized type, for example

Iterable<MyEventData> for an indexed property or Map<String, MyEventData> for a mapped

property, then property expressions may refer to the properties available through the class that

is the type parameter.

An example event that has properties that are parameterized types is:

Appendix C. Event Representat...

828

public class NewEmployeeEvent {

public String getName();

public Iterable<EducationHistory> getEducation();

public Map<String, Address> getAddresses();

}

A sample of valid property expressions for this event is shown next:

select name, education, education[0].date, addresses('home').street

from NewEmployeeEvent

C.5. Setter Methods for Indexed and Mapped Properties

An EPL statement may update indexed or mapped properties of an event, provided the event

class exposes the required setter method.

The setter method for indexed properties must be named setPropertyName and must take two

parameters: the int-type index and the Object type new value.

The setter method for mapped properties must be named setPropertyName and must take two

parameters: the String-type map key and the Object type new map value.

The following is an example event that features a setter method for the props mapped property

and for the array indexed property:

public class MyEvent {

 private Map props = new HashMap();

 private Object[] array = new Object[10];

 public void setProps(String name, Object value) {

 props.put(name, value);

 }

 public void setArray(int index, Object value) {

 array[index] = value;

 }

 // ... also provide regular JavaBean getters and setters for all properties

This sample statement updates mapped and indexed property values:

update istream MyEventStream set props('key') = 'abc', array[2] = 100

Known Limitations

829

C.6. Known Limitations

Esper employs byte code generation for fast access to event properties. When byte code

generation is unsuccessful, the engine logs a warning and uses Java reflection to obtain property

values instead.

A known limitation is that when an interface has an attribute of a particular type and the actual

event bean class returns a subclass of that attribute, the engine logs a warning and uses reflection

for that property.

830

831

Appendix D. Event Representation:

java.util.Map Events
This section provides information for using objects that implement the java.util.Map interface

to represent events.

For NEsper .NET also see Section H.8, “.NET IDictionary Events”.

D.1. Overview

Events can also be represented by objects that implement the java.util.Map interface. Event

properties of Map events are the values in the map accessible through the get method exposed

by the java.util.Map interface.

Similar to the Object-array event type, the Map event type takes part in the comprehensive type

system that can eliminate the need to use Java classes as event types, thereby making it easier

to change types at runtime or generate type information from another source.

A given Map event type can have one or more supertypes that must also be Map event types.

All properties available on any of the Map supertypes are available on the type itself. In addition,

anywhere within EPL that an event type name of a Map supertype is used, any of its Map subtypes

and their subtypes match that expression.

Your application can add properties to an existing Map event type during runtime using the

configuration operation updateMapEventType. Properties may not be updated or deleted -

properties can only be added, and nested properties can be added as well. The runtime

configuration also allows removing Map event types and adding them back with new type

information.

After your application configures a Map event type by providing a type name, the type name can

be used when defining further Map or Object-array event types by specifying the type name as

a property type or an array property type.

One-to-Many relationships in Map event types are represented via arrays. A property in a Map

event type may be an array of primitive, an array of Java object, an array of Map or an an array

of Object-array.

The engine can process java.util.Map events via the sendEvent(Map map, String

eventTypeName) method on the EPRuntime interface. Entries in the Map represent event

properties. Keys must be of type java.util.String for the engine to be able to look up event

property names specified by pattern or EPL statements.

The engine does not validate Map event property names or values. Your application should ensure

that objects passed in as event properties match the create schema property names and types,

or the configured event type information when using runtime or static configuration.

Appendix D. Event Representat...

832

D.2. Map Properties

Map event properties can be of any type. Map event properties that are Java application objects

or that are of type java.util.Map (or arrays thereof) or that are of type Object[] (object-array)

(or arrays thereof) offer additional power:

• Properties that are Java application objects can be queried via the nested, indexed, mapped

and dynamic property syntax as outlined earlier.

• Properties that are of type Map allow Maps to be nested arbitrarily deep and thus can be used

to represent complex domain information. The nested, indexed, mapped and dynamic property

syntax can be used to query Maps within Maps and arrays of Maps within Maps.

• Properties that are of type Object[] (object-array) allow object-arrays to be nested arbitrarily

deep. The nested, indexed, mapped and dynamic property syntax can be used to query nested

Maps and object-arrays alike.

In order to use Map events, the event type name and property names and types must be made

known to the engine via Configuration or create schema EPL syntax. Please see examples in

Section 5.15, “Declaring an Event Type: Create Schema” and Section 17.4.2, “Events represented

by java.util.Map”.

The code snippet below defines a Map event type, creates a Map event and sends the event

into the engine. The sample defines the CarLocUpdateEvent event type via runtime configuration

interface (create schema or static configuration could have been used instead).

// Define CarLocUpdateEvent event type (example for runtime-configuration

 interface)

Map<String, Object> def = new HashMap<String, Object>;

def.put("carId", String.class);

def.put("direction", int.class);

epService.getEPAdministrator().getConfiguration().

 addEventType("CarLocUpdateEvent", def);

The CarLocUpdateEvent can now be used in a statement:

select carId from CarLocUpdateEvent(direction = 1)#time(1 min)

// Create a CarLocUpdateEvent event and send it into the engine for processing

Map<String, Object> event = new HashMap<String, Object>();

event.put("carId", carId);

event.put("direction", direction);

Map Supertypes

833

epRuntime.sendEvent(event, "CarLocUpdateEvent");

The engine can also query Java objects as values in a Map event via the nested property syntax.

Thus Map events can be used to aggregate multiple data structures into a single event and query

the composite information in a convenient way. The example below demonstrates a Map event

with a transaction and an account object.

Map event = new HashMap();

event.put("txn", txn);

event.put("account", account);

epRuntime.sendEvent(event, "TxnEvent");

An example statement could look as follows.

select account.id, account.rate * txn.amount

from TxnEvent#time(60 sec)

group by account.id

D.3. Map Supertypes

Your Map event type may declare one or more supertypes when configuring the type at engine

initialization time or at runtime through the administrative interface.

Supertypes of a Map event type must also be Map event types. All property names and types

of a supertype are also available on a subtype and override such same-name properties of the

subtype. In addition, anywhere within EPL that an event type name of a Map supertype is used,

any of its Map subtypes also matches that expression (similar to the concept of interface in Java).

This example assumes that the BaseUpdate event type has been declared and acts as a supertype

to the AccountUpdate event type (both Map event types):

epService.getEPAdministrator().getConfiguration().

 addEventType("AccountUpdate", accountUpdateDef,

 new String[] {"BaseUpdate"});

Your application EPL statements may select BaseUpdate events and receive both BaseUpdate

and AccountUpdate events, as well as any other subtypes of BaseUpdate and their subtypes.

// Receive BaseUpdate and any subtypes including subtypes of subtypes

select * from BaseUpdate

Appendix D. Event Representat...

834

Your application Map event type may have multiple supertypes. The multiple inheritance hierarchy

between Maps can be arbitrarily deep, however cyclic dependencies are not allowed. If using

runtime configuration, supertypes must exist before a subtype to a supertype can be added.

See Section 17.4.2, “Events represented by java.util.Map” for more information on configuring

Map event types.

D.4. Advanced Map Property Types

D.4.1. Nested Properties

Strongly-typed nested Map-within-Map events can be used to build rich, type-safe event types

on the fly. Use the addEventType method on Configuration or ConfigurationOperations for

initialization-time and runtime-time type definition, or the create schema EPL syntax.

Noteworthy points are:

• JavaBean (POJO) objects can appear as properties in Map event types.

• One may represent Map-within-Map and Map-Array within Map (same for object-array) using

the name of a previously registered Map (or object-array) event type.

• There is no limit to the number of nesting levels.

• Dynamic properties can be used to query Map-within-Map keys that may not be known in

advance.

• The engine returns a null value for properties for which the access path into the nested

structure cannot be followed where map entries do not exist.

For demonstration, in this example our top-level event type is an AccountUpdate event, which

has an UpdatedFieldType structure as a property. Inside the UpdatedFieldType structure the

example defines various fields, as well as a property by name 'history' that holds a JavaBean

class UpdateHistory to represent the update history for the account. The code snippet to define

the event type is thus:

Map<String, Object> updatedFieldDef = new HashMap<String, Object>();

updatedFieldDef.put("name", String.class);

updatedFieldDef.put("addressLine1", String.class);

updatedFieldDef.put("history", UpdateHistory.class);

epService.getEPAdministrator().getConfiguration().

 addEventType("UpdatedFieldType", updatedFieldDef);

Map<String, Object> accountUpdateDef = new HashMap<String, Object>();

accountUpdateDef.put("accountId", long.class);

accountUpdateDef.put("fields", "UpdatedFieldType");

// the latter can also be: accountUpdateDef.put("fields", updatedFieldDef);

epService.getEPAdministrator().getConfiguration().

 addEventType("AccountUpdate", accountUpdateDef);

One-to-Many Relationships

835

The next code snippet populates a sample event and sends the event into the engine:

Map<String, Object> updatedField = new HashMap<String, Object>();

updatedField.put("name", "Joe Doe");

updatedField.put("addressLine1", "40 Popular Street");

updatedField.put("history", new UpdateHistory());

Map<String, Object> accountUpdate = new HashMap<String, Object>();

accountUpdate.put("accountId", 10009901);

accountUpdate.put("fields", updatedField);

epService.getEPRuntime().sendEvent(accountUpdate, "AccountUpdate");

Last, a sample query to interrogate AccountUpdate events is as follows:

select accountId, fields.name, fields.addressLine1, fields.history.lastUpdate

from AccountUpdate

D.4.2. One-to-Many Relationships

To model repeated properties within a Map, you may use arrays as properties in a Map. You may

use an array of primitive types or an array of JavaBean objects or an array of a previously declared

Map or object-array event type.

When using a previously declared Map event type as an array property, the literal [] must be

appended after the event type name.

This following example defines a Map event type by name Sale to hold array properties of the

various types. It assumes a SalesPerson Java class exists and a Map event type by name

OrderItem was declared:

Map<String, Object> sale = new HashMap<String, Object>();

sale.put("userids", int[].class);

sale.put("salesPersons", SalesPerson[].class);

sale.put("items", "OrderItem[]"); // The property type is the name itself

 appended by []

epService.getEPAdministrator().getConfiguration().

 addEventType("SaleEvent", sale);

The three properties that the above example declares are:

• An integer array of user ids.

Appendix D. Event Representat...

836

• An array of SalesPerson Java objects.

• An array of Maps for order items.

The next EPL statement is a sample query asking for property values held by arrays:

select userids[0], salesPersons[1].name,

 items[1], items[1].price.amount from SaleEvent

837

Appendix E. Event Representation:

Object-array (Object[]) Events
This section provides information for using Object-array (Object[]) to represent events.

E.1. Overview

An event can also be represented by an array of objects. Event properties of Object[] events

are the array element values.

Similar to the Map event type, the object-array event type takes part in the comprehensive type

system that can eliminate the need to use Java classes as event types, thereby making it easier

to change types at runtime or generate type information from another source.

A given Object-array event type can have only a single supertype that must also be an Object-

array event type. All properties available on the Object-array supertype is also available on the

type itself. In addition, anywhere within EPL that an event type name of an Object-array supertype

is used, any of its Object-array subtypes and their subtypes match that expression.

Your application can add properties to an existing Object-array event type during runtime using

the configuration operation updateObjectArrayEventType. Properties may not be updated or

deleted - properties can only be added, and nested properties can be added as well. The runtime

configuration also allows removing Object-array event types and adding them back with new type

information.

After your application configures an Object-array event type by providing a type name, the type

name can be used when defining further Object-array or Map event types by specifying the type

name as a property type or an array property type.

One-to-Many relationships in Object-array event types are represented via arrays. A property in

an Object-array event type may be an array of primitive, an array of Java object, an array of Map

or an array of Object-array.

The engine can process Object[] events via the sendEvent(Object[] array, String

eventTypeName) method on the EPRuntime interface. Entries in the Object array represent event

properties.

The engine does not validate Object array length or value types. Your application must ensure

that Object array values match the declaration of the event type: The type and position of property

values must match property names and types in the same exact order and object array length must

match the number of properties declared via create schema or the static or runtime configuration.

Appendix E. Event Representat...

838

E.2. Object-Array Properties

Object-array event properties can be of any type. Object-array event properties that are Java

application objects or that are of type java.util.Map (or arrays thereof) or that are of type

Object-array (or arrays thereof) offer additional power:

• Properties that are Java application objects can be queried via the nested, indexed, mapped

and dynamic property syntax as outlined earlier.

• Properties that are of type Object[] allow object-arrays to be nested arbitrarily deep and thus

can be used to represent complex domain information. The nested, indexed, mapped and

dynamic property syntax can be used to query object-array within object-arrays and arrays of

object-arrays within object-arrays.

• Properties that are of type Map allow Maps to be nested in object-array events and arbitrarily

deep. The nested, indexed, mapped and dynamic property syntax can be used to query nested

Maps and object-arrays alike.

In order to use Object[] (object-array) events, the event type name and property names and

types, in a well-defined order that must match object-array event properties, must be made

known to the engine via configuration or create schema EPL syntax. Please see examples in

Section 5.15, “Declaring an Event Type: Create Schema” and Section 17.4.3, “Events represented

by Object[] (Object-array)”.

The code snippet below defines an Object-array event type, creates an Object-array event and

sends the event into the engine. The sample defines the CarLocUpdateEvent event type via the

runtime configuration interface (create schema or static configuration could have been used

instead).

// Define CarLocUpdateEvent event type (example for runtime-configuration

 interface)

String[] propertyNames = {"carId", "direction"}; // order is important

Object[] propertyTypes = {String.class, int.class}; // type order matches name

 order

epService.getEPAdministrator().getConfiguration().

 addEventType("CarLocUpdateEvent", propertyNames, propertyTypes);

The CarLocUpdateEvent can now be used in a statement:

select carId from CarLocUpdateEvent(direction = 1)#time(1 min)

// Send an event

Object[] event = {carId, direction};

Object-Array Supertype

839

epRuntime.sendEvent(event, "CarLocUpdateEvent");

The engine can also query Java objects as values in an Object[] event via the nested property

syntax. Thus Object[] events can be used to aggregate multiple data structures into a single

event and query the composite information in a convenient way. The example below demonstrates

a Object[] event with a transaction and an account object.

epRuntime.sendEvent(new Object[] {txn, account}, "TxnEvent");

An example statement could look as follows:

select account.id, account.rate * txn.amount

from TxnEvent#time(60 sec)

group by account.id

E.3. Object-Array Supertype

Your Object[] (object-array) event type may declare one supertype when configuring the type at

engine initialization time or at runtime through the administrative interface.

The supertype of a Object[] event type must also be an object-array event type. All property

names and types of a supertype are also available on a subtype and override such same-name

properties of the subtype. In addition, anywhere within EPL that an event type name of an Object-

array supertype is used, any of its Object-array subtypes also matches that expression (similar

to the concept of interface or superclass).

The properties provided by the top-most supertype must occur first in the object array. Subtypes

each append to the object array. The number of values appended must match the number of

properties declared by the subtype.

For example, assume your application declares the following two types:

create objectarray schema SuperType (p0 string)

create objectarray schema SubType (p1 string) inherits SuperType

The object array event objects that your application can send into the engine are shown by the

next code snippet:

epRuntime.sendEvent(new Object[] {"p0_value", "p1_value"}, "SubType");

Appendix E. Event Representat...

840

epRuntime.sendEvent(new Object[] {"p0_value"}, "SuperType");

E.4. Advanced Object-Array Property Types

E.4.1. Nested Properties

Strongly-typed nested Object[]-within-Object[] events can be used to build rich, type-

safe event types on the fly. Use the addEventType method on Configuration or

ConfigurationOperations for initialization-time and runtime-time type definition, or the create

schema EPL syntax.

Noteworthy points are:

• JavaBean (POJO) objects can appear as properties in Object[] event types.

• One may represent Object-array within Object-array and Object-Array-Array within Object-array

(same for Map event types) using the name of a previously registered Object-array (or Map)

event type.

• There is no limit to the number of nesting levels.

• Dynamic properties can be used to query Object[]-within-Object[] values that may not be

known in advance.

• The engine returns a null value for properties for which the access path into the nested

structure cannot be followed where entries do not exist.

For demonstration, in this example our top-level event type is an AccountUpdate event, which

has an UpdatedFieldType structure as a property. Inside the UpdatedFieldType structure the

example defines various fields, as well as a property by name 'history' that holds a JavaBean

class UpdateHistory to represent the update history for the account. The code snippet to define

the event type is thus:

String[] propertyNamesUpdField = {"name", "addressLine1", "history"};

Object[] propertyTypesUpdField = {String.class, String.class,

 UpdateHistory.class};

epService.getEPAdministrator().getConfiguration().

 addEventType("UpdatedFieldType", propertyNamesUpdField,

 propertyTypesUpdField);

String[] propertyNamesAccountUpdate = {"accountId", "fields"};

Object[] propertyTypesAccountUpdate = {long.class, "UpdatedFieldType"};

epService.getEPAdministrator().getConfiguration().

 addEventType("AccountUpdate", propertyNamesAccountUpdate,

 propertyTypesAccountUpdate);

The next code snippet populates a sample event and sends the event into the engine:

One-to-Many Relationships

841

Object[] updatedField = {"Joe Doe", "40 Popular Street", new UpdateHistory()};

Object[] accountUpdate = {10009901, updatedField};

epService.getEPRuntime().sendEvent(accountUpdate, "AccountUpdate");

Last, a sample query to interrogate AccountUpdate events is as follows:

select accountId, fields.name, fields.addressLine1, fields.history.lastUpdate

from AccountUpdate

E.4.2. One-to-Many Relationships

To model repeated properties within an Object-array, you may use arrays as properties in an

Object-array. You may use an array of primitive types or an array of JavaBean objects or an array

of a previously declared Object-array or Map event type.

When using a previously declared Object-array event type as an array property, the literal [] must

be appended after the event type name.

This following example defines an Object-array event type by name Sale to hold array properties

of the various types. It assumes a SalesPerson Java class exists and an Object-array event type

by name OrderItem was declared:

String[] propertyNames = {"userids", "salesPersons", "items"};

Object[] propertyTypes = {int[].class, SalesPerson[].class, "OrderItem[]");

epService.getEPAdministrator().getConfiguration().

 addEventType("SaleEvent", propertyNames, propertyTypes);

The three properties that the above example declares are:

• An integer array of user ids.

• An array of SalesPerson Java objects.

• An array of Object-array for order items.

The next EPL statement is a sample query asking for property values held by arrays:

select userids[0], salesPersons[1].name,

 items[1], items[1].price.amount from SaleEvent

842

843

Appendix F. Event Representation:

Avro Events (org.apache.avro.generic.GenericData.Record)
This section provides information for using Avro to represent events.

F.1. Overview

An event can be represented by an Avro GenericData.Record instance. Event properties of Avro

events are the field values of a GenericData.Record. The top level schema must always be a

record.

The advantages for supporting Avro as an event representation are:

• Avro has excellent support for JSON, allowing JSON for incoming and outgoing events, while

not compromising on type-safety since Avro provides a schema.

• Avro has rich, extensible, standardized schema language defined in pure JSON; event types /

schemas can be defined/imported/exported with EPL or from external sources.

• Avro offers a compact binary representation and is thus efficient and fast for use with EsperHA

persistence or for input/output in wire transfer.

• Avro has a compact event representation reducing memory use, as each event is only a

schema-reference and an Object[] (see GenericData.Record).

• JSON itself is not memory efficient while Avro is: JSON repeats every field name with every

single record and JSON alone is inefficient for high-volume usage.

• Avro allows fast access to event properties since reading an event property value only requires

reading the GenericData.Record-internal object-array at a given index.

• Avro has bindings for a wide variety of programming languages and platforms and has RPC

and file representations.

• Avro does not require code generation so EPL can be written generically for any data stream.

Type information can be made available at runtime while still providing type-safety. There is no

need to generate code, therefore there is no need to manage generated classes, or to reload

classes or to restart the process to reload classes.

• Avro has the notion of schema compatibility for evolving your event data over time.

Similar to the Map and object-array event type, the Avro event type takes part in the

comprehensive type system that can eliminate the need to use Java classes as event types,

thereby making it easier to change types at runtime or generate or import/export type information

from/to another source/destination.

Appendix F. Event Representat...

844

The engine can process Avro's GenericData.Record events via the sendEventAvro(Object

avroGenericDataDotRecord, String avroEventTypeName) method on the EPRuntime

interface.

The engine does not validate Avro events. Your application must ensure that Avro values match

the declaration of the schema and that the schema of the event matches the schema declared

for the event type of the event.

A given Avro event type can have only a single supertype that must also be an Avro event type.

All properties available on the Avro supertype is also available on the type itself. In addition,

anywhere within EPL that an event type name of an Avro supertype is used, the Avro subtype

and the subtype of the subtype match that expression. Note that access to properties is by field

position thereby subtype and supertype field positions should be congruent.

F.2. Avro Event Type

In order to use Avro for incoming events, the event type name and Avro schema must be

made known to the engine via configuration or create avro schema EPL syntax. Please see

examples in Section 5.15, “Declaring an Event Type: Create Schema” and Section 17.4.4, “Events

represented by Avro GenericData.Record”.

The code snippet below defines an Avro event type, creates an Avro event and sends the

event into the engine. The sample defines the CarLocUpdateEvent event type via the runtime

configuration interface (create schema or static configuration could have been used instead).

// Define CarLocUpdateEvent event type (example for runtime-configuration

 interface)

Schema schema = record("CarLocUpdateEvent").fields()

 .name("carId").type().stringBuilder().prop(PROP_JAVA_STRING_KEY,

 PROP_JAVA_STRING_VALUE).endString().noDefault()

 .requiredInt("direction")

 .endRecord();

ConfigurationEventTypeAvro avroEvent = new ConfigurationEventTypeAvro(schema);

epService.getEPAdministrator().getConfiguration().addEventTypeAvro("CarLocUpdateEvent",

 avroEvent);

The CarLocUpdateEvent can now be used in a statement:

select count(*) from CarLocUpdateEvent(direction = 1)#time(1 min)

The sample code to send an event is:

GenericData.Record event = new GenericData.Record(schema);

event.put("carId", "A123456");

Avro Schema Name Requirement

845

event.put("direction", 1);

epService.getEPRuntime().sendEventAvro(event, "CarLocUpdateEvent");

Use the @EventRepresentation(avro) annotation to obtain Avro output events.

F.3. Avro Schema Name Requirement

Avro schemas can contain further Avro schemas. The engine tracks nested schema based on the

schema name. The engine implicitly registers an event type for each schema using the schema

name, for nested simple and indexed properties. Therefore the engine requires schema names

to match the initially-registered schema of the same name.

For example, the schema:

{

 "type" : "record",

 "name" : "MyEvent",

 "fields" : [{

 "name" : "nested",

 "type" : {

 "type" : "record",

 "name" : "MyNestedEvent",

 "fields" : [{

 "name" : "value",

 "type" : "int"

 }]

 }

 }]

}

For the above schema, upon registration of the schema as an event type, the engine creates an

event type MyNestedEvent and associates it to the MyNestedEvent schema.

F.4. Avro Field Schema to Property Type Mapping

Upon registering an Avro event type, the engine determines property names and property types.

The Avro record field schema determines the property type.

The table below describes Avro field schema to property type mapping:

Table F.1. Avro Field Schema to Property Type Mapping

Schema Property Type

"int" (Schema.Type.INT) int

"long" (Schema.Type.LONG) long

Appendix F. Event Representat...

846

Schema Property Type

"double" (Schema.Type.DOUBLE) double

"float" (Schema.Type.FLOAT) float

"boolean" (Schema.Type.BOOLEAN) boolean

"bytes" (Schema.Type.BYTES) ByteBuffer

"null" (Schema.Type.NULL) null

"string" (Schema.Type.STRING) If the field has the property avro.java.string

as String, then the property type is String

otherwise it is CharSequence.

"union" (Schema.Type.UNION) See below.

"array" (Schema.Type.ARRAY) java.util.Collection

"map" (Schema.Type.MAP) java.util.Map

"record" (Schema.Type.RECORD) GenericData.Record

"fixed" (Schema.Type.FIXED) GenericFixed

"enum" (Schema.Type.ENUM) GenericEnumSymbol

For unions:

1. If the union contains null and any of the primitive types, the property type is the boxed type.

For example unionOf().nullType().and().intType().endUnion() is Integer.class.

2. If the union contains null and numeric types only, the property type is Number.class. For

example unionOf().longType().and().intType().endUnion() is Number.class.

3. Otherwise the property type is Object.class.

F.5. Primitive Data Type and Class to Avro Schema

Mapping

This section lists for each JVM type the default Avro schema that the engine uses when

assembling an Avro schema from a select-clause.

For example, consider the following EPL statement. The statement assumes that MyEvent is a

pre-registered event type of any kind (Map, Avro, Object-Array, POJO etc.):

@EventRepresentation(avro) select 1 as carId, 'abc' as carType from MyEvent

Your application may obtain the schema for the statement output event type as follows:

String epl = "@EventRepresentation(avro) select 1 as carId, 'abc' as carType

 from MyEvent";

Primitive Data Type and Class to Avro Schema Mapping

847

EPStatement stmt = epService.getEPAdministrator().createEPL(epl);

Schema schema = (Schema) ((AvroSchemaEventType)

 stmt.getEventType()).getSchema();

The engine generates an Avro schema based on the expressions in the select-clause. The

schema in pretty-print may look like this:

{

 "type" : "record",

 "name" : "anonymous_1_result_",

 "fields" : [{

 "name" : "carId",

 "type" : "int"

 }, {

 "name" : "carType",

 "type" : {

 "type" : "string",

 "avro.java.string" : "String"

 }

 }]

}

Please consult Section 17.4.13.2, “Avro Settings” for details on controlling default mapping.

Tables below outline the default mapping and provide alternative schemas depending on the avro

settings .

By default the engine maps expression result types to Avro schema using non-null schema

types. By default, for String-type values, the engine sets the avro.java.string property

to String to ensure that Avro uses java.lang.String to represent strings (and not

org.apache.avro.util.Utf8). The tables below outline the default mapping and provide

alternative schemas, which apply according to Esper Avro settings.

The mapping from primitive and string type to Avro schema is:

Table F.2. Primitive Data Type and String Mapping

Type Default Schema Alternative Schemas

byte
"int"

N/A

java.lang.Byte
"int" ["null","int"]

boolean
"boolean"

N/A

Appendix F. Event Representat...

848

Type Default Schema Alternative Schemas

java.lang.Boolean
"boolean" ["null","boolean"]

double
"double"

N/A

java.lang.Double
"double" ["null","double"]

float
"float"

N/A

java.lang.Float
"float" ["null","float"]

int
"int"

N/A

java.lang.Integer
"int" ["null","int"]

long
"long"

N/A

java.lang.Long
"long" ["null","long"]

null
"null"

N/A

java.lang.String

and

java.lang.CharSequence

{"type":"string","avro.java.string":"String"}"string"

or

["null","string"]

or

["null",

{"type":"string","avro.java.string":"String"}]

Primitive Data Type and Class to Avro Schema Mapping

849

The mapping from array-type to Avro schema is:

Table F.3. Array Type Mapping

Type Default Schema Alternative Schemas

byte[]
"bytes" ["null","bytes"]

Byte[]
{"type":"array","items":

["null","int"]}

["null",{"type":"array","items":

["null","int"]}]

boolean[]
{"type":"array","items":"boolean"}["null",

{"type":"array","items":"boolean"}]

Boolean[]
{"type":"array","items":

["null","boolean"]}

["null",{"type":"array","items":

["null","boolean"]}]

double[]
{"type":"array","items":"double"} ["null",

{"type":"array","items":"double"}]

Double[]
{"type":"array","items":

["null","double"]}

["null",{"type":"array","items":

["null","double"]}]

float[]
{"type":"array","items":"float"} ["null",

{"type":"array","items":"float"}]

Float[]
{"type":"array","items":

["null","float"]}

["null",{"type":"array","items":

["null","float"]}]

int[]
{"type":"array","items":"int"} ["null",

{"type":"array","items":"int"}]

Integer[]
{"type":"array","items":

["null","int"]}

["null",{"type":"array","items":

["null","int"]}]

Appendix F. Event Representat...

850

Type Default Schema Alternative Schemas

long[]
{"type":"array","items":"long"} ["null",

{"type":"array","items":"long"}]

Long[]
{"type":"array","items":

["null","long"]}

["null",{"type":"array","items":

["null","long"]}]

java.lang.String[]

and

java.lang.CharSequence[]

{"type":"array","items":

{"type":"string","avro.java.string":"String"}}

["null",{"type":"array","items":

{"type":"string","avro.java.string":"String"}}]

or

{"type":"array","items":"string"}

(or the combination)

Additional mappings to Avro schema are:

Table F.4. Additional Mapping

Type Default Schema Alternative Schemas

java.util.Map

interface

implementation

{"type":"map","values":

{"type":"string","avro.java.string":"String"}}

["null",{"type":"map","values":

{"type":"string","avro.java.string":"String"}}]

F.6. Customizing Avro Schema Assignment

Esper provides the @AvroSchemaField annotation to assign a schema to a given property. The

annotation requires the name attribute for the property name and the schema attributed for the

Avro schema text.

The schema provided via @AvroSchemaField for a given property replaces the Avro schema that

is otherwise assigned according to the above mapping.

The annotation can be used with create-schema or with @EventRepresentation(avro).

In this example the carId property is a union of int-type and string-type.

@AvroSchemaField(name='carId',schema='["int","string"]') create avro schema

 MyEvent(carId object)

Customizing Class-to-Avro Schema

851

The engine determines the property type from the Avro field schema according to the rules listed

above.

F.7. Customizing Class-to-Avro Schema

In the default configuration only the primitive data types and the abovementioned classes have a

corresponding Avro schema. When the engine encounters a class for which is does not know the

Avro schema that is should use, it fails the EPL statement validation.

For example, the below EPL is invalid:

// Invalid since LocalDateTime has no equivalent Avro schema (by default)

create avro schema MyEvent(ldt as java.time.LocalDateTime)

Instead of using @AvroSchemaField your application can configure a type-representation mapper

class that can return the Avro schema to use. For configuration information please see

Section 17.4.13.2, “Avro Settings” and the JavaDoc.

Your application can implement the

com.espertech.esper.client.hook.TypeRepresentationMapper interface. The engine

invokes the provided mapper to determine the Avro schema for a given field.

For example, the following type mapper implementation maps LocalDateTime to the Avro string

type.

public class MyTypeRepresentationMapper implements TypeRepresentationMapper {

 public Object map(TypeRepresentationMapperContext context) {

 if (context.getClazz() == LocalDateTime.class) {

 return builder().stringBuilder().endString();

 }

 return null;

 }

}

F.8. Customizing Object-to-Avro Field Value

Assignment

The engine can automatically widen and assign values to Avro fields. In the case when your

application requires a custom logic to convert, widen, coerce or transform a value before

assigment to an Avro field, please use the mechanism below.

Your application can implement the

com.espertech.esper.client.hook.ObjectValueTypeWidenerFactory interface. The engine

invokes the provided factory to determine a widener for values.

Appendix F. Event Representat...

852

For example, the factory implementation below returns a type widener that converts

LocalDateTime instances to Avro string-type values by using the date-time formatter:

public static class MyObjectValueTypeWidenerFactory implements

 ObjectValueTypeWidenerFactory {

 public TypeWidener make(ObjectValueTypeWidenerFactoryContext context) {

 if (context.getClazz() == LocalDateTime.class) {

 return new TypeWidener() {

 public Object widen(Object input) {

 LocalDateTime ldt = (LocalDateTime) input;

 return DateTimeFormatter.ISO_DATE_TIME.format(ldt);

 }

 };

 }

 return null;

 }

}

F.9. API Examples

To obtain the Avro schema for a given event type, use:

public static Schema getAvroSchema(EventType eventType) {

 return (Schema) ((AvroSchemaEventType) eventType).getSchema();

}

To obtain the Avro schema for a registered event type, you may use:

public static Schema getAvroSchema(EPServiceProvider epService, String

 eventTypeName) {

 return

 getAvroSchema(epService.getEPAdministrator().getConfiguration().getEventType(eventTypeName));

}

To obtain the Avro schema for a given event, you may use:

public static Schema getAvroSchema(EventBean event) {

 return getAvroSchema(event.getEventType());

}

To obtain the GenericData.Record for a given event, you may use:

Limitations

853

public static Schema getAvroRecord(EventBean event) {

 return (GenericData.Record) event.getUnderlying();

}

F.10. Limitations

The following limitations apply:

1. An Avro GenericData.Record cannot contain EventBean instances.

2. There is no implicit translation from other event representations to Avro schemas.

3. While the engine performs best-effort assignment checking and widening, it does not

actually itself verify that the GenericData.Record contains valid data, for both production of

GenericData.Record and consumption of GenericData.Record.

854

855

Appendix G. Event Representation:

org.w3c.dom.Node XML Events
This section provides information for using org.w3c.dom.Node XML to represent events.

For NEsper .NET also see Section H.9, “.NET XML Events”.

G.1. Overview

Events can be represented as org.w3c.dom.Node instances and send into the engine via the

sendEvent method on EPRuntime or via EventSender. Please note that configuration is required

so the event type name and root element name is known. See Chapter 17, Configuration.

If a XML schema document (XSD file) can be made available as part of the configuration,

then Esper can read the schema and appropriately present event type metadata and validate

statements that use the event type and its properties. See Section G.2, “Schema-Provided XML

Events”.

When no XML schema document is provided, XML events can still be queried, however the return

type and return values of property expressions are string-only and no event type metadata is

available other than for explicitly configured properties. See Section G.3, “No-Schema-Provided

XML Events”.

In all cases Esper allows you to configure explicit XPath expressions as event properties. You can

specify arbitrary XPath functions or expressions and provide a property name and type by which

result values will be available for use in EPL statements. See Section G.4, “Explicitly-Configured

Properties”.

Nested, mapped and indexed event properties are also supported in expressions against

org.w3c.dom.Node events. Thus XML trees can conveniently be interrogated via the property

expression syntax.

Only one event type per root element name may be configured. The engine recognizes each event

by its root element name or you may use EventSender to send events.

This section uses the following XML document as an example:

<?xml version="1.0" encoding="UTF-8"?>

<Sensor xmlns="SensorSchema">

 <ID>urn:epc:1:4.16.36</ID>

 <Observation Command="READ_PALLET_TAGS_ONLY">

 <ID>00000001</ID>

 <Tag>

 <ID>urn:epc:1:2.24.400</ID>

 </Tag>

 <Tag>

Appendix G. Event Representat...

856

 <ID>urn:epc:1:2.24.401</ID>

 </Tag>

 </Observation>

</Sensor>

The schema for the example is:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Sensor">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ID" type="xs:string"/>

 <xs:element ref="Observation" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Observation">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ID" type="xs:string"/>

 <xs:element ref="Tag" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="Command" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 <xs:element name="Tag">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ID" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

G.2. Schema-Provided XML Events

If you have a XSD schema document available for your XML events, Esper can interrogate the

schema. The benefits are:

• New EPL statements that refer to event properties are validated against the types provided in

the schema.

• Event type metadata becomes available for retrieval as part of the EventType interface.

Getting Started

857

G.2.1. Getting Started

The engine reads a XSD schema file from an URL you provide. Make sure files imported by the

XSD schema file can also be resolved.

The configuration accepts a schema URL. This is a sample code snippet to determine a schema

URL from a file in classpath:

URL schemaURL = this.getClass().getClassLoader().getResource("sensor.xsd");

// For NEsper .NET use C# ResourceManager class for loading resources

Here is a sample use of the runtime configuration API, please see Chapter 17, Configuration for

further examples.

epService = EPServiceProviderManager.getDefaultProvider();

ConfigurationEventTypeXMLDOM sensorcfg = new ConfigurationEventTypeXMLDOM();

sensorcfg.setRootElementName("Sensor");

sensorcfg.setSchemaResource(schemaURL.toString());

epService.getEPAdministrator().getConfiguration()

 .addEventType("SensorEvent", sensorcfg);

You must provide a root element name. This name is used to look up the event type for the

sendEvent(org.w3c.Node node) method. An EventSender is a useful alternative method for

sending events if the type lookup based on the root or document element name is not desired.

After adding the event type, you may create statements and send events. Next is a sample

statement:

select ID, Observation.Command, Observation.ID,

 Observation.Tag[0].ID, Observation.Tag[1].ID

from SensorEvent

As you can see from the example above, property expressions can query property values held in

the XML document's elements and attributes.

There are multiple ways to obtain a XML DOM document instance from a XML string. The next

code snippet shows how to obtain a XML DOM org.w3c.Document instance:

InputSource source = new InputSource(new StringReader(xml));

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();

builderFactory.setNamespaceAware(true);

Document doc = builderFactory.newDocumentBuilder().parse(source);

Appendix G. Event Representat...

858

Send the org.w3c.Node or Document object into the engine for processing:

epService.getEPRuntime().sendEvent(doc);

G.2.2. Property Expressions and Namespaces

By default, property expressions such as Observation.Tag[0].ID are evaluated by a fast DOM-

walker implementation provided by Esper. This DOM-walker implementation is not namespace-

aware.

Should you require namespace-aware traversal of the DOM document, you must set the xpath-

property-expr configuration option to true (default is false). This flag causes Esper to generate

namespace-aware XPath expressions from each property expression instead of the DOM-walker,

as described next. Setting the xpath-property-expr option to true requires that you also

configure namespace prefixes as described below.

When matching up the property names with the XSD schema information, the engine determines

whether the attribute or element provides values. The algorithm checks attribute names first

followed by element names. It takes the first match to the specified property name.

G.2.3. Property Expression to XPath Rewrite

By setting the xpath-property-expr option the engine rewrites each property expression as an

XPath expression, effectively handing the evaluation over to the underlying XPath implementation

available from classpath. Most JVM have a built-in XPath implementation and there are also

optimized, fast implementations such as Jaxen that can be used as well.

Set the xpath-property-expr option if you need namespace-aware document traversal, such

as when your schema mixes several namespaces and element names are overlapping.

The below table samples several property expressions and the XPath expression generated for

each, without namespace prefixes to keep the example simple:

Table G.1. Property Expression to XPath Expression

Property Expression Equivalent XPath

Observeration.ID /Sensor/Observation/ID

Observeration.Command /Sensor/Observation/@Command

Observeration.Tag[0].ID /Sensor/Observation/Tag[position() =

1]/ID

For mapped properties that are specified via the syntax name('key'), the algorithm looks for an

attribute by name id and generates a XPath expression as mapped[@id='key'].

Finally, here is an example that includes all different types of properties and their XPath expression

equivalent in one property expression:

Array Properties

859

select nested.mapped('key').indexed[1].attribute from MyEvent

The equivalent XPath expression follows, this time including n0 as a sample namespace prefix:

/n0:rootelement/n0:nested/n0:mapped[@id='key']/n0:indexed[position() = 2]/

@attribute

G.2.4. Array Properties

All elements that are unbound or have max occurs greater then 1 in the XSD schema are

represented as indexed properties and require an index for resolution.

For example, the following is not a valid property expression in the sample Sensor document:

Observeration.Tag.ID. As no index is provided for Tag, the property expression is not valid.

Repeated elements within a parent element in which the repeated element is a simple type also

are represented as an array.

Consider the next XML document:

<item>

<book sku="8800090">

<author>Isaac Asimov</author>

<author>Robert A Heinlein</author>

</book>

</item>

Here, the result of the expression book.author is an array of type String and the result of

book.author[0] is a String value.

G.2.5. Dynamic Properties

Dynamic properties are not validated against the XSD schema information and their result value

is always org.w3c.Node. You may use a user-defined function to process dynamic properties

returning Node. As an alternative consider using an explicit property.

An example dynamic property is Origin?.ID which will look for an element by name Origin that

contains an element or attribute node by name LocationCode:

select Origin?.LocationCode from SensorEvent

Appendix G. Event Representat...

860

G.2.6. Transposing Properties

When providing a XSD document, the default configuration allows to transpose property values

that are themselves complex elements, as defined in the XSD schema, into a new stream. This

behavior can be controlled via the flag auto-fragment.

For example, consider the next query:

insert into ObservationStream

select ID, Observation from SensorEvent

The Observation as a property of the SensorEvent gets itself inserted into a new stream by name

ObservationStream. The ObservationStream thus consists of a string-typed ID property and a

complex-typed property named Observation, as described in the schema.

A further statement can use this stream to query:

select Observation.Command, Observation.Tag[0].ID from ObservationStream

Before continuing the discussion, here is an alternative syntax using the wildcard-select, that is

also useful:

insert into TagListStream

select ID as sensorId, Observation.* from SensorEvent

The new TagListStream has a string-typed ID and Command property as well as an array of Tag

properties that are complex types themselves as defined in the schema.

Next is a sample statement to query the new stream:

select sensorId, Command, Tag[0].ID from TagListStream

Please note the following limitations:

• The XPath standard prescribes that XPath expressions against org.w3c.Node are evaluated

against the owner document of the Node. Therefore XPath is not relative to the current node

but absolute against each node's owner document. Since Esper does not create new document

instances for transposed nodes, transposing properties is not possible when the xpath-

property-expr flag is set.

Event Sender

861

• Complex elements that have both simple element values and complex child elements are not

transposed. This is to ensure their property value is not hidden. Use an explicit XPath expression

to transpose such properties.

Esper automatically registers a new event type for transposed properties. It generates the type

name of the new XML event type from the XML event type name and the property names used

in the expression. The synposis is type_name.property_name[.property_name...]. The type name

can be looked up, for example for use with EventSender or can be created in advance.

G.2.7. Event Sender

An EventSender sends events into the engine for a given type, saving a type lookup based on

element name.

This brief example sends an event via EventSender:

EventSender sender = epRuntime.getEventSender("SensorEvent");

sender.sendEvent(node);

The XML DOM event sender checks the root element name before processing the event. Use the

event-sender-validates-root setting to disable validation. This forces the engine to process

XML documents according to any predefined type without validation of the root element name.

G.2.8. Limitations

The engine schema interrogation is based on the Xerces distribution packaged into Sun Java

runtimes. Your application may not replace the JRE's Xerces version and use XML schemas,

unless your application sets the DOM implementation registry as shown below before loading the

engine configuration:

System.setProperty(DOMImplementationRegistry.PROPERTY,

"com.sun.org.apache.xerces.internal.dom.DOMXSImplementationSourceImpl");

G.3. No-Schema-Provided XML Events

Without a schema document a XML event may still be queried. However there are important

differences in the metadata available without a schema document and therefore the property

expression results. These differences are outlined below.

All property expressions against a XML type without schema are assumed valid. There is no

validation of the property expression other than syntax validation. At runtime, property expressions

return string-type values or null if the expression did not yield a matching element or attribute

result.

Appendix G. Event Representat...

862

When asked for property names or property metadata, a no-schema type returns empty array.

In all other aspects the type behaves the same as the schema-provided type described earlier.

G.4. Explicitly-Configured Properties

Regardless of whether or not you provide a XSD schema for the XML event type, you can always

fall back to configuring explicit properties that are backed by XPath expressions.

For further documentation on XPath, please consult the XPath standard or other online material.

Consider using Jaxen or Apache Axiom, for example, to provide faster XPath evaluation then your

Java VM built-in XPath provider may offer.

G.4.1. Simple Explicit Property

Shown below is an example configuration that adds an explicit property backed by a XPath

expression and that defines namespace prefixes:

epService = EPServiceProviderManager.getDefaultProvider();

ConfigurationEventTypeXMLDOM sensorcfg = new ConfigurationEventTypeXMLDOM();

sensorcfg.addXPathProperty("countTags", "count(/ss:Sensor/ss:Observation/

ss:Tag)",

 XPathConstants.NUMBER);

sensorcfg.addNamespacePrefix("ss", "SensorSchema");

sensorcfg.setRootElementName("Sensor");

epService.getEPAdministrator().getConfiguration()

 .addEventType("SensorEvent", sensorcfg);

The countTags property is now available for querying:

select countTags from SensorEvent

The XPath expression count(...) is a XPath built-in function that counts the number of nodes,

for the example document the result is 2.

G.4.2. Explicit Property Casting and Parsing

Esper can parse or cast the result of your XPath expression to the desired type. Your property

configuration provides the type to cast to, like this:

sensorcfg.addXPathProperty("countTags", "count(/ss:Sensor/ss:Observation/

ss:Tag)",

 XPathConstants.NUMBER, "int");

Node and Nodeset Explicit Property

863

The type supplied to the property configuration must be one of the built-in types. Arrays of built-

in type are also possible, requiring the XPathConstants.NODESET type returned by your XPath

expression, as follows:

sensorcfg.addXPathProperty("idarray", "//ss:Tag/ss:ID",

 XPathConstants.NODESET, "String[]");

The XPath expression //ss:Tag/ss:ID returns all ID nodes under a Tag node, regardless of

where in the node tree the element is located. For the example document the result is 2 array

elements urn:epc:1:2.24.400 and urn:epc:1:2.24.40.

G.4.3. Node and Nodeset Explicit Property

An explicit property may return XPathConstants.NODE or XPathConstants.NODESET and can

provide the event type name of a pre-configured event type for the property. The method name

to add such properties is addXPathPropertyFragment.

This code snippet adds two explicit properties and assigns an event type name for each property:

sensorcfg.addXPathPropertyFragment("tagOne", "//ss:Tag[position() = 1]",

 XPathConstants.NODE, "TagEvent");

sensorcfg.addXPathPropertyFragment("tagArray", "//ss:Tag",

 XPathConstants.NODESET, "TagEvent");

The configuration above references the TagEvent event type. This type must also be configured.

Prefix the root element name with "//" to cause the lookup to search the nested schema elements

for the definition of the type:

ConfigurationEventTypeXMLDOM tagcfg = new ConfigurationEventTypeXMLDOM();

tagcfg.setRootElementName("//Tag");

tagcfg.setSchemaResource(schemaURL);

epAdministrator.getConfiguration()

 .addEventType("TagEvent", tagcfg);

The tagOne and tagArray properties are now ready for selection and transposing to further

streams:

insert into TagOneStream select tagOne.* from SensorEvent

Select from the new stream:

Appendix G. Event Representat...

864

select ID from TagOneStream

An example with indexed properties is shown next:

insert into TagArrayStream select tagArray as mytags from SensorEvent

Select from the new stream:

select mytags[0].ID from TagArrayStream

865

Appendix H. NEsper .NET -Specific

Information
This section provides information for NEsper .NET users.

H.1. .NET General Information

System.Collections.IEnumerable and System.Collections.Generic.IEnumerable<T> are

honored in most places where a collection would be taken.

In respect to DateTime differences, the baseline for CLR datetimes is 1/1/0001 12:00:00AM.

DateTimes are converted to ticks and then to milliseconds.

H.2. .NET and Annotations

Annotations are implemented using .NET attributes. Annotations must derive from

System.Attribute and must use .NET attribute naming conventions e.g. @Hint is implemented

as HintAttribute.

H.3. .NET and Locks and Concurrency

NEsper provides a lock manager that is configurable once per AppDomain:

com.espertech.esper.compat.threading.LockManager is used for lock provision.

• Standard system locks are the default.

• Spinlocks & Slimlocks may be used.

• Custom lock implementations can be leveraged.

com.espertech.esper.compat.threading.ReaderWriterLockManager is used for RW lock

management.

• Standard reader writer locks are the default.

• SlimReaderWriter locks are provided.

• Fair & FIFO ReaderWriter lock implementations are provided.

H.4. .NET and Threading

com.espertech.esper.compat.threading.ThreadLocalManager is used for thread local

management.

• Fast thread local implementation is the default - not .NET standard.

• Standard implementation is available - however, it is found significantly slower.

Appendix H. NEsper .NET -Spec...

866

H.5. .NET NEsper Configuration

com.espertech.esper.util.EsperSectionHandler is provided to read Esper configuration

from standard .NET configuration. It must be added as a configSection in order to be used.

For items not handled under the Esper configuration use

com.espertech.esper.compat.CompatSettings. These are often applied for the entire

AppDomain meaning they are effectively static for the container. These cover the following items:

• DefaultLockType.

• DefaultReaderWriterLockType.

• MonitorLockTimeout.

• ReaderLockTimeout.

• WriterLockTimeout.

• DefaultThreadLocalType.

H.6. .NET Event Underlying Objects

Table H.1. Event Underlying .NET Objects

Java Class Description

System.Object Any .NET object with properties.

System.Collections.Generic.IDictionaryMap events are implementations of the IDictionary

interface where each map entry is a propery value.

System.Array, System.Object[]

(array of object)

Object-array events are arrays of objects (type

Object[]) where each array element is a property

value.

System.Xml.XmlNode and

System.Xml.Linq.XNode

XML document object model (DOM).

Application classes Plug-in event representation via the extension API.

H.7. .NET Object Events

Event classes provide accessors (getter methods) and mutators (setter methods) by means of

auto-implemented properties or read write properties.

Below an example using auto-implemented properties:

class NewEmployeeEvent {

 public string FirstName { get; set; }

 public Address Address { get; set; }

}

Below an example using read write properties:

.NET IDictionary Events

867

class NewEmployeeEvent {

 private string firstName = "N/A";

 private Address address = 0;

 public string FirstName

 {

 get

 {

 return firstName;

 }

 set

 {

 firstName = value;

 }

 }

 public Address Address

 {

 get

 {

 return address;

 }

 set

 {

 address = value;

 }

 }

}

The case conversion is uppercase as dictated by .NET property conventions.

Mapped indexes are handled through the indexing operator.

H.8. .NET IDictionary Events

For .NET the events can be represented by objects that implement the IDictionary interface.

H.9. .NET XML Events

XML events are represented by System.Xml and System.Xml.Linq.

H.10. .NET Event Objects Instantiated and Populated by

Insert Into

Objects need to follow the .NET property conventions. Objects can follow modified conventions

for Java-style accessors and mutators using Get and Set respectively.

Appendix H. NEsper .NET -Spec...

868

H.11. .NET Processing Model Introduction

UpdateListener is replaced by UpdateEventHandler in .NET. Subscriber objects must

implement the Update method or subscriber objects must be a delegate with an appropriate

number of arguments.

H.12. .NET EPL Syntax - Data Types

The data types are sbyte, byte, short, ushort, int, uint, long, ulong, float, double, decimal.

H.13. .NET Accessing Relational Data via SQL

.NET uses ADO-based drivers to accomplish the same work.

H.14. .NET API - Receiving Statement Results

NEsper exposes the Events events on EPStatement objects.

The setSubscriber method is replaced with the Subscriber property. This property can take

an object or a delegate.

Iterator is replaced with GetEnumerator. SafeIterator is replaced with GetSafeEnumerator.

H.15. .NET API - Adding Listeners

Listeners are replaced with UpdateEventHandlers, for example countStatement.Events +=

(sender, args) => { DoWork(); }.

H.16. .NET API - Engine Threading and Concurrency

When using internal timer (and not the application provided external time), please note:

• Windows uses a high resolution timer that uses the windows multimedia timers with a resolution

of 1 millisecond. High resolution timers are cleaned up when the AppDomain is disposed.

• If using Mono, Mono uses an internal timer that attempts to account for clock skew and drift.

H.17. .NET Configurations - Relational Database Access

Connections are obtained by selecting a DbDriver, which are a NEsper-construct.

• DbDriverGeneric: Positional or name based driver that must be completely configured prior

to use.

• DbDriverMySQL: Positional based driver that uses '?' prefix.

• DbDriverODBC: Positional based driver that uses '?' prefix.

• DbDriverSqlServer: Translates positional into named-based SqlParameters with '@' prefix.

.NET Configurations - Logging Configuration

869

H.18. .NET Configurations - Logging Configuration

Log4j is replaced by .NET Commons Logging.

870

871

Index
Symbols
-> pattern operator, 286

A
after, 129

aggregation functions

custom plug-in, 676

overview, 359

and pattern operator, 283

annotation, 81

application-provided, 82

builtin, 83

enumeration value, 83

interrogating, 573

API

testing, 577

arithmetic operators, 327

array definition operator, 329

avro event representation, 843

B
between operator, 333

binary operators, 328

C
case control flow function, 343

cast function, 344

date parsing, 344

class loader, 579

class name resolution, 579

coalesce function, 346

concatenation operators, 328

configuration

items to configure, 585

logging, 642

overview, 581

programmatic, 581

runtime, 533, 642

transient, 582

via XML, 581

Configuration class, 581

constants, 78, 80

context partition, 576

correlation view, 485

create expression, 192

create index, 249

create schema, 177

create window, insert, 219

current_evaluation_context, 346

current_timestamp function, 346

D
data types, 78

data window views

custom plug-in view, 670

externally-time batch window, 467

externally-timed window, 464

grouped data window, 477

keep-all window, 470

last event window, 481

length batch window, 464

length window, 463

overview, 457

ranked window, 488

size window, 480

sorted window, 488

time batch window, 465

time length batch window, 468

time window, 464

time-accumulating window, 469

time-order window, 489

time-to-live window, 491

unique window, 476

dataflow, 493

decorated event, 141

delete, 254

deployment

EPDeploymentAdmin interface, 649

EPL module, 648

J2EE, 652

derived-value views

correlation, 485

overview, 459

regression, 484

univariate statistics, 483

Index

872

weighted average, 486

dot operator, 330

duck typing, 330

dynamic event properties, 11

E
enum types, 80

EPAdministrator interface, 521

EPL

from clause, 100

group by clause, 112

having clause, 121

inner join, 157

insert into clause, 137

join, 154

join, unidirectional, 159

joining non-relational data via method, script

or UDF invocation, 169

joining relational data via SQL, 162

limit clause, 136

named window, 213

deleting from, 242, 254

inserting into, 219, 252

populating from a named window, 219

selecting from, 221

triggered select and delete using On

Select Delete, 237

triggered select using On Select, 234

updating, 237, 253

order by clause, 135

outer join, 157

outer join, unidirectional, 159, 160

output control and stabilizing, 124

select clause, 92

subqueries, 144

table, 213

inserting into, 231

selecting from, 232

variable, 186

where clause, 109

EPRuntime interface, 534

EPServiceProviderManager class, 519

EPStatement interface, 521

EPStatementObjectModel interface, 560

escape, 77

event

additional representations, 18

Avro representation, 843

bulk, 19

coarse, 19

dynamic properties, 11

insert into, 20

Java object, 825

Map representation, 831

Object-array representation, 837

properties, 8

underlying representation, 7

update, 19

version, 19

XML representation, 855

event as a property, 142

event object

custom, 697

event time, 549

event type

declaring, 178

EventBean interface, 23, 539

EventType interface, 539

every pattern operator, 271

every-distinct pattern operator, 276

exists function, 346

expression

declaring, 192

expression alias, 88

expression batch window, 474

expression declaration, 89

expression window, 471

external time, 549

externally-timed batch window, 467

externally-timed window, 464

F
first event, 482

first length window, 470

first time window, 471

first unique window, 482

followed-by pattern operator, 286

from clause, 100

873

functions

case control flow, 343

cast, 344

coalesce, 346

current_evaluation_context, 346

current_timestamp, 346

exists, 346

grouping, 347

grouping_id, 347

instance-of, 348

istream, 349

max, 350

min, 350

previous, 350

previous count, 356

previous tail, 353

previous window, 354

prior, 357

type-of, 357

user-defined, 341, 376

G
group by clause, 112

grouping function, 347

grouping_id function, 347

groupwin window, 477

H
having clause, 121

I
in set operator, 331

index

spatial, 447

inner join, 157

insert, 252

insert into clause, 137

insert stream, 24

instance-of function, 348

istream, 349

iterator, 530

J
JavaScript, 707

join, 154

from clause, 100

non-relational data via method, script or UDF

invocation, 169

relational data via SQL, 162

K
keep-all window, 470

keywords, 76

L
lambda

expression alias, 88

expression declaration, 89

last event window, 481

length batch window, 464

length window, 463

like operator, 334

limit clause, 136

limiting output row count, 136

literals, 79

logical and comparison operators, 327

M
map event representation, 831

match recognize

comparison, 303

overview, 303

match_recognize

operator precedences, 307

max function, 350

maximum-by, 366

merge, 244

method

spatial, 445

methods

date-time, 419

enumeration, 383

min function, 350

minimum-by, 367

MVEL, 707

N
named window, 213

Index

874

create index, 249

deleting from, 242, 254

index, 249

inserting into, 219, 252

merge, 244

populating from a named window, 219

selecting from, 221

triggered select and delete using On Select

Delete, 237

triggered select using On Select, 234

updating, 237, 253

upsert, 244

versioning events, 254

named windows

overview, 213

new, 337

not pattern operator, 284

O
object-array event representation, 837

on-delete, 241

on-select, 234

on-select-delete, 237

on-update, 237

operators

arithmetic, 327

array definition, 329

between, 333

binary, 328

concatenation, 328

dot (period), 330

in, 331

like, 334

logical and comparison, 327

new, 337

regexp, 335

or pattern operator, 284

order by clause, 135

ordered, 368

ordering output, 135

OSGi, 579

outer join, 157

output

snapshot, 129

suppressing output, 129

output control and stabilizing clause, 124

output ordering, 135

output row count, 136

output when, 127

P
packaging

EPDeploymentAdmin interface, 649

EPL module, 648

J2EE, 652

pattern

filter event consumption, 269

filter expressions, 266

named window, 270

operator precedences, 265

overview, 259

table, 270

pattern atom, 292

pattern guard, 288

custom plug-in, 691

timer-within, 289

timer-withinmax, 290

while, 291

pattern observer

custom plug-in, 694

timer-at, 293

timer-interval, 292

timer-schedule, 296

pattern operator

and, 283

every, 271

every-distinct, 276

followed-by, 286

not, 284

or, 284

PERL, 707

PHP, 707

plug-in

custom aggregation function, 676

custom event object, 697

custom pattern guard, 691

custom pattern observer, 694

custom view, 670

875

single-row function, 665

plug-in loader, 572

previous count function, 356

previous function, 350

previous tail function, 353

previous window function, 354

prior function, 357

pull API, 530

Python, 707

R
ranked window, 488

regexp operator, 335

regression view, 484

relational databases, 162

remove stream, 25

Ruby, 707

S
safe iterator, 530

script

declaring, 192

script declaration, 91, 707

select clause, 92

single-row functions

custom plug-in, 665

size window, 480

sorted, 368

sorted window, 488

spatial

functions, 454

index, 447

intro, 445

method, 445

methods (external library), 454

types, 454

SQL, 162

statement

receiving results, 522

subscriber object, 523

StatementAwareUpdateListener interface, 529

static Java methods, 341

subqueries, 144

subscriber object, 523

EPStatement, 524

multi-row, 527

no-parameter, 528

row-by-row, 524

T
table, 213

create index, 249

deleting from, 254

index, 249

inserting into, 231, 252

merge, 244

selecting from, 232

updating, 253

upsert, 244

tables

overview, 213

testing, 577

threading, 544

time

controlling, 549

resolution, 553

time batch window, 30, 465

time length batch window, 468

time window, 28, 464

time-accumulating window, 469

time-order window, 489

time-to-live window, 491

timer-at pattern observer, 293

timer-interval pattern observer, 292

timer-schedule pattern observer, 296

timer-within pattern guard, 289

timer-withinmax pattern guard, 290

type-of function, 357

U
UDF

user-defined function, 376

unidirectional full outer joins, 160

unidirectional joins, 159

unique window, 476

univariate statistics view, 483

UnmatchedListener interface, 536

update, 253

Index

876

UpdateListener interface, 529

upsert, 244

user-defined function, 376

user-defined single-row function, 341

V
variable, 186

variant stream, 140

views

batch window processing, 31

correlation, 485

custom plug-in view, 670

expiry expression batch window, 474

expiry expression window, 471

externally-time batch window, 467

externally-timed window, 464

first event, 482

first length window, 471

first time window, 471

first unique window, 482

grouped data window, 477

keep-all window, 470

last event window, 481

length batch window, 464

length window, 463

overview, 457

ranked window, 488

regression, 484

size window, 480

sorted window, 488

time batch window, 465

time length batch window, 468

time window, 464

time-accumulating window, 469

time-order window, 489

time-to-live window, 491

unique window, 476

univariate statistics, 483

weighted average, 486

W
weighted average view, 486

where clause, 109

while pattern guard, 291

X
XML event representation, 855

	Esper Reference
	Table of Contents
	Preface
	Chapter 1. Getting Started
	1.1. Introduction to CEP and event series analysis
	1.2. Steps
	1.2.1. Step One: Setting up Classpath
	1.2.2. Step Two: Obtain Engine Instance
	1.2.3. Step Three: Provide Information on Input Events
	1.2.4. Step Four: Create EPL Statements and Attach Callbacks
	1.2.5. Step Five: Send Events

	1.3. Required 3rd Party Libraries

	Chapter 2. Event Representations
	2.1. Event Underlying Java Objects
	2.2. Event Properties
	2.2.1. Escape Characters
	2.2.2. Expression as Key or Index Value

	2.3. Dynamic Event Properties
	2.4. Fragment and Fragment Type
	2.5. Comparing Event Representations
	2.5.1. Incoming Events
	2.5.2. Outgoing Events
	2.5.3. Schema
	2.5.4. Side-By-Side

	2.6. Support for Generic Tuples
	2.7. Additional Event Representations
	2.8. Updating, Merging and Versioning Events
	2.9. Coarse-Grained Events
	2.10. Event Objects Instantiated and Populated by Insert Into

	Chapter 3. Processing Model
	3.1. Introduction
	3.2. Insert Stream
	3.3. Insert and Remove Stream
	3.4. Filters and Where-clauses
	3.5. Time Windows
	3.5.1. Time Window
	3.5.2. Time Batch

	3.6. Batch Windows
	3.7. Aggregation and Grouping
	3.7.1. Insert and Remove Stream
	3.7.2. Output for Aggregation and Group-By
	3.7.2.1. Un-aggregated and Un-grouped
	3.7.2.2. Fully Aggregated and Un-grouped
	3.7.2.3. Aggregated and Un-Grouped
	3.7.2.4. Fully Aggregated and Grouped
	3.7.2.5. Aggregated and Grouped

	3.8. Event Visibility and Current Time
	3.9. Indexes
	3.9.1. Index Kinds
	3.9.2. Filter Indexes
	3.9.2.1. Filter Index Multi-Statement Example
	3.9.2.2. Filter Index Pattern Example
	3.9.2.3. Filter Index Context Example

	3.9.3. Event Indexes

	Chapter 4. Context and Context Partitions
	4.1. Introduction
	4.2. Context Declaration
	4.2.1. Context-Provided Properties
	4.2.2. Keyed Segmented Context
	4.2.2.1. Multiple Stream Definitions
	4.2.2.2. Filters
	4.2.2.3. Multiple Properties Per Event Type
	4.2.2.4. Built-In Context Properties
	4.2.2.5. Examples of Joins

	4.2.3. Hash Segmented Context
	4.2.3.1. Multiple Stream Definitions
	4.2.3.2. Filters
	4.2.3.3. Built-In Context Properties
	4.2.3.4. Performance Considerations

	4.2.4. Category Segmented Context
	4.2.4.1. Built-In Context Properties

	4.2.5. Non-Overlapping Context
	4.2.6. Overlapping Context
	4.2.6.1. Distinct Events for the Initiating Condition
	4.2.6.2. Built-In Context Properties

	4.2.7. Context Conditions
	4.2.7.1. Filter Context Condition
	4.2.7.2. Pattern Context Condition
	4.2.7.3. Crontab Context Condition
	4.2.7.4. Time Period Context Condition

	4.3. Context Nesting
	4.3.1. Nested Context Sample Walk-Through
	4.3.2. Built-In Nested Context Properties

	4.4. Partitioning Without Context Declaration
	4.5. Output When Context Partition Ends
	4.6. Context and Named Window
	4.7. Context and Tables
	4.8. Context and Variables
	4.9. Operations on Specific Context Partitions

	Chapter 5. EPL Reference: Clauses
	5.1. EPL Introduction
	5.2. EPL Syntax
	5.2.1. Specifying Time Periods
	5.2.2. Using Comments
	5.2.3. Reserved Keywords
	5.2.4. Escaping Strings
	5.2.5. Data Types
	5.2.5.1. Data Type of Constants
	5.2.5.2. BigInteger and BigDecimal

	5.2.6. Using Constants and Enum Types
	5.2.7. Annotation
	5.2.7.1. Application-Provided Annotations
	5.2.7.2. Annotations With Enumeration Values
	5.2.7.3. Built-In Statement Annotations
	5.2.7.4. @Name
	5.2.7.5. @Description
	5.2.7.6. @Tag
	5.2.7.7. @Priority
	5.2.7.8. @Drop
	5.2.7.9. @Hint
	5.2.7.10. @Hook
	5.2.7.11. @Audit
	5.2.7.12. @EventRepresentation
	5.2.7.13. @IterableUnbound

	5.2.8. Expression Alias
	5.2.9. Expression Declaration
	5.2.10. Script Declaration
	5.2.11. Referring to a Context

	5.3. Choosing Event Properties And Events: the Select Clause
	5.3.1. Choosing all event properties: select *
	5.3.2. Choosing specific event properties
	5.3.3. Expressions
	5.3.4. Renaming event properties
	5.3.5. Choosing event properties and events in a join
	5.3.6. Choosing event properties and events from a pattern
	5.3.7. Selecting insert and remove stream events
	5.3.8. Qualifying property names and stream names
	5.3.9. Select Distinct
	5.3.10. Transposing an Expression Result to a Stream
	5.3.11. Selecting EventBean instead of Underlying Event

	5.4. Specifying Event Streams: the From Clause
	5.4.1. Filter-based Event Streams
	5.4.1.1. Specifying an Event Type
	5.4.1.2. Specifying Filter Criteria
	5.4.1.3. Filtering Ranges
	5.4.1.4. Filtering Sets of Values
	5.4.1.5. Filter Limitations

	5.4.2. Pattern-based Event Streams
	5.4.3. Specifying Views
	5.4.4. Multiple Data Window Views
	5.4.5. Using the Stream Name

	5.5. Specifying Search Conditions: the Where Clause
	5.6. Aggregates and grouping: the Group-by Clause and the Having Clause
	5.6.1. Using aggregate functions
	5.6.2. Organizing statement results into groups: the Group-by clause
	5.6.2.1. Hints Pertaining to Group-By

	5.6.3. Using Group-By with Rollup, Cube and Grouping Sets
	5.6.3.1. Grouping Dimension Examples
	5.6.3.2. Rollup Usage Notes

	5.6.4. Specifying grouping for each aggregation function
	5.6.5. Specifying a filter expression for each aggregation function
	5.6.6. Selecting groups of events: the Having clause
	5.6.7. How the stream filter, Where, Group By and Having clauses interact
	5.6.8. Comparing Keyed Segmented Context, the Group By clause and the std:groupwin view

	5.7. Stabilizing and Controlling Output: the Output Clause
	5.7.1. Output Clause Options
	5.7.1.1. Controlling Output Using an Expression
	5.7.1.2. Suppressing Output With After
	5.7.1.3. Output Snapshot

	5.7.2. Aggregation, Group By, Having and Output clause interaction
	5.7.3. Runtime Considerations
	5.7.3.1. For Un-aggregated and Un-grouped Queries
	5.7.3.1.1. Output Last
	5.7.3.1.2. Output All

	5.7.3.2. For Fully Aggregated and Un-grouped Queries
	5.7.3.2.1. Output Last
	5.7.3.2.2. Output All

	5.7.3.3. For Aggregated and Un-Grouped Queries
	5.7.3.3.1. Output Last
	5.7.3.3.2. Output All

	5.7.3.4. For Fully Aggregated and Grouped Queries (Includes Rollup)
	5.7.3.4.1. Output Last
	5.7.3.4.2. Output All

	5.7.3.5. For Aggregated and Grouped Queries
	5.7.3.5.1. Output Last
	5.7.3.5.2. Output All

	5.8. Sorting Output: the Order By Clause
	5.9. Limiting Row Count: the Limit Clause
	5.10. Merging Streams and Continuous Insertion: the Insert Into Clause
	5.10.1. Transposing a Property To a Stream
	5.10.2. Merging Streams By Event Type
	5.10.3. Merging Disparate Types of Events: Variant Streams
	5.10.4. Decorated Events
	5.10.5. Event as a Property
	5.10.6. Instantiating and Populating an Underlying Event Object
	5.10.7. Transposing an Expression Result
	5.10.8. Select-Clause Expression And Inserted-Into Column Event Type
	5.10.9. Insert Into for Event Types without Properties

	5.11. Subqueries
	5.11.1. The 'exists' Keyword
	5.11.2. The 'in' and 'not in' Keywords
	5.11.3. The 'any' and 'some' Keywords
	5.11.4. The 'all' Keyword
	5.11.5. Subquery With Group By Clause
	5.11.6. Multi-Column Selection
	5.11.7. Multi-Row Selection
	5.11.8. Hints Related to Subqueries

	5.12. Joining Event Streams
	5.12.1. Introducing Joins
	5.12.2. Inner (Default) Joins
	5.12.3. Outer, Left and Right Joins
	5.12.4. Unidirectional Joins
	5.12.5. Unidirectional Full Outer Joins
	5.12.6. Hints Related to Joins

	5.13. Accessing Relational Data via SQL
	5.13.1. Joining SQL Query Results
	5.13.2. SQL Query and the EPL Where Clause
	5.13.3. Outer Joins With SQL Queries
	5.13.4. Using Patterns to Request (Poll) Data
	5.13.5. Polling SQL Queries via Iterator
	5.13.6. JDBC Implementation Overview
	5.13.7. Oracle Drivers and No-Metadata Workaround
	5.13.8. SQL Input Parameter and Column Output Conversion
	5.13.9. SQL Row POJO Conversion

	5.14. Accessing Non-Relational Data via Method, Script or UDF Invocation
	5.14.1. Joining Method, Script or UDF Invocation Results
	5.14.2. Polling Invocation Results via Iterator
	5.14.3. Providing the Method
	5.14.3.1. Providing an Instance Method

	5.14.4. Using a Map Return Type
	5.14.5. Using a Object Array Return Type
	5.14.6. Using an EventBean Return Type
	5.14.7. Providing the Script
	5.14.8. Providing the UDF

	5.15. Declaring an Event Type: Create Schema
	5.15.1. Declare an Event Type by Providing Names and Types
	5.15.2. Declare an Event Type by Providing a Class Name
	5.15.3. Declare a Variant Stream

	5.16. Splitting and Duplicating Streams
	5.16.1. Generating Marker Events for Contained Events

	5.17. Variables and Constants
	5.17.1. Creating Variables: the Create Variable clause
	5.17.2. Setting Variable Values: the On Set clause
	5.17.3. Using Variables
	5.17.4. Object-Type Variables
	5.17.5. Class and Event-Type Variables

	5.18. Declaring Global Expressions, Aliases And Scripts: Create Expression
	5.18.1. Global Expression Aliases
	5.18.2. Global Expression Declarations
	5.18.3. Global Scripts

	5.19. Contained-Event Selection
	5.19.1. Select-Clause in a Contained-Event Selection
	5.19.2. Where Clause in a Contained-Event Selection
	5.19.3. Contained-Event Selection and Joins
	5.19.4. Sentence and Word Example
	5.19.5. More Examples
	5.19.6. Contained Expression Returning an Array of Property Values
	5.19.7. Contained Expression Returning an Array of EventBean
	5.19.8. Generating Marker Events such as a Begin and End Event
	5.19.9. Contained-Event Limitations

	5.20. Updating an Insert Stream: the Update IStream Clause
	5.20.1. Immutability and Updates

	5.21. Controlling Event Delivery : The For Clause

	Chapter 6. EPL Reference: Named Windows And Tables
	6.1. Overview
	6.1.1. Named Window Overview
	6.1.2. Table Overview
	6.1.3. Comparing Named Windows And Tables
	6.1.3.1. Nature of Data
	6.1.3.2. Data Organization
	6.1.3.3. Insert and Remove Stream
	6.1.3.4. Immutability and Copy-On-Write
	6.1.3.5. Removal of Rows

	6.2. Named Window Usage
	6.2.1. Creating Named Windows: the Create Window clause
	6.2.1.1. Creation by Modeling after an Existing Type
	6.2.1.2. Creation By Defining Columns Names and Types
	6.2.1.3. Dropping or Removing Named Windows
	6.2.1.4. Populating a Named Window from an Existing Named Window

	6.2.2. Inserting Into Named Windows
	6.2.2.1. Named Windows Holding Decorated Events

	6.2.3. Selecting From Named Windows

	6.3. Table Usage
	6.3.1. Creating Tables: The Create Table clause
	6.3.1.1. Column Types for Aggregation Functions
	6.3.1.2. Column Types for Event Aggregation Functions
	6.3.1.3. Column Types for Plug-In Custom Aggregation Functions
	6.3.1.4. Dropping or Removing Tables

	6.3.2. Aggregating Into Table Rows: The Into Table clause
	6.3.2.1. Group-By Clause Requirements
	6.3.2.2. Aggregation State Requirements
	6.3.2.3. Aggregation Function Requirements
	6.3.2.4. Column Naming Requirements

	6.3.3. Table Column Keyed-Access Expressions
	6.3.3.1. Reading All Column Values
	6.3.3.2. Accessing Aggregation State With The Dot Operator

	6.3.4. Inserting Into Tables
	6.3.5. Selecting From Tables

	6.4. Triggered Select: the On Select clause
	6.4.1. Notes on On-Select With Named Windows
	6.4.2. Notes on On-Select With Tables
	6.4.3. On-Select Compared To Join

	6.5. Triggered Select+Delete: the On Select Delete clause
	6.6. Updating Data: the On Update clause
	6.6.1. Notes on On-Update With Named Windows
	6.6.2. Notes on On-Update With Tables

	6.7. Deleting Data: the On Delete clause
	6.7.1. Using Patterns in the On Delete Clause
	6.7.2. Notes on On-Delete With Named Windows
	6.7.3. Notes on On-Update With Tables

	6.8. Triggered Upsert using the On-Merge Clause
	6.8.1. Notes on On-Merge With Named Windows
	6.8.2. Notes on On-Merge With Tables

	6.9. Explicitly Indexing Named Windows and Tables
	6.10. Using Fire-And-Forget Queries with Named Windows and Tables
	6.10.1. Inserting Data
	6.10.2. Updating Data
	6.10.3. Deleting Data

	6.11. Versioning and Revision Event Type Use with Named Windows
	6.12. Events As Property

	Chapter 7. EPL Reference: Patterns
	7.1. Event Pattern Overview
	7.2. How to use Patterns
	7.2.1. Pattern Syntax
	7.2.2. Patterns in EPL
	7.2.3. Subscribing to Pattern Events
	7.2.4. Pulling Data from Patterns
	7.2.5. Pattern Error Reporting
	7.2.6. Suppressing Same-Event Matches
	7.2.7. Discarding Partially Completed Patterns

	7.3. Operator Precedence
	7.4. Filter Expressions In Patterns
	7.4.1. Filter Expressions and Filter Indexes
	7.4.2. Controlling Event Consumption
	7.4.3. Use With Named Windows and Tables

	7.5. Pattern Operators
	7.5.1. Every
	7.5.1.1. Every Operator Equivalence
	7.5.1.2. Limiting Subexpression Lifetime
	7.5.1.3. Every Operator Example
	7.5.1.4. Sensor Example

	7.5.2. Every-Distinct
	7.5.3. Repeat
	7.5.4. Repeat-Until
	7.5.4.1. Unbound Repeat
	7.5.4.2. Bound Repeat Overview
	7.5.4.3. Bound Repeat - Open Ended Range
	7.5.4.4. Bound Repeat - High Endpoint Range
	7.5.4.5. Bound Repeat - Bounded Range
	7.5.4.6. Tags and the Repeat Operator
	7.5.4.7. Note on Indexed Tags

	7.5.5. And
	7.5.6. Or
	7.5.7. Not
	7.5.8. Followed-by
	7.5.8.1. Limiting Sub-Expression Count
	7.5.8.2. Limiting Engine-wide Sub-Expression Count

	7.5.9. Pattern Guards
	7.5.9.1. The timer:within Pattern Guard
	7.5.9.2. The timer:withinmax Pattern Guard
	7.5.9.3. The while Pattern Guard
	7.5.9.4. Guard Time Interval Expressions
	7.5.9.5. Combining Guard Expressions

	7.6. Pattern Atoms
	7.6.1. Filter Atoms
	7.6.2. Observer Atoms Overview
	7.6.3. Interval (timer:interval)
	7.6.4. Crontab (timer:at)
	7.6.4.1. timer:at and the every Operator

	7.6.5. Schedule (timer:schedule)
	7.6.5.1. Specifying ISO8601 Dates, Periods and Repetition
	7.6.5.1.1. Specifying Dates
	7.6.5.1.2. Specifying Periods
	7.6.5.1.3. Specifying Repetitions

	7.6.5.2. Scheduling a callback to occur for a given date (non-repeating)
	7.6.5.3. Scheduling a callback to occur after a given period (non-repeating)
	7.6.5.4. Scheduling a callback to occur after a given date and period (non-repeating)
	7.6.5.5. Scheduling a callback to occur periodically (repeating)
	7.6.5.6. Scheduling a callback to occur periodically starting from a given date (repeating)
	7.6.5.7. Additional Usage Examples
	7.6.5.8. Samples With Equivalent EPL
	7.6.5.9. Implementation Notes

	Chapter 8. EPL Reference: Match Recognize
	8.1. Overview
	8.2. Comparison of Match Recognize and EPL Patterns
	8.3. Syntax
	8.3.1. Syntax Example

	8.4. Pattern and Pattern Operators
	8.4.1. Operator Precedence
	8.4.2. Concatenation
	8.4.3. Alternation
	8.4.4. Quantifiers Overview
	8.4.5. Permutations
	8.4.6. Variables Can be Singleton or Group
	8.4.6.1. Additional Aggregation Functions

	8.4.7. Eliminating Duplicate Matches
	8.4.8. Greedy Or Reluctant
	8.4.9. Quantifier - One Or More (+ and +?)
	8.4.10. Quantifier - Zero Or More (* and *?)
	8.4.11. Quantifier - Zero Or One (? and ??)
	8.4.12. Repetition - Exactly N Matches
	8.4.13. Repetition - N Or More Matches
	8.4.14. Repetition - Between N and M Matches
	8.4.15. Repetition - Between Zero and M Matches
	8.4.16. Repetition Equivalence

	8.5. Define Clause
	8.5.1. The Prev Operator

	8.6. Measure Clause
	8.7. Datawindow-Bound
	8.8. Interval
	8.9. Interval-Or-Terminated
	8.10. Use with Different Event Types
	8.11. Limiting Engine-wide State Count
	8.12. Limitations

	Chapter 9. EPL Reference: Operators
	9.1. Arithmetic Operators
	9.2. Logical And Comparison Operators
	9.2.1. Null-Value Comparison Operators

	9.3. Concatenation Operators
	9.4. Binary Operators
	9.5. Array Definition Operator
	9.6. Dot Operator
	9.6.1. Duck Typing

	9.7. The 'in' Keyword
	9.7.1. 'in' for Range Selection

	9.8. The 'between' Keyword
	9.9. The 'like' Keyword
	9.10. The 'regexp' Keyword
	9.11. The 'any' and 'some' Keywords
	9.12. The 'all' Keyword
	9.13. The 'new' Keyword
	9.13.1. Using 'new' To Populate A Data Structure
	9.13.2. Using 'new' To Instantiate An Object

	Chapter 10. EPL Reference: Functions
	10.1. Single-row Function Reference
	10.1.1. The Case Control Flow Function
	10.1.2. The Cast Function
	10.1.2.1. The Cast Function For Parsing Dates

	10.1.3. The Coalesce Function
	10.1.4. The Current_Evaluation_Context Function
	10.1.5. The Current_Timestamp Function
	10.1.6. The Exists Function
	10.1.7. The Grouping Function
	10.1.8. The Grouping_Id Function
	10.1.9. The Instance-Of Function
	10.1.10. The Istream Function
	10.1.11. The Min and Max Functions
	10.1.12. The Previous Function
	10.1.12.1. Restrictions
	10.1.12.2. Comparison to the prior Function

	10.1.13. The Previous-Tail Function
	10.1.13.1. Restrictions

	10.1.14. The Previous-Window Function
	10.1.14.1. Restrictions

	10.1.15. The Previous-Count Function
	10.1.15.1. Restrictions

	10.1.16. The Prior Function
	10.1.17. The Type-Of Function

	10.2. Aggregation Functions
	10.2.1. SQL-Standard Functions
	10.2.2. Event Aggregation Functions
	10.2.2.1. First Aggregation Function
	10.2.2.2. Last Aggregation Function
	10.2.2.3. Maxby Aggregation Function
	10.2.2.4. Maxbyever Aggregation Function
	10.2.2.5. Minby Aggregation Function
	10.2.2.6. Minbyever Aggregation Function
	10.2.2.7. Sorted Aggregation Function
	10.2.2.8. Window Aggregation Function

	10.2.3. Approximation Aggregation Functions
	10.2.3.1. Count-Min Sketch
	10.2.3.1.1. Declaration
	10.2.3.1.2. Counting Values
	10.2.3.1.3. Estimating Current Count
	10.2.3.1.4. Obtaining Top-K
	10.2.3.1.5. Agent API Example

	10.2.4. Additional Aggregation Functions

	10.3. User-Defined Functions
	10.3.1. Event Type Conversion via User-Defined Function
	10.3.2. User-Defined Function Result Cache
	10.3.3. Parameter Matching
	10.3.4. Receiving a Context Object

	10.4. Select-Clause transpose Function
	10.4.1. Transpose with Insert-Into

	Chapter 11. EPL Reference: Enumeration Methods
	11.1. Overview
	11.2. Example Events
	11.3. How to Use
	11.3.1. Syntax
	11.3.2. Introductory Examples
	11.3.3. Input, Output and Limitations

	11.4. Inputs
	11.4.1. Subquery Results
	11.4.2. Named Window
	11.4.3. Table
	11.4.4. Event Property
	11.4.5. Event Aggregation Function
	11.4.6. prev, prevwindow and prevtail Single-Row Functions as Input
	11.4.7. Single-Row Function, User-Defined Function and Enum Types
	11.4.8. Declared Expression
	11.4.9. Variables
	11.4.10. Substitution Parameters
	11.4.11. Match-Recognize Group Variable
	11.4.12. Pattern Repeat and Repeat-Until Operators

	11.5. Example
	11.6. Reference
	11.6.1. Aggregate
	11.6.2. AllOf
	11.6.3. AnyOf
	11.6.4. Average
	11.6.5. CountOf
	11.6.6. DistinctOf
	11.6.7. Except
	11.6.8. FirstOf
	11.6.9. GroupBy
	11.6.10. Intersect
	11.6.11. LastOf
	11.6.12. LeastFrequent
	11.6.13. Max
	11.6.14. MaxBy
	11.6.15. Min
	11.6.16. MinBy
	11.6.17. MostFrequent
	11.6.18. OrderBy and OrderByDesc
	11.6.19. Reverse
	11.6.20. SelectFrom
	11.6.21. SequenceEqual
	11.6.22. SumOf
	11.6.23. Take
	11.6.24. TakeLast
	11.6.25. TakeWhile
	11.6.26. TakeWhileLast
	11.6.27. ToMap
	11.6.28. Union
	11.6.29. Where

	Chapter 12. EPL Reference: Date-Time Methods
	12.1. Overview
	12.2. How to Use
	12.2.1. Syntax

	12.3. Calendar and Formatting Reference
	12.3.1. Between
	12.3.2. Format
	12.3.2.1. Format with Default Formatter
	12.3.2.2. Providing a Format

	12.3.3. Get (By Field)
	12.3.4. Get (By Name)
	12.3.5. Minus
	12.3.6. Plus
	12.3.7. RoundCeiling
	12.3.8. RoundFloor
	12.3.9. RoundHalf
	12.3.10. Set (By Field)
	12.3.11. WithDate
	12.3.12. WithMax
	12.3.13. WithMin
	12.3.14. WithTime
	12.3.15. ToCalendar
	12.3.16. ToDate
	12.3.17. ToMillisec

	12.4. Interval Algebra Reference
	12.4.1. Examples
	12.4.2. Interval Algebra Parameters
	12.4.3. Performance
	12.4.4. Limitations
	12.4.5. After
	12.4.6. Before
	12.4.7. Coincides
	12.4.8. During
	12.4.9. Finishes
	12.4.10. Finished By
	12.4.11. Includes
	12.4.12. Meets
	12.4.13. Met By
	12.4.14. Overlaps
	12.4.15. Overlapped By
	12.4.16. Starts
	12.4.17. Started By

	Chapter 13. EPL Reference: Spatial Methods and Indexes
	13.1. Overview
	13.2. Spatial Methods
	13.2.1. Point-Inside-Rectangle
	13.2.2. Rectangle-Intersects-Rectangle

	13.3. Spatial Index - Quadtree
	13.3.1. Overview
	13.3.2. Declaring a Point-Region Quadtree Index
	13.3.3. Using a Point-Region Quadtree as a Filter Index
	13.3.4. Using a Point-Region Quadtree as an Event Index
	13.3.4.1. Point-Region Quadtree Event Index Usage Notes

	13.3.5. Declaring a MX-CIF Quadtree Index
	13.3.6. Using a MX-CIF Quadtree as a Filter Index
	13.3.7. Using a MX-CIF Quadtree as an Event Index
	13.3.7.1. MX-CIF Quadtree Event Index Usage Notes

	13.4. Spatial Types, Functions and Methods from External Libraries

	Chapter 14. EPL Reference: Views
	14.1. A Note on View Name and Parameters
	14.2. A Note on Batch Windows
	14.3. Data Window Views
	14.3.1. Length window (length or win:length)
	14.3.2. Length batch window (length_batch or win:length_batch)
	14.3.3. Time window (time or win:time)
	14.3.4. Externally-timed window (ext_timed or win:ext_timed)
	14.3.5. Time batch window (time_batch or win:time_batch)
	14.3.6. Externally-timed batch window (ext_timed_batch or win:ext_timed_batch)
	14.3.7. Time-Length combination batch window (time_length_batch or win:time_length_batch)
	14.3.8. Time-Accumulating window (time_accum or win:time_accum)
	14.3.9. Keep-All window (keepall or win:keepall)
	14.3.10. First Length (firstlength or win:firstlength)
	14.3.11. First Time (firsttime or win:firsttime)
	14.3.12. Expiry Expression (expr or win:expr)
	14.3.12.1. Limitations

	14.3.13. Expiry Expression Batch (expr_batch or win:expr_batch)
	14.3.13.1. Limitations

	14.4. Standard view set
	14.4.1. Unique (unique or std:unique)
	14.4.2. Grouped Data Window (groupwin or std:groupwin)
	14.4.3. Size (size) or std:size)
	14.4.4. Last Event (std:lastevent)
	14.4.5. First Event (firstevent or std:firstevent)
	14.4.6. First Unique (firstunique or std:firstunique)

	14.5. Statistics views
	14.5.1. Univariate statistics (uni or stat:uni)
	14.5.2. Regression (linest or stat:linest)
	14.5.3. Correlation (correl or stat:correl)
	14.5.4. Weighted average (weighted_avg or stat:weighted_avg)

	14.6. Extension View Set
	14.6.1. Sorted Window View (sort or ext:sort)
	14.6.2. Ranked Window View (rank or ext:rank)
	14.6.3. Time-Order View (time_order or ext:time_order)
	14.6.4. Time-To-Live View (timetolive or ext:timetolive)

	Chapter 15. EPL Reference: Data Flow
	15.1. Introduction
	15.2. Usage
	15.2.1. Overview
	15.2.2. Syntax
	15.2.2.1. Operator Declaration
	15.2.2.2. Declaring Input Streams
	15.2.2.3. Declaring Output Streams
	15.2.2.4. Declaring Operator Parameters

	15.3. Built-in Operators
	15.3.1. BeaconSource
	15.3.2. EPStatementSource
	15.3.3. EventBusSink
	15.3.4. EventBusSource
	15.3.5. Filter
	15.3.6. LogSink
	15.3.7. Select

	15.4. API
	15.4.1. Declaring a Data Flow
	15.4.2. Instantiating a Data Flow
	15.4.3. Executing a Data Flow
	15.4.4. Instantiation Options
	15.4.5. Start Captive
	15.4.6. Data Flow Punctuation with Markers
	15.4.7. Exception Handling

	15.5. Examples
	15.6. Operator Implementation
	15.6.1. Sample Operator Acting as Source
	15.6.2. Sample Tokenizer Operator
	15.6.3. Sample Aggregator Operator

	Chapter 16. API Reference
	16.1. API Overview
	16.2. The Service Provider Interface
	16.3. The Administrative Interface
	16.3.1. Creating Statements
	16.3.2. Receiving Statement Results
	16.3.3. Setting a Subscriber Object
	16.3.3.1. Using the EPStatement Parameter
	16.3.3.2. Row-By-Row Delivery
	16.3.3.2.1. Wildcards
	16.3.3.2.2. Row Delivery as Map and Object Array
	16.3.3.2.3. Delivery of Remove Stream Events
	16.3.3.2.4. Delivery of Begin and End Indications

	16.3.3.3. Multi-Row Delivery
	16.3.3.3.1. Wildcards

	16.3.3.4. No-Parameter Update Method

	16.3.4. Adding Listeners
	16.3.4.1. Subscription Snapshot and Atomic Delivery

	16.3.5. Using Iterators
	16.3.6. Managing Statements
	16.3.7. Atomic Statement Management
	16.3.8. Runtime Configuration

	16.4. The Runtime Interface
	16.4.1. Event Sender
	16.4.2. Receiving Unmatched Events

	16.5. On-Demand Fire-And-Forget Query Execution
	16.5.1. On-Demand Query Single Execution
	16.5.2. On-Demand Query Prepared Unparameterized Execution
	16.5.3. On-Demand Query Prepared Parameterized Execution

	16.6. Event and Event Type
	16.6.1. Event Type Metadata
	16.6.2. Event Object
	16.6.3. Query Example
	16.6.4. Pattern Example

	16.7. Engine Threading and Concurrency
	16.7.1. Advanced Threading
	16.7.1.1. Inbound Threading
	16.7.1.2. Outbound Threading
	16.7.1.3. Timer Execution Threading
	16.7.1.4. Route Execution Threading
	16.7.1.5. Threading Service Provider Interface

	16.7.2. Processing Order
	16.7.2.1. Competing Statements
	16.7.2.2. Competing Events in a Work Queue

	16.8. Controlling Time-Keeping
	16.8.1. Controlling Time Using Time Span Events
	16.8.2. Time Resolution and Time Unit
	16.8.3. Internal Timer Based on JVM System Time
	16.8.4. Additional Time-Related APIs

	16.9. Service Isolation
	16.9.1. Overview
	16.9.2. Example: Suspending a Statement
	16.9.3. Example: Catching up a Statement from Historical Data
	16.9.4. Isolation for Insert-Into
	16.9.5. Isolation for Named Windows and Tables
	16.9.6. Runtime Considerations

	16.10. Exception Handling
	16.11. Condition Handling
	16.12. Statement Object Model
	16.12.1. Building an Object Model
	16.12.2. Building Expressions
	16.12.3. Building a Pattern Statement
	16.12.4. Building a Select Statement
	16.12.5. Building a Create-Variable and On-Set Statement
	16.12.6. Building Create-Window, On-Delete and On-Select Statements

	16.13. Prepared Statement and Substitution Parameters
	16.14. Engine and Statement Metrics Reporting
	16.14.1. Engine Metrics
	16.14.2. Statement Metrics

	16.15. Event Rendering to XML and JSON
	16.15.1. JSON Event Rendering Conventions and Options
	16.15.2. XML Event Rendering Conventions and Options

	16.16. Plug-in Loader
	16.17. Interrogating EPL Annotations
	16.18. Context Partition Selection
	16.18.1. Selectors

	16.19. Context Partition Administration
	16.20. Test and Assertion Support
	16.20.1. EPAssertionUtil Summary
	16.20.2. SupportUpdateListener Summary
	16.20.3. Usage Example

	16.21. OSGi, Class Loader, Class-For-Name

	Chapter 17. Configuration
	17.1. Programmatic Configuration
	17.2. Configuration via XML File
	17.3. Passing Services or Transient Objects
	17.3.1. Service Example
	17.3.2. Class-For-Name
	17.3.3. Class Loader
	17.3.4. Class Loader CGLib FastClass

	17.4. Configuration Items
	17.4.1. Events represented by Java Classes
	17.4.1.1. Package of Java Event Classes
	17.4.1.2. Event type name to Java class mapping
	17.4.1.3. Non-JavaBean and Legacy Java Event Classes
	17.4.1.4. Specifying Event Properties for Java Classes
	17.4.1.5. Turning off Code Generation
	17.4.1.6. Case Sensitivity and Property Names
	17.4.1.7. Factory and Copy Method
	17.4.1.8. Start and End Timestamp

	17.4.2. Events represented by java.util.Map
	17.4.3. Events represented by Object[] (Object-array)
	17.4.4. Events represented by Avro GenericData.Record
	17.4.5. Events represented by org.w3c.dom.Node
	17.4.5.1. Schema Resource
	17.4.5.2. Explicit XPath Property
	17.4.5.3. Absolute or Deep Property Resolution
	17.4.5.4. XPath Variable and Function Resolver
	17.4.5.5. Auto Fragment
	17.4.5.6. XPath Property Expression
	17.4.5.7. Event Sender Setting
	17.4.5.8. Start and End Timestamp

	17.4.6. Events represented by Plug-in Event Representations
	17.4.6.1. Enabling an Custom Event Representation
	17.4.6.2. Adding Plug-in Event Types
	17.4.6.3. Setting Resolution URIs

	17.4.7. Class and package imports
	17.4.8. Annotation class and package imports
	17.4.9. Cache Settings for From-Clause Method Invocations
	17.4.10. Variables
	17.4.11. Relational Database Access
	17.4.11.1. Connections obtained via DataSource
	17.4.11.2. Connections obtained via DataSource Factory
	17.4.11.3. Connections obtained via DriverManager
	17.4.11.4. Connections-level settings
	17.4.11.5. Connections lifecycle settings
	17.4.11.6. Cache settings
	17.4.11.6.1. LRU Cache
	17.4.11.6.2. Expiry-time Cache

	17.4.11.7. Column Change Case
	17.4.11.8. SQL Types Mapping
	17.4.11.9. Metadata Origin

	17.4.12. Engine Settings related to Concurrency and Threading
	17.4.12.1. Preserving the order of events delivered to listeners
	17.4.12.2. Preserving the order of events for insert-into streams
	17.4.12.3. Preserving the order of named window dispatches to named window consumer statements
	17.4.12.4. Internal Timer Settings
	17.4.12.5. Advanced Threading Options
	17.4.12.6. Engine Fair Locking

	17.4.13. Engine Settings related to Event Metadata
	17.4.13.1. Default Event Representation
	17.4.13.2. Avro Settings
	17.4.13.3. Java Class Property Names, Case Sensitivity and Accessor Style
	17.4.13.4. Cache Size for Anonymous Event Types

	17.4.14. Engine Settings related to View Resources
	17.4.14.1. Sharing View Resources between Statements
	17.4.14.2. Iterator Behavior For Unbound Streams
	17.4.14.3. Configuring Multi-Expiry Policy Defaults

	17.4.15. Engine Settings related to Logging
	17.4.15.1. Execution Path Debug Logging
	17.4.15.2. Query Plan Logging
	17.4.15.3. JDBC Logging
	17.4.15.4. Audit Logging

	17.4.16. Engine Settings related to Variables
	17.4.16.1. Variable Version Release Interval

	17.4.17. Engine Settings related to Patterns
	17.4.17.1. Followed-By Operator Maximum Subexpression Count

	17.4.18. Engine Settings related to Match-Recognize
	17.4.18.1. Maximum State Count

	17.4.19. Engine Settings related to Scripts
	17.4.20. Engine Settings related to Stream Selection
	17.4.20.1. Default Statement Stream Selection

	17.4.21. Engine Settings related to Time Source
	17.4.21.1. Default Time Source
	17.4.21.2. Time Unit

	17.4.22. Engine Settings related to JMX Metrics
	17.4.23. Engine Settings related to Metrics Reporting
	17.4.24. Engine Settings related to Language and Locale
	17.4.25. Engine Settings related to Expression Evaluation
	17.4.25.1. Integer Division and Division by Zero
	17.4.25.2. Subselect Evaluation Order
	17.4.25.3. User-Defined Function or Static Method Cache
	17.4.25.4. Extended Built-in Aggregation Functions
	17.4.25.5. Duck Typing
	17.4.25.6. Math Context
	17.4.25.7. Time Zone

	17.4.26. Engine Settings related to Execution of Statements
	17.4.26.1. Prioritized Execution
	17.4.26.2. Context Partition Fair Locking
	17.4.26.3. Disable Locking
	17.4.26.4. Threading Profile
	17.4.26.5. Filter Service Profile
	17.4.26.6. Filter Service Max Filter Width
	17.4.26.7. Allow Isolated Service Provider
	17.4.26.8. Declared Expression Value Cache Size

	17.4.27. Engine Settings related to Exception Handling
	17.4.28. Engine Settings related to Condition Handling
	17.4.29. Revision Event Type
	17.4.30. Variant Stream

	17.5. Type Names
	17.6. Runtime Configuration
	17.7. Logging Configuration
	17.7.1. Log4j Logging Configuration

	Chapter 18. Development Lifecycle
	18.1. Authoring
	18.2. Testing
	18.3. Debugging
	18.3.1. @Audit Annotation

	18.4. Packaging and Deploying Overview
	18.5. EPL Modules
	18.6. The Deployment Administrative Interface
	18.6.1. Reading Module Content
	18.6.2. Ordering Multiple Modules
	18.6.3. Deploying and Un-deploying
	18.6.4. Listing Deployments
	18.6.5. State Transitioning a Module
	18.6.6. Best Practices

	18.7. J2EE Packaging and Deployment
	18.7.1. J2EE Deployment Considerations
	18.7.2. Servlet Context Listener

	18.8. Monitoring and JMX

	Chapter 19. Integration and Extension
	19.1. Overview
	19.2. Virtual Data Window
	19.2.1. How to Use
	19.2.1.1. Query Access Path

	19.2.2. Implementing the Factory
	19.2.3. Implementing the Virtual Data Window
	19.2.4. Implementing the Lookup

	19.3. Single-Row Function
	19.3.1. Implementing a Single-Row Function
	19.3.2. Configuring the Single-Row Function Name
	19.3.3. Value Cache
	19.3.4. Single-Row Functions in Filter Predicate Expressions
	19.3.5. Single-Row Functions Taking Events as Parameters
	19.3.6. Single-Row Functions Returning Events
	19.3.7. Receiving a Context Object
	19.3.8. Exception Handling

	19.4. Derived-value and Data Window View
	19.4.1. Implementing a View Factory
	19.4.2. Implementing a View
	19.4.3. View Contract
	19.4.4. Configuring View Namespace and Name
	19.4.5. Requirement for Data Window Views
	19.4.6. Requirement for Derived-Value Views
	19.4.7. Requirement for Grouped Views

	19.5. Aggregation Function
	19.5.1. Aggregation Single-Function Development
	19.5.1.1. Implementing an Aggregation Single-Function Factory
	19.5.1.2. Implementing an Aggregation Single-Function
	19.5.1.3. Configuring the Aggregation Single-Function Name
	19.5.1.4. Aggregation Single-Function: Accepting Multiple Parameters
	19.5.1.5. Aggregation Single-Function: The Filter Parameter
	19.5.1.6. Aggregation Single-Function: Dot-Operator Use

	19.5.2. Aggregation Multi-Function Development
	19.5.2.1. Implementing an Aggregation Multi-Function Factory
	19.5.2.2. Implementing an Aggregation Multi-Function Handler
	19.5.2.3. Implementing an Aggregation Multi-Function State Factory
	19.5.2.4. Implementing an Aggregation Multi-Function State
	19.5.2.5. Implementing an Aggregation Multi-Function Accessor
	19.5.2.6. Configuring the Aggregation Multi-Function Name
	19.5.2.7. Aggregation Multi-Function Thread Safety
	19.5.2.8. Aggregation Multi-Function Use With Tables
	19.5.2.9. Aggregation Multi-Function Use Filter Expression

	19.6. Pattern Guard
	19.6.1. Implementing a Guard Factory
	19.6.2. Implementing a Guard Class
	19.6.3. Configuring Guard Namespace and Name

	19.7. Pattern Observer
	19.7.1. Implementing an Observer Factory
	19.7.2. Implementing an Observer Class
	19.7.3. Configuring Observer Namespace and Name

	19.8. Event Type And Event Object
	19.8.1. How It Works
	19.8.2. Steps
	19.8.3. URI-based Resolution
	19.8.4. Example
	19.8.4.1. Sample Event Type
	19.8.4.2. Sample Event Bean
	19.8.4.3. Sample Event Representation
	19.8.4.4. Sample Event Bean Factory

	Chapter 20. Script Support
	20.1. Overview
	20.2. Syntax
	20.3. Examples
	20.4. Built-In EPL Script Attributes
	20.5. Performance Notes
	20.6. Additional Notes

	Chapter 21. Examples, Tutorials, Case Studies
	21.1. Examples Overview
	21.2. Running the Examples
	21.3. AutoID RFID Reader
	21.4. Runtime Configuration
	21.5. JMS Server Shell and Client
	21.5.1. Overview
	21.5.2. JMS Messages as Events
	21.5.3. JMX for Remote Dynamic Statement Management

	21.6. Market Data Feed Monitor
	21.6.1. Input Events
	21.6.2. Computing Rates Per Feed
	21.6.3. Detecting a Fall-off
	21.6.4. Event generator

	21.7. OHLC Plug-in View
	21.8. Transaction 3-Event Challenge
	21.8.1. The Events
	21.8.2. Combined event
	21.8.3. Real time summary data
	21.8.4. Find problems
	21.8.5. Event generator

	21.9. Self-Service Terminal
	21.9.1. Events
	21.9.2. Detecting Customer Check-in Issues
	21.9.3. Absence of Status Events
	21.9.4. Activity Summary Data
	21.9.5. Sample Application for J2EE Application Server
	21.9.5.1. Running the Example
	21.9.5.2. Building the Example
	21.9.5.3. Running the Event Simulator and Receiver

	21.10. Assets Moving Across Zones - An RFID Example
	21.11. StockTicker
	21.12. MatchMaker
	21.13. Named Window Query
	21.14. Sample Virtual Data Window
	21.15. Sample Cycle Detection
	21.16. Quality of Service
	21.17. Trivia Geeks Club

	Chapter 22. Performance
	22.1. Performance Results
	22.2. Performance Tips
	22.2.1. Understand how to tune your Java virtual machine
	22.2.2. Input and Output Bottlenecks
	22.2.3. Theading
	22.2.3.1. Thead Pool Pattern

	22.2.4. Select the underlying event rather than individual fields
	22.2.5. Prefer stream-level filtering over where-clause filtering
	22.2.5.1. Examples without named windows
	22.2.5.2. Examples using named windows
	22.2.5.3. Common computations in where-clauses

	22.2.6. Reduce the use of arithmetic in expressions
	22.2.7. Remove Unneccessary Constructs
	22.2.8. End Pattern Sub-Expressions
	22.2.9. Consider using EventPropertyGetter for fast access to event properties
	22.2.10. Consider casting the underlying event
	22.2.11. Turn off logging and audit
	22.2.12. Tune or disable delivery order guarantees
	22.2.13. Use a Subscriber Object to Receive Events
	22.2.14. Consider Data Flows
	22.2.15. High-Arrival-Rate Streams and Single Statements
	22.2.16. Subqueries versus Joins And Where-clause And Data Windows
	22.2.17. Patterns and Pattern Sub-Expression Instances
	22.2.18. Pattern Sub-Expression Instance Versus Data Window Use
	22.2.19. The Keep-All Data Window
	22.2.20. Statement Design for Reduced Memory Consumption - Diagnosing OutOfMemoryError
	22.2.21. Performance, JVM, OS and hardware
	22.2.22. Consider using Hints
	22.2.23. Optimizing Stream Filter Expressions
	22.2.24. Statement and Engine Metric Reporting
	22.2.25. Expression Evaluation Order and Early Exit
	22.2.26. Large Number of Threads
	22.2.27. Filter Evaluation Tuning
	22.2.28. Context Partition Related Information
	22.2.29. Prefer Constant Variables over Non-Constant Variables
	22.2.30. Prefer Object-array Events
	22.2.31. Composite or Compound Keys
	22.2.32. Notes on Query Planning
	22.2.33. Query Planning Expression Analysis Hints
	22.2.34. Query Planning Index Hints
	22.2.35. Measuring Throughput
	22.2.36. Do not create the same or similar EPL Statement X times
	22.2.37. Comparing Single-Threaded and Multi-Threaded Performance
	22.2.38. Incremental Versus Recomputed Aggregation for Named Window Events
	22.2.39. When Does Memory Get Released
	22.2.40. Measure throughput of non-matches as well as matches

	22.3. Using the performance kit
	22.3.1. How to use the performance kit
	22.3.2. How we use the performance kit

	Chapter 23. References
	23.1. Reference List

	Appendix A. Output Reference and Samples
	A.1. Introduction and Sample Data
	A.2. Output for Un-aggregated and Un-grouped Queries
	A.2.1. No Output Rate Limiting
	A.2.2. Output Rate Limiting - Default
	A.2.3. Output Rate Limiting - Last
	A.2.4. Output Rate Limiting - First
	A.2.5. Output Rate Limiting - Snapshot

	A.3. Output for Fully-aggregated and Un-grouped Queries
	A.3.1. No Output Rate Limiting
	A.3.2. Output Rate Limiting - Default
	A.3.3. Output Rate Limiting - Last
	A.3.4. Output Rate Limiting - First
	A.3.5. Output Rate Limiting - Snapshot

	A.4. Output for Aggregated and Un-grouped Queries
	A.4.1. No Output Rate Limiting
	A.4.2. Output Rate Limiting - Default
	A.4.3. Output Rate Limiting - Last
	A.4.4. Output Rate Limiting - First
	A.4.5. Output Rate Limiting - Snapshot

	A.5. Output for Fully-aggregated and Grouped Queries
	A.5.1. No Output Rate Limiting
	A.5.2. Output Rate Limiting - Default
	A.5.3. Output Rate Limiting - All
	A.5.4. Output Rate Limiting - Last
	A.5.5. Output Rate Limiting - First
	A.5.6. Output Rate Limiting - Snapshot

	A.6. Output for Aggregated and Grouped Queries
	A.6.1. No Output Rate Limiting
	A.6.2. Output Rate Limiting - Default
	A.6.3. Output Rate Limiting - All
	A.6.4. Output Rate Limiting - Last
	A.6.5. Output Rate Limiting - First
	A.6.6. Output Rate Limiting - Snapshot

	A.7. Output for Fully-Aggregated, Grouped Queries With Rollup
	A.7.1. No Output Rate Limiting
	A.7.2. Output Rate Limiting - Default
	A.7.3. Output Rate Limiting - All
	A.7.4. Output Rate Limiting - Last
	A.7.5. Output Rate Limiting - First
	A.7.6. Output Rate Limiting - Snapshot

	Appendix B. Reserved Keywords
	Appendix C. Event Representation: Plain-Old Java Object Events
	C.1. Overview
	C.2. Java Object Event Properties
	C.3. Property Names
	C.4. Parameterized Types
	C.5. Setter Methods for Indexed and Mapped Properties
	C.6. Known Limitations

	Appendix D. Event Representation: java.util.Map Events
	D.1. Overview
	D.2. Map Properties
	D.3. Map Supertypes
	D.4. Advanced Map Property Types
	D.4.1. Nested Properties
	D.4.2. One-to-Many Relationships

	Appendix E. Event Representation: Object-array (Object[]) Events
	E.1. Overview
	E.2. Object-Array Properties
	E.3. Object-Array Supertype
	E.4. Advanced Object-Array Property Types
	E.4.1. Nested Properties
	E.4.2. One-to-Many Relationships

	Appendix F. Event Representation: Avro Events (org.apache.avro.generic.GenericData.Record)
	F.1. Overview
	F.2. Avro Event Type
	F.3. Avro Schema Name Requirement
	F.4. Avro Field Schema to Property Type Mapping
	F.5. Primitive Data Type and Class to Avro Schema Mapping
	F.6. Customizing Avro Schema Assignment
	F.7. Customizing Class-to-Avro Schema
	F.8. Customizing Object-to-Avro Field Value Assignment
	F.9. API Examples
	F.10. Limitations

	Appendix G. Event Representation: org.w3c.dom.Node XML Events
	G.1. Overview
	G.2. Schema-Provided XML Events
	G.2.1. Getting Started
	G.2.2. Property Expressions and Namespaces
	G.2.3. Property Expression to XPath Rewrite
	G.2.4. Array Properties
	G.2.5. Dynamic Properties
	G.2.6. Transposing Properties
	G.2.7. Event Sender
	G.2.8. Limitations

	G.3. No-Schema-Provided XML Events
	G.4. Explicitly-Configured Properties
	G.4.1. Simple Explicit Property
	G.4.2. Explicit Property Casting and Parsing
	G.4.3. Node and Nodeset Explicit Property

	Appendix H. NEsper .NET -Specific Information
	H.1. .NET General Information
	H.2. .NET and Annotations
	H.3. .NET and Locks and Concurrency
	H.4. .NET and Threading
	H.5. .NET NEsper Configuration
	H.6. .NET Event Underlying Objects
	H.7. .NET Object Events
	H.8. .NET IDictionary Events
	H.9. .NET XML Events
	H.10. .NET Event Objects Instantiated and Populated by Insert Into
	H.11. .NET Processing Model Introduction
	H.12. .NET EPL Syntax - Data Types
	H.13. .NET Accessing Relational Data via SQL
	H.14. .NET API - Receiving Statement Results
	H.15. .NET API - Adding Listeners
	H.16. .NET API - Engine Threading and Concurrency
	H.17. .NET Configurations - Relational Database Access
	H.18. .NET Configurations - Logging Configuration

	Index

